Water Resources Data Pennsylvania Water Year 2002 **Volume 1. Delaware River Basin** By R.R. Durlin and W.P. Schaffstall Water-Data Report PA-02-1 Prepared in cooperation with the Pennsylvania Department of Environmental Protection, the Philadelphia District of the U.S. Army Corps of Engineers, the Chester County Water Resources Authority, and with other State, municipal, and Federal agencies. # U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director For additional information write to: District Chief, Water Resources Division U.S. Geological Survey 215 Limekiln Road New Cumberland, Pennsylvania 17070 ## **PREFACE** This volume of the annual hydrologic data report of Pennsylvania is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for Pennsylvania are contained in 3 volumes. - Volume 1. Delaware River Basin - Volume 2. Susquehanna and Potomac River Basins - Volume 3. Ohio and St. Lawrence River Basins Volume 1 was prepared in cooperation with the Commonwealth of Pennsylvania and other agencies under the general supervision of William H. Werkheiser, District Chief, Pennsylvania District; Robert A. Hainly, Assistant District Chief for Hydrologic Surveillance and Data Management; Randall R. Durlin, Chief of the Hydrologic Surveillance Program, New Cumberland District Office, and William P. Schaffstall, Chief, Williamsport Project Office. It is the product of a team effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized these data, and who typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines, the following individuals contributed significantly to the collection, processing, and tabulation of these data: | M. R. Beaver | T. R. Hunt | J. D. Riggle | |------------------|--------------|------------------| | J. K. Bender | J. V. Irvin | J. J. Rote | | R. T. Campbell | M. E. Jones | C. J. Rowland | | J. T. Fisher | D. G. Kelley | C. L. Schreffler | | D. G. Galeone | S. McAuley | L. A. Senior | | D. R. Galeone | L. E. Olson | K. E. Tuers | | J. D. Hollenbach | A. G. Reif | M. V. Truhlar | | K. S. Housel | | | # **REPORT DOCUMENTATION PAGE** Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Atlanton, VA 22202-4302, and to the Office of Management and Buldget Paperwork Reduction Project (0704-0188) Washington, DC 20506. | Davis Highway, Suite 1204, Arlington, VA 2220 | 2-4302, and to the Office of Management | and Budget, Paperwork Reduction Project | it (0704-0188), Washington, DC 20503. | | |--|--|--|--|--| | 1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE June 2003 | 3. REPORT TYPE AND DATES COVERED Annual Oct. 1, 2000 to Sept. 30, 2001 | | | | 4. TITLE AND SUBTITLE Water Resources Data for Per Water Year 2002 Volume 1, Delaware River Ba | • | 5. | FUNDING NUMBERS | | | 6. AUTHOR(S) Randall R. Durlin and Willia | | | | | | 7. PERFORMING ORGANIZATION NAME
U.S. Geological Survey, Wate
215 Limekiln Road
New Cumberland, PA 17070 | | | PERFORMING ORGANIZATION REPORT NUMBER USGS-WDR-PA-02-1 | | | 9. SPONSORING / MONITORING AGENC | | 10 |). SPONSORING / MONITORING
AGENCY REPORT NUMBER | | | U.S. Geological Survey, Water Resources Division
215 Limekiln Road
New Cumberland, PA 17070 | | | USGS-WDR-PA-02-1 | | | 11. SUPPLEMENTARY NOTES Prepared in cooperation with | the Commonwealth of Penn | | | | | 12a. DISTRIBUTION / AVAILABILITY STA | TEMENT | 12 | 2b. DISTRIBUTION CODE | | | No restrictions on distribution
National Technical Information | | | | | | streams; contents and elevation. This report, Volume 1 contains record stations, 19 special-stusites; (2) elevation and content and 14 ungaged streamsites; (network observation wells; and tions are shown in figures 6-14 collection program are also program are also programs. | ons of lakes and reservoirs; as (1) discharge records for 8 ady and miscellaneous streatts records for 13 lakes and r (4) water-quality records for 16 (6) water-quality analyses 4. Additional water data col resented. These data together | and water levels and water 0 continuous-record stream amflow sites, and 39 low-freservoirs; (3) water-quality 47 special-study stations; s of ground water from 55 lected at various sites not iter with the data in Volumes | discharge and water quality of quality of ground-water wells. flow-gaging stations, 8 partiallow miscellaneous streamflow records for 38 gaging stations (5) water-level records for 63 ground-water wells. Site locanvolved in the systematic datase 2 and 3, represent that part of rating State, local, and Federal | | | 44. CUDIFOT TEDMO | | | L | | | 14. SUBJECT TERMS*Pennsylvania, *Hydrologic data tions, Streamflow, Flow rates, La | | | 2.5 | | | ature, Water analysis, Water leve | | | 16. PRICE CODE | | | 17. SECURITY CLASSIFICATION OF REPORT | 18. SECURITY CLASSIFICATION OF THIS PAGE | 19. SECURITY CLASSIFICATION OF ABSTRACT | 20. LIMITATION OF ABSTRACT | | | UNCLASSIFIED | UNCLASSIFIED | UNCLASSIFIED | UL | | # **CONTENTS** | | Page | |---|------| | Preface | ii | | List of surface-water stations, in downstream order, for which records are published in this volume | vii | | List of ground-water wells, by county, for which records are published in this volume | X | | List of discontinued continuous-record surface-water discharge stations | | | List of discontinued continuous-record surface-water-quality stations | | | Pennsylvania District office locations and addresses | | | Introduction | | | Cooperation | | | Summary of hydrologic conditions | | | Surface water | | | Water quality | | | Ground water | | | References | | | Special networks and programs | | | Explanation of the records | | | Station identification numbers | | | Downstream-order system | | | Latitude-longitude system | | | Records of stage and water discharge | | | Data collection and computation | | | Data presentation | | | Station manuscript | | | Data table of daily mean values | | | Statistics of monthly mean data | | | Summary statistics | | | Identifying estimated daily discharge | | | Accuracy of the records | | | Other records available | | | Records of surface-water quality | | | Classification of records | | | | | | Arrangement of records | | | On-site measurements and sample collection | | | Water temperature | | | Sediment | | | Laboratory measurements | | | Data presentation | | | Accuracy of the records | | | Remark codes | | | Water-quality-control data | | | Records of ground-water levels | | | Data collection and computation | | | Data presentation | | | Data table of water-levels | | | Records of ground-water quality | | | Data collection and computation | | | Data presentation | | | Access to USGS Water Data | | | Definition of terms Techniques of Water-Resources Investigations of the U.S. Geological Survey | 24 | | | | # **CONTENTS**--Continued | | Page | |--|------| | Station records, surface water | | | Continuous water-discharge and water-quality station records | . 48 | | Discharge at partial-record stations and miscellaneous sites | | | Crest-stage partial-record stations | 400 | | Miscellaneous sites | 402 | | Low-flow partial-record stations | 405 | | Analyses of samples collected at special-study sites | | | Pennsylvania water-quality network | 410 | | New Garden Township, Chester County, spray irrigation project | 426 | | Stream conditions of Chester County biological monitoring network | | | Special Notes, Remark Codes, and Selected Constituent Definitions | 454 | | Station records, ground water | | | Water-level and water-quality | 456 | | Ground-water data collected at
special-study sites | | | Chester County water-quality monitoring project | 512 | | Statewide assessment of methyl-tert-butyl-ether (MTBE) in ground water | 516 | | Index | | | | | # **CONTENTS**--Continued # **ILLUSTRATIONS** | Figure 1Comparison of monthly precipitation in the Delaware River Basin at Pleasant Mount and Allentown, Pa. durin | ng | |--|-----| | the 2002 water year with mean monthly precipitation for the period 1971 through 2000 | 4 | | 2Comparison of streamflow at two long-term streamflow-gaging stations during the 2002 water year with the | | | median monthly and annual mean streamflow for the period 1971 through 2000 | 5 | | 3Monthly mean specific conductance measured in the Delaware River at Reedy Island Jetty, Delaware | | | for the 2002 water year and the mean monthly specific conductance for the period 1965 through 2001 | 7 | | 4Relation between 2002 seasonal mean ground-water levels and long-term mean ground-water levels | 9 | | 5System for numbering wells and miscellaneous sites | 11 | | 6-14Maps showing: | | | 6Location of continuous-record data-collection stations in the upper Delaware River Basin | 41 | | 7Location of continuous-record data-collection stations in the lower Delaware River Basin | 42 | | 8Location of partial-record data-collection stations in the upper Delaware River Basin | 43 | | 9Location of partial-record data-collection stations in the lower Delaware River Basin | 44 | | 10Location of ground-water wells, surface-water sites, and soil suction-lysimeter nests for the | | | spray irrigation project in New Garden Township, Chester County | 427 | | 11Biological sampling locations and major drainage basin divides in Chester County | 437 | | 12Location of selected ground-water well sites in the Chester County | | | water-quality monitoring project | 512 | | 13Location of wells sampled as part of the MTBE in ground water project in the upper | | | Delaware River Basin | 516 | | 14Location of wells sampled as part of the MTBE in ground water project in the lower | | | Delaware River Basin | 517 | | | | | <u>TABLES</u> | | | Table 1. Maximum allowable limits for continuous water-quality monitoring sensors | 19 | | 2. Rating continuous water-quality records | 19 | | 3. Pennsylvania water-quality network (WQN) station list | 411 | | 4. Description of soil-suction lysimeters located at the spray irrigation project site | 428 | | 5. Stream conditions of Chester County biological monitoring network station list | 436 | | | | # $SURFACE\text{-}WATER\ STATIONS,\ IN\ DOWNSTREAM\ ORDER,\ FOR\ WHICH\ RECORDS\ ARE\ PUBLISHED\ IN\ THIS\ VOLUME$ [Letters after station name designate type of data: (d) discharge, (c) chemical, (sc) specific conductance, (pH), (t) water temperature, (do) dissolved oxygen, (%) dissolved oxygen, % saturation, (b) biological, (turb) turbidity, (e) elevation, gage heights, or contents.] # NORTH ATLANTIC SLOPE BASINS | | Station
number | Page | |---|-------------------|----------| | DELAWARE RIVER BASIN | | Ü | | West Branch Delaware River at Hancock, N.Y. (t) | 01427000 | 48 | | Delaware River at Callicoon, N.Y. (d,c,t) | 01427510 | 50 | | Delaware River above Lackawaxen River near Barryville, N.Y. (d,t) | 01428500 | 56 | | West Branch Lackawaxen River near Aldenville (d,t) | 01428750 | 60 | | West Branch Lackawaxen River at Prompton (d,t) | 01429000 | 64 | | Dyberry Creek near Honesdale (d) | 01429500 | 68 | | Lackawaxen River near Honesdale (d) | 01430000 | 70 | | Lackawaxen River at Hawley (d) | 01431500 | 72 | | Wallenpaupack Creek: | | | | Wallenpaupack Creek at Wilsonville (d) | 01432000 | 74 | | Lakes and Reservoirs in Lackawaxen River basin (e) | | 76 | | Delaware River at Barryville, N.Y. (t) | 01432160 | 78 | | Delaware River at Pond Eddy, N.Y. (t) | 01432805 | 80 | | Delaware River at Port Jervis, N.Y. (d,c) | 01434000 | 82 | | Delaware River at Montague, N.J. (d,c,b) | 01438500 | 85 | | BUSH KILL BASIN | 04.420.200 | | | Bush Kill at Shoemakers (d,c) | 01439500 | 89 | | BRODHEAD CREEK BASIN | 01.440.400 | 02 | | Brodhead Creek near Analomink (d) | 01440400 | 92 | | Paradise Creek: | 01440495 | 0.4 | | Swiftwater Creek at Swiftwater (d) | 01440485 | 94 | | McMichael Creek: | 01441405 | 06 | | Pocono Creek above Wigwam Run near Stroudsburg (d) | 01441495 | 96
98 | | | 01442500 | | | Delaware River at Polyiders N. L. (d.s.) | 01443000 | 101 | | Delaware River at Belvidere, N.J. (d,c) | 01446500 | 103 | | Lehigh River at Stoddartsville (d,c,t) | 01447500 | 106 | | Tobyhanna Creek: | 01447500 | 100 | | Tunkhannock Creek near Long Pond (d) | 01447680 | 111 | | Tobyhanna Creek near Blakeslee (d,c,t) | 01447720 | 113 | | Lehigh River below Francis E. Walter Reservoir near White Haven (d,t) | 01447720 | 118 | | Lehigh River at Lehighton (d) | 01449000 | 122 | | Pohopoco Creek at Kresgeville (d,t) | 01449360 | 124 | | Pohopoco Creek below Beltzville Lake near Parryville (d,t) | 01449800 | 128 | | Aquashicola Creek at Palmerton (d) | 01450500 | 132 | | Lehigh River at Walnutport (d) | 01451000 | 134 | | Little Lehigh Creek near Allentown (d) | 01451500 | 136 | | Little Lehigh Creek at Tenth Street Bridge at Allentown (d) | 01451650 | 138 | | Jordan Creek near Schnecksville (d) | 01451800 | 140 | | Jordan Creek at Allentown (d) | 01452000 | 142 | | Monocacy Creek at Bethlehem (d) | 01452500 | 144 | | Lehigh River at Bethlehem (d) | 01453000 | 146 | | Lehigh River at Glendon (d,c) | 01454700 | 148 | | Lehigh River at Easton (sc,pH,t,do) | 01454720 | 151 | | Lakes and Reservoirs in Lehigh River Basin (e) | 31 13 T/20 | 156 | | Delaware River at Riegelsville, N.J. (c,b) | 01457500 | 158 | # $SURFACE\text{-}WATER\ STATIONS,\ IN\ DOWNSTREAM\ ORDER,\ FOR\ WHICH\ RECORDS\ ARE\ PUBLISHED\ IN\ THIS\ VOLUME$ # NORTH ATLANTIC SLOPE BASINS--Continued | | Station | D | |---|------------|----------| | DELAWARE RIVER BASINContinued | number | Page | | TOHICKON CREEK BASIN | | | | Tohickon Creek near Pipersville (d) | 01459500 | 160 | | Delaware River near Point Pleasant (sc,pH,t,do) | 01460200 | 162 | | Delaware River at Lumberville, N.J. (c,b) | 01461000 | 169 | | Delaware River at Trenton, N.J. (d,c,b,sc,pH,t,do,%,turb) | 01463500 | 171 | | NESHAMINY CREEK BASIN | | | | North Branch Neshaminy Creek below Lake Galena near New Britain (d) | 01464645 | 192 | | North Branch Neshaminy Creek at Chalfont (d) | 01464720 | 194 | | Neshaminy Creek near Rushland (d) | 01464750 | 196 | | Little Neshaminy Creek at Valley Road near Neshaminy (d,c) | 01464907 | 198 | | Neshaminy Creek near Langhorne (d,c) | 01465500 | 203 | | POQUESSING CREEK BASIN | | | | Poquessing Creek at Grant Avenue, Philadelphia (d) | 01465798 | 206 | | PENNYPACK CREEK BASIN | 04.44=0.40 | • • • • | | Pennypack Creek at Lower Rhawn Street Bridge, Philadelphia (d) | 01467048 | 208 | | FRANKFORD CREEK BASIN | 01467007 | 210 | | Frankford Creek at Castor Avenue, Philadelphia (d) | 01467087 | 210 | | Delaware River at Benjamin Franklin Bridge at Philadelphia (sc,pH,t,do) | 01467200 | 212 | | SCHUYLKILL RIVER BASIN | 01460500 | 220 | | Schuylkill River at Landingville (d) | 01468500 | 220 | | Little Schuylkill River at Tamaqua (d) | 01469500 | 222 | | Schuylkill River at Berne (d,c) | 01470500 | 224 | | Tulpehocken Creek near Bernville (d,t) | 01470779 | 227 | | Spring Creek: | 01.470052 | 222 | | Furnace Creek at Robesonia (d) | 01470853 | 232 | | Tulpehocken Creek at Blue Marsh damsite near Reading (d,t) | 01470960 | 234 | | Tulpehocken Creek near Reading (d,c) | 01471000 | 239 | | Schuylkill River at Reading (d) | 01471510 | 242 | | Manatawny Creek near Spangsville (d) | 01471875 | 244 | | Manatawny Creek near Pottstown (d) | 01471980 | 246 | | Schuylkill River at Pottstown (d,c) | 01472000 | 248 | | Schuylkill River at Vincent Dam at Linfield (t,do) | 01472104 | 251 | | French Creek near Phoenixville (d,c,b) | 01472157 | 254 | | Perkiomen Creek at East Greenville (d) | 01472198 | 262 | | West Branch Perkiomen Creek at Hillegass (d) | 01472199 | 264 | | East Branch Perkiomen Creek near Dublin (d) | 01472620 | 266 | | East Branch Perkiomen Creek near Schwenksville (d) | 01472810 | 268 | | Perkiomen Creek at Graterford (d) | 01473000 | 270 | | Valley Creek at Pennsylvania Turnpike Bridge near Valley Forge (d,c,b) | 01473169 | 272 | | Schuylkill River at Norristown (d) | 01473500 | 278 | | Wissahickon Creek at Fort Washington (d,c) | 01473900 | 280 | | Wissahickon Creek at mouth, Philadelphia (d,c) | 01474000 | 283 | | Schuylkill River at Philadelphia (d,c) | 01474500 | 286 | | Lakes and Reservoirs in Schuylkill River Basin (e) | 01.47.4702 | 292 | | Delaware River at Fort Mifflin at Philadelphia (sc,t) | 01474703 | 294 | | Crum Creek near Newtown Square (d,c,b) | 01475850 | 298 | | RIDLEY CREEK BASIN | | | | Ridley Creek at Media (d) | 01476480 | 304 | | CHESTER CREEK BASIN | | | | Chester Creek near Chester (d) | 01477000 | 306 | | Delaware River at Chester (sc,pH,t,do) | 01477050 | 308 | # $SURFACE\text{-}WATER\ STATIONS,\ IN\ DOWNSTREAM\ ORDER,\ FOR\ WHICH\ RECORDS\ ARE\ PUBLISHED\ IN\ THIS\ VOLUME$ # NORTH ATLANTIC SLOPE BASINS--Continued | | Station
number | Page | |---|-------------------|-------| | DELAWARE RIVER BASINContinued | 110111501 | - "g" | | CHRISTINA RIVER BASIN | | | | White Clay Creek: | | | | White Clay Creek near Strickersville (d,c) | 01478245 | 315 | | Runoff to Unnamed Tributary to West Branch Red Clay Creek at Kennett Square (d,c) | 01479676 | 318 | | Unnamed Pond above Unnamed Tributary to West Branch | | | | Red Clay Creek at Kennett Square (c) | 01479677 | 323 | | Unnamed Tributary to West Branch Red Clay Creek at Kennett Square (d,c) | 01479678
| 325 | | Red Clay Creek near Kennett Square (d,c) | 01479820 | 329 | | Brandywine Creek: | | | | West Branch Brandywine Creek near Honey Brook (d,c,b) | 01480300 | 332 | | Birch Run near Wagontown (d,t) | 01480400 | 337 | | West Branch Brandywine Creek at Coatesville (d,t) | 01480500 | 342 | | West Branch Brandywine Creek at Modena (d,c,b,sc,pH,t,do) | 01480617 | 347 | | East Branch: | | | | Marsh Creek near Glenmoore (d) | 01480675 | 360 | | Marsh Creek near Downingtown (d) | 01480685 | 362 | | East Branch Brandywine Creek near Downingtown (d) | 01480700 | 364 | | East Branch Brandywine Creek below Downingtown (d,c,b,sc,pH,t,do) | 01480870 | 366 | | Brandywine Creek at Chadds Ford (d,c,b,sc,pH,t,do) | 01481000 | 379 | | Lakes and Reservoirs in Christina River Basin (e) | 01101000 | 391 | | Delaware River at Reedy Island Jetty, DE (sc,pH,t,do) | 01482800 | 392 | | Delawate River at Reedy Island Jetty, DL (se,pri,t,do) | 01402000 | 372 | | | | | | Discharge at partial-record stations and miscellaneous sites | | | | Crest-stage partial-record stations | | 400 | | Miscellaneous sites | | 402 | | Low-flow partial-record stations | | 405 | | Analysis of samples collected at special-study sites | | | | Pennsylvania water-quality network | | 410 | | New Garden Township, Chester County, spray irrigation project | | 426 | | Stream conditions of Chester County biological monitoring network | | 436 | # GROUND-WATER WELLS, BY COUNTY, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME [Letters after local well number designate type of data: (l) water level, (c) chemical.] # **GROUND-WATER RECORDS** | | | Page | |----------------|--|------------| | BERKS COUNTY | T. 1. 1. DT 444 (I) | | | | Local number BE 623 (l) | 456 | | BUCKS COUNTY | I I DIV 000 (I) | 457 | | | Local number BK 929 (1) | 457 | | | Local number BK 1020 (l) | 458 | | CARBON COUNTY | I l CD 104 (l) | 450 | | CHESTER COUNTY | Local number CB 104 (l) | 459 | | | Local number CH 2 (l) | 461 | | | Local number CH 2 (I) Local number CH 10 (I) | 460 | | | Local number CH 12 (I) | 461 | | | Local number CH 28 (1) | 461 | | | Local number CH 28 (I) | 462 | | | Local number CH 89 (1) | 462 | | | Local number CH 210 (1) | 462 | | | Local number CH 249 (l) | 463 | | | Local number CH 254 (I) | 463 | | | Local number CH 234 (I) Local number CH 1201 (I) | 463 | | | Local number CH 1201 (I) Local number CH 1229 (I) | 464 | | | Local number CH 1229 (I) | 464 | | | Local number CH 1247 (I) | 464 | | | Local number CH 1387 (1) | 465 | | | Local number CH 1971 (I) | 465 | | | Local number CH 1921 (1) | 465 | | | Local number CH 2273 (I) Local number CH 2313 (I) | 465 | | | | 466 | | | Local number CH 2328 (l) | 466 | | | Local number CH 2450 (I) | 467 | | | Local number CH 2561 (I) | 467 | | | Local number CH 2581 (I) | 467 | | | Local number CH 2663 (l) | 468 | | | Local number CH 3289 (I) | 468 | | | Local number CH 5172 (l,c) | 472 | | | Local number CH 5172 (l,c) Local number CH 5173 (l,c) | 474 | | | Local number CH 5174 (l,c) | 476 | | | Local number CH 5174 (I,C) Local number CH 5175 (I,C) | 478 | | | Local number CH 5176 (l,c) | 480 | | | Local number CH 5176 (l,c) | 482 | | | Local number CH 5177 (1,c) Local number CH 5178 (1,c) | 484 | | | Local number CH 5178 (l,c) | 486 | | | Local number CH 5180 (l,c) | 488 | | | Local number CH 5180 (l,c) | 490 | | | Local number CH 5181 (I,c) | 492 | | | Local number CH 5182 (l,c) | 494 | | | Local number CH 5422 (l) | 468 | | | Local number CH 5422 (I) Local number CH 5721 (I) | 496 | | | Local number CH 5721 (1) | 496 | | | Local number CH 5/22 (1) | 496
469 | | | Local number CH 6516 (I) | 469 | | | Local number CH 6517 (I) | 469 | | | Local number CH 6517 (1) | 409 | | | Local number CH 6510 (I) | 470 | # GROUND-WATER WELLS, BY COUNTY, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME # **GROUND WATER RECORDS**--Continued | DELAWADE COUNTRY | Page | |--|------| | DELAWARE COUNTY Well 395512075293701 Local number DE 723 (I) | 497 | | LEBANON COUNTY | 497 | | Well 402207076180801 Local number LB 372 (1) | 498 | | LEHIGH COUNTY | 470 | | Well 403429075392401 Local number LE 644 (I) | 499 | | MONROE COUNTY | | | Well 411223075234901 Local number MO 190 (I) | 500 | | MONTGOMERY COUNTY | | | Well 401415075175101 Local number MG 68 (1) | 501 | | Well 401338075162801 Local number MG 72 (I) | | | Well 400808075210401 Local number MG 225 (l) | | | Well 401733075171401 Local number MG 917 (I) | | | Well 401318075171101 Local number MG 1146 (l) | | | NORTHAMPTON COUNTY | | | Well 404745075184001 Local number NP 820 (1) | 506 | | PHILADELPHIA COUNTY | | | Well 395342075102101 Local number PH 12 (l) | 507 | | PIKE COUNTY | | | Well 410940074583401 Local number PI 200 (I) | 508 | | Well 411833075133601 Local number PI 522 (l) | | | SCHUYLKILL COUNTY | | | Well 404708076070701 Local number SC 296 (l) | 510 | | WAYNE COUNTY | | | Well 414333075153201 Local number WN 64 (l) | 511 | | | | | OUND-WATER DATA COLLECTED AT SPECIAL-STUDY SITES | | | Chester County water-quality monitoring project | | | Statewide assessment of methyl-tert-butyl-ether (MTBE) in ground water | 516 | The following continuous-record surface-water discharge stations (listed by downstream order) have been discontinued. Daily streamflow records were collected and published for the period of record shown for each station. Discontinued stations with less than 3 years of record have not been included. Information regarding these stations may be obtained from the District Office at the address given on the back of the title page of this report. # DISCONTINUED CONTINUOUS-RECORD SURFACE-WATER DISCHARGE STATIONS | Station name | Station
number | Drainage
area
(mi ²) | Period of record (water years) | |--|-------------------|--|--------------------------------| | DELAWARE R | RIVER BASIN | | | | North Branch Calkins Creek near Damascus | 01427650 | 7.02 | 1965-73 | | Lackawanna River at West Hawley | 01430500 | 206 | 1922-37 | | Middle Creek near Hawley | 01431000 | 78.4 | 1945-59 | | Stevens Creek near Sterling | 01431620 | 0.68 | 1992-94 | | Ariel Creek near Ledgedale | 01431673 | 15.6 | 1992-94 | | Unnamed tributary to Purdy Creek near Lakeville | 01431683 | 0.34 | 1992-94 | | Purdy Creek at Lakeville | 01431685 | 8.18 | 1992-94 | | Shohola Creek near Shohola | 01432500 | 83.6 | 1920-28 | | Delaware River below Tocks Island Damsite, near Delaware Water Gap | 01440200 | 3,850 | 1964-96 | | McMichaels Creek at Stroudsburg | 01441000 | 65.3 | 1912-37 | | Pocono Creek near Stroudsburg | 01441500 | 41.0 | 1912-19 | | Lehigh River at Tannery | 01446500 | 322 | 1919-58 | | Martins Creek near East Bangor | 01446600 | 10.4 | 1962-77 | | Dilldown Creek near Long Pond | 01448500 | 2.39 | 1949-96 | | Wild Creek at Hatchery | 01449500 | 16.8 | 1941-78 | | Pohopoco Creek near Parryville | 01450000 | 109 | 1941-69 | | Little Lehigh Creek near East Texas | 01451420 | 51.2 | 1987-94 | | East Branch Monocacy Creek near Bath | 01452300 | 5.35 | 1963-68 | | Saucon Creek at Lanark | 01453500 | 12.1 | 1948-53 | | South Branch Saucon Creek at Friedensville | 01454000 | 10.3 | 1948-53 | | Saucon Creek at Friedensville | 01454500 | 26.6 | 1948-53 | | Cooks Creek at Durham Furnace | 01457790 | 29.4 | 1991-93 | | Tinicum Creek near Ottsville | 01458900 | 14.7 | 1991-93 | | Tohickon Creek at Point Pleasant | 01460000 | 107 | 1884-98, 1901-1 | | Paunnacussing Creek at Carversville | 01460800 | 6.49 | 1991-93 | | Pine Run at Chalfont | 01464710 | 11.6 | 1990-92 | $\textbf{DISCONTINUED CONTINUOUS-RECORD SURFACE-WATER DISCHARGE STATIONS} \\ - \textbf{Continued}$ | Station name | Station
number | Drainage
area
(mi ²) | Period of record (water years) | |---|-------------------|--|--------------------------------| | Cooks Run at New Britain | 01464741 | 3.08 | 1985-89 | | Neshaminy Creek near Rushland | 01464750 | 91.0 | 1987-92 | | Little Neshaminy Cr. at Walton Road near Jacksonville | 01464984 | 40.1 | 1986-92 | | Neshaminy Creek at Rushland | 01465000 | 134 | 1885-1912, 32-33 | | Mill Creek near Wycombe | 01465050 | 14.0 | 1990-93 | | Poquessing Creek at Trevose Road, Philadelphia | 01465780 | 13.2 | 1965-70 | | Walton Run at Philadelphia | 01465785 | 2.17 | 1965-77 | | Byberry Creek at Chalfont Road, Philadelphia | 01465790 | 5.34 | 1966-77 | | Byberry Creek at Grant Avenue, Philadelphia | 01465795 | 7.13 | 1965-70 | | Pennypack Creek at Pine Road, Philadelphia | 01467042 | 37.9 | 1965-80 | | Pennypack Creek below Verree Road, Philadelphia | 01467045 | 42.8 | 1965-70 | | Wooden Bridge Run at Philadelphia | 01467050 | 3.35 | 1966-80 | | Tacony Creek near Jenkintown | 01467083 | 5.25 | 1973-78 | | Rock Creek above Curtis Arboretum near Philadelphia | 01467084 | 1.15 | 1972-78 | | Jenkintown Creek at Elkins Park | 01467085 | 1.17 | 1974-78 | | Tacony Creek above Adams Avenue, Philadelphia | 01467086 | 16.7 | 1966-86 | | Frankford Creek at Torresdale Avenue, Philadelphia | 01467089 | 33.8 | 1967-80 | | Schuylkill River at Pottsville | 01467500 | 53.4 | 1944-69 | | Little Schuylkill River at Drehersville | 01470000 | 122 | 1948-50, 1964-65 | | Maiden Creek tributary at Lenhartsville | 01470720 | 7.46 | 1966-79 | | Maiden Creek at Virginville | 01470756 | 159 | 1973-94 | | Pickering Creek near Chester Springs | 01472174 | 5.98 | 1967-82 | | Perkiomen Creek near Frederick | 01472500 | 152 | 1885-1912 | | Skippack Creek near Collegeville | 01473120 | 53.7 | 1966-94 | | Schuylkill River at Norristown | 01473500 | 1,760 | 1928-32 | | Wissahickon Creek at Bells Mill Road, Philadelphia | 01473950 | 53.6 | 1966-70, 1974-81 | | Wissahickon Creek at Livezey Lane, Philadelphia |
01473980 | 59.2 | 1967-70 | | Schuylkill River above Passayunk Ave. at Philadelphia | 01474505 | 1,900 | 1979-93 | | Darby Creek at Waterloo Mills near Devon | 01475300 | 5.1 | 1972-97 | | Darby Creek near Darby | 01475510 | 37.4 | 1964-90 | # $\textbf{DISCONTINUED CONTINUOUS-RECORD SURFACE-WATER DISCHARGE STATIONS} \\ - \textbf{Continued}$ | Station name | Station
number | Drainage
area
(mi ²) | Period of
record
(water years) | | |---|-------------------|--|--------------------------------------|--| | Cobbs Creek at US Highway No. 1 at Philadelphia | 01475530 | 4.78 | 1965-80 | | | Cobbs Creek below Indian Creek near Upper Darby | 01475540 | 10.6 | 1965-73 | | | Naylor Creek at West Chester Pike near Philadelphia | 01475545 | 1.10 | 1974-78 | | | Cobbs Creek at Darby | 01475550 | 22.0 | 1964-90 | | | Crum Creek at Woodlyn | 01476000 | 33.3 | 1932-37 | | | Ridley Creek at Moylan | 01476500 | 31.9 | 1932-54 | | | Marsh Creek near Lyndell | 01480680 | 17.8 | 1961-69 | | | East Branch Brandywine Creek at Downingtown | 01480800 | 81.6 | 1958-68 | | | Valley Creek at Ravine Road near Downingtown | 01480887 | 14.5 | 1990-97 | | The following continuous-record water-quality stations (listed by downstream order) have been discontinued. Daily records were collected and published for the period shown for each constituent. Discontinued stations with less than 3 years of record, or stations with data collection less than daily, have not been included. If a station had one constituent with 3 or more years of record, all constituents having daily values will be listed for that station regardless of the length of record. Information regarding these stations may be obtained from the District Office at the address given on the back of the title page of this report. The following abbreviations are used in this table: --- (not determined); SC (specific conductance); pH; Temp (water temperature); DO (dissolved oxygen); Sed (sediment concentration and discharge); Biol (biological). # DISCONTINUED CONTINUOUS-RECORD SURFACE-WATER-QUALITY STATIONS | Station name | Station
number | Drainage
area
(mi ²) | Type
of
Record | Period of
record
(water years) | |--|-------------------|--|----------------------|--------------------------------------| | 1 | DELAWARE RIVER | BASIN | | | | Delaware Bay at Ship John Shoal Light, N.J. | 01412350 | | SC, Temp | 1968-86 | | Delaware River at Lordville, N.Y. | 01427207 | 1,590 | Temp | 1968-71,
1973-96 | | Delaware River at Narrowsburg, N.Y. | 01427740 | 2,023 | SC, pH | 1948-51 | | Delaware River at Port Jervis, N.Y. | 01434000 | 3,070 | Temp | 1957-60,
1973-94 | | Delaware River at Montague, N.J. | 01438500 | 3,480 | Temp
SC, pH | 1956-57
1956-73 | | Delaware River at Dingmans Ferry | 01439000 | 3,542 | Temp, SC, pH | 1950-53 | | Delaware River near East Stroudsburg | 01440090 | 3,830 | SC, DO, Temp
pH | 1966-78
1972-78 | | Delaware River at Dunnfield, N.J. | 01442750 | 4,120 | Sed | 1964-75 | | Delaware River at Easton | 01446700 | 4,636 | SC, DO, Temp, pH | 1967-77 | | Delaware River at Belvidere, N.J. | 01448000 | 4,535 | Temp | 1944-47,
1962-63 | | | | | SC | 1962-63 | | Lehigh River at Walnutport | 01451000 | 889 | Sed | 1948-53 | | Jordan Creek near Schnecksville | 01451800 | 53.0 | Sed | 1967-69 | | Jordan Creek at Allentown | 01452000 | 75.8 | Sed | 1967-69 | | Lehigh River at Bethlehem | 01453000 | 1,279 | SC, pH | 1906-07,
1956-72 | | Delaware River at Burlington-Bristol Bridge | 01464600 | 7,163 | Temp | 1954-75,
1979-80 | | | | | DO | 1961-75,
1978-80 | | | | | SC, pH | 1967-75,
1978-80 | | Neshaminy Creek near Langhorne | 01465500 | 210 | Sed | 1956-58,
1965-69 | | Poquessing Creek at Trevose Road, Philadelphia | 01465770 | 5.08 | Sed | 1965-69 | # $\textbf{DISCONTINUED CONTINUOUS-RECORD SURFACE-WATER-QUALITY STATIONS} \ -\text{Continued}$ | Station name | Station
number | Drainage
area
(mi ²) | Type
of
Record | Period of
record
(water years) | |--|-------------------|--|------------------------|--| | Poquessing Creek above Byberry Creek, Philadelphia | 01465780 | 13.2 | Sed | 1965-70 | | Walton Run at Philadelphia | 01465785 | 2.17 | Sed | 1965-68 | | Byberry Creek at Chalfont Road, Philadelphia | 01465790 | 5.34 | Sed | 1966-68, 1970 | | Byberry Creek at Grant Avenue, Philadelphia | 01465795 | 7.13 | Sed | 1965-70 | | Poquessing Creek at Grant Avenue, Philadelphia | 01465798 | 21.4 | Sed | 1965-70 | | Delaware River at Torresdale Intake, Philadelphia | 01467030 | 7,781 | Temp
DO
SC
pH | 1956-57,
1960-81
1961-81
1963-81
1968-81 | | Pennypack Creek at Pine Road, Philadelphia | 01467042 | 37.9 | Sed | 1965-69 | | Pennypack Creek below Verree Road, Philadelphia | 01467045 | 42.8 | Sed | 1965-69 | | Wooden Bridge Run at Philadelphia | 01467049 | 3.35 | Sed | 1965-70 | | Delaware River at Palmyra, N.J. | 01467060 | 7,850 | Sed | 1962-64 | | Tacony Creek at County Line, Philadelphia | 01467084 | 16.2 | Sed | 1966-69 | | Frankford Creek at Torresdale Avenue, Philadelphia | 01467088 | 33.8 | Sed | 1966-70 | | Delaware River at Lehigh Avenue, Philadelphia | 01467100 | 7,935 | SC, DO, Temp, pH | 1949-68 | | Delaware River at Wharton Street, Philadelphia | 01467300 | 7,998 | Temp, SC, pH, DO | 1949-68 | | Delaware River at League Island, Philadelphia | 01467400 | 8,072 | SC, DO, Temp, pH | 1949-68 | | Schuylkill River at Port Carbon | 01467470 | 27.1 | SC, pH, Sed | 1949-51, 1963 | | Schuylkill River at Pottsville | 01467500 | 53.4 | SC, pH | 1948-51, | | | | | Sed | 1963-66
1963-66 | | West Branch Schuylkill River at Cressona | 01467950 | 52.5 | Sed | 1963-66 | | Schuylkill River at Landingville | 01468500 | 133 | SC, pH, Temp
Sed | 1947-53
1947-53,
1963-65 | | Schuylkill River at Auburn | 01469000 | 160 | Sed, SC, pH | 1947-51,
1963-65 | | Little Schuylkill River at South Tamaqua | 01469700 | 65.7 | SC, pH
Sed | 1948-51, 1963
1950-53, 1963 | | Little Schuylkill River at Drehersville | 01470000 | 122 | SC, pH, Temp, Sed | 1947-51,
1963-65 | # DISCONTINUED CONTINUOUS-RECORD SURFACE-WATER-QUALITY STATIONS —Continued | Station name | Station
number | Drainage
area
(mi ²) | Type
of
Record | Period of record (water years) | |--|-------------------|--|----------------------|--------------------------------| | Schuylkill River at Berne | 01470500 | 355 | Temp | 1948-53, | | | | | SC, pH | 1957-81
1963-81 | | | | | Sed | 1947-81 | | Maiden Creek tributary at Lenhartsville | 01470720 | 7.46 | Sed | 1963-65 | | Maiden Creek near East Berkley | 01470760 | 192 | Sed | 1963-65 | | Tulpehocken Creek near Reading | 01471000 | 211 | Sed | 1963-65 | | Schuylkill River at Pottstown | 01472000 | 1,147 | Temp | 1944-51,
1956,
1963-66 | | | | | Sed, pH | 1948-51, | | | | | SC | 1963-66
1948-51, | | | | | | 1963-66, | | | | | | 1985-89 | | Pigeon Creek near Bucktown | 01472054 | 4.20 | Biol | 1970-83 | | Pigeon Creek at Porters Mill | 01472065 | 6.97 | Biol | 1970-83 | | Stony Run at Spring City | 01472110 | 4.07 | Biol | 1970-83 | | Schuylkill River at Black Rock Dam at Mont Clare | 01472119 | | SC, DO | 1986-90 | | French Creek at Trythall | 01472126 | 5.06 | Biol | 1971-83 | | French Creek near Knauertown | 01472129 | 11.7 | Biol | 1970-83 | | Pickering Creek near Chester Springs | 01472174 | 5.98 | Sed | 1967-69 | | Perkiomen Creek at Graterford | 01473000 | 279 | SC, pH, Temp | 1946-51,
1948-53 | | | | | Sed | 1963-66 | | Schuylkill River at Norristown Dam at Bridgeport | 01473499 | | SC, DO | 1985-90 | | Schuylkill River at Plymouth Dam | 01473675 | | SC, DO | 1985-90 | | Schuylkill River at Flat Rock Dam at West Manayunk | 01473780 | | SC, DO | 1985-90 | | Schuylkill River at Manayunk | 01473800 | 893 | SC, pH | 1947-70 | | | | | Sed | 1947-86 | | | 04.4=0000 | 40.0 | Temp | 1956-70 | | Wissahickon Creek at Fort Washington | 01473900 | 40.8 | Sed | 1963-69 | | Wissahickon Creek at Bells Mill Road, Philadelphia | 01473950 | 53.6 | Sed | 1966-69 | | Wissahickon Creek at Livezey Lane, Philadelphia | 01473980 | 59.2 | Sed | 1966-69 | | Wissahickon Creek at mouth, Philadelphia | 01474000 | 64.0 | Sed | 1966-69 | | Darby Creek near Darby | 01475510 | 37.4 | Sed | 1965-69 | # DISCONTINUED CONTINUOUS-RECORD SURFACE-WATER-QUALITY STATIONS —Continued | Station name | Station
number | Drainage
area
(mi ²) | Type
of
Record | Period of
record
(water years) | |--|-------------------|--|------------------------|--| | Cobbs Creek at US Highway 1 near Philadelphia | 01475530 | 4.78 | Sed | 1965-70 | | Cobbs Creek below Indian Creek near Upper Darby | 01475540 | 9.65 | Sed | 1965-69 | | Cobbs Creek at Darby | 01475550 | 22.0 | Sed | 1965-69 | | Crum Creek near Paoli | 01475830 | 6.16 | Biol | 1970-83 | | Delaware River at Eddystone | 01476200 | 10,190 | SC, DO, Temp, pH | 1949-68 | | Delaware River at Marcus Hook | 01477200 | 10,370 | SC, DO, Temp, pH | 1949-77 | | West Branch Brandywine Creek near Honey Brook | 01480300 | 18.7 | Sed | 1965-66, 1968 | | East Branch Brandywine Creek near Struble Dam | 01480647 | 4.36 | Biol | 1972-82 | | Marsh Creek near Lyndell | 01480680 | 17.8 | Temp
Sed | 1965-66
1965-66, 1968 | | Marsh Creek near Downingtown | 01480695 | 20.3 | Temp | 1973-87 | | Brandywine Creek at Chadds Ford | 01481000 | 287 | Sed | 1963-70 | | Delaware River at Delaware Memorial Bridge, Del. | 01482100 |
11,030 | Temp
DO
SC
pH | 1956-81
1962-81
1963-81
1968-81 | # PENNSYLVANIA DISTRICT OFFICE LOCATIONS AND ADDRESSES Pennsylvania District Office: U.S. Geological Survey Water Resources Division Yellow Breeches Office Center 215 Limekiln Road New Cumberland, PA 17070 (717) 730-6900 FAX (717) 730-6997 Williamsport Project Office: U.S. Geological Survey Water Resources Division 439 Hepburn Street Williamsport, PA 17701 (570) 323-7127 FAX (570) 323-2137 Pittsburgh Project Office: U.S. Geological Survey Water Resources Division 1000 Church Hill Road Pittsburgh, PA 15205 (412) 490-3800 FAX (412) 490-3828 Malvern Project Office: U.S. Geological Survey Water Resources Division Great Valley Corporate Center 111 Great Valley Parkway Malvern, PA 19355 (610) 647-9008 FAX (610) 647-4594 #### 1 #### INTRODUCTION The Water Resources Division of the U.S. Geological Survey, in cooperation with State, municipal, and Federal agencies, collects a large amount of data pertaining to the water resources of Pennsylvania each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, these data are published annually in this report series entitled "Water Resources Data - Pennsylvania, Volumes 1, 2, and 3." Volume 1 contains data for the Delaware River Basin; Volume 2, the Susquehanna and Potomac River Basins; and Volume 3, the Ohio and St. Lawrence River Basins. This report, Volume 1, contains: (1) discharge records for 80 continuous-record streamflow-gaging stations, 8 partial-record stations, 19 special study and miscellaneous streamflow sites, and 39 low-flow miscellaneous streamflow sites; (2) elevation and contents records for 13 lakes and reservoirs; (3) water-quality records for 38 gaging stations and 14 ungaged streamsites; (4) water-quality records for 47 special-study stations; (5) water-level records for 63 network observation wells; and (6) water-quality analyses of ground water from 55 ground-water wells. Additional water data collected at various sites not involved in the systematic data-collection program may also be presented. Publications similar to this report are published annually by the Geological Survey for all States. For the purpose of archiving, these official reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report PA-02-1." These water data reports, beginning with the 1971 water year, are for sale as paper copy or microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161. The annual series of Water Data Reports for Pennsylvania began with the 1961 water-year report and contained only data relating to quantities of surface water. With the 1964 water year, a companion report (part 2) was introduced that contained only data relating to water quality. Beginning with the 1975 water year the report was changed to its present format of three volumes (by river basin), with each volume containing data on quantities of surface water, quality of surface and ground water, and ground-water levels. Prior to the introduction of this series and for several years concurrent with it, water-resources data for Pennsylvania were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage, and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States," which was released in numbered parts as determined by natural drainage basins. For the 1961-70 water years, these data were published in two 5-year reports. Data prior to 1961 are included in two reports: "Compilation of Records of Surface Waters of the United States through 1950," and "Compilation of Records of Surface Waters of the United States, October 1950 to September 1960." Data for Pennsylvania are published in Parts 1, 3, and 4. Data on chemical quality, temperature, and suspended sediment for the 1941-70 water years were published annually under the title "Quality of Surface Waters of the United States," and ground-water levels for the 1935-74 water years were published under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from the U.S. Geological Survey, Information Services, Box 25286, Denver, CO 80225. Information for ordering specific reports may be obtained from the Pennsylvania District Office at the address given on the back of the title page or by phoning the Scientific and Technical Products Section, at (717) 730-6940. Information on the availability of unpublished data or statistical analyses may be obtained from the District Information Specialist by telephone at (717) 730-6916 or by FAX at (717) 730-6997. ## **COOPERATION** The U.S. Geological Survey (USGS) and organizations of the Commonwealth of Pennsylvania have had cooperative agreements for the systematic collection of surface-water records during the periods 1919-21 and 1931 to date, water-quality records from 1944 to date, and ground-water records from 1925 to date. Organizations that supplied data are acknowledged in station manuscripts. Organizations that assisted in collecting data for this report through cooperative agreements with the USGS are listed below. The Commonwealth of Pennsylvania, Department of Environmental Protection, David E. Hess, Secretary through the following: Office of Water Management, Christine Martin, Deputy Secretary; Bureau of Water Supply and Wastewater Management, Frederick Marrocco, Director; Bureau of Watershed Management, Stuart I. Gansell, Director; Bureau of Waterways Engineering, Michael Conway, Director Bucks County Commissioners, Charles H. Martin, Chairman; Chester County Health Department, David Jackson, Executive Director; Chester County Water Resources Authority, Janet L. Bowers, Executive Director; City of Allentown, William L. Heydt, Mayor; City of Bethlehem, Donald T. Cunningham, Jr., Mayor; City of Philadelphia, Water Department, Kumar Kishinchand, Water Commissioner; Delaware County Solid Waste Authority, Joseph W. Vasturia, Chief Executive Officer; #### **COOPERATION--Continued** Delaware River Basin Commission, Carol R. Collier, Executive Director; Hazelton City Authority, Water Department, Randy J. Cahalan, Operation Manager; Monroe County Conservation District, Craig Todd, District Manager; North Penn Water Authority, Anthony J. Bellitto, Jr., Executive Director; North Wales Water Authority, Peter. S. Lukens, Executive Director. Federal Energy Regulatory Commission Licensee: PPL Electric Utilities Corporation. The following Federal agency assisted in the data-collection program by providing funds or services: Corps of Engineers, U.S. Army, Philadelphia District. The following organizations aided in collecting records: Palmer Water Company, Philadelphia Suburban Water Company, Borough of Tamaqua, Womelsdorf-Robesonia Joint Water Authority, Forest Park Water Company, and the City of Coatesville. # SUMMARY OF HYDROLOGIC CONDITIONS #### **Surface Water** The Delaware River Basin extends from the river's east and west branch headwaters in the New York Catskill Mountains southward about 400 miles to the Atlantic Ocean. In addition to Pennsylvania, the Delaware River drains parts of the states of New York, New Jersey, Delaware, and Maryland. Of the nearly 13,500-mi² (square mile) drainage basin, 6,420 mi² (50 percent of the basin's total area) are within the Commonwealth of Pennsylvania. # **Precipitation and Streamflow** Precipitation and streamflow for the 2002 water year were well below average for the year. Data from 35 selected National Oceanic and Atmospheric Administration climatological sites, located within 3 climatological regions in the Delaware River basin in Pennsylvania, indicate the annual total precipitation for the Delaware River basin in Pennsylvania averaged 34.0 inches. This average is about 73 percent of the 1971-2000 basinwide average of 46.7 inches. Monthly precipitation at two index stations in the Delaware River basin were used as indicator sites within the basin. The 2002 water year monthly precipitation was compared with the 1971-2000 mean monthly precipitation recorded at Pleasant Mount and Allentown, Pennsylvania (fig. 1). The precipitation data are from the National Oceanic and Atmospheric Administration (Northeast Region Climate Center) and National Weather Service records. The basin received below normal precipitation for October, November, December, January, February, July and August. The greatest deficit basinwide, with an average of 3.3 inches below normal, occurred in July. The remainder of the months received above normal to normal precipitation within the basin. The greatest surplus basinwide, an average of 0.6 inches above normal, occurred in May. Streamflow varied seasonably throughout the basin and generally reflected the precipitation patterns within the basin unless the stream was regulated. Following a pattern defined by the below normal precipitation that fell in the basin during the 2002 water year, the mean annual streamflow for unregulated Delaware River basin streams during the 2002 water year was below normal. (Normal annual streamflows are defined as streamflows between the 25th and 75th percentiles as compared to the annual mean streamflows for 1971-2000.) Using the 39 available unregulated sites with greater than 15 years of record as indicators of streamflow trends, new record low annual mean streamflows were recorded at 17 of these sites during the water year. Two U.S. Geological Survey streamflow-gaging
stations within the basin were selected as indicators of basinwide streamflow conditions. Figure 2 compares the 2002 water year monthly and annual mean streamflows with the median of the monthly and annual mean streamflows for 1971 through 2000 at the indicator sites. The 2002 water year annual mean streamflow of the Bush Kill at Shoemakers in the upper Delaware River basin was 64 percent of the 1971-2000 median of the mean annual streamflows. The mean annual streamflow of the Schuylkill River at Pottstown in the lower Delaware River basin was 47 percent of the 1971-2000 median of the mean annual streamflows. Monthly streamflows were below the median of monthly mean streamflows in the Bush Kill for the entire water year, except May and June (fig. 2). Monthly streamflows were below the median of monthly mean streamflows in the Schuylkill River at Pottstown for the entire water year, with the exception of May (fig. 2). No new extremes were recorded at the indicator stations. During the period from October to February average basinwide departure from normal precipitation totaled 8.7 inches. Although precipitation totals were slightly above average in March through June, the downward trend continued. At the end of the 12-month period ending in September, the precipitation deficit basinwide was at 11.6 inches. The Governor of Pennsylvania announced a drought watch in 45 counties on Aug. 24, 2001, three of which were located in the Delaware River Basin. On December 5, 2001, early into the 2002 water year, the drought declaration was expanded to include 62 of Pennsylvania's 67 counties. Of these 62 counties, 31 were under a drought warning and 31 were under a drought watch. At this point all of the counties within the Delaware River Basin within Pennsylvania, were now included in the drought declaration. The drought situation worsened over the summer and by September 5, 2002, nine of the counties within the Delaware River Basin were designated as part of the drought emergency area. As a direct result of the ongoing drought conditions, the Christina River Basin in the lower Delaware River Basin showed the greatest affects of the lack of precipitation. Of the seven streamflow sites within the basin with more than 28 years of record, all had new record low annual mean streamflows. The 2002 annual mean streamflow at these sites averaged only 36 percent of the mean annual streamflows for the period of record. This compares to the basinwide 2002 annual mean streamflow average of 52 percent. Figure 1.--Comparison of monthly precipitation in the Delaware River Basin at Pleasant Mount and Allentown, Pa. during the 2002 water year with mean monthly precipitation for the period 1971 through 2000. Figure 2.--Comparison of streamflow at two long-term streamflow-gaging stations during the 2002 water year with the median monthly and annual mean streamflow for the period 1971 through 2000. #### Reservoirs Total combined capacity of the major reservoirs in the Delaware River basin within Pennsylvania is 659,390 acre-feet. Total combined drainage areas into these reservoirs is about 1,130 square miles or 18 percent of the total drainage area in the Delaware River Basin. Combined storage in 13 major reservoirs in the Delaware River basin within Pennsylvania decreased slightly from 222,280 acre-feet (33.7 percent of total combined capacity) on September 30, 2001 to 220,240 acre-feet (33.4 percent of total combined capacity) on September 30, 2002. This slight decrease in water storage in the basin for the year is a reflection of the ongoing drought conditions. The decrease would have been greater, had it not been for the additional water that was stored in the Francis E. Walter Reservoir in northern Carbon County by the U. S. Army Corps of Engineers in coordination with the Delaware River Basin Commission. Additional water was stored beginning in February to be used as needed to augment flows downstream in the Lehigh and Delaware River during the drought. By the end of the water year, an additional 19,610 acre-feet of water was in storage in F. E. Walter Reservoir as compared to the end of the 2001 water year. #### **Water Quality** As part of an ongoing program, the USGS maintains a network of continuous-record water-quality monitoring sites along the Delaware River and its tributaries. Water temperature, dissolved oxygen, pH, and specific conductance are monitored at most sites from April through November. A primary concern to water-resource managers of the Lower Delaware River Basin is the upstream migration of saline water from the Delaware Bay. The salinity and dissolved-solid content in the water are indirectly measured by specific conductance. Water quality of the Delaware Estuary was monitored between Trenton, New Jersey, and Reedy Island Jetty, Delaware. Streamflow is a vital factor that influences the water quality of the estuary. Increased streamflow usually results in improved water quality by limiting salt-water intrusion and diluting the concentration of dissolved minerals, both of which contribute to a lower specific conductance and chloride level. Increased freshwater streamflow also aids in maintaining lower water temperature during warm weather and in supporting higher dissolved-oxygen levels. In general, streamflow for the Delaware River was below normal for the 2002 water year. The annual mean streamflow as recorded at the Delaware River at Trenton, NJ, (station number 01463500), was only 61 percent of the period of record mean annual streamflow. The highest sustained streamflows occurred in mid-May. The highest momentary streamflow (peak) occurred on May 15. (For more streamflow information refer to pages 171-191). Winter and summer months had the lowest sustained flows during the year. As a reflection of these streamflows, the monthly mean specific conductance at the U.S. Geological Survey water-quality monitoring station on the Delaware River at Reedy Island Jetty, Delaware, was highest in September and lowest in May. Figure 3 compares the 2002 water year monthly mean specific conductance with the mean monthly values for the entire period of continuous record from 1965 through 2001. The mean monthly values of specific conductance were higher than the mean for the period of record in October through April and July through September. Lower streamflows allowed the migration of saline water, (commonly known as "The Salt Line") to advance to River Mile 86--a location about 18 miles upstream of the Delaware Memorial Bridge, by late November 2001. Low streamflows in the summer allowed the salt line to advance to River Mile 89 by September 26, 2002. This is the furthermost upstream location for the 2002 water year. For perspective, the most upstream point of the Salt Line ever recorded (River Mile 102) occurred during the drought of the mid 1960's (Delaware River Basin Commission, 2001). Specific conductance data, along with other water-quality data from the Delaware River at Reedy Island Jetty, Delaware, can be found on pages 392-398. Figure 3.--Monthly mean specific conductance measured in the Delaware River at Reedy Island Jetty, Delaware for the 2002 water year and the mean monthly specific conductance for the period 1965 through 2001. #### **Ground Water** With some lag time, seasonal ground-water levels during the year generally reflect seasonal precipitation variations. A comparison of the monthly precipitation variation received in the Delaware River basin in the 2002 water year (fig. 1) and recorded ground-water levels shows that this scenario was the case for this year. Ground-water levels by the end of September 2001 were generally normal to slightly below normal within the basin (Durlin and Schaffstall, 2002). During the fall season, water levels in 10 of 15 observation wells were below or much below normal. A comparison between seasonal ground-water levels for the 2002 water year and long-term seasonal ground-water levels is shown in figure 4. During the winter season, as a result of the below-normal precipitation, ground-water levels continued to drop. By the end of the winter season, 11 of the 15 wells were below or much below normal. Although the water-level data show a slight recovery in the spring season, by the end of the spring season, 7 of the 15 wells remained at below or much below levels. As the precipitation deficits continued into the summer months, the ground-water levels continued to show the effects. By the end of the summer season, ground-water levels had fallen slightly and ground-water levels in 8 of the 15 wells were below to much below normal by the end of the water year. Two of the observation wells, Montgomery County (MG225) and Philadelphia County (PH12) remained normal or above normal for the entire year. This is most likely due to a reduction in nearby pumping. Four of the observation wells, Berks County (BE623), Lebanon County (LB372), Lehigh County (LE644) and Chester County (CH10) were much below normal the entire year. New record lows were recorded at Berks County (BE623), Bucks County (BK1020), Chester County (CH10), Delaware County (DE723), and Lebanon County (LB372) wells. #### References - Delaware River Basin Commission, 2002, Delaware River Basin Selected Flow and Storage Data, accessed June 11, 2003, at URL [http://www.state.nj.us/drbc/data.htm]. - Durlin, R. R., and Schaffstall, W. P., 2002, Water Resources Data, Pennsylvania, water year 2001: U.S. Geological Survey Water-Data Report PA-01-1, 529 p. - U.S. Department of Commerce, 2001-02, Climatological data for Pennsylvania, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, Northeast Regional Climate Center, accessed May 6, 2003, at URL [http://climod.nrcc.cornell.edu/index_html]. - Pennsylvania Department of Environmental Protection, 2002, Drought News Room, accessed June 11, 2003, at URL
[http://www.dep.state.pa.us/dep/subject/hotopics/drought/drought.htm]. Figure 4.--Relation between 2002 seasonal mean ground-water levels and long-term mean ground-water levels [Seasonal percentile values were determined by ranking the average monthly water levels for each month in the season from highest to lowest for all years of record and averaging the ranks for the three months. A water level that is higher than the seasonal 10th percentile value would be expected to occur only once in a ten-year period. Conversely, a water level that is lower than the seasonal 90th percentile value also would be expected to occur only once during a ten-year period.] #### SPECIAL NETWORKS AND PROGRAMS The <u>Hydrologic Bench-Mark Network</u> is a network of 50 sites in small drainage basins around the country whose purpose is to provide consistent data on the streamflow representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by human activities. At 10 of these sites, waterquality information is being gathered on major ions and nutrients, primarily to assess the affects of acid deposition on stream chemistry. Additional information on the Hydrologic Benchmark Program can be found at http://water.usgs.gov/hbn/. The National Stream-Quality Accounting Network (NASQAN) monitors the water quality of large rivers within the Nation's largest river basins. From 1995 through 1999, a network of approximately 40 stations were operated in the Mississippi, Columbia, Colorado, and Rio Grande. From 2000 through 2004, sampling was reduced to a few index stations on the Colorado and Columbia so that a network of 5 stations could be implemented on the Yukon River. Samples are collected with sufficient frequency that the flux of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sediment-bound heavy metals, common pesticides, and inorganic and organic forms of carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of these constituents; (2) to test findings of the National Water-Quality Assessment Program (NAWQA); (3) to characterize processes unique to large-river systems such as storage and re-mobilization of sediments and associated contaminants; and (4) to refine existing estimates of off-continent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals. Additional information about the NASQAN Program can be found at [http://water.usgs.gov/nasqan/]. The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) provides continuous measurement and assessment of the chemical constituents in precipitation throughout the United States. As the lead federal agency, the USGS works together with over 100 organizations to provide a long-term, spatial and temporal record of atmospheric deposition generated from a network of 225 precipitation chemistry monitoring sites. This long-term, nationally consistent monitoring program, coupled with ecosystem research, provides critical information toward a national scorecard to evaluate the effectiveness of ongoing and future regulations intended to reduce atmospheric emissions and subsequent impacts to the Nation's land and water resources. Reports and other information on the NADP/NTN Program, as well as all data from the individual sites, can be found at [http://bqs.usgs.gov/acidrain/]. The <u>National Water-Quality Assessment</u> (NAWQA) Program of the U.S. Geological Survey is a long-term program with goals to describe the status and trends of water-quality conditions for a large, representative part of the Nation's ground- and surface-water resources; provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies. Assessment activities are being conducted in 59 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents will be measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide information for decision making by water-resources managers and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest. Communication and coordination between USGS personnel and other local, State, and federal interests are critical components of the NAWQA Program. Each study unit has a local liaison committee consisting of representatives from key federal, State, and local water-resources agencies, Indian nations, and universities in the study unit. Liaison committees typically meet semiannually to discuss their information needs, monitoring plans and progress, desired information products, and opportunities to collaborate efforts among the agencies. Additional information about the NAWQA Program can be found at [http://water.usgs.gov/nawqa/. #### EXPLANATION OF THE RECORDS The surface-water and ground-water records in this report are for the 2002 water year that began October 1, 2001, and ended September 30, 2002. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality and ecological data for streamflow stations, ground-water-level data, and water-quality data for ground-water wells. The location of these stations and wells are shown in figures 6-14. The following sections of the introductory text are presented to provide users with a more detailed explanation of how these hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation. #### **Station Identification Numbers** Each data station in this report, whether a streamsite or a well, is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for wells and, in Pennsylvania, for some miscellaneous surface-water sites where only random water-quality samples or discharge measurements are made. #### **Downstream-Order System** Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary that enters between two main-stream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary on which a station is situated with respect to the stream to which it is immediately tributary is indicated by an indention in a list of stations in the front of the report. Each indention represents one rank. This downstream-order system of indention shows which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated. The station-identification number is assigned in downstream order. In assigning station numbers, no distinction is made between partial-record and continuous-record stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. A station number can be from 8 to 15 digits in length and normally appears to the left of the station name. For example, an 8-digit number for a station such as 01570500, includes a 2-digit part number "01" plus a 6-digit downstream-order number "570500." The part number designates major river basins; for example, part "01" is the North Atlantic Slope Basin. # Latitude-Longitude System The identification numbers for wells and miscellaneous surface-water sites are assigned based on the grid system of latitude and longitude. The system provides the geographic location of the well or miscellaneous site and a unique number for each site. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote the degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the wells or other sites within a 1-second grid (fig. 5). Figure 5.--System for numbering wells and miscellaneous sites (latitude and longitude). A local well number is also assigned to the wells and consists of a 2-letter abbreviation of the county in which the well is located and a sequential number assigned at the time the well was scheduled. #### **Records of Stage and Water Discharge** Records of stage and water discharge may be continuous or partial. Continuous records of discharge are those obtained using a continuous
stage-recording device through which either instantaneous water discharges may be computed for any time, or mean discharges may be computed for any period of time, during the period of record. Because daily mean discharges or end-of-day contents for reservoirs commonly are published for such stations, they are referred to as "daily stations" or "continuous-record stations." By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Crest-stage partial-record stations," or "Low-flow partial-record stations." Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow seepage studies, may be considered as partial records, but they are presented separately in this report. Location of all continuous-record and partial-record stations for which data are given in this report are shown in figures 6-14. #### **Data Collection and Computation** Those data obtained at a continuous-record gaging station on a stream consist of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relation between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. Continuous records of stage are obtained with analog recorders that trace continuous graphs of stage, with solid-state electronic data loggers, or with data collection platforms (DCPs) that electronically record and transmit the data via satellite to ground receiving stations. Measurements of discharge are made with current meters using methods adopted by the Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and U.S. Geological Survey Techniques of Water-Resources Investigations (TWRIs), Book 3, Chapter A1 through A19 and Book 8, Chapters A2 and B2. The methods are consistent with the American Society for Testing and Materials (ASTM) standards and generally follow the standards of the International Organization for Standards (ISO). In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow-over-dams or weirs; or (4) step-backwater techniques. Daily mean discharges are computed by applying each recorded stage value (gage height) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relation that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods. At some stream-gaging stations, the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations, the stage-discharge relation is affected by changing stage; at these stations, the rate of change in stage is used as a factor to compute discharge. When computing records of lake or reservoir contents, it is necessary to have available from surveys, curves or tables defining the relation between stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relation changes because of deposition of sediment in the lake or reservoir, periodic surveys may be necessary to redefine the relation. Even when this is done, the contents computed may increase in error as the time elapsed since the last survey increases. Discharges over lake or reservoir spillways are computed from stage-discharge relation much as other stream discharges are computed. For some gaging stations, there are periods when no gage-height data are collected or when the recorded gage height is so imprecise or incorrect that it cannot be used to compute daily mean discharge or end-of-day contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflow-outflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge." #### **Data Presentation** The records published for each continuous-record surface-water discharge station (gaging station) consist of four parts; (1) the manuscript or station description; (2) the data table of daily mean discharge values for the current water year with summary data; (3) a tabular statistical summary of monthly mean flow data for a designated period; and (4) a summary statistics table for a designated period that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration. #### **Station manuscript** For each continuous-record station, the manuscript provides, under various headings, descriptive information such as station location, period of record, historical extremes outside the period of record, record accuracy, and other remarks pertinent to station operation and regulation. The following comments, as appropriate, clarify information presented under the various headings of the station description. LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gaging station with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, listed for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers. DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available. PERIOD OF RECORD.--This indicates the period for which records have been published for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not and whose location was such that its streamflow can reasonably be considered equivalent to the streamflow at the present station. REVISED RECORDS.--Because of new information, published records occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows; "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given. GAGE.--The type of gage in current use, the datum of the current gage referred to sea level (see Definition of Terms), and a condensed history of the types, locations, and datums of previous gages are given under this heading. REMARKS.--This paragraph is used to present information relative to the accuracy of the records, to special methods of computation, and to conditions that affect natural flow at the station. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir. COOPERATION.--Records provided by a cooperating organization or obtained for the U.S. Geological Survey by a cooperating organization are identified here. EXTREMES OUTSIDE PERIOD OF RECORD.--Included here is information concerning major floods or
unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey. PEAK DISCHARGES FOR CURRENT YEAR.--Peaks given here are similar to those found in the summary statistics table, except the peak discharge listing may include secondary peaks. For stations meeting certain criteria, all peak discharges and stages occurring during the water year and greater than a selected base discharge (see Definition of Terms) are presented under this heading. The peaks greater than the base discharge, excluding the highest one, are referred to as secondary peaks. Peak discharges are not published for streams for which the peaks are subject to substantial control by man. The time of occurrence for peaks is expressed in 24-hour local standard time. For example, 12:30 a.m. is 0030, and 1:30 p.m. is 1330. REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error. Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District Office (address given on the back of the title page of this report) to determine if the published records were ever revised after the station was discontinued. Of course, if those data for a discontinued station were obtained by computer retrieval, these data would be current and accurate because published revisions of data are always accompanied by revisions of those data in computer storage. Beginning with the 1991 annual State Data report, headings for AVERAGE DISCHARGE, EXTREMES FOR PERIOD OF RECORD, and EXTREMES FOR CURRENT YEAR have been deleted and the information contained in these paragraphs, except for the listing of secondary instantaneous peak discharges in the PEAK DISCHARGES FOR CURRENT YEAR paragraph, is now presented in the tabular summaries following the discharge table or in the REMARKS paragraph, as appropriate. No changes have been made to the data presentations of lake contents. In order to present all the data collected on the Delaware River, data collected by the U.S. Geological Survey offices in New Jersey, New York and Delaware have been included in this report. These data are presented as published by each state, although the format differs slightly from that published in this volume. #### Data table of daily mean values The daily table of discharge records for stream-gaging stations gives mean discharge for each day of the water year. In the monthly summary for the table, the line headed "TOTAL" gives the sum of the daily figures for each month; the line headed "MEAN" gives the average flow in cubic feet per second for the month; and the lines headed "MAX" and "MIN" give the maximum and minimum daily mean discharges, respectively, for each month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"); or in inches (line headed "IN."). Figures for cubic feet per second per square mile and runoff in inches may be omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. At some stations both monthly and yearly observed discharges are adjusted for reservoir storage or diversion, or diversion data or reservoir contents are given. These figures are identified by a symbol and corresponding footnote. # Statistics of monthly mean data A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") of monthly mean flows for each month for a designated period is provided below the daily values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period will be expressed as "FOR WATER YEARS ______, BY WATER YEAR (WY)," and will list the first and last water years of the range of years selected from the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. # **Summary statistics** A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, "WATER YEARS ______," will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. All of the calculations for the statistical characteristics designated ANNUAL (See line headings below.), except for the "ANNUAL 7-DAY MINIMUM" statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years. The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period for the statistics may not be the same as the period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes may not be within the designated period. Selected streamflow duration statistics and runoff data are also given. Runoff data may be omitted if there is extensive regulation or diversion of flow in the drainage basin. The summary statistics data, as appropriate, are provided with each continuous record of discharge. The following comments clarify information presented under the various line headings of the summary statistics table. - ANNUAL TOTAL.--The sum of the daily mean values of discharge for the year. At some stations the annual total discharge may be affected by reservoir storage or diversion. The monthly adjusting figures for known regulation or diversions may be shown 1) at the bottom of the daily values table, or 2) in the appropriate lake or reservoir table. - ANNUAL MEAN.--The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period. At some stations the annual total discharge may be affected by reservoir storage or diversion. The monthly adjusting figures for known regulation or diversions may be shown 1) at the bottom of the daily values table, or 2) in the appropriate lake or reservoir table. HIGHEST ANNUAL MEAN.--The maximum annual mean discharge occurring for the designated period. LOWEST ANNUAL MEAN.--The minimum annual mean discharge occurring for the designated period. HIGHEST DAILY MEAN .-- The maximum daily mean discharge for the year or for the designated period. LOWEST DAILY MEAN.--The minimum daily mean discharge for the year or for the designated period. - ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.) - MAXIMUM PEAK FLOW.--The maximum instantaneous peak discharge occurring for the water year or designated period. Occasionally the maximum flow for a year may occur at midnight at the beginning or end of the year, on a recession from or rise toward a higher peak in the adjoining year. In this case, the maximum peak flow is given in the table and the maximum flow may be reported in a footnote or in the REMARKS paragraph in the manuscript. - MAXIMUM PEAK STAGE.--The maximum instantaneous peak stage occurring for the water year or designated period. Occasionally the maximum stage for a year may occur at midnight at the beginning or end of the year, on a recession from or rise toward a higher peak in the adjoining year. In this case, the maximum peak stage is given in the table and the maximum stage may be reported in the REMARKS paragraph in the manuscript or in a footnote. If the dates of occurrence of the maximum peak stage and maximum peak flow are different, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information. - INSTANTANEOUS LOW FLOW.--The minimum instantaneous discharge occurring for the water year or for the designated period. - ANNUAL RUNOFF.--Indicates the total quantity of water in runoff for a drainage area for the year. Runoff figures may be omitted if there is extensive regulation or diversion. Data reports may use any of the following units of measurements in presenting annual runoff data: - Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equal to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters. - Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile
of area drained, assuming the runoff is distributed uniformly in time and area. - Inches (IN) indicates the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it. - 10 PERCENT EXCEEDS.--The discharge that has been exceeded 10 percent of the time for the designated period. 50 PERCENT EXCEEDS.--The discharge that has been exceeded 50 percent of the time for the designated period. 90 PERCENT EXCEEDS.--The discharge that has been exceeded 90 percent of the time for the designated period. Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial-record stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites. # **Identifying Estimated Daily Discharge** Beginning with the 1987 annual State data report, estimated daily discharge values published in the water-discharge tables are identified by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated". ### Accuracy of the Records The accuracy of streamflow records depends primarily on (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records. The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of their true values; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned are rated "poor." Different accuracies may be attributed to different parts of a given record. Daily mean discharges in this report are given to the nearest thousandth of a cubic foot per second for sites where the streamflow is often less than $.01 \text{ ft}^3/\text{s}$ (cubic foot per second); to the nearest hundredth of a cubic foot per second for values less than $1 \text{ ft}^3/\text{s}$ for other sites where the streamflow is rarely less than $.01 \text{ ft}^3/\text{s}$; to the nearest tenth from $1.0 \text{ to } 10 \text{ ft}^3/\text{s}$; to whole numbers from $10 \text{ to } 1,000 \text{ ft}^3/\text{s}$; and to 3 significant figures when greater than $1,000 \text{ ft}^3/\text{s}$. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites. Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge. ### Other Records Available Information of a more detailed nature than that published for most of the gaging stations such as observations of water temperature, discharge measurements, gage-height records, and rating tables is on file in the District's offices. Most gaging-station records are available in computer-usable form and many statistical analyses have been made. Information on the availability of unpublished data or statistical analyses may be obtained from the District Information Specialist (telephone (717) 730-6916). # **Records of Surface-Water Quality** Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies. #### Classification of Records Water-quality data for surface-water sites are grouped into one of three classifications. A <u>continuing-record station</u> is a site where data are collected on a regularly scheduled basis. Specifically, a continuing record station is a specified site which meets one or all conditions listed: (1) When chemical samples are collected daily or monthly for 10 or more months during the water year. (2) When water temperature records include observations taken one or more times daily. (3) When sediment discharge records include periods for which sediment loads are computed and are considered to be representative of the runoff for the water year. A <u>partial-record station</u> is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A <u>miscellaneous</u> sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin. A careful distinction needs to be made between "continuing records" as used in this report and "continuous recordings," which refers to a continuous graph or a series of discrete values punched at short intervals on a paper tape. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. Location of stations for which records on the quality of surface water appear in this report are shown in figures 6-14. #### **Arrangement of Records** Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites. ## **On-site Measurements and Sample Collection** During the collection of water-quality data, assurance that the data obtained represent the in-situ quality of the water is a major concern. Certain measurements, such as water temperature, pH, and dissolved oxygen, need to be made onsite when the samples are collected. To assure that measurements made in the laboratory also represent the in-situ water quality, carefully prescribed procedures need to be followed when collecting the samples, when treating the samples to prevent changes in quality pending analysis, and when shipping the samples to the laboratory. Procedures for on-site measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. D2; Book 3, Chap. A1, A3, and A4; Book 9, Chap. A1-A9. These references are listed in the PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS section of this report. These methods are consistent with ASTM standards and generally follow ISO standards. Also, detailed information on collecting, treating, and shipping samples may be obtained from the U.S. Geological Survey District Office. One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. All samples collected for the National Water Quality Assessment Program (see Definition of Terms) are obtained from several verticals. Whether samples are obtained from the centroid of flow or from several verticals, depends on flow conditions and other factors that must be evaluated by the collector. Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory. For chemical-quality stations equipped with digital monitors, the published records consist of daily maximum, minimum, mean, and/or median values for each
constituent measured and are determined from data that are recorded at 15-, 30-, or 60-minute intervals with solid-state electronic data loggers, or with Data Collection Platforms (DCPs). More detailed records (measured at a frequency greater than daily) may be obtained from the U.S. Geological Survey District Office at the address given on the back of the title page of this report or from [http://waterdata.usgs.gov/pa/nwis/]. ### Water Temperature Water temperatures are measured at most of the water-quality stations. At stations where recording instruments are used, maximum, minimum, and mean temperatures for each day are published and recorded data are available from the District Office or from [http://waterdata.usgs.gov/pa/nwis/]. In addition, water temperatures are measured at the time of discharge measurements for most water-discharge stations and are on file in the District's offices. For stations where water temperature is measured manually once or twice daily, it is usually measured at about the same time each day. Large streams have a small diurnal temperature change; temperatures in shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by heated waste-water discharges. #### Sediment Suspended-sediment concentrations are determined from samples collected by hand or by pump samplers. Hand samples utilize the appropriate sampler (dependent on stream depth and velocity) and are collected using the depth-integrating method at single or multiple verticals in the cross section. Samples collected by pump samplers use an intake set to a fixed location in the cross section. The intake is located at a site that best represents the entire cross section on the basis of simultaneous samples collected at various stages by the pumping sampler and by hand. During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, every 15 minutes). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge, mean concentration, and the constant 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge. Methods used in the computation of sediment records are described in the TWRI Book 3, Chapters C1 and C3. These methods are consistent with ASTM standards and generally follow ISO standards. At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream. In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations. #### **Laboratory Measurements** Sediment samples, samples for biochemical-oxygen demand (BOD), samples for indicator bacteria, and daily samples for specific conductance are analyzed locally. The remaining samples are analyzed in the Geological Survey laboratory in Denver, Colorado. If other laboratories are used, they are identified in the "*Remarks*" or "*Cooperation*" paragraph of each water-quality station manuscript. Methods used to analyze sediment samples and to compute sediment records are described in the TWRI Book 5, Chapter C1. Methods used by the U.S. Geological Survey laboratories are given in the TWRI Book 1, Chapter D2; Book 3, Chapter C2; and Book 5, Chapters A1, A3, A4, and A5. These methods are consistent with ASTM standards and generally follow ISO standards. Methods used by other laboratories are approved by the U.S. Geological Survey, Water Resources Division. #### **Data Presentation** For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for constituents currently measured daily. Tables of chemical, physical, biological, radiochemical, and other data, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence. In the descriptive headings, if the location is identical to that of the streamflow-gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description. LOCATION.--See Data Presentation under "Records of Stage and Water Discharge"; same comments apply. DRAINAGE AREA.--See Data Presentation under "Records of Stage and Water Discharge"; same comments apply. PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of constituents measured daily or continuously and those measured less often than daily. For those measured daily or continuously, periods of record are given for the constituents individually. INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor, temperature recorder, pumping sampler, or other sampling device is in operation at a station. REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records. COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here. EXTREMES.--Maximums and minimums are given only for constituents measured daily or more frequently. None are given for constituents measured less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year. REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made in the U.S. Geological Survey's distributed data system, NWIS, and subsequently to its web-based National data system, NWISWeb [http://waterdata.usgs.gov/nwis/]. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from NWIS or NWISWeb to insure the most recent updates. Updates to NWISWeb are currently made on an annual basis. The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence. #### **Accuracy of the Records** The accuracy of water-quality records at continuous-record water-quality stations depends primarily on (1) hydrologic environment; (2) seasonal conditions; (3) operating accuracy of the equipment; (4) fouling of the probes; (5) calibration drift in the equipment; and (6) maintenance frequency. Beginning with the 2000 water year, an additional statement describing the accuracy attributed to the records is included under the "REMARKS" heading. After the record has been evaluated for reporting continuous data (table 1), one of the four accuracy classifications is applied to each measured physical property on a scale ranging from poor to excellent. Table 2 shows the criteria used in rating continuous water-quality records. In addition, beginning with the 2000 water year, the presentation of daily mean pH values has been discontinued and replaced by median pH values. (Wagner, R.J., Mattraw, H.C., Ritz, G.F., and Smith, B.A., 2000, Guidelines and standard procedures for continuous water-quality monitors—site selection, field operation, calibration, record computation, and reporting: U.S. Geological Survey Water-Resources Investigations Report 00-4252, 53 p.). | Table 1Maximum | allowable limit | ts for continu | ous water-quality | |---------------------|-----------------|----------------|-------------------| | monitoring sensors. | | | | | Measured physical property | Maximum allowable limits for water-quality sensor values | |----------------------------|--| | Temperature | ± 2.0°C | | Specific conductance | ± 30 percent | | Dissolved oxygen | The greater of \pm 2.0 mg/L or 20 percent | | рН | ± 2 pH units | | Turbidity | ± 30 percent | Table 2.--Rating continuous water-quality records. | | Ratings | | | | | | | | | | |----------------------------|-----------------------|------------------------|--------------------|-------------|--|--|--|--|--|--| | Measured physical property | Excellent | Good | Fair | Poor | | | | | | | | Water temperature | ≤ ± 0.2°C | >± 0.2 to 0.5°C | >± 0.5 to 0.8°C | >± 0.8°C | | | | | | | | Specific conductance | ≤±3% | >± 3 to 10% | >± 10 to 15% |
>± 15% | | | | | | | | Dissolved oxygen | \leq \pm 0.3 mg/L | $>\pm 0.3$ to 0.5 mg/L | >± 0.5 to 0.8 mg/L | >± 0.8 mg/L | | | | | | | | рН | $\leq \pm 0.2$ unit | >± 0.2 to 0.5 unit | >± 0.5 to 0.8 unit | >± 0.8 unit | | | | | | | | Turbidity | ≤±5% | >± 5 to 10% | >± 10 to 15% | >± 15% | | | | | | | #### Remark Codes The following remark codes may appear with the water-quality data in this report: | PRINTED OUTPUT | <u>REMARK</u> | |----------------|--| | E,e | Estimated value. | | > | Actual value is known to be greater than the value shown. | | < | Actual value is known to be less than the value shown. | | M | Presence of material verified, but not quantified. | | N | Presumptive evidence of presence of material. | | U | Material specifically analyzed for, but not detected. | | A | Value is an average. | | V | Analyte was detected in both the environmental sample and the associated blanks. | | S | Most probable value. | | | Dissolved Trace-Element Concentrations | NOTE.--Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter (μ g/L) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's to 100's of nanograms per liter (η g/L). Data above the μ g/L level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes; however, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey began using new trace-element protocols at some stations in water year 1994. #### Change in National Trends Network Procedures NOTE.--Sample handling procedures at all National Trends Network stations were changed substantially on January 11, 1994, in order to reduce contamination from the sample shipping container. The data for samples before and after that date are different and not directly comparable. A tabular summary of the differences based on a special intercomparison study, is available from the NADP Program Office, Illinois State Water Survey, 2204 Griffith Drive, Champaign, IL 61820-7459 (217-333-7873). #### Water-Quality-Control Data Data generated from quality-control (QC) samples are a requisite for evaluating the quality of the sampling and processing techniques as well as data from the actual samples themselves. Without QC data, environmental sample data cannot be adequately interpreted because the errors associated with the sample data are unknown. The various types of QC samples collected by this district are described in the following section. Procedures have been established for the storage of water-quality-control data within the USGS. These procedures allow for storage of all derived QC data and are identified so that they can be related to corresponding environmental samples. BLANK SAMPLES.--Blank samples are collected and analyzed to ensure that environmental samples have not been contaminated by the overall data-collection process. The blank solution used to develop specific types of blank samples is a solution that is free of the analytes of interest. Any measured value in a blank sample for an analyte (a specific component measured in a chemical analysis) that was absent in the blank solution is believed to be due to contamination. There are many types of blank samples possible, each designed to segregate a different part of the overall data-collection process. The types of blank samples collected in this district are: Ambient blank--a blank solution that is put in the same type of sample container used for an environmental sample, kept with the set of sample bottles before sample collection, and opened at the site and exposed to the ambient conditions. Field blank--a blank solution that is subjected to all aspects of sample collection, field processing, preservation, transportation, and laboratory handling as an environmental sample. Trip blank--a blank solution that is put in the same type of sample container used for an environmental sample and kept with the set of samples bottles before and after sample collection. Source-solution blank--A blank solution that is poured directly from a bottle of blank water into the sample container. Equipment blank--a blank solution that is processed through all equipment used for collecting and processing an environmental sample (similar to a field blank but normally done in the more controlled conditions of the office). Sampler blank--a blank solution that is poured or pumped through the same field sampler used for collecting an environmental sample. Filter blank--a blank solution that is filtered in the same manner and through the same filter apparatus used for an environmental sample. Splitter blank--a blank solution that is mixed and separated using a field sample splitter in the same manner and through the same apparatus used for an environmental sample. Preservation blank--a blank solution that is treated with the same preservatives used for an environmental sample. Canister blank--a blank solution that is taken directly from a stainless steel canister just before the VOC sampler is submerged to obtain a field sample. REFERENCE SAMPLES.--Reference material samples are solutions or materials having a known composition that is certified by a laboratory. Samples of reference material are submitted for analysis to ensure that an analytical method is accurate for the known properties of the reference material. Generally, the selected reference material properties are similar to the environmental sample properties. REPLICATE SAMPLES.--Replicate samples are a set of environmental samples collected in a manner such that the samples are thought to be essentially identical in composition. Replicate is the general case for which a duplicate is the special case consisting of two samples. Replicate samples are collected and analyzed to establish the amount of variability in the data contributed by some part of the collection and analytical process. There are many types of replicate samples possible, each of which may yield slightly different results in a dynamic hydrologic setting, such as a flowing stream. The types of replicate samples collected in this district are: Sequential samples--a type of replicate sample in which environmental samples are collected one after the other, typically within a short time. Split sample--a type of replicate sample in which an environmental sample is split into subsamples contemporaneous in time and space. SPIKE SAMPLES.--Spike samples are samples to which known quantities of a solution with one or more well-established analyte concentrations have been added. These samples are analyzed to determine the extent of matrix interference or degradation on the analyte concentration during sample processing and analysis. ## **Records of Ground-Water Levels** Ground-water level data from an observation well network and from ground-water projects are published herein. Locations of observation wells in the basic network are shown in figures 6 and 7. Ground-water data are grouped by counties, arranged in alphabetical order, and are listed on pages xi and xii. Those with an (l) following the well number have water-level data published in the report. Miscellaneous or short-term ground-water data collection projects are published following the basic network data. #### **Data Collection and Computation** Water levels are measured in many types of wells under varying conditions, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well ensure that measurements at each well are of consistent accuracy and reliability. The prime identification number for a given well is the 15-digit number that appears above the station description. The secondary identification number is the local well number, an alphanumeric number, derived from the county location of the well. Water-level records are obtained from direct measurements with a steel tape, from the graph, with solid-state electronic data loggers, or with Data Collection Platforms (DCPs). The water-level measurements in this report are given in feet with reference to land-surface datum (lsd). Land-surface datum is a datum plane that is approximately at land surface at each well. If known, the elevation of the land-surface datum is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported for each day. Water levels are reported to as many significant figures as can be justified by the local conditions. Accordingly, most measurements are reported to a hundredth of a foot, but some may be given to a tenth of a foot. #### **Data Presentation** Each well record consists of three parts; (1) the station description, (2) the data table of water levels observed during the current water year, and (3) a graph of the water levels for the last 3 years. The description of the well is presented first through use of descriptive headings preceding the tabular data. The comments that follow clarify information presented under the various headings of the station description. LOCATION.--This paragraph follows the well-identification number and reports the latitude and longitude (given in degrees, minutes, and seconds), the hydrologic-unit number, the distance and direction from a geographic point of reference, and the owner's name. AQUIFER.--This entry designates by name (if a name exists) and geologic age the aquifer(s) open to the well. WELL CHARACTERISTICS.--This entry describes the well in terms of depth, diameter, casing depth or screened
interval, method of construction, use, and additional information such as casing breaks, collapsed screen, and other changes since construction. INSTRUMENTATION.--This paragraph provides information on both the frequency of measurement and the collection method, allowing the user to better evaluate the reported water-levels by knowing whether they are based on hourly, daily, or some other frequency of measurement. DATUM.--This entry describes both the measuring point and the land-surface elevation at the well. The measuring point is described physically (such as top of collar, notch in top of casing, plug in pump base and so on), and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface datum is described in feet above (or below) sea level; it is reported with a precision relative to the method of determination. REMARKS.--This entry describes factors that may influence the water level in a well or the measurement of the water level. It should identify wells that also are water-quality observation wells, and may be used to acknowledge the assistance of local (non-Survey) observers. PERIOD OF RECORD.--This entry indicates the period for which there are published records for the well. It reports the month and year of the start of publication of water-level records by the U.S. Geological Survey and the words "to current year" if the records are to be continued into the following year. Periods for which water-level records are available, but are not published by the Geological Survey, may be noted. EXTREMES FOR PERIOD OF RECORD.--This entry contains the highest and lowest values of one daily water-level statistic (maximum, mean, or instantaneous) reported in the data tables for the period of published record with respect to land-surface datum, (or occasionally sea level), and the dates of their occurrence. For example, if the daily maximum depth below land surface is reported in the table of water levels, this paragraph would reflect the highest and lowest of these daily maximum values for the period of record. Depending on the statistic reported in the table of water levels, extremes would be determined from daily maximum, mean, or instantaneous values. ### Data table of water levels A table of water levels follows the station description for each well. These tables usually report water-level data as maximum depth (in feet) above or below land-surface datum, but may report daily mean or instantaneous values depending upon the method used to obtain the record and how the record was published in the past. If water-level record is obtained from electronic data loggers, or DCPs, in addition to data published in the table of water levels, the daily maximum, minimum, and mean water-levels are stored in computer files and available from the District Office as noted in the REMARKS paragraph for that well. Recorded data are available at the District Office or from [http://waterdata.usgs.gov/pa/nwis/]. The extremes of the water-levels reported in the table for the water year and their dates of occurrence are shown on a line below the table. Missing records are indicated by dashes in place of the water level. A hydrograph showing the last three years of water levels follows each water-level table. #### **Records of Ground-Water Quality** Records of ground-water quality are obtained at wells and springs included in ground-water projects. Records of ground-water quality in this report may involve a variety of types of data and measurement frequencies. Those wells with a (c) following the well number in the list of ground-water wells on pages xi and xii, have water-quality data published in the report. Miscellaneous or short-term ground-water data collection projects are published following the basic network data. ## **Data Collection and Computation** The records of ground-water quality in this report are usually obtained mostly as a part of special studies in specific areas. Consequently, a number of chemical analyses may be presented for some counties but none are presented for others. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality basinwide. Such a view can be attained only by considering records for a particular year in context with similar records obtained in previous years. Most methods for collecting and analyzing water samples are described in the U.S. Geological survey TWRI publications referred to in the "On-site Measurements and Sample Collection" and the "Laboratory Measurements" sections in this data report. In addition, the TWRI Book 1, Chapter D2, describes guidelines for the collection and field analysis of ground-water samples for selected unstable constituents. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and method of analysis. These methods are consistent with ASTM standards and generally follow ISO standards. All samples were obtained by trained personnel. Any wells sampled were pumped long enough to assure that the water collected came directly from the aquifer and had not stood for a long time in the well casing where it would have been exposed to the atmosphere and to the material, possibly metal, comprising the casings. #### **Data Presentation** Ground-water-quality data, if collected, are published with ground-water-level data at stations where level data are collected. Any data collected at partial-record stations and miscellaneous sites follow the information for continuous ground-water record stations. Data for each section are listed alphabetically by county, and are identified by well number. The prime identification number for wells sampled is the 15-digit number derived from the latitude-longitude locations. No descriptive statements are given for ground-water-quality records; however, the well number, depth of well, date of sampling, and other pertinent data are given in the table containing the chemical analyses of the ground water. The REMARK codes listed for surface-water-quality records are also applicable to ground-water-quality records. #### ACCESS TO USGS WATER DATA The U.S. Geological Survey is the principal Federal water-data agency and, as such, collects and disseminates about 70 percent of the water data currently being used by numerous State, local, private, and other Federal agencies to develop and manage our water resources. The Geological Survey provides near real-time stream stage, discharge, groundwater level, and stream water-quality data for many of the gaging stations equipped with the necessary telemetry and historic daily-mean and peak-flow discharge data for most current or discontinued gaging stations through the World Wide Web (WWW). These data may be accessed at [http://waterdata.usgs.gov/pa/nwis/]. Water-quality and ground-water data also are available through the WWW at [http://waterdata.usgs.gov/pa/nwis/]. In addition, data can be provided in various machine-readable formats on compact disc or 3-1/2 inch floppy disk. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division District Offices (See address on the back of the title page.) For most streamgages, "real-time" streamflow conditions are available on the World Wide Web (WWW) Pennsylvania District Home Page at [http://pa.water.usgs.gov/]. Daily streamflow values for the period of record, annual peak stream discharges, and streamflow conditions for surrounding states may be obtained at [http://waterdata.usgs.gov/nwis/]. A wide variety of additional information, such as ordering U.S. Geological Survey maps and publications, is available at the U.S. Geological Survey Home Page at [http://www.usgs.gov/]. #### **DEFINITION OF TERMS** Specialized technical terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. Definitions of common terms such as algae, water level, and precipitation are given in standard dictionaries. Not all terms defined in this alphabetical list apply to every State. See also table for converting inch/pound units to International System (SI) units on the inside of the back cover. - Acid neutralizing capacity (ANC) is the equivalent sum of all bases or base-producing materials, solutes plus particulates, in an aqueous system that can be titrated with acid to an equivalence point. This term designates titration of an "unfiltered" sample (formerly reported as alkalinity). - Acre-foot (AC-FT, acre-ft) is a unit of volume, commonly used to measure quantities of water used or stored, equivalent to the volume of water required to cover 1 acre to a depth of 1 foot and equivalent to 43,560 cubic feet, 325,851 gallons, or 1,233 cubic meters. (See also "Annual runoff") - Adenosine triphosphate (ATP) is an organic, phosphate-rich compound important in the transfer of energy in organisms. Its central role in living cells makes ATP an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter. - Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample. (See also "Biomass" and "Dry weight") - **Alkalinity** is the capacity of solutes in an aqueous system to neutralize acid. This term designates titration of a "filtered" sample. - Annual runoff is the total quantity of water that is discharged ("runs off") from a drainage basin in a year. Data reports may present annual runoff data as volumes in acre-feet, as discharges per unit of drainage area in cubic feet per second
per square mile, or as depths of water on the drainage basin in inches. - Annual 7-day minimum is the lowest mean value for any 7-consecutive-day period in a year. Annual 7-day minimum values are reported herein for the calendar year and the water year (October 1 through September 30). Most low-flow frequency analyses use a climatic year (April 1-March 31), which tends to prevent the low-flow period from being artificially split between adjacent years. The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day, 10-year low-flow statistic.) - **Aroclor** is the registered trademark for a group of poly-chlorinated biphenyls that were manufactured by the Monsanto Company prior to 1976. Aroclors are assigned specific 4-digit reference numbers dependent upon molecular type and degree of substitution of the biphenyl ring hydrogen atoms by chlorine atoms. The first two digits of a numbered aroclor represent the molecular type, and the last two digits represent the percentage weight of the hydrogen-substituted chlorine. - **Artificial substrate** is a device that is purposely placed in a stream or lake for colonization of organisms. The artificial substrate sim- - plifies the community structure by standardizing the substrate from which each sample is collected. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection. (See also "Substrate") - **Ash mass** is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500 °C for 1 hour. Ash mass of zooplankton and phytoplankton is expressed in grams per cubic meter (g/m^3) , and periphyton and benthic organisms in grams per square meter (g/m^2) . (See also "Biomass" and "Dry mass") - **Aspect** is the direction toward which a slope faces with respect to the compass. - **Bacteria** are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, whereas others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants. - **Bankfull stage**, as used in this report, is the stage at which a stream first overflows its natural banks formed by floods with 1- to 3-year recurrence intervals. - Base discharge (for peak discharge) is a discharge value, determined for selected stations, above which peak discharge data are published. The base discharge at each station is selected so that an average of about three peak flows per year will be published. (See also "Peak flow") - **Base flow** is sustained flow of a stream in the absence of direct runoff. It includes natural and human-induced streamflows. Natural base flow is sustained largely by ground-water discharge. - **Bedload** is material in transport that is supported primarily by the streambed. In this report, bedload is considered to consist of particles in transit from the bed to an elevation equal to the top of the bedload sampler nozzle (ranging from 0.25 to 0.5 foot) that are retained in the bedload sampler. A sample collected with a pressure-differential bedload sampler also may contain a component of the suspended load. - Bedload discharge (tons per day) is the rate of sediment moving as bedload, reported as dry weight, that passes through a cross section in a given time. NOTE: Bedload discharge values in this report may include a component of the suspended-sediment discharge. A correction may be necessary when computing the total sediment discharge by summing the bedload discharge and the suspended-sediment discharge. (See also "Bedload," "Dry weight," "Sediment," and "Suspended-sediment discharge") - **Bed material** is the sediment mixture of which a stream-bed, lake, pond, reservoir, or estuary bottom is composed. (See also "Bedload" and "Sediment") - **Benthic organisms** are the group of organisms inhabiting the bottom of an aquatic environment. They include a number of types of organisms, such as bacteria, fungi, insect larvae and nymphs, snails, clams, and crayfish. They are useful as indicators of water quality. **Biochemical oxygen demand** (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria. **Biomass** is the amount of living matter present at any given time, expressed as mass per unit area or volume of habitat. **Biomass pigment ratio** is an indicator of the total proportion of periphyton that are autotrophic (plants). This is also called the Autotrophic Index. **Blue-green algae** (*Cyanophyta*) are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton") **Bottom material** (See "Bed material") **Bulk electrical conductivity** is the combined electrical conductivity of all material within a doughnut-shaped volume surrounding an induction probe. Bulk conductivity is affected by different physical and chemical properties of the material including the dissolved solids content of the pore water and lithology and porosity of the rock. Cells/volume refers to the number of cells of any organism that is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample volume, and are generally reported as cells or units per milliliter (mL) or liter (L). Cells volume (biovolume) determination is one of several common methods used to estimate biomass of algae in aquatic systems. Cell members of algae are frequently used in aquatic surveys as an indicator of algal production. However, cell numbers alone cannot represent true biomass because of considerable cell-size variation among the algal species. Cell volume (μm³) is determined by obtaining critical cell measurements or cell dimensions (for example, length, width, height, or radius) for 20 to 50 cells of each important species to obtain an average biovolume per cell. Cells are categorized according to the correspondence of their cellular shape to the nearest geometric solid or combinations of simple solids (for example, spheres, cones, or cylinders). Representative formulae used to compute biovolume are as follows: sphere $$4/3 \pi r^3$$ cone $1/3 \pi r^2 h$ cylinder $\pi r^2 h$. pi (π) is the ratio of the circumference to the diameter of a circle; pi = 3.14159.... From cell volume, total algal biomass expressed as biovolume $(\mu m^3/mL)$ is thus determined by multiplying the number of cells of a given species by its average cell volume and then summing these volumes for all species. Cfs-day (See "Cubic foot per second-day") **Channel bars**, as used in this report, are the lowest prominent geomorphic features higher than the channel bed. **Chemical oxygen demand** (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes. [See also "Biochemical oxygen demand (BOD)"] Clostridium perfringens (C. perfringens) is a spore-forming bacterium that is common in the feces of human and other warmblooded animals. Clostridial spores are being used experimentally as an indicator of past fecal contamination and presence of microorganisms that are resistant to disinfection and environmental stresses. (See also "Bacteria") **Coliphages** are viruses that infect and replicate in coliform bacteria. They are indicative of sewage contamination of water and of the survival and transport of viruses in the environment. **Color unit** is produced by 1 milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale. Confined aquifer is a term used to describe an aquifer containing water between two relatively impermeable bound-aries. The water level in a well tapping a confined aquifer stands above the top of the confined aquifer and can be higher or lower than the water table that may be present in the material above it. In some cases, the water level can rise above the ground surface, yielding a flowing well. **Contents** is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage. **Continuous-record station** is a site where data are collected with sufficient frequency to define daily mean values and variations within a day. **Control** designates a feature in the channel that physically affects the water-surface elevation and thereby determines the stage-discharge relation at the gage. This feature may be a constriction of the channel, a bedrock outcrop, a gravel bar, an artificial structure, or a uniform cross section over a long reach of the channel. **Control structure**, as used in this report, is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of saltwater. Cubic foot per second (CFS, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point in 1 second. It is equivalent to approximately 7.48 gallons per second or approximately 449 gallons per minute, or 0.02832 cubic meters per second. The term "second-foot" sometimes is used synonymously with "cubic foot per second" but is now obsolete. Cubic foot per second-day (CFS-DAY, Cfs-day,
[(ft³/s)/d]) is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, 1.98347 acrefeet, 646,317 gallons, or 2,446.6 cubic meters. The daily mean discharges reported in the daily value data tables are numerically equal to the daily volumes in cfs-days, and the totals also represent volumes in cfs-days. Cubic foot per second per square mile [CFSM, (ft3/s)/mi²] is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area. (See also "Annual runoff") **Daily mean suspended-sediment concentration** is the timeweighted concentration of suspended sediment passing a stream cross section during a 24-hour day. (See also "Sediment" and "Suspended-sediment concentration") **Daily-record station** is a site where data are collected with sufficient frequency to develop a record of one or more data values per day. The frequency of data collection can range from continuous recording to periodic sample or data collection on a daily or near-daily basis. **Data collection platform** (DCP) is an electronic instrument that collects, processes, and stores data from various sensors, and transmits the data by satellite data relay, line-of-sight radio, and/or landline telemetry. Data logger is a microprocessor-based data acquisition system designed specifically to acquire, process, and store data. Data are usually downloaded from onsite data loggers for entry into office data systems. Datum is a surface or point relative to which measurements of height and/or horizontal position are reported. A vertical datum is a horizontal surface used as the zero point for measurements of gage height, stage, or elevation; a horizontal datum is a reference for positions given in terms of latitude-longitude, State Plane coordinates, or UTM coordinates. (See also "Gage datum," "Land-surface datum," "National Geodetic Vertical Datum of 1929," and "North American Vertical Datum of 1988") **Diatoms** are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton") **Diel** is of or pertaining to a 24-hour period of time; a regular daily cycle. Discharge, or flow, is the rate that matter passes through a cross section of a stream channel or other water body per unit of time. The term commonly refers to the volume of water (including, unless otherwise stated, any sediment or other constituents suspended or dissolved in the water) that passes a cross section in a stream channel, canal, pipeline, etc., within a given period of time (cubic feet per second). Discharge also can apply to the rate at which constituents, such as suspended sediment, bedload, and dissolved or suspended chemicals, pass through a cross section, in which cases the quantity is expressed as the mass of constituent that passes the cross section in a given period of time (tons per day). **Dissolved** refers to that material in a representative water sample that passes through a 0.45-micrometer membrane filter. This is a convenient operational definition used by Federal and State agencies that collect water-quality data. Determinations of "dissolved" constituent concentrations are made on sample water that has been filtered. **Dissolved oxygen** (DO) is the molecular oxygen (oxygen gas) dissolved in water. The concentration in water is a function of atmospheric pressure, temperature, and dissolved-solids concentration of the water. The ability of water to retain oxygen decreases with increasing temperature or dissolved-solids concentration. Photosynthesis and respiration by plants commonly cause diurnal variations in dissolved-oxygen concentration in water from some streams. **Dissolved-solids concentration** in water is the quantity of dissolved material in a sample of water. It is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. In the mathematical calculation, the bicarbonate value, in milligrams per liter, is multiplied by 0.4926 to convert it to carbonate. Alternatively, alkalinity concentration (as mg/L CaCO₃) can be converted to carbonate concentration by multiplying by 0.60. **Diversity index (H) (Shannon index)** is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is: $$\overline{d} = -\sum_{i=1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n} ,$$ where n_i is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different. **Drainage area** of a stream at a specific location is that area upstream from the location, measured in a horizontal plane, that has a common outlet at the site for its surface runoff from precipitation that normally drains by gravity into a stream. Drainage areas given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified. **Drainage basin** is a part of the Earth's surface that contains a drainage system with a common outlet for its surface runoff. (See "Drainage area") **Dry mass** refers to the mass of residue present after drying in an oven at 105 °C, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass. (See also "Ash mass," "Biomass," and "Wet mass") **Dry weight** refers to the weight of animal tissue after it has been dried in an oven at 65 °C until a constant weight is achieved. Dry weight represents total organic and inorganic matter in the tissue. (See also "Wet weight") **Embeddedness** is the degree to which gravel-sized and larger particles are surrounded or enclosed by finer-sized particles. (See also "Substrate embeddedness class") Enterococcus bacteria are commonly found in the feces of humans and other warmblooded animals. Although some strains are ubiquitous and not related to fecal pollution, the presence of enterococci in water is an indication of fecal pollution and the possible presence of enteric pathogens. Enterococcus bacteria are those bacteria that produce pink to red colonies with black or red-dish-brown precipitate after incubation at 41 °C on mE agar (nutrient medium for bacterial growth) and subsequent transfer to EIA medium. Enterococci include *Streptococcus feacalis*, *Streptococcus feacium*, *Streptococcus avium*, and their variants. (See also "Bacteria") **EPT Index** is the total number of distinct taxa within the insect orders Ephemeroptera, Plecoptera, and Trichoptera. This index summarizes the taxa richness within the aquatic insects that are generally considered pollution sensitive; the index usually decreases with pollution. Escherichia coli (E. coli) are bacteria present in the intestine and feces of warmblooded animals. E. coli are a member species of the fecal coliform group of indicator bacteria. In the laboratory, they are defined as those bacteria that produce yellow or yellow-brown colonies on a filter pad saturated with urea substrate broth after primary culturing for 22 to 24 hours at 44.5 °C on mTEC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria") Estimated (E) concentration value is reported when an analyte is detected and all criteria for a positive result are met. If the concentration is less than the method detection limit (MDL), an 'E' code will be reported with the value. If the analyte is qualitatively identified as present, but the quantitative determination is substantially more uncertain, the National Water Quality Laboratory will identify the result with an 'E' code even though the measured value is greater than the MDL. A value reported with an 'E' code should be used with caution. When no analyte is detected in a sample, the default reporting value is the MDL preceded by a less than sign (<). **Euglenoids** (*Euglenophyta*) are a group of algae that are usually free-swimming and rarely creeping. They have the ability to grow either photosynthetically in the light or heterotrophically in the dark. (See also "Phytoplankton") Extractable organic halides (EOX) are organic compounds that contain halogen atoms such as chlorine. These organic compounds are semivolatile and extractable by ethyl acetate from airdried streambed sediment. The ethyl acetate extract is combusted, and the concentration is determined by microcoulometric determination of the halides formed. The concentration is reported as micrograms of chlorine per gram of the dry weight of the streambed sediment. **Fecal coliform bacteria** are present in the intestines or feces of warmblooded animals. They often are used as indicators of the sanitary quality of the water. In the laboratory, they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5 °C plus or minus 0.2 °C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria") **Fecal streptococcal bacteria** are present in the intestines of warmblooded animals and are ubiquitous in the environment. They are characterized as gram-positive, cocci bacteria that are capable of growth in brain-heart infusion broth. In the laboratory, they are defined as all the organisms that produce red or pink colonies within 48 hours at 35 °C plus or minus 1.0 °C
on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria") **Fire algae** (*Pyrrhophyta*) are free-swimming unicells characterized by a red pigment spot. (See also "Phytoplankton") **Flow-duration percentiles** are values on a scale of 100 that indicate the percentage of time for which a flow is not exceeded. For example, the 90th percentile of river flow is greater than or equal to 90 percent of all recorded flow rates. Gage datum is a horizontal surface used as a zero point for measurement of stage or gage height. This surface usually is located slightly below the lowest point of the stream bottom such that the gage height is usually slightly greater than the maximum depth of water. Because the gage datum itself is not an actual physical object, the datum usually is defined by specifying the elevations of permanent reference marks such as bridge abutments and survey monuments, and the gage is set to agree with the reference marks. Gage datum is a local datum that is maintained independently of any national geodetic datum. However, if the elevation of the gage datum relative to the national datum (North American Vertical Datum of 1988 or National Geodetic Vertical Datum of 1929) has been determined, then the gage readings can be converted to elevations above the national datum by adding the elevation of the gage datum to the gage reading. **Gage height** (G.H.) is the water-surface elevation, in feet above the gage datum. If the water surface is below the gage datum, the gage height is negative. Gage height often is used interchangeably with the more general term "stage," although gage height is more appropriate when used in reference to a reading on a gage. **Gage values** are values that are recorded, transmitted, and/or computed from a gaging station. Gage values typically are collected at 5-, 15-, or 30-minute intervals. **Gaging station** is a site on a stream, canal, lake, or reservoir where systematic observations of stage, discharge, or other hydrologic data are obtained. **Gas chromatography/flame ionization detector** (GC/FID) is a laboratory analytical method used as a screening technique for semivolatile organic compounds that are extractable from water in methylene chloride. Geomorphic channel units, as used in this report, are fluvial geomorphic descriptors of channel shape and stream velocity. Pools, riffles, and runs are types of geomorphic channel units considered for National Water-Quality Assessment (NAWQA) Program habitat sampling. Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton") Habitat, as used in this report, includes all nonliving (physical) aspects of the aquatic ecosystem, although living components like aquatic macrophytes and riparian vegetation also are usually included. Measurements of habitat are typically made over a wider geographic scale than are measurements of species distribution. Habitat quality index is the qualitative description (level 1) of instream habitat and riparian conditions surrounding the reach sampled. Scores range from 0 to 100 percent with higher scores indicative of desirable habitat conditions for aquatic life. Index only applicable to wadable streams. **Hardness** of water is a physical-chemical characteristic that commonly is recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations (primarily calcium and magnesium) and is expressed as the equivalent concentration of calcium carbonate (CaCO₃). **High tide** is the maximum height reached by each rising tide. The high-high and low-high tides are the higher and lower of the two high tides, respectively, of each tidal day. See NOAA web site: http://www.co-ops.nos.noaa.gov/tideglos.html **Hilsenhoff's Biotic Index** (HBI) is an indicator of organic pollution that uses tolerance values to weight taxa abundances; usually increases with pollution. It is calculated as follows: $$HBI = sum \frac{(n)(a)}{N}$$, where n is the number of individuals of each taxon, a is the tolerance value of each taxon, and N is the total number of organisms in the sample. Horizontal datum (See "Datum") **Hydrologic index stations** referred to in this report are continuousrecord gaging stations that have been selected as representative of streamflow patterns for their respective regions. Station locations are shown on index maps. **Hydrologic unit** is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as defined by the former Office of Water Data Coordination and delineated on the State Hydrologic Unit Maps by the USGS. Each hydrologic unit is identified by an 8-digit number. Inch (IN., in.), as used in this report, refers to the depth to which the drainage area would be covered with water if all of the runoff for a given time period were uniformly distributed on it. (See also "Annual runoff") **Instantaneous discharge** is the discharge at a particular instant of time. (See also "Discharge") **Island**, as used in this report, is a mid-channel bar that has permanent woody vegetation, is flooded once a year on average, and remains stable except during large flood events. Laboratory reporting level (LRL) is generally equal to twice the yearly determined long-term method detection level (LT-MDL). The LRL controls false negative error. The probability of falsely reporting a nondetection for a sample that contained an analyte at a concentration equal to or greater than the LRL is predicted to be less than or equal to 1 percent. The value of the LRL will be reported with a "less than" (<) remark code for samples in which the analyte was not detected. The National Water Quality Laboratory (NWQL) collects quality-control data from selected analytical methods on a continuing basis to determine LT-MDLs and to establish LRLs. These values are reevaluated annually on the basis of the most current quality-control data and, therefore, may change. [Note: In several previous NWQL documents (NWQL Technical Memorandum 98.07, 1998), the LRL was called the nondetection value or NDV—a term that is no longer used.] **Land-surface datum** (lsd) is a datum plane that is approximately at land surface at each ground-water observation well. Latent heat flux (often used interchangeably with latent heat-flux density) is the amount of heat energy that converts water from liquid to vapor (evaporation) or from vapor to liquid (condensation) across a specified cross-sectional area per unit time. Usually expressed in watts per square meter. **Light-attenuation coefficient**, also known as the extinction coefficient, is a measure of water clarity. Light is attenuated according to the Lambert-Beer equation: $$I = I_{o}e^{-\lambda L}$$, where I_o is the source light intensity, I is the light intensity at length L (in meters) from the source, λ is the light-attenuation coefficient, and e is the base of the natural logarithm. The light-attenuation coefficient is defined as $$\lambda = -\frac{1}{L} \log_e \frac{I}{I_o} .$$ **Lipid** is any one of a family of compounds that are insoluble in water and that make up one of the principal components of living cells. Lipids include fats, oils, waxes, and steroids. Many environmental contaminants such as organochlorine pesticides are lipophilic. Long-term method detection level (LT-MDL) is a detection level derived by determining the standard deviation of a minimum of 24 method detection limit (MDL) spike sample measurements over an extended period of time. LT-MDL data are collected on a continuous basis to assess year-to-year variations in the LT-MDL. The LT-MDL controls false positive error. The chance of falsely reporting a concentration at or greater than the LT-MDL for a sample that did not contain the analyte is predicted to be less than or equal to 1 percent. **Low tide** is the minimum height reached by each falling tide. The high-low and low-low tides are the higher and lower of the two low tides, respectively, of each tidal day. See NOAA web site: http://www.co-ops.nos.noaa.gov/tideglos.html **Macrophytes** are the macroscopic plants in the aquatic environment. The most common macrophytes are the rooted vascular plants that usually are arranged in zones in aquatic ecosystems and restricted in the area by the extent of illumination through the water and sediment deposition along the shoreline. Mean concentration of suspended sediment (Daily mean suspended-sediment concentration) is the time-weighted concentration of suspended sediment passing a stream cross section during a given time period. (See also "Daily mean suspended-sediment concentration" and "Suspended-sediment concentration") **Mean discharge** (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period. (See also "Discharge") **Mean high or low tide** is the average of all high or low tides, respectively, over a specific period. - Mean sea level is a local tidal datum. It is the arithmetic mean of hourly heights observed over the National Tidal Datum Epoch. Shorter series are specified in the name; for example, monthly mean sea level and yearly mean sea level. In order that they may be recovered when needed, such datums are referenced to fixed points known as benchmarks. (See also "Datum") - **Measuring point** (MP) is an arbitrary permanent reference point from which the distance to water surface in a well is measured to obtain water level. - **Membrane filter** is a thin microporous material of specific pore size used to filter bacteria, algae, and other very small particles from water. - **Metamorphic stage** refers to the stage of development that an organism
exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult. - Method detection limit (MDL) is the minimum concentration of a substance that can be measured and reported with 99-percent confidence that the analyte concentration is greater than zero. It is determined from the analysis of a sample in a given matrix containing the analyte. At the MDL concentration, the risk of a false positive is predicted to be less than or equal to 1 percent. - **Methylene blue active substances** (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds. - **Micrograms per gram** (UG/G, μ g/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed. - **Micrograms per kilogram** (UG/KG, µg/kg) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the constituent per unit mass (kilogram) of the material analyzed. One microgram per kilogram is equivalent to 1 part per billion. - **Micrograms per liter** (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in water as mass (micrograms) of constituent per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. One microgram per liter is equivalent to 1 part per billion. - Microsiemens per centimeter (US/CM, μ S/cm) is a unit expressing the amount of electrical conductivity of a solution as measured between opposite faces of a centimeter cube of solution at a specified temperature. Siemens is the International System of Units nomenclature. It is synonymous with mhos and is the reciprocal of resistance in ohms. - Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in water as the mass (milligrams) of constituent per unit volume (liter) of water. Concentration of suspended sediment also is expressed in milligrams per liter and is based on the mass of dry sediment per liter of water-sediment mixture. - **Minimum reporting level** (MRL) is the smallest measured concentration of a constituent that may be reliably reported by using a given analytical method. - Miscellaneous site, miscellaneous station, or miscellaneous sampling site is a site where streamflow, sediment, and/or water-quality data or water-quality or sediment samples are collected once, or more often on a random or discontinuous basis to provide better areal coverage for defining hydrologic and water-quality conditions over a broad area in a river basin. - Most probable number (MPN) is an index of the number of coliform bacteria that, more probably than any other number, would give the results shown by the laboratory examination; it is not an actual enumeration. MPN is determined from the distribution of gas-positive cultures among multiple inoculated tubes. - **Multiple-plate samplers** are artificial substrates of known surface area used for obtaining benthic invertebrate samples. They consist of a series of spaced, hardboard plates on an eyebolt. - Nanograms per liter (NG/L, ng/L) is a unit expressing the concentration of chemical constituents in solution as mass (nanograms) of solute per unit volume (liter) of water. One million nanograms per liter is equivalent to 1 milligram per liter. - National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a fixed reference adopted as a standard geodetic datum for elevations determined by leveling. It was formerly called "Sea Level Datum of 1929" or "mean sea level." Although the datum was derived from the mean sea level at 26 tide stations, it does not necessarily represent local mean sea level at any particular place. See NOAA web site: http://www.ngs.noaa.gov/faq.shtml#WhatVD29VD88 (See "North American Vertical Datum of 1988") - **Natural substrate** refers to any naturally occurring immersed or submersed solid surface, such as a rock or tree, upon which an organism lives. (See also "Substrate") - **Nekton** are the consumers in the aquatic environment and consist of large free-swimming organisms that are capable of sustained, directed mobility. - Nephelometric turbidity unit (NTU) is the measurement for reporting turbidity that is based on use of a standard suspension of formazin. Turbidity measured in NTU uses nephelometric methods that depend on passing specific light of a specific wavelength through the sample. - North American Vertical Datum of 1988 (NAVD 1988) is a fixed reference adopted as the official civilian vertical datum for elevations determined by Federal surveying and mapping activities in the United States. This datum was established in 1991 by minimum-constraint adjustment of the Canadian, Mexican, and United States first-order terrestrial leveling networks. - **Open or screened interval** is the length of unscreened opening or of well screen through which water enters a well, in feet below land surface. - **Organic carbon** (OC) is a measure of organic matter present in aqueous solution, suspension, or bottom sediment. May be reported as dissolved organic carbon (DOC), particulate organic carbon (POC), or total organic carbon (TOC). Organic mass or volatile mass of a living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. Organic mass is expressed in the same units as for ash mass and dry mass. (See also "Ash mass," "Biomass," and "Dry mass") **Organism count/area** refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m²), acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms. **Organism count/volume** refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms. **Organochlorine compounds** are any chemicals that contain carbon and chlorine. Organochlorine compounds that are important in investigations of water, sediment, and biological quality include certain pesticides and industrial compounds. **Parameter code** is a 5-digit number used in the USGS computerized data system, National Water Information System (NWIS), to uniquely identify a specific constituent or property. Partial-record station is a site where discrete measurements of one or more hydrologic parameters are obtained over a period of time without continuous data being recorded or computed. A common example is a crest-stage gage partial-record station at which only peak stages and flows are recorded. Particle size is the diameter, in millimeters (mm), of a particle determined by sieve or sedimentation methods. The sedimentation method utilizes the principle of Stokes law to calculate sediment particle sizes. Sedimentation methods (pipet, bottomwithdrawal tube, visual-accumulation tube, sedigraph) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling). Particle-size classification, as used in this report, agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows: | Classification | Size (mm) | Method of analysis | |----------------|------------------|---------------------| | Clay | >0.00024 - 0.004 | Sedimentation | | Silt | >0.004 - 0.062 | Sedimentation | | Sand | >0.062 - 2.0 | Sedimentation/sieve | | Gravel | >2.0 - 64.0 | Sieve | | Cobble | >64 - 256 | Manual measurement | | Boulder | >256 | Manual measurement | The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. For the sedimentation method, most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis. **Peak flow (peak stage)** is an instantaneous local maximum value in the continuous time series of streamflows or stages, preceded by a period of increasing values and followed by a period of decreasing values. Several peak values ordinarily occur in a year. The maximum peak value in a year is called the annual peak; peaks lower than the annual peak are called secondary peaks. Occasionally, the annual peak may not be the maximum value for the year; in such cases, the maximum value occurs at midnight at the beginning or end of the year, on the recession from or rise toward a higher peak in the adjoining year. If values are recorded at a discrete series of times, the peak recorded value may be taken as an approximation of the true peak, which may occur between the recording instants. If the values are recorded with finite precision, a sequence of equal recorded values may occur at the peak; in this case, the first value is taken as the peak. **Percent composition or percent of total** is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, weight, mass, or volume. **Percent shading** is a measure of the amount of sunlight potentially reaching the stream. A clinometer is used to measure left and right bank canopy angles. These values are added together, divided by 180, and multiplied by 100 to compute percentage of shade. **Periodic-record station** is a site where stage, discharge, sediment, chemical, physical, or other hydrologic measurements are made one or
more times during a year but at a frequency insufficient to develop a daily record. **Periphyton** is the assemblage of microorganisms attached to and living upon submerged solid surfaces. Although primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton are useful indicators of water quality. **Pesticides** are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides. **pH** of water is the negative logarithm of the hydrogen-ion activity. Solutions with pH less than 7.0 standard units are termed "acidic," and solutions with a pH greater than 7.0 are termed "basic." Solutions with a pH of 7.0 are neutral. The presence and concentration of many dissolved chemical constituents found in water are affected, in part, by the hydrogen-ion activity of water. Biological processes including growth, distribution of organisms, and toxicity of the water to organisms also are affected, in part, by the hydrogen-ion activity of water. Phytoplankton is the plant part of the plankton. They are usually microscopic, and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and commonly are known as algae. (See also "Plankton") **Picocurie** (PC, pCi) is one trillionth (1 x 10⁻¹²) of the amount of radioactive nuclide represented by a curie (Ci). A curie is the quantity of radioactive nuclide that yields 3.7 x 10¹⁰ radioactive disintegrations per second (dps). A picocurie yields 0.037 dps, or 2.22 dpm (disintegrations per minute). **Plankton** is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample. **Polychlorinated biphenyls** (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides. **Polychlorinated naphthalenes** (PCNs) are industrial chemicals that are mixtures of chlorinated naphthalene compounds. They have properties and applications similar to polychlorinated biphenyls (PCBs) and have been identified in commercial PCB preparations. **Pool**, as used in this report, is a small part of a stream reach with little velocity, commonly with water deeper than surrounding areas. Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photo-synthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated (carbon method) by the plants. **Primary productivity (carbon method)** is expressed as milligrams of carbon per area per unit time [mg C/(m²/time)] for periphyton and macrophytes or per volume [mg C/(m³/time)] for phytoplankton. The carbon method defines the amount of carbon dioxide consumed as measured by radioactive carbon (carbon-14). The carbon-14 method is of greater sensitivity than the oxygen light and dark bottle method and is preferred for use with unenriched water samples. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity") **Primary productivity (oxygen method)** is expressed as milligrams of oxygen per area per unit time [mg O/(m²/time)] for periphyton and macrophytes or per volume [mg O/(m³/time)] for phytoplankton. The oxygen method defines production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity") Radioisotopes are isotopic forms of elements that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus; for example, ordinary chlorine is a mixture of isotopes having atomic weights of 35 and 37, and the natural mixture has an atomic weight of about 35.453. Many of the elements similarly exist as mixtures of isotopes, and a great many new isotopes have been produced in the operation of nuclear devices such as the cyclotron. There are 275 isotopes of the 81 stable elements, in addition to more than 800 radioactive isotopes. **Reach**, as used in this report, is a length of stream that is chosen to represent a uniform set of physical, chemical, and biological con- ditions within a segment. It is the principal sampling unit for collecting physical, chemical, and biological data. Recoverable from bed (bottom) material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. (See also "Bed material") **Recurrence interval**, also referred to as return period, is the average time, usually expressed in years, between occurrences of hydrologic events of a specified type (such as exceedances of a specified high flow or nonexceedance of a specified low flow). The terms "return period" and "recurrence interval" do not imply regular cyclic occurrence. The actual times between occurrences vary randomly, with most of the times being less than the average and a few being substantially greater than the average. For example, the 100-year flood is the flow rate that is exceeded by the annual maximum peak flow at intervals whose average length is 100 years (that is, once in 100 years, on average); almost twothirds of all exceedances of the 100-year flood occur less than 100 years after the previous exceedance, half occur less than 70 years after the previous exceedance, and about one-eighth occur more than 200 years after the previous exceedance. Similarly, the 7-day, 10-year low flow (7 Q_{10}) is the flow rate below which the annual minimum 7-day-mean flow dips at intervals whose average length is 10 years (that is, once in 10 years, on average); almost two-thirds of the nonexceedances of the 7Q₁₀ occur less than 10 years after the previous nonexceedance, half occur less than 7 years after, and about one-eighth occur more than 20 years after the previous nonexceedance. The recurrence interval for annual events is the reciprocal of the annual probability of occurrence. Thus, the 100-year flood has a 1-percent chance of being exceeded by the maximum peak flow in any year, and there is a 10-percent chance in any year that the annual minimum 7-daymean flow will be less than the $7Q_{10}$. **Replicate samples** are a group of samples collected in a manner such that the samples are thought to be essentially identical in composition. **Return period** (See "Recurrence interval") **Riffle**, as used in this report, is a shallow part of the stream where water flows swiftly over completely or partially submerged obstructions to produce surface agitation. **River mileage** is the curvilinear distance, in miles, measured upstream from the mouth along the meandering path of a stream channel in accordance with Bulletin No. 14 (October 1968) of the Water Resources Council and typically is used to denote location along a river. **Run**, as used in this report, is a relatively shallow part of a stream with moderate velocity and little or no surface turbulence. **Runoff** is the quantity of water that is discharged ("runs off") from a drainage basin during a given time period. Runoff data may be presented as volumes in acre-feet, as mean discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches. (See also "Annual runoff") **Sea level,** as used in this report, refers to one of the two commonly used national vertical datums (NGVD 1929 or NAVD 1988). See separate entries for definitions of these datums. Sediment is solid material that originates mostly from disintegrated rocks; when transported by, suspended in, or deposited from water, it is referred to as "fluvial sediment." Sediment includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are affected by environmental and land-use factors. Some major factors are topography, soil characteristics, land cover, and depth and intensity of pre-cipitation. **Sensible heat flux** (often used interchangeably with latent sensible heat-flux density) is the amount of heat energy that moves by turbulent transport through the air across a specified cross-sectional area per unit time and goes to heating (cooling) the air. Usually expressed in watts per square meter. **Seven-day, 10-year low flow** $(7Q_{10})$ is the discharge below which the annual 7-day minimum flow falls in 1 year
out of 10 on the long-term average. The recurrence interval of the $7Q_{10}$ is 10 years; the chance that the annual 7-day minimum flow will be less than the $7Q_{10}$ is 10 percent in any given year. (See also "Annual 7-day minimum" and "Recurrence interval") **Shelves**, as used in this report, are streambank features extending nearly horizontally from the flood plain to the lower limit of persistent woody vegetation. Sodium adsorption ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Sodium hazard in water is an index that can be used to evaluate the suitability of water for irrigating crops. Soil heat flux (often used interchangeably with soil heat-flux density) is the amount of heat energy that moves by conduction across a specified cross-sectional area of soil per unit time and goes to heating (or cooling) the soil. Usually expressed in watts per square meter. **Soil-water content** is the water lost from the soil upon drying to constant mass at 105 °C; expressed either as mass of water per unit mass of dry soil or as the volume of water per unit bulk volume of soil. Specific electrical conductance (conductivity) is a measure of the capacity of water (or other media) to conduct an electrical current. It is expressed in microsiemens per centimeter at 25 °C. Specific electrical conductance is a function of the types and quantity of dissolved substances in water and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water. **Stable isotope ratio** (per MIL/MIL) is a unit expressing the ratio of the abundance of two radioactive isotopes. Isotope ratios are used in hydrologic studies to determine the age or source of specific water, to evaluate mixing of different water, as an aid in determining reaction rates, and other chemical or hydrologic processes. Stage (See "Gage height") **Stage-discharge relation** is the relation between the water-surface elevation, termed stage (gage height), and the volume of water flowing in a channel per unit time. **Streamflow** is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation. **Substrate** is the physical surface upon which an organism lives. Substrate embeddedness class is a visual estimate of riffle streambed substrate larger than gravel that is surrounded or covered by fine sediment (<2mm, sand or finer). Below are the class categories expressed as the percentage covered by fine sediment: 0 no gravel or larger substrate 3 26-50 percent 1 > 75 percent 4 5-25 percent 2 51-75 percent 5 ercent Surface area of a lake is that area (acres) encompassed by the boundary of the lake as shown on USGS topographic maps, or other available maps or photographs. Because surface area changes with lake stage, surface areas listed in this report represent those determined for the stage at the time the maps or photographs were obtained. **Surficial bed material** is the upper surface (0.1 to 0.2 foot) of the bed material that is sampled using U.S. Series Bed-Material Samplers. **Suspended** (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is defined operationally as the material retained on a 0.45-micrometer filter. Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative suspended watersediment sample that is retained on a 0.45-micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by directly analyzing the suspended mate-rial collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total recoverable concentrations of the constituent. (See also "Suspended") **Suspended sediment** is the sediment maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid. (See also "Sediment") Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 foot above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). The analytical technique uses the mass of all of the sediment and the net weight of the water-sediment mixture in a sample to compute the suspended-sediment concentration. (See also "Sediment" and "Suspended sediment") **Suspended-sediment discharge** (tons/d) is the rate of sediment transport, as measured by dry mass or volume, that passes a cross section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft³/s) x 0.0027. (See also "Sediment," "Suspended sediment," and "Suspended-sediment concentration") Suspended-sediment load is a general term that refers to a given characteristic of the material in suspension that passes a point during a specified period of time. The term needs to be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It is not synonymous with either suspended-sediment discharge or concentration. (See also "Sediment") Suspended solids, total residue at 105 °C concentration is the concentration of inorganic and organic material retained on a filter, expressed as milligrams of dry material per liter of water (mg/L). An aliquot of the sample is used for this analysis. Suspended, total is the total amount of a given constituent in the part of a water-sediment sample that is retained on a 0.45-micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. Knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either by directly analyzing portions of the suspended material collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total concentrations of the constituent. (See also "Suspended") **Synoptic studies** are short-term investigations of specific water-quality conditions during selected seasonal or hydro-logic periods to provide improved spatial resolution for critical water-quality conditions. For the period and conditions sampled, they assess the spatial distribution of selected water-quality conditions in relation to causative factors, such as land use and contaminant sources. **Taxa** (Species) richness is the number of species (taxa) present in a defined area or sampling unit. **Taxonomy** is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, *Hexagenia limbata*, is the following: Kingdom: Animal Phylum: Arthropoda Class: Insecta Order: Ephemeroptera Family: Ephemeridae Genus: Hexagenia Species: Hexagenia limbata **Thalweg** is the line formed by connecting points of minimum streambed elevation (deepest part of the channel). **Thermograph** is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table descriptions and refers to any instrument that records temperature whether on a chart, a tape, or any other medium. **Time-weighted average** is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water resulting from the mixing of flow proportionally to the duration of the concentration. **Tons per acre-foot** (T/acre-ft) is the dry mass (tons) of a constituent per unit volume (acre-foot) of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136. **Tons per day** (T/DAY, tons/d) is a common chemical or sediment discharge unit. It is the quantity of a substance in solution, in suspension, or as bedload that passes a stream section during a 24-hour period. It is equivalent to 2,000 pounds per day, or 0.9072 metric tons per day. Total is the amount of a given constituent in a representative whole-water (unfiltered) sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent
of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined at least 95 percent of the constituent in the sample.) **Total coliform bacteria** are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warmblooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria that ferment lactose with gas formation within 48 hours at 35 °C. In the laboratory, these bacteria are defined as all the organisms that produce colonies with a goldengreen metallic sheen within 24 hours when incubated at 35 °C plus or minus 1.0 °C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 milliliters of sample. (See also "Bacteria") **Total discharge** is the quantity of a given constituent, measured as dry mass or volume, that passes a stream cross section per unit of time. When referring to constituents other than water, this term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on. Total in bottom material is the amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material." **Total length** (fish) is the straight-line distance from the anterior point of a fish specimen's snout, with the mouth closed, to the posterior end of the caudal (tail) fin, with the lobes of the caudal fin squeezed together. **Total load** refers to all of a constituent in transport. When referring to sediment, it includes suspended load plus bed load. **Total organism count** is the number of organisms collected and enumerated in any particular sample. (See also "Organism count/volume") Total recoverable is the amount of a given constituent in a whole-water sample after a sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data for whole-water samples, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures may produce different analytical results. **Total sediment discharge** is the mass of suspended-sediment plus bed-load transport, measured as dry weight, that passes a cross section in a given time. It is a rate and is reported as tons per day. (See also "Bedload," "Bedload discharge," "Sediment," "Suspended sediment," and "Suspended-sediment concentration") Total sediment load or total load is the sediment in transport as bedload and suspended-sediment load. The term may be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It differs from total sediment discharge in that load refers to the material, whereas discharge refers to the quantity of material, expressed in units of mass per unit time. (See also "Sediment," "Suspended-sediment load," and "Total load") **Transect**, as used in this report, is a line across a stream perpendicular to the flow and along which measurements are taken, so that morphological and flow characteristics along the line are described from bank to bank. Unlike a cross section, no attempt is made to determine known elevation points along the line. **Turbidity** is the reduction in the transparency of a solution due to the presence of suspended and some dissolved substances. The measurement technique records the collective optical properties of the solution that cause light to be scattered and attenuated rather than transmitted in straight lines; the higher the intensity of scattered or attenuated light, the higher the value of the turbidity. Turbidity is expressed in nephelometric turbidity units (NTU). Depending on the method used, the turbidity units as NTU can be defined as the intensity of light of a specified wavelength scattered or attenuated by suspended particles or absorbed at a method specified angle, usually 90 degrees, from the path of the incident light. Currently approved methods for the measurement of turbidity in the USGS include those that conform to U.S. EPA Method 180.1, ASTM D1889-00, and ISO 7027. Measurements of turbidity by these different methods and different instruments are unlikely to yield equivalent values. ## Ultraviolet (UV) absorbance (absorption) at 254 or 280 nanometers is a measure of the aggregate concentration of the mixture of UV absorbing organic materials dissolved in the analyzed water, such as lignin, tannin, humic substances, and various aromatic compounds. UV absorbance (absorption) at 254 or 280 nanometers is measured in UV absorption units per centimeter of pathlength of UV light through a sample. **Unconfined aquifer** is an aquifer whose upper surface is a water table free to fluctuate under atmospheric pressure. (See "Watertable aquifer") Vertical datum (See "Datum") Volatile organic compounds (VOCs) are organic compounds that can be isolated from the water phase of a sample by purging the water sample with inert gas, such as helium, and subsequently analyzed by gas chromatography. Many VOCs are human-made chemicals that are used and produced in the manufacture of paints, adhesives, petroleum products, pharmaceuticals, and refrigerants. They are often components of fuels, solvents, hydraulic fluids, paint thinners, and dry cleaning agents commonly used in urban settings. VOC contamination of drinkingwater supplies is a human health concern because many are toxic and are known or suspected human carcinogens. **Water table** is that surface in a ground-water body at which the water pressure is equal to the atmospheric pressure. Water-table aquifer is an unconfined aquifer within which the water table is found. Water year in USGS reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 2002, is called the "2002 water year." **WDR** is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports. (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976.) Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir. Wet mass is the mass of living matter plus contained water. (See also "Biomass" and "Dry mass") Wet weight refers to the weight of animal tissue or other substance including its contained water. (See also "Dry weight") **WSP** is used as an acronym for "Water-Supply Paper" in reference to previously published reports. **Zooplankton** is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and often are large enough to be seen with the unaided eye. Zooplank- ton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers. (See also "Plankton") #### TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS OF THE U.S. GEOLOGICAL SURVEY The USGS publishes a series of manuals titled the "Techniques of Water-Resources Investigations" that describe procedures for planning and conducting specialized work in water-resources investigations. The material in these manuals is grouped under major subject headings called books and is further divided into sections and chapters. For example, section A of book 3 (Applications of Hydraulics) pertains to surface water. Each chapter then is limited to a narrow field of the section subject matter. This publication format permits flexibility when revision or printing is required. Manuals in the Techniques of Water-Resources Investigations series, which are listed below, are available online at http://water.usgs.gov/pubs/twri/. Printed copies are available for sale from the USGS, Information Services, Box 25286, Federal Center, Denver, Colorado 80225 (an authorized agent of the Superintendent of Documents, Government Printing Office). Please telephone "1-888-ASK-USGS" for current prices, and refer to the title, book number, section number, chapter number, and mention the "U.S. Geological Survey Techniques of Water-Resources Investigations." Other products can be viewed online at http://www.usgs.gov/sales.html, or ordered by telephone or by FAX to (303)236-4693.
Order forms for FAX requests are available online at http://mac.usgs.gov/isb/pubs/forms/. Prepayment by major credit card or by a check or money order payable to the "U.S. Geological Survey" is required. #### **Book 1. Collection of Water Data by Direct Measurement** #### Section D. Water Quality - 1–D1. Water temperature—Influential factors, field measurement, and data presentation, by H.H. Stevens, Jr., J.F. Ficke, and G.F. Smoot: USGS–TWRI book 1, chap. D1. 1975. 65 p. - 1–D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W.W. Wood: USGS–TWRI book 1, chap. D2. 1976. 24 p. #### **Book 2. Collection of Environmental Data** ## Section D. Surface Geophysical Methods - 2–D1. Application of surface geophysics to ground-water investigations, by A.A.R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS–TWRI book 2, chap. D1. 1974. 116 p. - 2–D2. Application of seismic-refraction techniques to hydrologic studies, by F.P. Haeni: USGS–TWRI book 2, chap. D2. 1988. 86 p. #### Section E. Subsurface Geophysical Methods - 2–E1. Application of borehole geophysics to water-resources investigations, by W.S. Keys and L.M. MacCary: USGS–TWRI book 2, chap. E1. 1971. 126 p. - 2–E2. *Borehole geophysics applied to ground-water investigations*, by W.S. Keys: USGS–TWRI book 2, chap. E2. 1990. 150 p. #### Section F. Drilling and Sampling Methods 2–F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and W.E. Teasdale: USGS–TWRI book 2, chap. F1. 1989. 97 p. #### **Book 3. Applications of Hydraulics** ## Section A. Surface-Water Techniques - 3–A1. *General field and office procedures for indirect discharge measurements*, by M.A. Benson and Tate Dalrymple: USGS–TWRI book 3, chap. A1. 1967. 30 p. - 3–A2. *Measurement of peak discharge by the slope-area method*, by Tate Dalrymple and M.A. Benson: USGS–TWRI book 3, chap. A2. 1967. 12 p. - 3–A3. *Measurement of peak discharge at culverts by indirect methods*, by G.L. Bodhaine: USGS–TWRI book 3, chap. A3. 1968. 60 p. - 3–A4. *Measurement of peak discharge at width contractions by indirect methods*, by H.F. Matthai: USGS-TWRI book 3, chap. A4. 1967. 44 p. - 3–A5. *Measurement of peak discharge at dams by indirect methods*, by Harry Hulsing: USGS–TWRI book 3, chap. A5. 1967. 29 p. - 3–A6. *General procedure for gaging streams*, by R.W. Carter and Jacob Davidian: USGS–TWRI book 3, chap. A6. 1968. 13 p. - 3–A7. *Stage measurement at gaging stations*, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A7. 1968. 28 p. - 3–A8. Discharge measurements at gaging stations, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A8. 1969. 65 p. - 3–A9. *Measurement of time of travel in streams by dye tracing*, by F.A. Kilpatrick and J.F. Wilson, Jr.: USGS–TWRI book 3, chap. A9. 1989. 27 p. - 3-Alo. Discharge ratings at gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. Alo. 1984. 59 p. - 3–A11. *Measurement of discharge by the moving-boat method*, by G.F. Smoot and C.E. Novak: USGS–TWRI book 3, chap. A11. 1969. 22 p. - 3–A12. *Fluorometric procedures for dye tracing*, Revised, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS–TWRI book 3, chap. A12. 1986. 34 p. - 3–A13. *Computation of continuous records of streamflow*, by E.J. Kennedy: USGS–TWRI book 3, chap. A13. 1983. 53 p. - 3–A14. *Use of flumes in measuring discharge*, by F.A. Kilpatrick and V.R. Schneider: USGS–TWRI book 3, chap. A14. 1983. 46 p. - 3–A15. *Computation of water-surface profiles in open channels*, by Jacob Davidian: USGS–TWRI book 3, chap. A15. 1984. 48 p. - 3–A16. *Measurement of discharge using tracers*, by F.A. Kilpatrick and E.D. Cobb: USGS–TWRI book 3, chap. A16. 1985. 52 p. - 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS-TWRI book 3, chap. A17. 1985. 38 p. - 3–A18. *Determination of stream reaeration coefficients by use of tracers*, by F.A. Kilpatrick, R.E. Rathbun, Nobuhiro Yotsukura, G.W. Parker, and L.L. DeLong: USGS–TWRI book 3, chap. A18. 1989. 52 p. - 3-A19. Levels at streamflow gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. A19. 1990. 31 p. - 3–A20. Simulation of soluble waste transport and buildup in surface waters using tracers, by F.A. Kilpatrick: USGS–TWRI book 3, chap. A20. 1993. 38 p. - 3-A21 Stream-gaging cableways, by C. Russell Wagner: USGS-TWRI book 3, chap. A21. 1995. 56 p. ## Section B. Ground-Water Techniques - 3–B1. Aquifer-test design, observation, and data analysis, by R.W. Stallman: USGS–TWRI book 3, chap. B1. 1971. 26 p. - 3–B2. *Introduction to ground-water hydraulics, a programed text for self-instruction*, by G.D. Bennett: USGS–TWRI book 3, chap. B2. 1976. 172 p. - 3–B3. *Type curves for selected problems of flow to wells in confined aquifers*, by J.E. Reed: USGS–TWRI book 3, chap. B3. 1980. 106 p. - 3–B4. *Regression modeling of ground-water flow*, by R.L. Cooley and R.L. Naff: USGS–TWRI book 3, chap. B4. 1990. 232 p. - 3–B4. Supplement 1. Regression modeling of ground-water flow—Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R.L. Cooley: USGS–TWRI book 3, chap. B4. 1993. 8 p. - 3–B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems—An introduction, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS–TWRI book 3, chap. B5. 1987. 15 p. - 3–B6. *The principle of superposition and its application in ground-water hydraulics*, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS–TWRI book 3, chap. B6. 1987. 28 p. - 3–B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by E.J. Wexler: USGS–TWRI book 3, chap. B7. 1992. 190 p. - 3–B8. *System and boundary conceptualization in ground-water flow simulation*, by T.E. Reilly: USGS–TWRI book 3, chap. B8. 2001. 29 p. ## Section C. Sedimentation and Erosion Techniques - 3-C1. Fluvial sediment concepts, by H.P. Guy: USGS-TWRI book 3, chap. C1. 1970. 55 p. - 3–C2. *Field methods for measurement of fluvial sediment*, by T.K. Edwards and G.D. Glysson: USGS–TWRI book 3, chap. C2. 1999. 89 p. - 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS-TWRI book 3, chap. C3. 1972. 66 p. ## **Book 4. Hydrologic Analysis and Interpretation** #### Section A. Statistical Analysis - 4–A1. Some statistical tools in hydrology, by H.C. Riggs: USGS–TWRI book 4, chap. A1. 1968. 39 p. - 4-A2. Frequency curves, by H.C. Riggs: USGS-TWRI book 4, chap. A2. 1968. 15 p. - 4–A3. *Statistical methods in water resources*, by D.R. Helsel and R.M. Hirsch: USGS–TWRI book 4, chap. A3. 1991. Available only online at http://water.usgs.gov/pubs/twri/twri4a3/. (Accessed August 30, 2002.) ## Section B. Surface Water - 4–B1. Low-flow investigations, by H.C. Riggs: USGS-TWRI book 4, chap. B1. 1972. 18 p. - 4–B2. *Storage analyses for water supply*, by H.C. Riggs and C.H. Hardison: USGS–TWRI book 4, chap. B2. 1973. 20 p. - 4–B3. Regional analyses of streamflow characteristics, by H.C. Riggs: USGS–TWRI book 4, chap. B3. 1973. 15 p. ## Section D. Interrelated Phases of the Hydrologic Cycle 4–D1. *Computation of rate and volume of stream depletion by wells*, by C.T. Jenkins: USGS–TWRI book 4, chap. D1. 1970. 17 p. ## **Book 5. Laboratory Analysis** ## Section A. Water Analysis - 5–A1. *Methods for determination of inorganic substances in water and fluvial sediments*, by M.J. Fishman and L.C. Friedman, editors: USGS–TWRI book 5, chap. A1. 1989. 545 p. - 5–A2. *Determination of minor elements in water by emission spectroscopy,* by P.R. Barnett and E.C. Mallory, Jr.: USGS–TWRI book 5, chap. A2. 1971. 31 p. - 5–A3. *Methods for the determination of organic substances in water and fluvial sediments*, edited by R.L. Wershaw, M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS–TWRI book 5, chap. A3. 1987. 80 p. - 5–A4. *Methods for collection and analysis of aquatic biological and microbiological samples*, by L.J. Britton and P.E. Greeson, editors: USGS–TWRI book 5, chap. A4. 1989. 363 p. - 5–A5. *Methods for determination of radioactive substances in water and fluvial sediments*, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS–TWRI book 5, chap. A5. 1977. 95 p. - 5–A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L.C. Friedman and D.E. Erdmann: USGS–TWRI book 5, chap. A6. 1982. 181 p. #### Section C. Sediment Analysis 5-C1. Laboratory theory and methods for sediment analysis, by H.P. Guy: USGS-TWRI book 5, chap. C1. 1969. 58 p. ## **Book 6. Modeling Techniques** #### Section A. Ground Water - 6–A1. *A modular three-dimensional finite-difference ground-water flow model*, by M.G. McDonald and A.W. Harbaugh: USGS–TWRI book 6, chap. A1. 1988. 586 p. - 6–A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS–TWRI book 6, chap. A2. 1991. 68 p. - 6–A3. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual, by L.J. Torak: USGS–TWRI book 6, chap. A3. 1993. 136 p. - 6–A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R.L. Cooley: USGS–TWRI book 6, chap. A4. 1992. 108 p. - 6–A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L.J. Torak: USGS–TWRI book 6, chap. A5. 1993. 243 p. - 6–A6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler: USGS–TWRI book 6, chap. A6. 1996. 125 p. - 6–A7. User's guide to SEAWAT: A computer program for simulation of three-dimensional
variable-density ground-water flow, by Weixing Guo and Christian D. Langevin: USGS–TWRI book 6, chap. A7. 2002. 77 p. ## **Book 7. Automated Data Processing and Computations** ## Section C. Computer Programs - 7–C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS–TWRI book 7, chap. C1. 1976. 116 p. - 7–C2. *Computer model of two-dimensional solute transport and dispersion in ground water*, by L.F. Konikow and J.D. Bredehoeft: USGS–TWRI book 7, chap. C2. 1978. 90 p. - 7–C3. *A model for simulation of flow in singular and interconnected channels*, by R.W. Schaffranek, R.A. Baltzer, and D.E. Goldberg: USGS–TWRI book 7, chap. C3. 1981. 110 p. #### **Book 8. Instrumentation** ## Section A. Instruments for Measurement of Water Level - 8–A1. *Methods of measuring water levels in deep wells*, by M.S. Garber and F.C. Koopman: USGS–TWRI book 8, chap. A1. 1968. 23 p. - 8–A2. *Installation and service manual for U.S. Geological Survey manometers*, by J.D. Craig: USGS–TWRI book 8, chap. A2. 1983. 57 p. ## Section B. Instruments for Measurement of Discharge 8–B2. *Calibration and maintenance of vertical-axis type current meters*, by G.F. Smoot and C.E. Novak: USGS–TWRI book 8, chap. B2. 1968. 15 p. ## **Book 9. Handbooks for Water-Resources Investigations** ## Section A. National Field Manual for the Collection of Water-Quality Data - 9–A1. *National field manual for the collection of water-quality data: Preparations for water sampling*, by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A1. 1998. 47 p. - 9–A2. *National field manual for the collection of water-quality data: Selection of equipment for water sampling*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A2. 1998. 94 p. - 9–A3. *National field manual for the collection of water-quality data: Cleaning of equipment for water sampling*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A3. 1998. 75 p. - 9–A4. *National field manual for the collection of water-quality data: Collection of water samples*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A4. 1999. 156 p. - 9–A5. *National field manual for the collection of water-quality data: Processing of water samples*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A5. 1999, 149 p. - 9–A6. *National field manual for the collection of water-quality data: Field measurements*, edited by F.D. Wilde and D.B. Radtke: USGS–TWRI book 9, chap. A6. 1998. Variously paginated. - 9–A7. *National field manual for the collection of water-quality data: Biological indicators*, edited by D.N. Myers and F.D. Wilde: USGS–TWRI book 9, chap. A7. 1997 and 1999. Variously paginated. - 9–A8. *National field manual for the collection of water-quality data: Bottom-material samples*, by D.B. Radtke: USGS–TWRI book 9, chap. A8. 1998. 48 p. - 9–A9. *National field manual for the collection of water-quality data: Safety in field activities*, by S.L. Lane and R.G. Fay: USGS–TWRI book 9, chap. A9. 1998. 60 p. ## **EXPLANATION** - Streamflow station - △ Lake - ◆ Streamflow and water-quality station - ▼ Water-quality station - Observation well NOTE: Downstream station numbers are abbreviated; the first two digits (part number) and the last two digits (if zeros) are omitted (for example, station number 01470500 is shown as 4705, and station number 01471875 is shown as 471875). Figure 6.--Location of continuous-record data-collection stations in the upper Delaware River Basin. #### **EXPLANATION** - Streamflow station - △ Lake - Streamflow and water–quality station - ▼ Water-quality station - Observation well NOTE: Downstream station numbers are abbreviated; the first two digits (part number) and the last two digits (if zeros) are omitted (for example, station number 01474000 is shown as 4740, and station number 01467048 is shown as 467048). Figure 7.--Location of continuous-record data-collection stations in the lower Delaware River Basin. #### **EXPLANATION** ## **TYPE** - ▲ Streamflow station - Streamflow and water-quality station - ▼ Water-quality station NOTE: Downstream station numbers are abbreviated; the first two digits (part number) and the last two digits (if zeros) are omitted (for example, station number 01438300 is shown as 4383, and station number 01451192 is shown as 451192). Figure 8.--Location of partial-record data-collection stations in the upper Delaware River Basin. - Streamflow station - Streamflow and water–quality station - ▼ Water-quality station NOTE: Downstream station numbers are abbreviated; the first two digits (part number) and the last two digits (if zeros) are omitted (for example, station number 01465460 is shown as 46546. Figure 9.--Location of partial-record data-collection stations in the lower Delaware River Basin. #### SPECIAL NOTES, REMARK CODES, AND SELECTED CONSTITUENT DEFINITIONS NOTES--Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter (μ G/L) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's to 100's of nanograms per liter (ng/L). Data above the μ G/L level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes; however, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey began using new trace-element protocols at some stations in water year 1994. Full implementation of the protocols took place during the 1995 water year. - --Sample handling procedures at all National Trends Network stations were changed substantially on January 11, 1994, in order to reduce contamination from the sample shipping container. The data for samples before and after that date are different and not directly comparable. A tabular summary of the differences based on a special intercomparison study, is available from the NADP/NTN Coordination Office, Colorado State University, Fort Collins, CO 80523 (Telephone: 303-491-5643). - --In March 1989 a bias was discovered in the turbidimetric method for sulfate analysis for those samples analyzed by the U.S. Geological Survey National Water-Quality Laboratory indicating that values below 75 mg/L have a median positive bias of 2 mg/L above the true value for the period between 1982 and 1989. - -Methylene blue active substance (MBAS) determinations made from January 1, 1970, through August 29, 1993, at the National Water Quality Laboratory in Denver (Analyzing Agency Code 80020) are positively biased. These data can be corrected on the basis of the following equation, if concentrations of dissolved nitrate plus nitrite, as nitrogen, and dissolved chloride, determined concurrently with the MBAS data are applied: MBASCOR = M - 0.0088N - 0.00019C where: $\begin{array}{l} MBASCOR = corrected\ MBAS\ concentration,\ in\ mg/L;\\ M = reported\ MBAS\ concentration,\ in\ mg/L;\\ N = dissolved\ nitrate\ plus\ nitrite,\ as\ nitrogen,\ in\ mg/L;\ and \end{array}$ C = dissolved chloride concentration, in mg/L. The detection limit of the new method is 0.02 mg/L, whereas the detection limit for the old method was 0.01 mg/L. A detection limit of 0.02 mg/L should be used with corrected MBAS data from January 1, 1970, through August 29, 1993. **Remark Codes.**--The following remark codes may appear with the data tables in this report: #### PRINTED OUTPUT <u>REMARK</u> | E,e | Estimated value. | |-----|---| | > | Actual value is known to be greater than the value shown. | | < | Actual value is known to be less than the value shown. | | M | Presence of material verified but not quantified. | | K | Results based on colony count outside the acceptance range (non-ideal colony count). | | L | Biological organism count less than 0.5 percent (organism may be observed rather than counted). | | D | Biological organism count equal to or greater than 15 percent (dominant). | | ND | Material specifically analyzed for but not detected. | | V | Analyte was detected in both the environmental sample and the associated blanks. | ## EXPLANATION OF CODES USED TO DEFINE SAMPLE COLLECTION PROCEDURES (partial listing) ## (71999) SAMPLE PURPOSE CODES: #### (84164) SAMPLER TYPE: (partial list) | 10Routine | 110Sewage sampler | |---------------------|-------------------| | 15NAWQA
20NASQAN | 3011US D-77 | | 30Benchmark | | 3035--DH-76 Trace metal sampler with teflon gasket and nozzle 3045--DH-81 with Teflon cap and #### (82398) SAMPLE METHOD CODES: 10--Equal width increment 20--Equal discharge increment 3040--D-77 Trace metal modified teflon bag sampler 30--Single vertical 40--Multiple verticals 50--Point sample 70--Grab sample 120--Velocity integrated 8010--Other 8010--Other (other than a defined nozzle 3039--D-77 Trace metal sampler type) ## SPECIAL NOTES, REMARK CODES AND SELECTED CONSTITUENT DEFINITIONS--Continued #### Explanation of selected abbreviations used in constituent definitions in water-quality tables: AC-FT acre-feet **BOT MAT** bottom material (Unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.) COLS/100 ML colonies per 100 milliliters DIS dissolved **FET** fixed end-point titration FLD field (Measurement determined at field site.) F/S feet per second G/M gallons per minute G/SQM; MG/M2 grams or milligrams per square meter incremental titration KF AGAR nutrient medium for growth of fecal streptococcal bacteria $\mu G/L$ micrograms per liter μS/CM microsiemens per centimeter MG/L
milligrams per liter MG/M2 milligrams per square meter MM OF HG millimeters of mercury **NONCARB** noncarbonate NTU nephelometric turbidity unit PCI/L picocuries per liter **REC** recoverable TOT total T/DAY tons per day WH IT whole water, incremental titration (Alkalinity, bicarbonate, and carbonate as determined by incremental titration of unfiltered water at the field site.) 2 SIGMA Counting statistic that represents error in the reported radon, uranium, radiation, volume of sample, and decay since sample was collected. 0.7µ GF 0.7 micron glass-fiber filter (Water filtered through a glass-fiber membrane filter with openings that are 0.7 microns in size.) ## (00027) AGENCY COLLECTING SAMPLE CODES: (partial listing) 1028 -- U.S. Geological Survey ## (00028) AGENCY ANALYZING SAMPLE CODES: (partial listing) 1028 --U.S. Geological Survey 80020 --U.S. Geological Survey, National Water-Quality Laboratory, Denver, Colorado 9813 --Pennsylvania Department of Environmental Protection 83613 --District Water-Quality Laboratory, Troy, New York ## **MEDIUM CODES: (partial listing)** 9-- Surface water. R-- Quality-control sample. Surface water. Q-- Quality-control sample. Artificial. ## SURFACE-WATER RECORDS NORTH ATLANTIC SLOPE BASINS DELAWARE RIVER BASIN ## 01427000 WEST BRANCH DELAWARE RIVER AT HANCOCK, NY **LOCATION.**--Lat 41°57'08", long 75°17'31", Delaware County, Hydrologic Unit 02040101, at bridge at end of Pennsylvania State Highway 191 in Hancock, and 1.3 mi upstream from confluence with East Branch Delaware Riverr. **DRAINAGE AREA.--**650 mi². ## PERIOD OF DAILY RECORD.-- WATER TEMPERATURES: October 1996 to current year. **INSTRUMENTATION.--**Water-temperature satellite telemeter provides 15-minute-interval readings. **REMARKS.--**Water temperature is affected by release of water from upstream reservoir. ## EXTREMES FOR PERIOD OF RECORD.-- WATER TEMPERATURES: Maximum, 24.5°C, Sept. 18, 1997, June 13, 2001; minimum, 0.0°C on many days during winter periods. #### EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURES: Maximum, 23.0°C, June 21; minimum, 0.0°C on many days during winter period. #### WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--|---|---|--------------------------------------|------------------------------------|-------------------------------------|--|---------------------------------|---------------------------------|--|--|--| | | | OCTOBER | | | NOVEMBE | R | r | ECEMBER | 1 | | JANUARY | | | 1
2
3
4
5 | 15.5
16.0
17.0
17.5
17.0 | 11.5
12.5
13.0
13.5
14.5 | 13.5
14.5
15.0
15.5
15.5 | 12.0
12.5
13.0
12.5
11.0 | 9.5
10.0
11.5
10.0
8.5 | 11.0
11.5
12.5
11.5
9.5 | 10.0
9.0
7.5
6.5
8.5 | 8.0
6.0
5.0
3.5
6.0 | 9.0
7.5
6.0
5.0
7.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 6
7
8
9
10 | 16.0
14.5
14.5
15.5
16.5 | 14.5
12.5
12.0
12.5
13.0 | 15.0
13.5
13.5
14.0
15.0 | 9.5
9.0
9.0
9.5
8.5 | 8.0
7.5
7.5
7.0
6.0 | 8.5
8.5
8.0
8.0
7.0 | 8.5
8.5
5.0
4.0
4.5 | 6.5
5.0
2.0
2.0
2.5 | 7.5
7.0
3.5
3.0
3.5 | 0.5
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 11
12
13
14
15 | 17.0
16.5
17.0
16.0
16.5 | 13.5
14.0
15.0
14.5
14.5 | 15.5
15.5
16.0
15.5
15.5 | 7.5
6.0
7.0
7.5
9.5 | 5.5
4.5
4.0
5.0
7.5 | 7.0
5.5
5.5
6.0
8.5 | 5.5
5.5
5.5
6.0 | 2.5
2.5
4.0
5.0
3.5 | 3.5
4.0
4.5
5.5
5.0 | 0.0
0.5
0.5
0.5 | 0.0
0.0
0.0
0.0
0.5 | 0.0
0.0
0.0
0.0
0.5 | | 16
17
18
19
20 | 15.5
14.5
14.5
14.0
15.0 | 13.0
12.5
12.0
11.5
13.0 | 14.5
13.5
13.0
13.0
14.0 | 10.0
8.0
7.5
8.0
8.0 | 8.0
6.5
5.0
6.0
5.5 | 9.0
7.5
6.5
7.0
7.0 | 4.5
4.0
4.5
5.0
4.5 | 2.5
3.5
4.0
4.0
3.5 | 3.5
3.5
4.0
4.5
4.0 | 1.0
1.5
0.5
0.0 | 0.0
0.0
0.0
0.0 | 0.5
0.5
0.0
0.0 | | 21
22
23
24
25 | 15.5
14.5
14.5
15.5
15.5 | 12.0
13.0
12.5
14.0
13.0 | 14.0
14.0
13.5
14.5
14.0 | 6.0
6.5
6.5
8.5
11.0 | 4.0
4.5
4.5
6.5
8.5 | 5.5
5.5
5.5
7.0
10.0 | 3.5
3.0
3.0
4.0
2.0 | 2.5
2.0
1.0
2.0
1.0 | 3.0
2.5
2.0
3.0
1.5 | 0.0
0.0
0.5
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 26
27
28
29
30
31 | 13.0
12.5
12.0
13.0
12.5
10.5 | 11.5
11.0
10.5
10.0
10.5
9.0 | 12.0
11.5
11.0
11.5
11.5
9.5 | 9.0
8.0
9.5
8.5
9.5 | 8.0
6.5
7.5
7.5
7.5 | 8.5
7.5
8.5
8.0
8.5 | 1.5
0.0
0.0
0.0
0.5
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.0
0.0
0.0
0.0 | 1.0
1.0
1.0
1.0
2.5
2.0 | 0.0
0.0
0.0
0.5
1.0
2.0 | 0.0
0.5
0.5
1.0
1.5
2.0 | | MONTH | 17.5 | 9.0 | 13.8 | 13.0 | 4.0 | 8.0 | 10.0 | 0.0 | 3.7 | 2.5 | 0.0 | 0.2 | ## 01427000 WEST BRANCH DELAWARE RIVER AT HANCOCK, NY--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|--|--|--|--|---|--|--|--|--|--|--|--| | | | FEBRUAR | Y | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 2.0 | 0.5 | 2.0
1.0
1.0
1.5
0.5 | 3.5
2.5
6.5
3.5
1.5 | 0.0
0.0
2.5
0.0 | 1.0
1.5
4.5
2.0
0.5 | 7.5
6.5
6.0
6.5
5.0 | 5.5
4.0
5.0
3.5
2.5 | 7.0
5.5
6.0
5.0
3.5 | 11.5
9.5
10.0
13.0
14.5 | 6.0
8.0
7.5
6.0
7.5 | 8.5
8.5
8.5
9.5
11.0 | | 6
7
8
9
10 | 2.0
3.0
4.5
5.0
3.5 | 0.0
0.0
1.5
1.5 | 0.5
1.5
2.5
3.0
2.5 | 5.5
5.5
8.0
9.0
8.5 | 0.5
1.0
2.0
5.0
1.5 | 2.5
3.0
4.5
7.0
5.0 | 5.5
7.0
6.0
9.5
12.0 | 2.0
1.0
4.0
5.5
7.0 | 3.5
4.0
5.0
7.5
9.0 | 15.0
15.0
16.0
13.0
16.0 | 9.0
11.5
11.5
10.0
10.0 | 12.0
13.5
13.5
11.0
12.5 | | 12 | 3.0
2.0
2.5
1.0
2.0 | 0.0
0.0
0.0
0.0 | | | | | | | | 15.5
12.0
10.0
10.5
12.5 | | | | 16
17
18
19
20 | 4.0
4.5
3.0
3.5
4.5 | 1.5
1.5
0.0
0.0
2.0 | 2.5
2.5
1.0
1.5
3.0 | 6.5
5.5
3.5
4.0
3.0 | 3.5
1.5
2.5
2.5
1.0 | 5.5
3.5
2.5
3.0
2.0 | 18.0
19.0
20.0
19.0
15.0 | 12.0
13.0
14.0
14.0 | 15.0
16.0
17.0
16.0
13.0 | 13.5
14.5
11.5
10.0
10.0 | 8.5
11.5
8.5
7.0
6.5 | 11.5
12.5
9.5
8.5
8.5 | | 21
22
23
24
25 | 5.5
4.0
4.5
5.0
5.0 | 3.5
2.5
1.5
0.0
1.0 | 4.5
3.5
2.5
2.0
3.0 | 7.0
3.5
5.5
6.0
5.5 | 2.0
0.0
0.0
1.5
2.5 | 3.5
1.5
2.5
4.0
3.5 | 12.0
9.0
9.5
13.5
9.0 | 9.0
6.5
5.5
5.0
6.0 | 10.0
8.0
7.5
9.0
7.5 | 10.5
13.5
16.0
15.5
17.0 | 6.5
6.5
8.5
10.5 | 8.5
10.0
12.0
13.0
13.5 | | 26
27
28
29
30
31 | 7.0
5.0
3.5
 | 2.0
1.5
0.0
 | 4.0
3.5
1.5
 | 2.5
3.0
6.0
7.5
9.0 | 1.5
1.5
1.5
3.0
5.5
5.5 | 2.0
2.0
4.0
5.0
7.0 | 10.5
12.5
9.0
8.0
8.0 | 5.0
4.5
7.5
6.0
5.5 | 7.5
8.5
8.0
7.5
6.5 | 15.5
17.5
15.5
17.0
19.0 | 12.5
13.5
13.5 | 15.0 | | MONTH | 7.0 | 0.0 | 2.0 | 9.0 | 0.0 | 3.5 | 20.0 | 1.0 | 8.9 | 19.0 | 6.0 | 11.6 | | | | | | | | |
 | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | | | JULY | | 2 | AUGUST | | SI | EPTEMBER | | | DAY 1 2 3 4 5 | MAX
18.5
17.5
17.5
16.5
18.5 | JUNE | | MAX
21.0
20.5
20.5
20.0
19.5 | JULY | | 2 | AUGUST | | | EPTEMBER | 14.5
15.5
17.0
18.0 | | 1
2
3
4 | 18.5
17.5
17.5
16.5 | JUNE | 16.5
16.0
15.0
15.0 | | 17.5
17.0
14.5
15.0
17.0 | 19.5
19.0
18.0
18.0 | 18.5
16.5
16.0
16.0
14.5 | 13.5
13.0
10.0
10.0 | 16.0
14.5
13.0
13.0 | SI | 13.0
14.0
14.0
16.0
14.0 | 14.5
15.5
17.0
18.0
16.0 | | 1
2
3
4
5
6
7
8
9
10 | 18.5
17.5
17.5
16.5
18.5
17.0
17.0
17.5
19.5
20.5 | JUNE 14.5 14.0 12.0 13.0 13.5 14.5 13.5 14.5 15.5 | 16.5
16.0
15.0
15.0
16.0
15.5
15.5
16.5
18.0 | 21.0
20.5
20.5
20.0
19.5 | JULY 17.5 17.0 14.5 15.0 17.0 13.0 14.0 14.0 15.0 14.5 | 19.5
19.0
18.0
18.0
15.0
17.0
17.0
16.0
17.5 | 18.5
16.5
16.0
16.0
14.5
15.0
14.5
15.0
15.5 | 13.5
13.0
10.0
10.0
11.0
11.0
10.0
10.0
9.5
9.5 | 16.0
14.5
13.0
13.0
13.0
12.5
12.5
12.5
12.5 | 16.5
17.0
19.0
19.0 | 13.0
14.0
14.0
16.0
14.0
13.0
13.5
13.5
15.0
16.0 | 14.5
15.5
17.0
18.0
16.0
15.0
17.5
18.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 18.5
17.5
17.5
16.5
18.5
17.0
17.0
17.5
19.5
20.5
20.5
19.0 | JUNE 14.5 14.0 12.0 13.0 13.5 14.5 14.5 14.5 15.5 | 16.5
16.0
15.0
15.0
16.0
15.5
15.5
16.5
18.0
18.5
19.0
17.5 | 21.0
20.5
20.5
20.0
19.5
17.0
19.5
18.0
20.5
21.5
19.0
16.5 | JULY 17.5 17.0 14.5 15.0 17.0 13.0 14.0 14.0 15.0 14.5 15.0 15.5 12.5 13.0 | 19.5
19.0
18.0
18.0
17.0
17.0
17.5
18.0
17.5
18.0
17.5 | 18.5
16.5
16.0
16.0
14.5
15.0
14.5
15.0
15.5 | 13.5
13.0
10.0
10.0
11.0
11.0
11.0
10.0
9.5
9.5
10.0
10.5 | 16.0
14.5
13.0
13.0
13.0
12.5
12.5
12.5
12.5
12.5
13.0 | 16.5
17.0
19.0
19.0
17.5
17.0
17.5
19.0
20.0
19.5
18.5
17.0
18.0 | 13.0
14.0
14.0
16.0
14.0
13.0
12.5
13.5
13.5
15.0
16.0
14.5
12.5
13.0
14.0 | 14.5
15.5
17.0
18.0
16.0
15.5
16.0
17.5
18.0
16.0
15.5
16.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 18.5
17.5
17.5
16.5
18.5
17.0
17.0
17.5
19.5
20.5
21.5
20.5
17.0
14.5
16.5
18.0
19.0
21.0 | JUNE 14.5 14.0 12.0 13.0 13.5 14.5 14.5 14.5 14.5 15.5 16.0 18.0 16.5 14.5 14.0 14.0 14.0 15.5 | 16.5
16.0
15.0
15.0
16.0
15.5
15.5
16.5
18.0
18.5
19.0
17.5
14.5
15.5
14.5 | 21.0
20.5
20.5
20.0
19.5
17.0
19.5
18.0
20.5
21.5
19.0
16.5
18.5
20.5 | JULY 17.5 17.0 14.5 15.0 17.0 13.0 14.0 14.0 15.0 14.5 15.0 16.0 17.0 14.5 | 19.5
19.0
18.0
18.0
17.0
17.0
17.5
18.0
17.5
18.0
17.5
19.0
18.5
19.0 | 18.5
16.5
16.0
14.5
15.0
14.5
15.0
15.5
15.5
15.5
15.5
15.5
15.5
15 | 13.5
13.0
10.0
10.0
11.0
11.0
11.0
10.0
9.5
9.5
10.0
10.5
11.0
11.0
11.0
11.5 | 16.0
14.5
13.0
13.0
13.0
12.5
12.5
12.5
12.5
13.0
13.0
13.0
13.5
13.5
13.5
13.5 | 16.5
17.0
19.0
19.0
17.5
17.0
17.5
19.0
20.0
19.5
18.5
17.0
18.0
18.0
18.0 | 13.0
14.0
14.0
14.0
16.0
14.0
13.5
13.5
13.5
15.0
16.0
14.5
12.5
13.0
14.0
16.5 | 14.5
15.5
17.0
18.0
16.0
15.0
17.5
18.0
16.0
15.5
16.5
17.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 18.5
17.5
17.5
16.5
18.5
17.0
17.0
17.5
19.5
20.5
21.5
20.5
17.0
14.5
16.5
18.0
19.0
22.0
23.0
21.5
21.0
22.5 | JUNE 14.5 14.0 12.0 13.0 13.5 14.5 14.5 14.5 15.5 16.0 18.0 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 | 16.5
16.0
15.0
15.0
16.0
15.5
15.5
16.5
18.0
18.5
19.0
17.5
14.5
15.5
16.0
16.5
18.0
19.0
20.0
20.0
20.0 | 21.0
20.5
20.5
20.0
19.5
17.0
19.5
18.0
20.5
21.5
19.0
16.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21 | JULY 17.5 17.0 14.5 15.0 17.0 13.0 14.0 14.0 15.0 14.5 15.0 16.0 17.0 14.5 12.5 13.0 16.0 17.0 14.5 16.0 17.0 14.5 16.0 17.0 10.5 | 19.5
19.0
18.0
18.0
17.0
17.0
17.5
18.0
17.5
18.0
18.5
16.0
13.0
13.5 | 18.5
16.5
16.0
14.5
15.0
14.5
15.0
15.5
15.5
15.5
15.5
15.5
15.5
15 | 13.5
13.0
10.0
10.0
11.0
11.0
11.0
10.0
9.5
9.5
10.0
10.5
11.0
11.5
11.5
11.5
11.5 | 16.0
14.5
13.0
13.0
13.0
12.5
12.5
12.5
12.5
13.0
13.0
13.0
13.5
13.5
13.5
13.5
13.5
13.5 | 16.5
17.0
19.0
19.0
17.5
17.0
17.5
19.0
20.0
19.5
18.5
17.0
18.0
18.0
18.0
19.5
19.5
19.5
19.5
19.5
19.5 | 13.0
14.0
14.0
14.0
16.0
14.0
13.5
13.5
15.0
16.0
14.5
12.5
13.0
14.0
16.5
17.0
16.0
17.0 | 14.5
15.5
17.0
18.0
16.0
15.0
16.0
17.5
18.0
16.0
15.5
17.5
17.5
18.0
17.5
17.5
17.5
17.5
17.5
17.5
17.5 | # 01427510 DELAWARE RIVER AT CALLICOON, NY (Pennsylvania Water-Quality Network Station) LOCATION.--Lat 41°45'24", long 75°03'28", Wayne County, Pennsylvania, Hydrologic Unit 02040101, on right bank, 0.5 mi downstream from Callicoon Creek, 0.5 mi downstream from Interstate Bridge 7, and 0.8 mi southeast of Callicoon. Water-quality sampling site at discharge station. **DRAINAGE AREA.--**1,820 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--June 1975 to current year. REVISED RECORDS.--WDR NY-82-1: Drainage area. WDR NY-86-1: 1975-84 (M). GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 734.88 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records good except those for estimated daily discharges, which are poor. Subsequent to September 1954, entire flow from 371 mi² of drainage area controlled by Pepacton Reservoir, and subsequent to October 1963, entire flow from 454 mi² of drainage area controlled by Cannonsville Reservoir. Part of flow from these reservoirs diverted for New York City municipal supply. Remainder of flow (except for conservation releases and spill) impounded for release during period of low flow in the lower Delaware River basin, as directed by the Delaware River Master. Satellite and telephone gage-height and temperature telemeter at station. Information on the above reservoirs can be found in the annual Water-Data Report NY-02-1 **EXTREMES FOR PERIOD OF RECORD.-**-Maximum discharge, 95,600 ft³/s, Jan. 19, 1996, gage-height, 16.31 ft; minimum discharge, 306 ft³/s, Sept. 24, 25, 1997; minimum gage height, 2.20 ft, Sept. 13, 1977, Aug. 23, 1985. **EXTREMES FOR CURRENT YEAR.--**Maximum discharge, 13,400 ft³/s, June 7, gage height, 6.21 ft; minimum recorded, 488 ft³/s, Sept. 22, but may have been less during period of ice effect, gage height, 2.61 ft. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | | | DA | AILY MEAN | VALUES | | | | | | |----------------------------------|--|------------------------------------|--|--|--------------------------|--|--------------------------------------|--|--------------------------------------|--|---|-----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1080 | 1370 | 1400 | e800 | 4510 | 1280 | 4680 | 4440 | 5840 | 1110 | 871 | 1140 | | 2 | 1180 | 1360 | 1820 | e740 | 5020 | 1170 | 4020 | 4410 | 3980 | 1140 | 899 | 818 | | 3 | 1140 | 1320 | 1200 | e700 | 3730 | 1400 | 3320 | 4860 | 2870 | 1160 | 1270 | 822 | | 4 | 1170 | 1240 | 995 | e680 | 3090 | 1910 | 3020 | 3760 | 2250 | 1120 | 1230 | 871 | | 5 | 1320 | 1300 | 874 | e680 | e2500 | 1600 | 2540 | 3100 | 2370 | 957 | 1230 | 983 | | 6 | 1370 | 1290 | 797 | e700 | 2230 | 1450 | 2250 | 2640 | 4590 | 965 | 1130 | 981 | | 7 | 1350 | 1240 | 759 | e740 | 2130 | 1400 | 1990 | 2320 | 12400 | 828 | 1150 | 1270 | | 8 | 1340 | 1140 | 865 | e740 | 1710 | 1320 | 1780 | 2100 | 8180 | 862 | 1140 | 1200 | | 9 | 1400 | 1220 | 779 | e760 | 1570 | 1250 | 1680 | 1970 | 5240 | 867 | 1180 | 827 | | 10 | 1500 | 1220 | 720 | e760 | 1490 | 1400 | 1650 | 2040 | 3770 | 818 | 1280 | 763 | | 11 | 1460 | 1170 | 858 | e760 | 6140 | 1680 | 1580 | 1770 | 2910 | 753 | 1290 | 797 | | 12 | 1460 | 1160 | 688 | e760 | 5490 | 1450 | 1380 | 1690 | 2420 | 650 | 1290 | 864 | | 13 | 1400 | 1150 | 668 | e740 | 4080 | 1410 | 1300 | 4810 | 2370 | 900 | 1280 | 901 | | 14 | 1340 | 1140 | 841 | e700 | e2900 | 1390 | 1630 | 10200 | 2330 | 897 | 1310 | 992 | | 15 | 1510 | 1180 | 1370 | e680 | e2600 | 1390 | 3120 | 7580 | 3210 | 707 | 1320 | 836 | | 16 | 1490 | 1200 | 1490 | e640 | 2290 | 1450 | 3410 | 5190 | 3990 | 673 | 1390 | 613 | | 17 | 1570 | 1190 | 1320 | e600 | 2100 | 1590 | 2760 | 4020 | 3390 | 734 | 1380 | 565 | | 18 |
1460 | 1200 | 3240 | e560 | 1830 | 1460 | 2410 | 5750 | 2630 | 742 | 1310 | 658 | | 19 | 1440 | 1160 | 4130 | e540 | 1600 | 1420 | 2120 | 6840 | 2430 | 758 | 1280 | 621 | | 20 | 1430 | 1200 | 3010 | e520 | 1480 | 1480 | 1930 | 4860 | 1980 | 1060 | 1280 | 609 | | 21 | 1450 | 1220 | 2470 | e620 | 1680 | 1710 | 1770 | 3920 | 1720 | 1080 | 1310 | 867 | | 22 | 1470 | 1230 | 2030 | e720 | 2070 | 1970 | 1620 | 3260 | 1600 | 892 | 1260 | 554 | | 23 | 1450 | 1230 | 1710 | e760 | 1890 | 1750 | 1540 | 2710 | 1500 | 841 | 1190 | 1220 | | 24 | 1520 | 1230 | 1630 | e800 | 1640 | 1660 | 1390 | 2310 | 1630 | 1040 | 1250 | 1060 | | 25 | 1650 | 1140 | 1670 | e900 | 1500 | 1680 | 1350 | 2010 | 1490 | 841 | 1320 | 741 | | 26
27
28
29
30
31 | 1550
1470
1520
1500
1500
1330 | 1380
1280
1030
982
991 | 1440
1230
e1100
e1000
e920
e840 | e1300
e1600
e1500
e2400
e3300
e5200 | 1430
1460
1440
 | 1930
8420
7140
5580
5220
5150 | 1760
1650
2350
6630
5540 | 1750
1580
3340
4630
2960
3140 | 1360
1770
1500
1280
1090 | 811
1220
1120
817
858
852 | 688
866
876
979
838
1030 | 813
788
1780
1590
958 | | TOTAL | 43820 | 36163 | 43864 | 32900 | 71600 | 71110 | 74170 | 115960 | 94090 | 28073 | 36117 | 27502 | | MEAN | 1414 | 1205 | 1415 | 1061 | 2557 | 2294 | 2472 | 3741 | 3136 | 905.6 | 1165 | 916.7 | | MAX | 1650 | 1380 | 4130 | 5200 | 6140 | 8420 | 6630 | 10200 | 12400 | 1220 | 1390 | 1780 | | MIN | 1080 | 982 | 668 | 520 | 1430 | 1170 | 1300 | 1580 | 1090 | 650 | 688 | 554 | | STATIS | TICS OF M | ONTHLY ME | AN DATA F | OR WATER | YEARS 197 | 75 - 2002, | BY WATER | YEAR (WY | .) | | | | | MEAN | 1972 | 2528 | 2622 | 2428 | 2643 | 4506 | 5654 | 3500 | 1822 | 1363 | 1285 | 1383 | | MAX | 6545 | 6561 | 11130 | 7594 | 7993 | 11080 | 14500 | 7866 | 4048 | 3571 | 2710 | 3716 | | (WY) | 1978 | 1997 | 1997 | 1978 | 1976 | 1977 | 1993 | 1984 | 2000 | 1996 | 1994 | 1977 | | MIN | 701 | 1130 | 1035 | 587 | 611 | 1177 | 1496 | 935 | 734 | 777 | 560 | 839 | | (WY) | 1992 | 1979 | 1999 | 1977 | 1980 | 1981 | 1985 | 1985 | 1985 | 1981 | 1985 | 1994 | e Estimated. ## 01427510 DELAWARE RIVER AT CALLICOON, NY--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1975 - 2002 | |--|---|---------------------|--| | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM 10 PERCENT EXCEEDS | 706739
1936
24800 Apr 10
453 Sep 24
703 May 10
3070
1220
835 | 520 Jan 20 | 2636
3972 1978
1434 1985
54800 Mar 15 1986
312 Aug 23 1985
354 Aug 17 1985
5990
1400
794 | | 90 PERCENT EXCEEDS | 835 | 760 | 794 | CURRENT WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR. #### 01427510 DELAWARE RIVER AT CALLICOON, NY--Continued (Pennsylvania Water-Quality Network Station) ## WATER-QUALITY RECORDS PERIOD OF RECORD.--April 2002 to current year. PERIOD OF DAILY RECORD.--WATER TEMPERATURES: June 1975 to current year. **INSTRUMENTATION.**—Water-temperature satellite telemeter provides 15-minute-interval readings. Prior to May 1989, water-temperature recorder provided one-hour-interval readings. **REMARKS.**--Water temperature is affected by release of water from upstream reservoir. Other data for the Water-Quality Network can be found on pages 410-425. **EXTREMES FOR PERIOD OF DAILY RECORD.**—WATER TEMPERATURES: Maximum, (water years 1976-2002), 30.5°C, July 12, 1987; minimum, 0.0°C on many days during winters. #### EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURES: Maximum, 30.0°C, July 3, 4; minimum, 0.0°C on many days during winter. ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM) | | (MG/L
AS
CACO3) | | RECOV- | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | MAGNE-
SIUM,
TOTAL
RECOV-
ERABLE
(MG/L
AS MG)
(00927) | |----------------|---|--|---|---|--|--|---|--|---|--|---|---|--| | APR 2002
23 | 1200 | 9813 | 1530 | 40 | 11.5 | 7.6 | 62 | 9.1 | 19 | 5.60 | 5.7 | 1.15 | 1.2 | | JUN | | | | | | | | | | | | | | | 06
AUG | 1245 | 9813 | 4070 | 40 | 9.3 | 7.3 | 64 | 17.7 | 18 | 5.61 | 5.4 | 1.12 | 1.1 | | 06 | 1145 | 9813 | 993 | 40 | 10.3 | 8.8 | 83 | 21.0 | 26 | 7.50 | 7.3 | 1.82 | 1.8 | | Date | ACIDITY
TOTAL
HEATED
(MG/L
AS
CAC03) | WATER
UNFLTRD
FET
LAB
(MG/L AS
CACO3) | DIS-
SOLVED
(MG/L
AS SO4) | RESIDUE
AT 105
DEG. C,
DIS-
SOLVED
(MG/L)
(00515) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN, | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N)
(00620) | GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | ORTHO
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | OXYGEN
DEMAND,
BIO-
CHEM-
ICAL,
5 DAY
(MG/L)
(00310) | COPPER,
DIS-
SOLVED
(µG/L
AS CU)
(01040) | | APR 2002
23 | .0 | 12 | 6.9 | 14 | <2 | <.020 | .18 | <.040 | .28 | <.01 | .011 | 1.0 | <4 | | JUN | | | | | | | | | | | | | · - | | 06
AUG | 1.8 | 12 | 6.6 | 62 | 4 | <.020 | .16 | <.040 | .37 | .04 | .018 | .6 | <4 | | 06 | .0 | 16 | 7.4 | 58 | <2 | <.020 | .36 | <.040 | .46 | <.01 | <.010 | .7 | <4 | | | Date | COPPER,
TOTAL
RECOV-
ERABLE
(µG/L
AS CU)
(01042) | IRON,
DIS-
SOLVED
(µG/L
AS FE)
(01046) | IRON,
TOTAL
RECOV-
ERABLE
(µG/L
AS FE)
(01045) | LEAD,
DIS-
SOLVED
(µG/L
AS PB)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µG/L
AS PB)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(µG/L
AS MN)
(01056) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(µG/L
AS MN)
(01055) | NICKEL,
DIS-
SOLVED
(µG/L
AS NI)
(01065) | NICKEL,
TOTAL
RECOV-
ERABLE
(µG/L
AS NI)
(01067) | ZINC,
DIS-
SOLVED
(µG/L
AS ZN)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µG/L
AS ZN)
(01092) | | | A | PR 2002 | | | | | | | | | | | | | | т | 23
UN | <4 | <20 | 50 | <1.0 | <1.0 | 8.5 | 10 | <4.0 | <4.0 | <5.0 | <5.0 | | | | 06 | <4 | 40 | 260 | <1.0 | <1.0 | 20 | 60 | <4.0 | <4.0 | <5.0 | <5.0 | | | A' | UG
06 | <4 | <20 | 140 | <1.0 | <1.0 | 10 | 30 | <4.0 | <4.0 | <5.0 | <5.0 | | # 01427510 DELAWARE RIVER AT CALLICOON, NY--Continued | DAY | MAX | MIN | MEAN | |---|---|--|---|--|--|---|--|--|--|---|--|--| | | | OCTOBER | | | NOVEMBE | R | | DECEMBI | ≅R | |
JANUARY | | | 1
2
3
4
5 | 16.0
17.0
18.0
18.5
18.5 | 12.5
13.0
14.0
15.5
16.0 | | | | | 10.0
9.0
7.5
6.5
7.0 | | | | | | | 6
7
8
9
10 | 17.0
14.5
12.0
12.5
14.5 | 14.5
11.5
10.0
9.0
10.5 | 16.0
13.0
11.0
11.0 | 8.5
8.0
7.5
7.0
6.5 | 7.0
6.0
6.0
5.5
4.5 | 7.5
7.0
6.5
6.5
5.5 | 7.5
7.5
6.0
4.0
3.5 | 6.0
6.0
3.5
3.0
2.5 | 7.0
7.0
5.0
3.5
3.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 11
12
13
14
15 | 15.5
16.5
18.0
17.0
16.0 | 12.0
13.5
15.0
16.0
14.5 | | | | | 3.5
4.0
4.5
5.0
5.0 | | | | | | | 16
17
18
19
20 | 15.0
14.0
11.5
11.5
12.5 | 13.0
11.5
10.0
9.0
10.5 | 14.0
13.0
11.0
10.5
11.5 | 8.5
7.5
7.0
6.5
6.5 | 6.5
6.0
5.0
5.0 | 7.5
7.0
6.0
6.0 | 3.5
3.5
3.5
4.5
4.0 | 2.5
3.0
3.0
3.5
3.5 | 3.0
3.0
3.5
4.0
3.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 21
22
23
24
25 | 14.0
14.0
14.0
16.0
15.5 | 11.0
13.0
12.5
13.5
13.5 | | | | | 3.5
2.0
1.5
2.5
1.5 | | | | | | | | | | | | | | 1.0
0.0
0.0
0.0
0.0 | | | | | | | | | | | | | | 10.0 | DAY | MAX | MIN | MEAN | | | | FEBRUAR | Y | | MARCH | | | APRIL | | | MAY | | | | | FEBRUAR | Y | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 1.5
1.5
1.0
1.5
0.5 | 0.0
0.5
0.0
0.0 | 1.0
1.0
0.5
1.0
0.0 | 3.5
2.5
5.0
4.0
2.5 | 0.5
0.5
2.5
2.0
0.5 | 2.0
1.5
3.5
3.0
1.5 | | 7.0
6.0
5.5
5.0
3.5 | 8.0
6.5
6.5
5.5
4.5 | 10.5
9.5
10.0
11.5
14.0 | 7.0
9.0
8.5
8.0
9.5 | 8.5
9.5
9.0
9.5
12.0 | | 1
2
3
4
5
6
7
8
9 | 1.5
1.5
1.0
1.5
0.5
0.5
1.5
3.0
4.0
3.0 | 0.0
0.5
0.0
0.0
0.0
0.0
0.0
0.0
0.5
1.5
2.0 | 1.0
1.0
0.5
1.0
0.0
0.0 | 3.5
2.5
5.0
4.0
2.5
4.0
5.0
7.0
8.5 | 0.5
0.5
2.5
2.0
0.5
0.0
1.5
2.5
5.5 | 2.0
1.5
3.5
3.0
1.5
2.0
3.0
4.5
7.0
6.5 | 9.0
7.0
7.0
7.0
5.5 | 7.0
6.0
5.5
5.0
3.5
3.0
2.0
4.5
6.0
7.5 | 8.0
6.5
6.5
4.5
4.0
4.5
5.5
7.5
9.5 | 10.5
9.5
10.0
11.5
14.0
16.0
16.5
18.0
15.5 | 7.0
9.0
8.5
8.0
9.5
11.5
13.5
14.0
13.0 | 8.5
9.5
9.0
9.5
12.0
13.5
15.0
15.5
14.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 1.5
1.5
1.0
1.5
0.5
0.5
1.5
3.0
4.0
3.0
2.5
1.0 | 0.0
0.5
0.0
0.0
0.0
0.0
0.0
0.0
0.5
1.5
2.0 | 1.0
1.0
1.0
0.5
1.0
0.0
0.0
0.5
1.5
2.5
2.5
2.5 | 3.5
2.5
5.0
4.0
2.5
4.0
5.0
7.0
8.5
8.5
5.0
3.5
7.5 | MARCH 0.5 0.5 2.5 2.0 0.5 0.0 1.5 2.5 4.0 2.5 2.0 2.5 3.0 | 2.0
1.5
3.5
3.0
1.5
2.0
3.0
4.5
7.0
6.5
3.5
3.5
3.0 | 9.0
7.0
7.0
7.0
5.5
5.5
7.0
9.0
12.0
13.5
12.0
12.5
16.0 | 7.0
6.0
5.5
5.0
3.5
3.0
2.0
4.5
6.0
7.5
8.5
9.0
11.0 | 8.0
6.5
6.5
5.5
4.5
4.0
4.5
7.5
9.5
10.5
10.5
11.5 | 10.5
9.5
10.0
11.5
14.0
16.0
16.5
18.0
15.5
16.0
17.0
14.5
12.0 | 7.0
9.0
8.5
8.0
9.5
11.5
13.5
14.0
12.0
12.0
12.0
10.5
9.5 | 8.5
9.5
9.0
9.5
12.0
13.5
15.0
14.0
14.0
14.5
13.0
11.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 1.5
1.5
1.0
1.5
0.5
0.5
1.5
3.0
2.5
1.0
1.0
2.5
3.5
3.0 | 0.0
0.5
0.0
0.0
0.0
0.0
0.0
0.5
1.5
2.0
1.0
0.0
0.0
0.0 | 1.0
1.0
0.5
1.0
0.0
0.0
0.0
0.5
1.5
2.5
2.5
2.5
1.0
0.0
0.0 | 3.5
2.5
5.0
4.0
2.5
4.0
5.0
7.0
8.5
8.5
5.0
3.5
7.5
9.0
8.0
6.5
5.0 | MARCH 0.5 0.5 2.5 2.0 0.5 0.0 1.5 5.5 4.0 2.5 2.0 2.5 3.0 6.0 4.5 3.5 3.0 | 2.0
1.5
3.5
3.0
1.5
2.0
3.0
4.5
7.0
6.5
3.5
2.5
3.0
7.0
7.0 | 9.0
7.0
7.0
7.0
5.5
5.5
7.0
9.0
12.0
13.5
12.0
12.5
16.0
17.0 | 7.0
6.0
5.5
5.0
3.5
3.0
2.0
4.5
6.0
7.5
8.5
9.0
11.0
13.5
15.0
16.0
17.5 | 8.0
6.5
6.5
5.5
4.5
4.0
4.5
5.5
7.5
9.5
10.5
11.5
13.5
15.0 | 10.5
9.5
10.0
11.5
14.0
16.0
16.5
18.0
15.5
16.0
17.0
14.5
12.0
10.5
11.5 | 7.0
9.0
8.5
8.0
9.5
11.5
13.5
14.0
12.0
12.0
12.0
12.0
10.5
9.5
9.0 | 8.5
9.5
9.0
9.5
12.0
13.5
15.0
14.0
14.0
11.0
10.0
10.0
12.0
13.5
12.0
9.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 1.5
1.5
1.0
1.5
0.5
0.5
1.5
3.0
3.0
2.5
1.0
1.0
2.5
3.0
3.5
3.0
3.5
5.5
5.0
5.0
4.0 | 0.0
0.5
0.0
0.0
0.0
0.0
0.0
0.5
1.5
2.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0 | 1.0
1.0
0.5
1.0
0.0
0.0
0.0
0.5
1.5
2.5
2.5
2.5
1.0
0.0
0.0
0.0
1.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2 | 3.5
2.5
5.0
4.0
2.5
4.0
5.0
7.0
8.5
8.5
5.0
3.5
7.5
9.0
8.0
6.5
4.5
3.5
5.0
4.5 | MARCH 0.5 0.5 2.5 2.0 0.5 0.0 1.5 5.5 4.0 2.5 2.5 3.0 5.0 6.0 4.5 3.5 3.0 2.0 2.0 1.0 0.5 2.0 | 2.0
1.5
3.5
3.0
1.5
2.0
3.0
4.5
7.0
6.5
3.5
2.5
3.5
2.5
4.0
2.5
4.0 | 9.0
7.0
7.0
7.0
5.5
5.5
7.0
9.0
12.0
13.5
12.0
17.0
18.5
20.0
21.5
21.0
19.0 | 7.0
6.0
5.5
5.0
3.5
3.0
2.0
4.5
6.0
7.5
8.5
9.0
11.0
13.5
15.0
16.0
17.5
17.5
15.0 | 8.0
6.5
6.5
5.5
4.5
4.0
4.5
5.5
7.5
9.5
10.5
11.5
13.5
15.0
16.5
17.5
19.0
10.5
17.0 | 10.5
9.5
10.0
11.5
14.0
16.0
16.5
18.0
15.5
16.0
17.0
14.5
12.0
10.5
11.5
13.0
15.0
10.0
10.0 | 7.0
9.0
9.5
8.0
9.5
11.5
13.5
14.0
12.0
12.0
12.0
10.5
9.0
8.0
8.5
8.0
9.5 | 8.5
9.5
9.0
9.5
12.0
13.5
14.0
14.0
14.5
13.0
10.0
10.0
12.0
9.5
12.0
9.0
9.0
10.5
13.5
9.0 | # 01427510 DELAWARE RIVER AT CALLICOON, NY--Continued | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | | | JUNE | | | JULY | | | AUGUST | | S | EPTEMBE | R | | 1
2
3
4
5 | 18.0
18.5
18.5
18.0
19.5 | 16.5
16.5
15.5
15.5
16.0 | 17.0
17.5
17.0
17.0 | 27.5
29.0
30.0
30.0
27.5 | 23.0
24.0
25.5
25.5
24.0 | 25.5
26.5
28.0
27.5
25.5 | 27.5
27.0
26.5
25.5
24.0 | 23.5
23.5
23.5
21.0
21.5 | 25.5
25.5
25.0
23.0
23.0 | 20.5
21.0
23.5
24.0
22.5 | 18.5
17.5
18.5
20.5
20.0 | 19.0
19.0
21.0
22.5
21.5 | | 6
7
8
9
10 | 18.0
16.0
16.5
18.0
20.5 | 16.0
15.0
15.0
15.5
17.0 | 17.5
15.5
15.5
17.0
19.0 | 24.5
24.5
26.5
25.0
25.5 | 21.5
19.5
20.5
22.5
22.0 | 23.0
22.5
23.5
24.0
24.0 | 22.5
21.5
21.0
22.5
22.5 | 20.0
18.0
17.0
17.0
17.5 | 21.5
20.0
19.5
19.5
20.0 | 22.5
21.5
22.0
23.5
24.5 | 17.5
17.5
17.0
18.0
20.0 | 20.0
19.5
19.5
20.5
22.5 | | 11
12
13
14
15 | 22.5
22.0
20.5
19.0
16.5 | 18.5
20.0
19.0
16.5
15.0 | 20.5
21.0
20.0
17.5
15.5 | 24.0
25.0
26.0
24.5
25.5 | 20.0
19.5
20.5
21.5
21.5 | 22.5
22.5
23.5
23.0
23.5 | 23.0
23.5
24.0
22.5
23.0 | 18.0
19.0
19.5
20.0
20.0 | 20.5
21.0
22.0
21.5
21.5 | 23.5
19.5
20.0
20.5
20.0 | 18.5
16.0
15.5
16.5
18.5 | 20.5
18.0
18.0
18.5
19.5 | | 16
17
18
19
20 | 16.5
18.5
20.5
22.0
24.0 | 14.5
15.5
16.0
17.0
18.5 | 15.5
17.0
18.0
19.5
21.0 | 26.0
27.5
28.0
27.0
27.5 | 22.5
21.5
24.0
24.5
23.5 | 24.5
24.5
26.5
26.0
25.5 | 22.0
23.5
23.5
23.0
22.0 | 20.0
20.0
20.0
19.5
20.0 | 21.0
21.5
22.0
21.5
21.0 | 21.0
21.0
21.5
21.0
22.5 | 19.0
18.0
17.5
18.5
19.5 | 20.0
20.0
20.0
20.0
21.0 | | 21
22
23
24
25 | 25.0
25.0
25.0
26.0
26.5 | 20.0
20.5
22.0
21.5
22.0 | 22.0
23.0
23.0
24.0
24.5 | 25.0
26.5
25.5
25.5
24.0 | 21.5
21.5
23.0
22.0
21.0 | 23.0
24.0
24.5
24.0
22.5 |
22.5
21.0
22.5
21.0
21.0 | 18.0
17.5
19.0
18.0
17.0 | 20.5
19.5
20.5
19.5
19.0 | 22.5
22.0
21.5
20.5
19.5 | 20.5
21.0
19.0
16.5
16.0 | 21.5
21.5
20.5
18.5
18.0 | | 26
27
28
29
30
31 | 27.0
26.0
25.5
26.0
27.0 | 23.0
22.5
22.5
21.0
21.5 | 25.0
24.0
24.0
23.5
24.0 | 23.0
22.0
20.5
24.5
26.0
27.5 | 20.5
20.0
19.0
19.5
22.0
22.5 | 21.5
21.0
20.0
21.5
24.0
25.0 | 22.0
23.5
22.5
20.5
21.0
21.5 | 17.0
19.0
20.0
18.5
17.5 | 19.5
21.5
21.0
19.0
19.0 | 18.5
16.5
17.5
17.5
 | 16.5
15.5
15.5
14.5
15.0 | 17.5
16.0
16.0
16.0 | | MONTH | 27.0 | 14.5 | 19.8 | 30.0 | 19.0 | 24.0 | 27.5 | 17.0 | 21.1 | 24.5 | 14.5 | 19.4 | #### 01428500 DELAWARE RIVER ABOVE LACKAWAXEN RIVER NEAR BARRYVILLE, NY LOCATION.--Lat 41°30'32", long 74°59'10", Sullivan County, Hydrologic Unit 02040101, on left bank, 1.6 mi upstream from Lackawaxen River, and 4.6 mi northwest of Barryville. Water-quality sampling site at discharge station. **DRAINAGE AREA.--**2,020 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1940 to current year. REVISED RECORDS.--WDR NY-82-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 600.22 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records good except those for estimated daily discharges, which are poor. Subsequent to September 1954, entire flow from 371 mi² of drainage area controlled by Pepacton Reservoir, and subsequent to October 1963, entire flow from 454 mi² of drainage area controlled by Cannonsville Reservoir. Part of flow of these reservoirs diverted for New York City municipal supply. Remainder of flow (except for conservation releases and spill) impounded for release during periods of low flow in the lower Delaware River basin, as directed by the Delaware River Master. Satellite gageheight and temperature telemeter and National Weather Service telephone gage-height telemeter at station. Information on the above reservoirs can be found in the annual Water-Data Report NY-02-1. **EXTREMES FOR PERIOD OF RECORD.--**Maximum discharge, 130,000 ft³/s, Aug. 19, 1955, gage height, 26.40 ft, from floodmarks in gage house, from rating curve extended above 55,000 ft³/s, on basis of slope-area measurement at gage height 23.19 ft; minimum discharge, 122 ft³/s, Sept. 5, 1953, gage height, 1.11 ft. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 15,200 ft³/s, June 7, gage height, 8.07 ft; minimum, 519 ft³/s, Sept. 23, gage height, 2.13 ft. | | | DISC | CHARGE, | CUBIC FEET | | ND, WATEF
AILY MEAN | | TOBER 200 | 1 TO SEPTE | MBER 2002 | | | |----------------------------------|--|--------------------------------------|--|--|--------------------------|--|--------------------------------------|--|--------------------------------------|--|--|------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1200 | 1440 | 1340 | e900 | 5250 | 1530 | 5560 | 5790 | 6270 | 1200 | 867 | 1190 | | 2 | 1260 | 1460 | 2020 | e860 | 5730 | 1380 | 4970 | 5610 | 5140 | 1230 | 854 | 988 | | 3 | 1250 | 1440 | 1490 | e820 | 4590 | 1480 | 4130 | 6150 | 3750 | 1230 | 1100 | 806 | | 4 | 1270 | 1360 | 1190 | e800 | 3770 | 2070 | 3750 | 4940 | 2920 | 1250 | 1290 | 894 | | 5 | 1330 | 1370 | 1040 | e780 | 3100 | 2020 | 3210 | 4070 | 2920 | 1160 | 1220 | 980 | | 6 | 1480 | 1370 | 954 | e760 | 2590 | 1680 | 2790 | 3480 | 4640 | 963 | 1170 | 978 | | 7 | 1460 | 1360 | 884 | 736 | 2400 | 1630 | 2470 | 3030 | 13700 | 995 | 1110 | 1210 | | 8 | 1430 | 1300 | 926 | 735 | 2050 | 1550 | 2200 | 2740 | 10000 | 852 | 1120 | 1310 | | 9 | 1460 | 1250 | 973 | 857 | 1890 | 1470 | 2060 | 2520 | 6580 | 918 | 1130 | 996 | | 10 | 1550 | 1290 | 873 | 945 | 1740 | 1560 | 2000 | 2580 | 4880 | 936 | 1250 | 789 | | 11 | 1590 | 1300 | 892 | 883 | 4960 | 1890 | 1960 | 2360 | 3830 | 831 | 1300 | 807 | | 12 | 1560 | 1230 | 907 | 882 | 6690 | 1760 | 1730 | 2160 | 3150 | 714 | 1300 | 826 | | 13 | 1540 | 1240 | 774 | 860 | 4900 | 1660 | 1590 | 5680 | 3000 | 771 | 1290 | 885 | | 14 | 1420 | 1230 | 845 | 829 | 3580 | 1630 | 1950 | 12500 | 3180 | 941 | 1320 | 968 | | 15 | 1570 | 1250 | 1310 | 770 | 2990 | 1630 | 3340 | 9520 | 4570 | 833 | 1350 | 938 | | 16 | 1570 | 1270 | 1660 | 742 | 2740 | 1640 | 4250 | 6720 | 5670 | 696 | 1420 | 934 | | 17 | 1680 | 1280 | 1500 | 704 | 2470 | 1850 | 3460 | 5240 | 4710 | 671 | 1480 | 635 | | 18 | 1580 | 1280 | 2520 | 716 | 2220 | 1790 | 2990 | 6620 | 3670 | 756 | 1410 | 609 | | 19 | 1520 | 1260 | 4850 | 686 | 1920 | 1690 | 2620 | 8570 | 3350 | 765 | 1360 | 665 | | 20 | 1520 | 1270 | 3630 | 660 | 1740 | 1740 | 2370 | 6240 | 2720 | 924 | 1370 | 606 | | 21 | 1540 | 1290 | 2880 | 648 | 1790 | 2050 | 2200 | 5090 | 2290 | 1190 | 1370 | 746 | | 22 | 1560 | 1330 | 2370 | 780 | 2280 | 2530 | 2010 | 4280 | 2100 | 993 | 1360 | 725 | | 23 | 1560 | 1290 | 1980 | 816 | 2270 | 2300 | 1900 | 3620 | 1930 | 857 | 1270 | 841 | | 24 | 1560 | 1320 | 1790 | 773 | 1960 | 2100 | 1740 | 3080 | 1910 | 908 | 1280 | 1270 | | 25 | 1730 | 1270 | 1840 | 851 | 1760 | 2110 | 1650 | 2660 | 1890 | 1080 | 1480 | 851 | | 26
27
28
29
30
31 | 1690
1550
1610
1570
1620
1470 | 1360
1530
1190
1120
1080 | 1680
1350
1160
1160
1050
e960 | 1530
1830
1750
1800
2180
5640 | 1660
1650
1670
 | 2190
9220
9280
6900
6070
6040 | 2160
2200
3060
8000
7180 | 2350
2160
3820
6990
4370
3800 | 1600
1960
1840
1560
1270 | 711
1060
1190
934
846
818 | 1020
703
954
994
1060
878 | 767
889
2070
2060
1240 | | TOTAL | 46700 | 39030 | 48798 | 34523 | 82360 | 84440 | 91500 | 148740 | 117000 | 29223 | 37080 | 29473 | | MEAN | 1506 | 1301 | 1574 | 1114 | 2941 | 2724 | 3050 | 4798 | 3900 | 942.7 | 1196 | 982.4 | | MAX | 1730 | 1530 | 4850 | 5640 | 6690 | 9280 | 8000 | 12500 | 13700 | 1250 | 1480 | 2070 | | MIN | 1200 | 1080 | 774 | 648 | 1650 | 1380 | 1590 | 2160 | 1270 | 671 | 703 | 606 | | STATIS | rics of M | ONTHLY ME | AN DATA | FOR WATER | YEARS 196 | 64 - 2002, | BY WATER | R YEAR (W | Y) | | | | | MEAN | 1991 | 2688 | 3063 | 2723 | 2955 | 5089 | 6461 | 4073 | 2346 | 1617 | 1387 | 1474 | | MAX | 7404 | 7448 | 11940 | 8335 | 9389 | 12050 | 16500 | 8615 | 6701 | 4087 | 3033 | 4186 | | (WY) | 1978 | 1997 | 1997 | 1978 | 1976 | 1977 | 1993 | 1984 | 1972 | 1996 | 1994 | 1987 | | MIN | 527 | 610 | 1114 | 687 | 712 | 1399 | 1878 | 1161 | 673 | 328 | 465 | 448 | | (WY) | 1964 | 1965 | 1999 | 1977 | 1980 | 1981 | 1985 | 1965 | 1965 | 1965 | 1965 | 1965 | e Estimated. # 01428500 DELAWARE RIVER ABOVE LACKAWAXEN RIVER NEAR BARRYVILLE, NY--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR | YEAR | FOR 2002 V | WATER YEAR | WATER YEARS | 3 1964 - 2002 | |---|-------------------|-------------------------|---------------------|---------------------------|---------------------|---| | ANNUAL TOTAL
ANNUAL MEAN | 810351
2220 | | 788867
2161 | | 2986 | | | HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN | 25000 7 | 10 | 12700 | T 7 | 4650
1297 | 1973
1965 | | HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM | 744 M | or 10
ay 15
av 11 | 13700
606
690 | Jun 7
Sep 20
Sep 17 | 63000
250
264 | Jan 20 1996
Oct 27 1963
Oct 23 1963 | | 10 PERCENT EXCEEDS
50 PERCENT EXCEEDS | 3770
1380 | ~ <i>1</i> | 4860
1530 | БСР 17 | 6630
1610 | 000 20 1000 | | 90 PERCENT EXCEEDS | 986 | | 824 | | 866 | | CURRENT WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR. ### 01428500 DELAWARE RIVER ABOVE LACKAWAXEN RIVER NEAR BARRYVILLE, NY--Continued ### WATER-QUALITY RECORDS **PERIOD OF RECORD.**--Water years 1968 to current year. CHEMICAL DATA: 1971-73 (a). NUTRIENT DATA: 1971 (a). # PERIOD OF DAILY RECORD.-- WATER TEMPERATURES: October 1967 to current year (no winter record for water years 1969-76). **INSTRUMENTATION.**—Water-temperature recorder provides 15-minute-interval readings. Prior to October 1995, water-temperature recorder provided one-hour-interval readings. Prior to October 1975, water-temperature recorder provided continuous readings. **REMARKS.**--Interruption of record was due to malfunction of recording instrument. ### EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURES: Maximum (water years 1968-75, 1980-81, 1983, 1985-96, 1999-2001), 32.5°C, July 9, 10, 1993; minimum (water years 1968, 1977-2002), 0.0°C, on many days during winters, each year except water years 1980-82. #### EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURES: Maximum recorded, 32.0°C, July 4; minimum, 0.0°C on many days during winter. | DAY | MAX | MIN | MEAN | |----------------------------------|---|---|---------------------------------------|--------------------------------------|-----------------------------------|------------------------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | | | OCTOBER | | : | NOVEMBE | R | r | ECEMBER | t | | JANUARY | | | 1
2
3
4
5 | 17.5
18.0
19.0
20.0
20.0 |
13.5
14.0
15.0
16.0
16.5 | 15.0
16.0
17.0
18.0
18.5 | 10.5
10.5
12.5
13.0
11.0 | 8.0
8.5
10.0
10.5
9.0 | 9.0
9.5
11.0
11.5
10.0 | 10.5
9.0
9.0
8.0
8.5 | 8.5
8.0
7.0
6.0
6.5 | 9.5
8.5
7.5
7.0
7.5 | 0.5
0.5
1.0
0.5
0.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 6
7
8
9
10 | 18.0
16.0
14.0
13.0
14.0 | 16.0
13.0
11.0
10.0 | 17.5
14.5
12.5
11.5
12.0 | 10.0
9.0
8.5
8.0
8.0 | 8.0
7.0
6.5
6.0
5.5 | 8.5
8.0
7.5
7.0
6.5 | 9.5
9.0
6.5
5.0
4.5 | 6.5
6.5
4.0
4.0
3.0 | 7.5
7.5
5.5
4.5
3.5 | 0.5
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 11
12
13
14
15 | 15.5
16.5
18.0
17.0
17.5 | 11.5
13.5
15.0
16.0
15.5 | 13.5
15.0
16.5
16.5
16.5 | 6.5
5.5
6.0
6.0
7.0 | 5.0
3.5
3.0
3.0
4.5 | 5.5
4.5
4.5
4.5
5.5 | 5.0
4.0
4.5
5.0
5.0 | 3.0
2.5
3.5
4.0
3.5 | 4.0
3.5
4.0
4.5
4.0 | 0.5
0.5
0.5
0.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 16
17
18
19
20 | 16.0
14.5
13.0
12.0
12.5 | 14.5
11.5
10.5
9.5
10.0 | 15.0
13.5
11.5
11.0
11.0 | 8.5
8.5
8.5
8.0
7.5 | 5.5
6.0
5.5
6.0
5.5 | 6.5
7.0
6.5
7.0
6.5 | 4.0
3.5
3.5
4.0
4.0 | 3.0
3.0
3.0
3.0
3.0 | 3.5
3.0
3.5
3.5
3.5 | 0.5
0.5
0.5
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 21
22
23
24
25 | 13.5
14.0
14.0
16.5
16.5 | 10.5
12.0
13.0
14.0
14.0 | 12.0
13.0
13.5
15.0
15.0 | 7.0
6.0
6.0
6.0
8.0 | 4.5
3.5
3.5
4.5
6.0 | 5.5
5.0
5.0
5.0
7.0 | 3.5
3.0
2.0
2.5
2.0 | 2.5
1.5
1.0
1.5
1.0 | 3.0
2.0
1.5
2.0
1.5 | 0.0
0.0
0.0
0.0
1.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 26
27
28
29
30
31 | 14.0
11.5
10.5
10.0
10.5
8.5 | 11.5
9.5
8.5
7.0
8.0
8.0 | 13.5
11.0
9.5

9.0
8.5 | 9.5
9.0
10.0
9.0
9.5 | 7.5
8.0
8.5
8.5
8.5 | 8.5
8.5
9.0
9.0
9.0 | 1.5
0.5
0.5
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | | MONTH | 20.0 | 7.0 | | 13.0 | 3.0 | 7.3 | 10.5 | 0.0 | 3.7 | 1.0 | 0.0 | 0.0 | # 01428500 DELAWARE RIVER ABOVE LACKAWAXEN RIVER NEAR BARRYVILLE, NY--Continued | DAV | MAY | | | MAY | | | | | | | | MEAN | |--|--|--|--|--|---|--|--|--|--
--|--|--| | DAY | MAX | MIN
FEBRUAR | MEAN
Y | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | 1
2
3
4
5 | 0.5
1.0
1.0
1.0 | 0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5 | 5.0
3.5
6.0
4.5
3.5 | 2.0
1.5
3.0
2.5
1.5 | 3.5
2.5
4.5
3.5
2.5 | 9.5
8.5
8.0
8.0
6.5 | 8.5
7.5
7.0
6.0
5.0 | 9.0
8.0
7.5
7.0
6.0 | 10.0
10.0
10.5
11.5
13.5 | 7.5
10.0
9.5
9.0
10.5 | 9.0
10.0
10.0
10.0
12.0 | | 6
7
8
9
10 | 1.5
1.5
2.5
4.0
3.5 | 0.0
0.0
0.0
1.0
2.0 | 0.5
0.5
1.0
2.5
2.5 | 4.5
5.0
7.0
8.0
8.5 | 1.0
1.5
2.5
5.5
5.5 | 2.5
3.5
5.0
6.5
7.0 | 6.5
7.0
7.5
9.5
12.5 | 4.5
4.0
5.0
6.5
8.5 | 5.0
5.5
6.5
8.0
10.5 | 15.0
16.5
17.5
16.0
16.5 | 12.5
14.5
15.5
14.0
13.5 | 14.0
15.5
16.5
15.0
15.0 | | 11
12
13
14
15 | 3.0
1.5
1.5
1.5 | 1.5
0.5
0.5
0.0 | 2.5
1.0
1.0
0.5
0.5 | 6.0
4.0
3.5
7.5
9.5 | 4.0
3.5
3.0
3.0
5.0 | 5.0

3.0
5.0
7.0 | 13.5
12.5
13.5
15.0
17.0 | 9.5
10.0
11.5
12.0
14.5 | 11.5
11.5
12.5
14.0
15.5 | 17.0
14.5
13.5
11.0
11.5 | 13.5
13.5
11.0
10.5
9.5 | 15.0
14.0
12.5
10.5
10.5 | | 16
17
18
19
20 | 2.5
3.5
3.5
3.5
3.5 | 0.5
1.5
1.5
1.0
2.0 | 1.5
2.5
2.0
2.5
3.0 | 8.5
8.0
6.0
5.0
4.0 | 7.0
6.0
4.5
4.0
3.5 | 8.0
6.5
5.0
4.5
4.0 | 18.5
20.0
21.5
21.5
19.5 | 16.0
17.5
19.0
19.5
17.0 | 17.5
18.5
20.0
20.0
19.0 | 13.5
14.5
14.0
11.5
10.0 | 10.5
13.0
11.5
10.0
9.0 | 12.0
14.0
13.0
10.5
9.5 | | 21
22
23
24
25 | 5.5
5.5
5.5
5.5
5.5 | 3.0
4.0
3.5
3.0
3.0 | 4.0
4.5
4.5
4.0
4.0 | 6.0
4.5
5.0
6.0 | 3.0
2.5
2.0
2.5
4.5 | 4.5
3.5
3.0
4.5
5.0 | 17.0
13.5
11.0
13.5
10.5 | 13.5
11.0
9.0
8.0
9.5 | 15.5
12.5
10.5
10.5 | 10.5
12.0
14.5
16.5
18.0 | 9.0
9.5
11.5
13.5
14.5 | 9.5
10.5
13.0
15.0
16.0 | | 26
27
28
29
30
31 | 6.5
6.0
5.0
 | 3.0
4.0
2.5
 | 5.0
5.0
3.5
 | 4.5
4.0
4.5
6.5
8.5 | 4.0
3.0
2.5
4.0
6.5
8.5 | 4.0
3.5
3.5
5.5
7.5 | 11.0
12.5
10.5
9.5
8.5 | 8.0
8.5
9.5
8.5
7.5 | 9.5
10.5
10.0
9.0
8.0 | 18.0
18.5
19.0
16.5
18.0
19.5 | 16.0
16.5
16.5
15.5
15.5 | 17.0
17.5
17.5
16.0
17.0
18.5 | | MONTH | 6.5 | 0.0 | 2.2 | | 1.0 | | 21.5 | 4.0 | 11.3 | 19.5 | 7.5 | 13.4 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | ER | | DAY 1 2 3 4 5 | MAX
19.0
18.5
18.5
19.0
20.5 | | MEAN 18.5 18.0 17.5 18.0 18.5 | MAX
28.0
29.0
31.5
32.0
29.5 | | MEAN 26.0 27.0 28.5 27.5 | MAX 30.0 30.5 30.5 29.5 28.0 | | MEAN 27.0 27.5 28.0 27.0 26.0 | | SEPTEMBE | | | 1
2
3
4 | 19.0
18.5
18.5
19.0 | 18.0
17.0
17.0
17.0 | 18.5
18.0
17.5
18.0 | 28.0
29.0
31.5
32.0 | JULY 24.0 24.5 26.5 27.5 | 26.0
27.0
28.5 | 30.0
30.5
30.5
29.5 | 24.5
25.5
25.5
25.0 | 27.0
27.5
28.0
27.0 | 20.5
21.0
24.5
27.0 | 19.0
18.5
19.0
21.5 | 19.5
19.5
22.0
24.0 | | 1
2
3
4
5
6
7
8
9
10 | 19.0
18.5
18.5
19.0
20.5
19.0
17.5
17.0
18.5
20.0 | 18.0
17.0
17.0
17.0
17.0
17.5
15.5
15.5 | 18.5
18.0
17.5
18.0
18.5
16.5
16.0
17.0 | 28.0
29.0
31.5
32.0
29.5
26.5
27.0 | JULY 24.0 24.5 26.5 27.5 25.0 23.0 21.5 22.0 23.5 23.5 | 26.0
27.0
28.5

27.5
24.5
24.0
25.0
25.0 | 30.0
30.5
30.5
29.5
28.0
26.0
23.5
24.0
25.0 | 24.5
25.5
25.5
25.0
25.0
22.0
20.5
19.5
19.0
20.0 | 27.0
27.5
28.0
27.0
26.0
24.0
22.0
22.0
22.0 | 20.5
21.0
24.5
27.0
25.0
25.0
24.0
24.5
25.5
26.0 | 19.0
18.5
19.0
21.5
21.0
19.5
19.5
19.5 | 19.5
19.5
22.0
24.0
22.5
22.5
22.5 | | 1
2
3
4
5
6
7
8
9
10 | 19.0
18.5
18.5
19.0
20.5
19.0
17.5
17.0
18.5
20.0
22.0
22.0
21.0
19.5 | 18.0
17.0
17.0
17.0
17.0
17.5
15.5
16.0
17.5 | 18.5
18.0
17.5
18.0
18.5
16.5
16.0
17.0
19.0
21.5
20.5
18.5 | 28.0
29.0
31.5
32.0
29.5
26.5
27.0
28.0
27.0
28.5
27.0
26.5
27.0
28.5 | 24.0
24.0
26.5
26.5
27.5
25.0
23.0
21.5
22.0
23.5
21.5
21.5
21.0
22.0
22.5 | 26.0
27.0
28.5

27.5
24.5
24.0
25.0
25.0
25.5
24.0
24.0
24.0
24.0 | 30.0
30.5
30.5
29.5
28.0
26.0
23.5
24.0
25.0
25.5
26.0
27.5 | 24.5
25.5
25.0
25.0
25.0
20.0
20.5
19.5
19.0
20.0
20.5
21.5
22.5
23.0 | 27.0
27.5
28.0
27.0
26.0
22.0
22.0
22.0
22.5
23.5
24.5
25.0 | 20.5
21.0
24.5
27.0
25.0
25.0
24.0
24.5
25.5
26.0
23.5
22.5
23.0
22.5 | 19.0
18.5
19.0
21.5
21.0
19.5
19.5
19.5
19.5
21.0
19.5
17.5
17.5
17.5 | 19.5
19.5
22.0
24.0
22.5
22.5
21.5
21.5
22.5
23.5
22.0
20.0
19.5
20.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 19.0
18.5
18.5
19.0
20.5
19.0
17.5
17.0
18.5
20.0
22.0
22.0
21.0
19.5
17.0 | 18.0
17.0
17.0
17.0
17.0
17.5
15.5
16.0
17.5
19.5
21.0
19.5
21.0
19.0
16.0
17.0
16.0 | 18.5
18.0
17.5
18.0
18.5
16.5
16.0
17.0
21.0
21.5
18.5
16.5 | 28.0
29.0
31.5
32.0
29.5
26.5
27.0
28.0
27.0
28.5
27.0
26.5
26.0
28.0 | 24.0
24.5
26.5
27.5
25.0
23.0
21.5
22.0
23.5
21.5
21.0
22.0
22.5
23.0 | 26.0
27.0
28.5

27.5
24.5
24.0
25.0
25.0
25.5
24.0
24.0
24.0
25.0 | 30.0
30.5
30.5
29.5
28.0
26.0
23.5
24.0
25.0
25.5
26.0
27.5
26.5 | 24.5
25.5
25.5
25.0
25.0
20.0
20.5
19.0
20.0
20.5
21.5
22.5
23.0
22.5 | 27.0
27.5
28.0
27.0
26.0
22.0
22.0
22.5
23.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5 | 20.5
21.0
24.5
27.0
25.0
24.0
24.5
25.5
26.0
23.5
22.5
21.0
22.5
23.5
22.5
22.5 | 19.0
18.5
19.0
21.5
21.0
19.5
19.5
19.5
19.5
21.0
19.5
17.5
21.0
20.0
19.0
19.0
19.0 | 19.5
19.5
22.0
24.0
22.5
22.5
21.5
21.5
22.5
23.5
20.0
20.0
20.5
21.0
20.0 | | 1 2 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
19.0
18.5
19.0
20.5
19.0
17.5
17.0
18.5
20.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0 | 18.0
17.0
17.0
17.0
17.0
17.5
15.5
15.5
16.0
17.5
21.0
19.5
21.0
19.5
21.0
19.5
21.0
23.0
23.5
24.0
24.5
24.0
22.5
23.0 | 18.5
18.0
17.5
18.0
18.5
16.5
16.0
17.0
19.0
21.5
20.5
18.5
16.5
21.5
22.5
24.5
24.5
24.5
24.5
25.0
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5
25.5 | 28.0
29.0
31.5
32.0
29.5
26.5
27.0
28.5
27.0
26.5
26.5
26.5
26.0
28.0
28.0
27.0
28.5
27.0
28.5
27.0
28.5
27.0
28.5
27.0
28.5
27.0
28.5
27.0
28.5
27.0
28.5
27.0
28.5
27.0
28.5
27.0
28.5
27.0
28.5
27.0
28.5
27.0
28.5
27.0
28.5
27.0
28.5
28.0
28.0
28.0
28.0
28.0
28.0
28.0
28.0 | 24.0 24.5 26.5 27.5 25.0 23.0 21.5 22.0 23.5 23.5 21.5 21.0 22.5 23.0 24.0 25.0 24.0 24.0 22.0 24.0 22.0 24.0 22.0 24.5 | 26.0
27.0
28.5

27.5
24.5
24.0
25.0
25.0
24.0
24.0
24.0
25.0

26.5
26.5
23.5
23.5
23.5
23.5
25.5 | 30.0
30.5
30.5
29.5
28.0
26.0
23.5
24.0
25.0
25.5
26.0
27.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26 | 24.5
25.5
25.5
25.0
25.0
22.0
20.5
19.0
20.0
20.5
21.5
22.5
23.0
23.0
22.5
23.0
22.5
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0 | 27.0
27.5
28.0
27.0
26.0
22.0
22.0
22.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5 | 20.5
21.0
24.5
27.0
25.0
24.0
24.5
25.5
26.0
23.5
22.5
21.0
22.5
22.5
22.5
22.5
22.5
22.5
22.5
22 | 19.0
18.5
19.0
21.5
21.0
19.5
19.5
19.5
19.5
21.0
19.5
17.5
17.5
20.0
20.0
19.0
19.5
22.0
20.0
19.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17 | 19.5
19.5
22.0
24.0
22.5
22.5
21.5
21.5
22.5
23.5
20.0
20.0
20.5
20.0
20.5
21.0
22.5
21.0
22.5
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0 | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
19.0
18.5
19.0
20.5
19.0
17.5
17.0
18.5
20.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0 | 18.0
17.0
17.0
17.0
17.0
17.5
15.5
16.0
17.5
19.5
21.0
19.5
21.0
16.0
17.0
16.0
17.0
16.0
17.0
16.0
17.0
16.0
17.0
17.0
19.5
21.0
19.5
21.0
20.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21 | 18.5
18.0
17.5
18.0
18.5
16.5
16.0
17.0
21.0
22.5
18.5
16.5
16.0
21.5
20.5
18.5
16.5 | 28.0
29.0
31.5
32.0
29.5
26.5
27.0
28.5
27.0
26.5
26.0
28.0
27.0
28.5
27.0
28.5
27.0
28.5
27.0
28.5
27.0
28.5 | 24.0 24.5 26.5 27.5 25.0 23.0 21.5 22.0 23.5 21.5 21.0 22.0 22.5 23.0 24.0 25.0 24.0 24.0 22.0 22.0 23.5 | 26.0
27.0
28.5

27.5
24.5
24.0
25.0
25.0
24.0
24.0
24.0
24.0
24.0
25.0

26.5
26.5
25.5
23.5
23.5
25.5 | 30.0
30.5
30.5
29.5
28.0
26.0
25.5
26.0
27.5
26.5
27.5
26.5
26.5
26.5
22.5
23.5
24.5
24.5
24.5
22.5
23.5 | 24.5
25.5
25.0
25.0
25.0
20.0
20.0
20.0
20 | 27.0
27.5
28.0
27.0
26.0
22.0
22.0
22.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5 | 20.5
21.0
24.5
27.0
25.0
24.0
24.5
25.5
26.0
23.5
22.5
21.0
22.5
23.5
22.5
22.5
23.5
22.5
23.5
22.5
23.5
22.5
23.5
22.5
23.5 | 19.0 18.5 19.0 19.5 19.5 21.0 19.5 19.5 21.0 19.5 17.5 21.0 20.0 19.5 17.5 20.0 20.0 19.0 21.5 22.0 20.0 19.5 21.5 21.0 21.5 21.5 21.0 21.5 22.0 20.0 20.0 20.0 20.0 20.0 20.0 20 | 19.5
19.5
22.0
24.0
22.5
22.5
21.5
21.5
21.5
22.5
23.5
20.0
20.0
20.5
21.0
22.0
22.5
21.0
22.0
20.0
21.0
20.5
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0 | # 01428750 WEST BRANCH LACKAWAXEN RIVER NEAR ALDENVILLE, PA LOCATION.--Lat 41°40′28", long 75°22′35", Wayne County, Hydrologic Unit 02040104, on right bank at steel bridge on State Highway 247, 0.3 mi downstream from Johnson Creek, and 2.0 mi northwest of Aldenville. **DRAINAGE AREA**.--40.6 mi². #### WATER-DISCHARGE RECORDS **PERIOD OF RECORD.**—Occasional discharge measurements and annual maximums, water years 1975-86. October 1986 to current year. Published as station number 01427950, 1975-88. GAGE.--Water-stage recorder. Datum of gage is 1,244.60 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records fair except those for estimated daily discharges, which are poor. Satellite telemetry at station. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,000 ft³/s and maximum (*): | Date
Apr. | | Γime
2230 | Discharge
ft ³ /s
1,030 | Gage Heigh
(ft)
4.94 | t | | Date
May 1 | Time | e i | charge
ft ³ /s | Gage Height (ft)
*5.46 | | |--|---|---------------------------------------|--|--|--|--|--|--|--|---|---|--| | | | | DISCHA | ARGE, CUBIC F | FEET PER S | | TER YEAR O
EAN VALUES | | 1 TO SEPT | EMBER 20 | 02 | | | DAY | OCT | NO | V DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | e12
e11
e10
e9.5
e9.2 | 13
12
17
20
18 | 33
20
16
15
14 | e19
e20
e19
e17
e16 | 225
e200
e110
e80
e66 | e28
e30
75
57
e50 | 163
122
109
97
79 | 157
273
210
141
112 | 46
34
27
24
49 | 19
19
17
16
15 | 8.1
10
11
8.4
10 | 8.9
8.9
8.4
15 | | 6
7
8
9
10 | e9.0
e9.0
e8.5
e8.2
e8.0 | 17
11
11
13
12 | 13
11
12
14
13 | e15
e15
e18
e16
e15 | e64
e56
52
48
86 | e44
40
38
37
56 | 72
61
56
55
59 | 92
82
70
86
83 | 182
324
124
74
64 | 14
14
13
15 | 10
9.5
8.6
8.0
7.7 | 8.7
8.2
7.9
7.6
7.5 | | 11
12
13
14
15 | e7.7
7.7
7.6
7.7
12 | 11
9.
9.
9. | 1 16
2 37 | e15
e16
e15
e14
e14 | 497
e160
e110
e110
e90 | e40
39
42
49
45 | 49
43
48
81
231 | 62
133
699
638
361 | 51
47
45
131
278 | 13
11
10
10
9.7 | 7.5
7.7
7.8
7.8
8.0 | 7.4
7.6
7.3
7.6
8.3 | | 16
17
18
19
20 | 9.6
14
12
12
15 | 8.
8.
7.
7.
8. | 0 51
7 186
5 92 | e16
e15
e14
e13
e13 | 77
72
e52
e50
53 | 73
57
51
50
56 | 123
94
77
65
58 | 213
165
428
282
180 | 313
158
104
81
61 | 9.1
8.4
8.4
8.9
9.2 | 8.3
8.1
7.8
8.0
7.9 | 10
9.3
8.0
7.6
7.6 | | 21
22
23
24
25 | 17
16
16
22
17 | 8.
8.
7.
7. | 0 40
6 e36 | e14
e18
e17
e26
e60 | 72
67
52
e46
43 | 76
86
e72
73
89 | 52
49
46
42
51 | 138
111
89
75
63 | 49
41
56
40
38 | 8.6
8.3
13
21
12 | 7.3
7.5
8.4
17 | 7.2
25
28
15 | | 26
27
28
29
30
31 | 14
16
15
16
14 | 28
16
12
13
18 | e36
e30
e26
e22
e20
- e19 | e58
e56
72
107
e190
195 | 43
45
40
 | 183
556
272
224
217
173 | 60
44
483
543
257 | 55
47
47
55
46
43 | 36
31
31
25
21 | 10
9.7
9.6
9.3
8.7
8.4 | 10
8.9
8.2
12
11
9.2 | 9.5
101
163
49
37 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 378.7
12.22
22
7.6
0.30
0.35 | 362.
12.0
2
7.
0.3
0.3 | 7 34.45
8 186
4 11
0 0.85 | 1128
36.39
195
13
0.90
1.03 | 2666
95.21
497
40
2.35
2.44 | 2978
96.06
556
28
2.37
2.73 | 3369
112.3
543
42
2.77
3.09 | 5236
168.9
699
43
4.16
4.80 | 2585
86.17
324
21
2.12
2.37 | 374.3
12.07
21
8.3
0.30
0.34 | 284.7
9.184
17
7.3
0.23
0.26 | 616.5
20.55
163
7.2
0.51
0.56 | | | | | | FOR WATER | | _ | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 49.54
116
1991
6.46
1992 | 91.3
19
198
12.
199 | 9 232
7 1997
0 15.5 | 84.33
228
1996
21.9
1989 | 88.63
192
1990
30.0
1993 | 132.1
193
1998
87.0
1989 | 162.8
419
1993
58.7
1988 | 98.55
258
1989
34.6
2001 | 52.84
200
1989
13.7
1999 | 24.46
63.0
1989
6.92
1999 | 26.97
155
1994
5.89
1999 | 30.41
156
1987
7.41
1991 | e Estimated. # 01428750 WEST BRANCH LACKAWAXEN RIVER NEAR ALDENVILLE, PA--Continued | SUMMARY STATISTICS |
FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1987 - 2002 | |--------------------------|------------------------|---------------------|---------------------------| | ANNUAL TOTAL | 18492.5 | 21046.4 | | | ANNUAL MEAN | 50.7 | 57.7 | 77.7 | | HIGHEST ANNUAL MEAN | | | 106 1994 | | LOWEST ANNUAL MEAN | | | 48.0 1999 | | HIGHEST DAILY MEAN | 825 Apr 10 | 699 May 13 | e 1600 Jan 19 1996 | | LOWEST DAILY MEAN | 5.9 Sep 9,12,13 | 7.2 Sep 21 | e 4.0 Aug 6 1999 | | ANNUAL SEVEN-DAY MINIMUM | 6.1 Sep 7 | 7.6 Sep 8 | a 4.4 Jul 31 1999 | | MAXIMUM PEAK FLOW | | 1390 May 13 | b 4340 Jan 19 1996 | | MAXIMUM PEAK STAGE | | 5.46 May 13 | 8.00 Jan 19 1996 | | ANNUAL RUNOFF (CFSM) | 1.25 | 1.42 | 1.91 | | ANNUAL RUNOFF (INCHES) | 16.94 | 19.28 | 25.99 | | 10 PERCENT EXCEEDS | 92 | 139 | 175 | | 50 PERCENT EXCEEDS | 20 | 21 | 41 | | 90 PERCENT EXCEEDS | 7.4 | 8.2 | 9.6 | - a Computed using estimated daily discharges. b From rating curve extended above 2,000 ft³/s. e Estimated. # 01428750 WEST BRANCH LACKAWAXEN RIVER NEAR ALDENVILLE, PA--Continued ### WATER-QUALITY RECORDS #### PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: Water years 1988 to current year. INSTRUMENTATION. - Temperature probe interfaced with a data collection platform. **REMARKS**.--Water temperature records rated good. **EXTREMES FOR PERIOD OF DAILY RECORD.**-- WATER TEMPERATURE: Maximum, 27.5°C, July 6, 1999; minimum, 0.0°C, many days during winters. # EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum recorded, 26.0°C, Aug. 1, 2; minimum, 0.0°C, many days during winter. | DAY | MAX | MIN | MEAN | |----------------------------------|---|-------------------------------------|--------------------------------------|------------------------------------|---------------------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------|---------------------------------| | | | OCTOBER | | N | OVEMBER | | D | ECEMBER | | | JANUARY | | | 1
2
3
4
5 | 14.0
15.0
16.0
16.5
16.0 | 9.5
10.0
10.5
12.0
11.5 | 11.5
12.0
13.5
14.0
14.0 | 9.0
11.0
12.0
11.0
8.5 | 5.0
7.0
9.5
8.5
6.0 | 7.0
9.0
10.5
9.5
7.0 | 9.5
7.5
6.0
6.5
8.5 | 7.0
5.0
3.5
3.0
6.0 | 8.5
6.5
4.5
4.5
7.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 6
7
8
9
10 | 13.5
10.5
9.5
9.5
12.0 | 10.5
7.5
6.0
4.5
7.0 | 13.0
9.0
7.5
7.0
9.5 | 7.5
8.5
8.0
7.0
6.5 | 5.0
4.5
4.0
4.0
3.0 | 6.0
6.5
6.0
6.0
4.5 | 9.0
9.0
5.0
3.5
3.0 | 7.0
5.0
1.0
1.0 | 8.0
7.5
3.5
2.5
1.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 11
12
13
14
15 | 13.0
13.5
15.5
14.5
14.0 | 7.0
9.0
11.0
13.0
10.5 | 10.0
11.5
13.0
13.5
12.5 | 5.5
4.5
4.5
5.5
8.5 | 3.0
1.5
0.5
1.5
5.0 | 4.5
3.0
2.5
3.5
6.5 | 4.0
3.0
4.0
5.0 | 1.5
0.0
3.0
4.0
2.5 | 2.5
1.5
3.5
4.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 16
17
18
19
20 | 11.5
11.0
9.5
9.5 | 8.0
7.5
6.0
5.0
7.5 | 10.0
9.5
7.5
7.0
9.0 | 9.5
7.0
6.5
7.5
6.5 | 6.5
4.0
2.5
3.5
3.0 | 7.5
5.5
4.5
5.5
5.0 | 3.0
3.5
4.5
3.5 | 1.5
2.5
3.0
3.0 | 2.5
2.5
3.5
3.5
2.5 | 0.5
1.0
0.5
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.5
0.0
0.0 | | 21
22
23
24
25 | 12.0
11.5
12.0
15.0
13.5 | 7.0
10.0
9.0
11.5
10.5 | 9.5
11.0
10.5
13.0
12.0 | 4.5
5.0
4.5
7.0
9.5 | 1.5
2.0
1.5
3.5
7.0 | 3.0
3.5
3.0
5.5
8.5 | 2.0
1.5
1.5
2.5 | 1.0
0.0
0.0
1.0 | 1.5
1.0
0.5
2.0 | 0.0
0.0
0.0
0.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.5
0.5 | | 26
27
28
29
30
31 | 10.5
8.5
7.5
7.5
8.5
6.0 | 7.5
6.5
4.5
3.0
5.0 | 9.0
7.5
6.0
5.5
6.5 | 8.0
7.0
9.0
8.0
9.0 | 6.5
5.0
7.0
7.0
7.0 | 7.5
6.0
8.0
7.5
8.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 1.5
1.5
2.5
2.5
2.0
1.5 | 0.0
0.0
0.5
0.5
1.5 | 0.5
1.0
1.0
1.5
1.5 | | MONTH | 16.5 | 3.0 | 10.0 | 12.0 | 0.5 | 6.0 | 9.5 | 0.0 | 2.9 | 2.5 | 0.0 | 0.3 | # 01428750 WEST BRANCH LACKAWAXEN RIVER NEAR ALDENVILLE, PA--Continued | DAY | MAX | MIN | MEAN | |---|--|--|--|--|--|--|--|--|--|--|---|--| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY
| | | 1
2
3
4
5 | 2.0
1.5
1.0
1.5
0.5 | 1.0
0.0
0.0
0.0
0.0 | 1.5
0.5
0.5
1.0
0.5 | 2.5
2.0
6.0
3.0
0.5 | 0.0
0.0
2.0
0.0 | 1.0
1.0
4.0
1.5
0.0 | 7.5
6.5
7.0
6.5
4.5 | 5.0
3.5
4.5
3.0
2.0 | 6.5
5.0
6.0
4.5
3.0 | 11.0
9.5
9.5
12.0
13.5 | 5.0
7.5
7.0
5.5
7.5 | 8.0
8.5
8.0
8.5
10.5 | | 6
7
8
9
10 | 0.5
2.0
3.0
3.5
3.0 | 0.0
0.0
0.5
1.5 | 0.5
1.0
1.5
2.0
2.0 | 3.5
5.0
6.5
8.0 | 0.0
0.5
2.0
4.0
1.0 | 1.5
3.0
4.0
6.0
4.5 | 6.5
4.5
6.0
6.0
10.0
11.5 | 1.0
0.0
3.5
5.0
7.0 | 2.5
3.0
5.0
7.5
9.0 | 14.5
14.5
15.0
13.0
15.0 | 8.5
11.5
11.0
10.0
9.5 | 11.5
13.0
13.0
10.5
12.0 | | 11
12
13
14
15 | 2.0
1.0
1.5
0.5 | 0.0
0.0
0.0
0.0 | 1.0
0.5
0.5
0.0
0.5 | 2.5
3.5
2.5
7.5
8.0 | 0.0
0.5
1.0
2.5
3.5 | 1.0
1.5
2.0
4.5
6.0 | 11.5
10.5
11.5
14.0
15.5 | 5.0
5.5
9.0
9.5
11.5 | 8.0
8.0
10.5
11.5
13.5 | 14.0
11.0
10.0
11.0
12.5 | 9.0
9.0
9.5
8.5
7.5 | 11.5
10.0
10.0
9.5
10.0 | | 16
17
18
19
20 | 3.5
3.5
2.0
2.0
3.5 | 1.0
1.0
0.0
0.0
1.5 | 2.0
2.0
0.5
1.0
2.5 | 7.0
4.5
3.0
3.0
2.5 | 3.5
2.0
2.0
2.0
0.5 | 6.0
3.0
2.5
2.5 | 17.5
18.5
19.5
19.0
15.5 | 11.0
12.5
14.0
14.0 | 14.0
15.5
16.5
16.5
13.5 | 13.5
14.0
11.5
10.0
9.5 | 8.0
11.5
8.5
7.0
6.5 | 11.0
12.5
9.5
8.5
8.0 | | 2.3 | 6.0
4.0
4.0
3.5
4.5 | 3.0
2.5
1.0
0.0
0.5 | 4.0
3.0
2.0
1.5
2.5 | 6.0
2.0
3.0
5.5
3.5 | 1.0
0.0
0.0
1.0 | 3.0
0.5
1.5
3.0
2.5 | 11.0
8.5
9.0
11.5
8.0 | 8.5
6.5
5.5
4.0
6.0 | 9.5
7.5
7.0
7.5
6.5 | 9.5
12.5
14.5
15.5
15.5 | 6.0
6.0
7.5
9.5
10.0 | 7.5
9.0
11.0
12.5
13.0 | | 26
27
28
29
30
31 | 6.0
4.5
2.0
 | 1.5
1.0
0.0
 | 3.5
3.0
0.5
 | 1.5
3.0
5.5
7.0
9.0
8.5 | 1.0
1.0
1.0
2.5
5.5 | 1.5
2.0
3.0
4.5
7.0 | 9.5
11.0
8.5
8.0
7.5 | 4.5
4.0
7.0
6.5
6.0 | 6.5
7.5
7.5
7.5
6.5 | 15.5
16.5
16.0
16.5
19.0 | 11.5
12.0
13.5
13.5
13.5 | 13.0
14.0
14.5
14.5
16.0
16.5 | | MONTH | 6.0 | 0.0 | 1.5 | 9.0 | 0.0 | 3.0 | 19.5 | 0.0 | 8.4 | 19.0 | 5.0 | 11.1 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | JUNE | | | MIN
JULY | | | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMBE | | | DAY 1 2 3 4 5 | 19.5
18.0
17.0
16.0 | JUNE 14.0 14.0 11.0 11.5 13.5 | 16.5
15.5
14.0
14.0
16.0 | 23.0
24.5
25.5
25.5
22.5 | JULY
17.5
18.5
19.5
20.0
18.5 | 20.0
21.0
22.5
22.5
20.5 | 26.0
26.0
25.5
25.5
23.5 | | MEAN 22.5 22.0 22.5 22.0 21.5 | MAX
17.5
19.0
21.0
21.5
19.5 | | | | 1
2
3
4 | 19.5
18.0
17.0
16.0 | JUNE 14.0 11.0 11.5 13.5 14.5 13.5 14.5 14.5 14.5 | 16.5
15.5
14.0
14.0
16.0
16.0
15.5
15.5
17.0 | 23.0
24.5
25.5
25.5
22.5
20.0
21.5
22.5
21.5
22.5 | JULY 17.5 18.5 19.5 20.0 18.5 16.0 15.0 15.5 17.5 | 20.0
21.0
22.5
22.5
20.5
18.0
18.0
19.0
19.5 | 26.0
26.0
25.5
25.5
23.5
22.0
20.0
21.5
22.5 | 19.0
19.5
20.0
18.5 | 22.5
22.0
22.5
22.0
21.5
20.0
18.0
17.5
18.0
19.0 | 17.5
19.0
21.5
19.5
19.5
20.0
21.0
21.5 | \$\frac{15.5}{15.5}\$ \$15.5\$ \$15.5\$ \$18.0\$ \$16.5\$ \$13.5\$ \$13.5\$ \$14.0\$ | 16.5
17.0
18.0
19.5 | | 1
2
3
4
5
6
7
8 | 19.5
18.0
17.0
16.0
19.0
17.5
17.0
17.5 | JUNE 14.0 11.0 11.5 13.5 14.5 13.5 14.5 14.5 14.5 | 16.5
15.5
14.0
14.0
16.0
16.0
15.5
15.5
17.0 | | JULY 17.5 18.5 19.5 20.0 18.5 16.0 15.0 15.5 17.5 | 20.0
21.0
22.5
22.5
20.5 | 26.0
26.0
25.5
25.5
23.5
22.0
20.0
21.5
22.5 | 19.0
19.5
20.0
18.5
20.0
18.5
20.0 | 22.5
22.0
22.5
22.0
21.5 | 17.5
19.0
21.5
19.5
19.5
20.0
21.0
21.5 | \$\frac{15.5}{15.5}\$ \$15.5\$ \$15.5\$ \$18.0\$ \$16.5\$ \$13.5\$ \$13.5\$ \$14.0\$ | 16.5
17.0
18.0
19.5
17.5
16.5
17.0
17.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13 | 19.5
18.0
17.0
16.0
19.0
17.5
17.5
19.0
19.5
21.0
20.5
18.0
16.0 | JUNE 14.0 11.0 11.5 13.5 14.5 13.5 14.5 14.5 14.5 | 16.5
15.5
14.0
14.0
16.0
16.0
15.5
15.5
17.0 | 23.0
24.5
25.5
25.5
22.5
20.0
21.5
22.5
21.5
22.5 | JULY 17.5 18.5 19.5 20.0 18.5 16.0 15.0 15.5 17.5 | 20.0
21.0
22.5
22.5
20.5
18.0
18.0
19.0
19.5 | 26.0
26.0
25.5
25.5
23.5
22.0
20.0
21.5
22.5 | 19.0
19.5
20.0
18.5
20.0
18.5
15.5
15.0
14.5
15.0
16.0
17.0
18.5
19.0 | 22.5
22.0
22.5
22.0
21.5
20.0
18.0
17.5
18.0
19.0 | 17.5
19.0
21.5
19.5
19.5
20.0
21.0
21.5 | \$\frac{15.5}{15.5}\$ \$15.5\$ \$18.0\$ \$16.5\$ \$13.5\$ \$13.5\$ \$14.0\$ \$16.0\$ \$14.5\$ \$12.0\$ \$13.0\$ \$13.5\$ | 16.5
17.0
18.0
19.5
17.5
16.5
17.0
17.5
18.5
14.5
14.5
14.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 19.5
18.0
17.0
16.0
19.0
17.5
17.5
19.5
20.5
18.0
14.0
16.0
17.0
16.0
17.0
16.0 | JUNE 14.0 14.0 11.0 11.5 13.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 1 | 16.5
15.5
14.0
14.0
16.0
16.0
15.5
15.5
17.0
18.5
17.0
14.0
14.5
15.0
14.5 | 23.0
24.5
25.5
25.5
22.5
20.0
21.5
22.5
21.5
22.5
21.0
21.0
21.0
22.5
23.5
24.0
23.3 | JULY 17.5 18.5 19.5 20.0 18.5 16.0 15.5 17.5 14.0 13.5 14.0 16.5 17.0 17.0 15.5 18.5 19.0 | 20.0
21.0
22.5
22.5
20.5
18.0
19.0
19.5
17.0
17.5
18.5
19.5 | 26.0
26.0
25.5
25.5
23.5
20.0
20.0
21.5
22.5
23.5
24.0
24.5
24.5
24.5
24.5
24.5
22.5 | AUGUST 19.0 19.5 20.0 18.5 20.0 18.5 15.0 14.5 15.0 16.0 17.0 18.5 19.0 18.5 20.0 20.0 20.0 18.5 | 22.5
22.0
22.5
22.0
21.5
20.0
17.5
18.0
19.0
19.5
21.5
21.5
21.5
22.0
22.5
22.5
22.5 | 17.5
19.0
21.0
21.5
19.5
19.5
20.0
21.0
21.5
18.5
17.0
18.0
19.0
18.5 | \$EPTEMBE 15.5 | 16.5
17.0
18.0
19.5
17.5
16.5
17.0
17.5
18.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
16.0
17.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 19.5
18.0
17.0
16.0
19.0
17.5
19.5
20.5
18.0
14.0
16.0
17.5
19.5
21.0
22.5
18.0
21.5
21.5
21.5
21.5
21.5
21.5
22.0 | JUNE 14.0 14.0 11.05 13.5 14.5 13.5 14.0 17.5 16.0 13.5 13.5 14.0 17.5 16.0 17.5 17.5 18.5 17.0 18.5 18.5 18.5 18.5 18.5 18.5 | 16.5
15.5
14.0
14.0
16.0
16.5
15.5
17.0
18.5
17.0
14.0
14.5
15.5
16.5
17.0
14.5
15.5
16.5
17.0
14.5
15.5
16.5 | 23.0
24.5
25.5
25.5
22.5
20.0
21.5
22.5
21.0
21.0
21.0
22.5
23.5
24.0
23.5
24.5
24.5
24.5
24.5
21.5 | JULY 17.5 18.5 19.5 20.0 18.5 16.0 15.5 17.5 14.0 13.5 14.0 15.5 17.0 17.0 15.5 19.0 17.5 18.5 19.0 17.0 18.0 17.0 18.0 17.0 18.0 | 20.0
21.0
22.5
22.5
22.5
20.5
18.0
19.0
19.5
19.5
17.0
17.5
19.5
20.0
19.5
20.5
20.5
20.5
21.5
20.0
19.5
21.5
20.0
19.5
21.5
20.5 | 26.0
26.0
25.5
25.5
23.5
22.0
20.0
21.5
22.5
24.5
24.5
24.5
24.5
24.5
22.5
23.5
23.5
23.5
23.5
23.5
23.5
23 | 19.0
19.5
20.0
18.5
20.0
18.5
15.0
14.5
15.0
16.0
17.0
18.5
19.0
18.5
19.0
18.5
19.0
18.5
19.0
18.5
19.0
18.5
19.0
18.5 | 22.5
22.0
22.5
22.0
21.5
20.0
17.5
18.0
19.0
19.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21 | 17.5
19.0
21.0
21.5
19.5
19.5
20.0
21.5
18.5
17.0
18.5
19.0
18.5
19.0
18.5
19.0
18.5
19.0
18.5
19.0
18.5
19.0
18.5
19.0
18.5
19.0
18.5
19.0
18.5
19.0
18.5
19.0
18.5
19.0
18.5
19.0
18.5
19.0
18.5
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0 | \$\frac{15.5}{15.5}\$ \$\frac{15.5}{18.0}\$ \$\frac{13.5}{13.0}\$ \$\frac{13.5}{14.0}\$ \$\frac{14.5}{12.0}\$ \$\frac{12.0}{13.5}\$ \$\frac{12.5}{13.5}\$ \$\frac{15.5}{15.5}\$ \$\frac{16.5}{15.5}\$ \$\frac | 16.5
17.0
18.0
19.5
17.5
16.5
17.0
17.5
18.5
14.5
14.5
14.5
14.5
14.5
17.5
18.0
17.5
18.0
17.5
18.0
17.5
14.5
17.0
18.0
17.5
18.0
17.0
17.5
18.0
17.5
18.0
17.5
18.0
17.5
18.0
17.5
18.0
17.5
18.0
17.5
18.0
17.5
18.0
17.5
18.0
17.5
18.0
17.0
17.5
18.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17 | |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27
28
29
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 19.5
18.0
17.0
16.0
17.5
17.0
17.5
19.5
21.0
20.5
18.0
14.0
16.5
18.0
19.5
21.5
21.5
21.5
21.5
21.5
21.5 | JUNE 14.0 14.0 11.0 11.5 13.5 14.5 14.5 14.5 14.5 14.5 16.0 17.5 16.0 13.5 13.5 14.5 17.5 16.0 17.5 18.5 17.5 17.5 18.0 17.5 | 16.5
15.5
14.0
14.0
16.0
15.5
15.5
17.0
18.5
17.0
18.5
17.0
14.5
15.5
16.5
17.0
14.5
15.5
16.5
17.0
14.5
15.5
16.5
17.0
18.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19 | 23.0
24.5
25.5
25.5
22.5
20.0
21.5
22.5
21.0
21.0
21.0
21.0
22.5
23.5
24.0
23.5
24.5
24.5
24.5
24.5
21.0 | JULY 17.5 18.5 19.5 20.0 18.5 16.0 15.0 15.5 17.5 14.0 13.5 17.0 17.0 17.0 18.5 19.0 17.5 18.5 18.0 17.0 17.0 18.5 18.0 | 20.0
21.0
22.5
22.5
22.5
20.5
18.0
19.0
19.5
17.0
17.0
17.5
18.5
19.5
20.0
21.5
20.5
21.5
20.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21 | 26.0
26.0
25.5
25.5
23.5
20.0
20.0
21.5
22.5
24.5
24.5
24.5
24.5
24.5
23.5
23.5
23.5
24.5
24.5
24.5
21.0
23.5
23.5 | 19.0
19.5
20.0
18.5
20.0
18.5
15.0
14.5
15.0
16.0
17.0
18.5
19.0
18.5
19.0
18.5
19.0
18.5
19.0 | 22.5
22.0
22.5
22.0
21.5
20.0
17.5
18.0
19.0
19.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5 | 17.5
19.0
21.0
21.5
19.5
20.0
21.5
19.0
21.5
18.5
17.0
18.5
19.0
18.5
19.0
18.5
19.0
18.5
19.0
18.5
19.0
18.5
19.0
18.5
19.0
18.5
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0 | \$\frac{15.5}{15.5}\$ \$\frac{15.5}{18.0}\$ \$\frac{13.5}{13.0}\$ \$\frac{13.5}{14.0}\$ \$\frac{13.5}{12.0}\$ \$\frac{13.5}{13.5}\$ \$\frac{12.0}{13.5}\$ \$\frac{15.5}{13.5}\$ \$\frac{15.5}{15.5}\$ \$\frac{16.0}{13.5}\$ \$\frac{13.5}{12.5}\$ \$\frac{13.5}{13.5}\$ \$\frac{15.5}{15.0}\$ \$\frac{13.0}{13.0}\$ \$\frac{13.0}{13.5}\$ \$\frac{13.0}{13.5}\$ \$\frac{13.0}{13.5}\$ \$\frac{13.5}{13.5}\$ \$\frac{13.0}{13.5}\$ \$\frac{13.5}{13.5}\$ \$\frac{13.0}{13.5}\$ \$\frac{13.5}{13.5}\$ \$\frac{13.0}{13.5}\$ \$\frac{13.5}{13.5}\$ \$\frac | 16.5
17.0
19.5
17.5
16.5
17.5
16.5
17.5
18.5
14.5
14.5
14.5
16.0
17.5
18.0
17.5
18.0
17.5
18.0
17.5
18.0
17.5
18.0
17.5
18.0
17.5
18.0
17.5
18.0
17.5
18.0
17.5
18.0
17.5
18.0
17.5
18.0
17.5
18.0
17.5
18.0
17.5
18.0
17.5
18.0
17.5
18.0
17.5
18.0
17.5
18.0
17.5
18.0
17.5
18.0
17.5
18.0
17.5
18.0
17.5
18.0
17.5
18.0
17.5
18.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17 | ### 01429000 WEST BRANCH LACKAWAXEN RIVER AT PROMPTON, PA **LOCATION.**—Lat 41°35'14", long 75°19'38", Wayne County, Hydrologic Unit 02040103, on left bank 500 ft downstream from Prompton Reservoir, 1,500 ft upstream from bridge on U.S. Highway 6 at Prompton, and 2,000 ft upstream from Van Auken Creek. **DRAINAGE AREA**.--59.7 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--August 1944 to current year. Prior to October 1952, published as Lackawaxen River at Prompton. **REVISED RECORDS.--**WSP 1432: 1948-49. WDR PA-71-1: 1970(M). GAGE.--Water-stage recorder. Datum of gage is 1,083.78 ft above National Geodetic Vertical Datum of 1929. **REMARKS.**--No estimated daily discharges. Records good. Flow regulated since 1960 by Prompton Reservoir (station 01428900) 500 ft upstream. Satellite and landline telemetry at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of May 23, 1942 reached a stage of 16.7 ft, from floodmark, discharge not determined. # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------|------------|----------|----------|-----------|------------|------------|------------|------------|------------|----------|------------|----------| | 1
2 | 15
13 | 16
16 | 21
22 | 35
34 | 202
241 | 59
56 | 223
191 | 362
326 | 70
65 | 40
37 | 13
12 | 15
15 | | 3 | 13 | 16 | 22 | 34 | 194 | 63 | 160 | 320 | 55
55 | 36 | 12 | 14 | | 4 | 11 | 16 | 22 | 30 | 156 | 74 | 143 | 259 | 49 | 35 | 12 | 16 | | 5 | 11 | 18 | 21 | 29 | 119 | 68 | 123 | 204 | 48 | 34 | 11 | 16 | | 6 | 11 | 18 | 21 | 28 | 99 | 64 | 107 | 165 | 81 | 33 | 12 | 16 | | 7 | 10 | 18 | 21 | 28 | 89 | 62 | 95 | 137 | 265 | 31 | 11 | 15 | | 8
9 | 9.6
8.9 | 17
16 | 20
20 | 27
26 | 83
78 | 59
56 | 86
83 | 117
110 | 245
174 | 29
27 | 11
10 | 14
13 | | 10 | 8.8 | 16 | 20 | 26 | 74 | 61 | 83 | 113 | 125 | 27 | 9.3 | 12 | | | | | | | | | | | | | | | | 11
12 | 8.3
7.9 | 15
14 | 19
19 | 27
27 | 266
281 | 61
58 | 77
71 | 102
107 | 96
80 | 26
25 | 8.9
8.6 | 13
12 | | 13 | 7.9 | 14 | 19 | 26 | 217 | 57 | 68 | 378 | 74 | 23 | 8.2 | 11 | | 14 | 7.9 | 13 | 20 | 26 | 154 | 58 | 78 | 886 | 85 | 21 | 7.9 | 10 | | 15 | 9.1 | 13 | 24 | 26 | 128 | 60 | 148 | 602 | 196 | 21 | 8.0 | 11 | | 16 | 9.5 | 13 | 26 | 26 | 113 | 65 | 172 | 399 | 313 | 19 | 8.2 | 16 | | 17 | 10 | 12 | 28 | 26 | 104 | 73 | 145 | 291 | 271 | 17 | 8.4 | 16 | | 18
19 | 10
10 | 12
11 | 41
73 | 25
24 | 93
84 | 70
67 | 118
99 | 353
422 | 203
160 | 16
15 | 8.2
7.9 | 15
14 | | 20 | 10 | 11 | 73
79 | 24 | 80 | 68 | 88 | 321 | 122 | 15 | 9.8 | 13 | | | | | | | | | | | | | | | | 21 | 11 | 11 | 73 | 25 | 81 | 75 | 81 | 247 | 97 | 14 | 9.5 | 13 | | 22
23 | 11
12 | 11
11 | 64
56 | 25
25 | 84
81 | 91
88 | 75
71 | 194
159 | 82
79 | 13
12 | 9.1
9.5 | 14
20 | | 23 | 14 | 11 | 53 | 25
26 | 73 | 86 | 67 | 132 | 79 | 13 | 12 | 22 | | 25 | 16 | 11 | 53 | 31 | 68 | 92 | 65 | 111 | 67 | 13 | 15 | 22 | | 0.5 | 1.6 | 1.5 | 4.0 | 2.5 | | 100 | | 0.5 | 6.1 | 1.0 | 1.0 | 0.1 | | 26
27 | 16
16 | 15
17 | 48
43 | 37
42 | 67
67 | 103
383 | 74
72 | 97
87 | 61
55 | 13
13 | 16
15 | 21
29 | | 28 | 16 | 17 | 41 | 53 | 64 | 392 | 197 | 79 | 51 | 14 | 13 | 56 | | 29 | 16 | 17 | 39 | 76 | | 316 | 596 | 80 | 48 | 15 | 15 | 70 | | 30 | 16 | 18 | 38 | 143 | | 282 | 455 | 77 | 43 | 14 | 16 | 64 | | 31 | 16 | | 36 | 217 | | 253 | | 71 | | 13 | 15 | | | TOTAL | 361.9 | 434 | 1102 | 1252 | 3440 | 3420 | 4111 | 7321 | 3434 | 674 | 342.5 | 608 | | MEAN | 11.67 | 14.47 | 35.55 | 40.39 | 122.9 | 110.3 | 137.0 | 236.2 | 114.5 | 21.74 | 11.05 | 20.27 | | MAX | 16
7.9 | 18
11 | 79
19 | 217
24 | 281
64 | 392
56 | 596
65 | 886
71 | 313
43 | 40
12 | 16
7.9 | 70
10 | | MIN | 1.9 | TT | 19 | ∠4 | 04 | 90 | 6.0 | / 1 | 43 | 12 | 1.9 | Τ0 | ### 01429000 WEST BRANCH LACKAWAXEN RIVER AT PROMPTON, PA--Continued | 51 | ATISTICS | OF I | MEAN MEAN | DATA . | FOR WATER | IEARS 1961 | - 2002, | BY WATER | YEAR (WY) | (SINCE | REGULATIO | <u>JN</u>) | | |----------|----------|------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | ME
MA | | .16
307 | 94.65
362 | 115.2
309 | 100.9
312 | 123.6
369 | 209.2
620 | 228.5
556 | 132.9
329 | 72.99
260 | 38.74
133 | 29.69
127 | 38.53
221 | | (W | /Y) 1 | 978 | 1973 | 1997 | 1979 | 1981 | 1977 | 1993 | 1989 | 1973 | 1984 | 1994 | 1987 | | MI | N 7 | .15 | 7.65 | 17.3 | 19.1 | 19.0 | 60.4 | 86.5 | 45.8 | 17.5 | 9.66 | 6.82 | 6.67 | | (W | IY) 1 | 965 | 1965 | 1999 | 1981 | 1980 | 1981 | 1988 | 1965 | 1962 | 1999 | 1999 | 1964 | | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1961 - 2002 | |--------------------------|------------------------|------------------------|-------------------------| | ANNUAL TOTAL | 24605.6 | 26500.4 | | | ANNUAL MEAN | 67.4 | 72.6 | 103 | | HIGHEST ANNUAL MEAN | | | <u> 176 1977</u> | | LOWEST ANNUAL MEAN | | | 49.7 1965 | | HIGHEST DAILY MEAN | 1030 Apr 10 | 886 May 14 | 2340 Jun 30 1973 | | LOWEST DAILY MEAN | 6.1 Sep 18,19 | 7.9 Oct 12-14 a | 1.8 Oct 22 1966 | | ANNUAL SEVEN-DAY MINIMUM | 6.4 Sep 14 | 8.1 Aug 13 | 2.0 Oct 22 1966 | | MAXIMUM PEAK FLOW | | 966 May 14 | 3610 Mar 14 1977 | | MAXIMUM PEAK STAGE | | 3.59 May 14 | 7.00 Mar 14 1977 | | INSTANTANEOUS LOW FLOW | | | 1.8 Oct 22 1966 | | 10 PERCENT EXCEEDS | 140 | 194 | 239 | | 50 PERCENT EXCEEDS | 33 | 31 | 55 | | 90 PERCENT EXCEEDS | 7.8 | 11 | 14 | | STATIST | rics of | MONTHLY | MEAN DATA | FOR WATER | YEARS 19 | 45 - 1960, | BY WATER | R YEAR (WY) | (PRIOR | TO REGULA | TION) | | |---------|---------|---------|-----------|-----------|----------|------------|----------|-------------|--------|-----------|-------|------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 62.2 | 113 | 136 | 130 | 125 | 221 | 264 | 139 | 63.6 | 54.3 | 45.8 | 47.0 | | MAX | 376 | 213 | 243 | 245 | 230 | 409 | 539 | 301 | 155 | 190 | 304 | 153 | | (WY) | 1956 | 1946 | 1951 | 1952 | 1951 | 1945 | 1958 | 1947 | 1960 | 1947 | 1955 | 1960 | | MIN | 15.2 | 23.7 | 28.8 | 36.2 | 46.4 | 104 | 57.4 | 38.6 | 16.4 | 10.3 | 1.33 | 11.6 | | (WY) | 1958 | 1958 | 1947 | 1948 | 1958 | 1960 | 1946 | 1951 | 1959 | 1955 | 1960 | 1957 | | SUMMARY STATISTICS | WATER YEARS | 1945 - 1960 | |--------------------------|---------------|-------------| | ANNUAL
MEAN | 117 | | | HIGHEST ANNUAL MEAN | 152 | 1952 | | LOWEST ANNUAL MEAN | 78.1 | 1957 | | HIGHEST DAILY MEAN | 2440 | Aug 19 1955 | | LOWEST DAILY MEAN | .00 | Jul 27 1960 | | ANNUAL SEVEN DAY MINIMUM | .00 | Jul 27 1960 | | MAXIMUM PEAK FLOW | b 5860 | Aug 18 1955 | | MAXIMUM PEAK STAGE | 9.24 | Aug 18 1955 | | INSTANTANEOUS LOW FLOW | c .00 | Jul 26 1960 | | ANNUAL RUNOFF (CFSM) | 1.95 | | | ANNUAL RUNOFF (INCHES) | 26.56 | | | 10 PERCENT EXCEEDS | 257 | | | 50 PERCENT EXCEEDS | 62 | | | 90 PERCENT EXCEEDS | 15 | | - a Also Aug. 14, 19. b From rating curve extended above 3,600 ft³/s. c No flow July 26 to Aug. 25, 1960, result of construction work upstream. # 01429000 WEST BRANCH LACKAWAXEN RIVER AT PROMPTON, PA--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1964 to 1987. PERIOD OF DAILY RECORD.--WATER TEMPERATURE: Water years 1987 to current year. **INSTRUMENTATION**.--Temperature probe interfaced with a data collection platform. **REMARKS**.--Water temperature records rated good. # EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: Maximum, 26.5°C, Sept. 10, 1989; minimum, 0.0°C, several days during March and April 1994 and January 1996. # EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum, 25.5°C, Aug. 6; minimum, 2.0°C, several days during winter. | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|--|---------------------------------|---------------------------------|--|--|--| | | | OCTOBER | ! | 1 | NOVEMBER | ! | r | ECEMBER | | | JANUARY | | | 1
2
3
4
5 | 17.5
17.5
17.0
17.0 | 16.5
16.5
16.0
15.5 | 17.0
17.0
16.5
16.0
16.0 | 11.0
10.0
11.0
11.0
10.5 | 10.0
9.5
9.5
10.5
9.5 | 10.0
10.0
10.0
10.5
10.0 | 8.0
8.0
7.5
7.0
7.5 | 7.5
7.5
7.0
7.0
7.0 | 7.5
7.5
7.5
7.0
7.0 | 3.5
3.5
3.5
3.5
4.0 | 3.0
3.5
3.5
3.5
3.5 | 3.5
3.5
3.5
3.5
3.5 | | 6
7
8
9
10 | 16.0
15.5
15.0
15.0
14.5 | 15.5
14.5
14.0
13.5
13.0 | 15.5
15.5
14.5
14.0
13.5 | 9.5
9.5
9.0
9.0
8.5 | 9.0
9.0
8.5
8.0 | 9.5
9.0
9.0
8.5
8.0 | 8.0
8.0
7.5
7.0
6.5 | 7.0
7.5
6.5
6.5 | 7.5
7.5
7.0
6.5
6.0 | 4.0
3.5
4.0
4.0 | 3.0
3.5
3.5
3.5
3.5 | 3.5
3.5
3.5
3.5
3.5 | | 11
12
13
14
15 | 15.0
14.5
15.0
14.0
15.0 | 13.5
13.5
13.5
13.5
13.5 | 13.5
13.5
14.0
13.5
14.0 | 8.0
7.5
7.5
7.0
7.0 | 7.5
6.5
6.5
6.5 | 7.5
7.0
6.5
6.5 | 6.5
6.0
6.0
6.0 | 6.0
5.5
5.5
5.0 | 6.0
6.0
5.5
6.0
5.5 | 4.0
4.0
4.0
4.0 | 3.5
3.5
3.5
3.5
4.0 | 3.5
4.0
4.0
4.0
4.0 | | 16
17
18
19
20 | 15.0
14.0
13.5
13.0
12.5 | 14.0
13.0
12.5
12.0
12.0 | 14.0
13.5
13.0
12.5
12.5 | 7.5
7.5
7.5
7.5
7.0 | 6.5
6.5
6.5
6.0 | 7.0
7.0
6.5
6.5 | 5.0
5.0
5.0
4.5
4.5 | 5.0
5.0
4.5
4.5 | 5.0
5.0
4.5
4.5 | 4.0
4.0
4.0
4.0
4.0 | 4.0
3.5
3.5
3.5
3.5 | 4.0
4.0
4.0
3.5
3.5 | | 21
22
23
24
25 | 13.5
13.0
12.5
13.0
13.0 | 12.0
12.5
12.0
12.0
12.0 | 12.5
12.5
12.5
12.5
12.5 | 7.0
6.5
7.0
6.5
7.0 | 6.0
5.5
6.0
6.5 | 6.0
6.0
6.5
6.5 | 4.0
3.0
3.0
3.0
2.5 | 3.0
3.0
3.0
2.5
2.5 | 3.5
3.0
3.0
3.0
2.5 | 3.5
4.0
4.0
4.0
3.5 | 3.5
3.5
3.5
3.5
3.5 | 3.5
3.5
3.5
3.5
3.5 | | 26
27
28
29
30
31 | 12.5
12.0
11.5
11.0
11.5 | 12.0
11.5
10.5
10.0
10.5 | 12.5
11.5
11.0
10.5
10.5 | 7.0
7.0
7.5
7.5
7.5 | 6.5
7.0
7.0
7.0
7.0 | 7.0
7.0
7.0
7.0
7.5 | 3.0
3.0
3.0
3.0
3.0
3.5 | 2.5
2.5
3.0
3.0
3.0 | 2.5
3.0
3.0
3.0
3.0 | 3.5
4.0
4.0
4.0
4.0
3.5 | 3.0
3.5
3.5
3.5
3.5
3.0 | 3.5
3.5
3.5
4.0
3.5
3.0 | | MONTH | 17.5 | 10.0 | 13.5 | 11.0 | 5.5 | 7.6 | 8.0 | 2.5 | 5.0 | 4.0 | 3.0 | 3.6 | # 01429000 WEST BRANCH LACKAWAXEN RIVER AT PROMPTON, PA--Continued | | DAY | MAX | MIN | MEAN | |--|---|--|--|--|--|--|--|--|--|--|--|--|--| | Color | | | FEBRUAR | | | MARCH | | | | | | MAY | | | 11 | 2
3
4 | 3.0
2.5
2.5
2.5
2.0 | 2.5
2.5
2.0
2.0
2.0 | | | 3.5
3.0
2.5 | 3.0
3.5
4.0
3.5
2.5 | 7.0
6.5
6.5
6.5 | 5.0
6.0
6.0
6.0 | | | 8.5
8.5
8.5 | 9.0
9.0
10.0 | | 16 | 7
8 | 2.0
2.5
2.5
3.0
3.0 | 2.0
2.0
2.5
2.5
2.5 | 2.0
2.5
2.5
2.5
3.0 | 3.5
4.0
4.5
5.0
5.5 | 2.5
3.0
3.5
4.0
4.0 | 3.0
3.5
4.0
4.5
4.5 | 6.5
7.5
6.5
6.5
8.0 | 6.0
5.5
6.0
6.5 | 6.5
6.5
6.0
6.5
7.5 |
11.5
13.5
13.5
12.5
14.5 | 9.0
12.5
9.5 | 11.5
13.0
11.0 | | 21 3.0 2.5 3.0 4.5 4.0 4.0 15.0 13.0 14.0 11.0 10.5 11.0 | 11
12
13
14
15 | 3.0
2.5
2.5
2.0
2.0 | 2.5
2.5
2.0
2.0
2.0 | 2.5
2.5
2.0
2.0
2.0 | 4.0
4.0
4.0
5.0
5.0 | 3.5
3.5
3.5
4.0
4.5 | 4.0
4.0
4.0
4.5
5.0 | 8.0
8.0
9.0
10.0
13.0 | 7.5
7.5
8.0
9.0
9.0 | 7.5
7.5
8.5
9.5
11.0 | 14.5
13.0
13.0
12.5
11.5 | 12.5
12.0
11.5 | 12.5
12.5
12.0 | | 27 | 16
17
18
19
20 | 2.0
2.5
2.5
2.5
2.5 | 2.0
2.0
2.0
2.5
2.5 | 2.0
2.0
2.5
2.5
2.5 | 5.5
5.0
4.5
4.5
4.5 | 5.0
4.5
4.5
4.5
4.0 | 5.0
5.0
4.5
4.5 | 16.0
17.0
18.0
17.5
16.5 | 15.0
14.5 | 14.0
15.5
16.5
16.0
15.5 | | 11.0
11.5 | 12.5
11.5
11.0 | | 27 | 23
24 | 3.0
3.0
3.0
3.5
3.5 | 2.5
2.5
2.5
3.0
3.0 | | | | 4.0
4.0
4.0 | 15.0
14.0
13.5
12.5
12.0 | 13.0
12.0
12.5
12.0
10.5 | 14.0
13.0
13.0
12.0
11.0 | 11.0
12.5
12.0
14.5
14.5 | 10.5
10.5
11.0 | 11.5
11.5
12.5 | | MONTH | 27
28
29
30 | | | 3.5
3.5
3.0
 | 4.0
4.0
4.0
5.0 | 4.0
3.5
3.0
3.5
4.0
5.0 | 4.0
3.5
4.0
4.5 | 11.0
12.0
11.0
10.5
10.0 | 10.5
10.5
10.5
10.0
8.5 | 10.5
11.0
10.5
10.5
9.5 | 15.0
14.0
14.5
14.5
15.5 | 13.0
13.0
13.0
14.0 | 13.5
13.5
14.0
14.5 | | Table Tabl | MONTH | 4.0 | 2.0 | | | | 4.1 | 18.0 | 5.0 | 10.0 | 15.5 | 8.5 | 11.8 | | 1 | | | | | | | | | | | | | | | 6 19.0 16.5 18.0 20.5 17.0 18.5 25.5 21.0 23.0 22.0 20.5 21.0 7 21.0 19.0 19.5 20.5 17.5 19.0 24.0 22.0 23.0 22.0 20.5 21.0 8 19.5 17.5 18.5 20.5 17.5 19.0 24.0 22.0 23.0 22.0 20.5 21.0 20.5 21.0 21.5 19.5 21.5 18.0 19.5 20.5 19.0 20.0 23.5 21.5 22.5 22.0 20.0 20.5 21.0 22.5 19.5 21.0 24.0 17.5 21.5 23.0 20.5 21.5 22.0 20.0 20.5 20.5 10 22.5 19.5 21.0 24.0 17.5 21.5 23.0 20.5 21.5 22.0 20.0 20.5 21.0 22.5 19.5 21.0 24.0 17.5 21.5 23.0 20.5 21.5 22.0 20.0 20.5 21.5 19.5 21.0 24.0 17.5 21.5 23.0 20.5 21.5 22.0 20.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.5 21.0 20.0 20.5 21.0 20.5 21.0 20.0 20.5 21.0 20.5 21.0 22.5 20.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.0 21.0 21.0 20.5 21.0 20.0 21.0 21.0 20.5 21.0 20.0 20.5 21.0 22.5 20.0 20.0 21.0 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.5 21.0 20.0 20.0 20.5 21.0 20.0 20.0 20.5 21.0 20.0 20.0 20.5 21.0 20.0 20.0 20.5 21.0 20.0 20.0 20.5 21.0 20.0 20.0 20.5 21.0 20.0 20.0 20.5 21.0 20.0 20.0 20.0 20.5 21.0 20.0 20.0 20.0 20.5 21.0 20.0 20.0 20.0 20.0 20.5 21.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 | DAY | MAX | | MEAN | MAX | | MEAN | MAX | | MEAN | | | | | 11 | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | ir. | | 11 | 1
2
3
4 | 17.0
20.5
19.0
16.5 | JUNE 15.0 14.5 14.0 14.0 15.5 | 15.5
17.0
16.0
15.5
16.5 | 17.5
17.5
17.5
18.5
19.5 | JULY
16.0
16.5
16.5
16.0 | 17.0
17.0
17.0
17.5
17.5 | 22.5
22.5
22.5
22.0
22.0 | 20.0
20.5
20.5
20.5
20.5
20.5 | 21.5
21.5
21.5
21.5
21.0 | 21.0
21.5
22.0
21.5
23.0 | 21.0
21.0
20.5
20.0
20.0 | 21.0
21.0
21.0
21.0
21.0 | | 17 20.0 17.5 18.5 21.5 19.5 20.5 22.0 20.5 21.0 22.5 21.0 20.5 19.5 20.0 19.5 19.5 20.0 20.5 19.5 19.5 20.0 20.5 21.0 22.0 20.5 21.0 22.0 21.0 21.5 20.0 19.5 20.0 20.5 22.0 20.5 21.0 22.0 21.0 21.5 20.0 19.5 20.0 22.0 20.5 22.0 20.5 21.0 21.0 21.5 20.0 19.5 20.0 25 20.5 20.5 20.0 21.5 20.0 21.5 20.5 21.0 21.0 21.5 20.5 20.5 20.0 20.5 20.0 20.5 21.0 21.0 21.0 21.0 21.0 19.5 20.0 25 20.5 20.5 20.0 21.5 20.5 21.0 21.0 22.0 20.5 19.5 20.0 20.0 20.5 21.0 21.0 22.0 20.5 19.5 20.0 20.0 20.5 21.0 21.0 22.0 20.5 19.5 20.0 20.0 20.5 21.0 21.0 22.0 20.5 19.5 20.0 20.0 20.5 21.0 22.0 20.5 21.0 22.0 20.5 19.5 20.0 20.0 20.5 21.0 22.0 20.5 21.0 22.0 20.5 19.5 20.0 20.0 20.5 21.0 22.0 20.5 21.0 22.0 20.5 19.5 20.0 20.5 21.0 22.0 20.5 21.0 22.0 20.5 19.5 20.0 20.5 21.0 22.0 20.5 21.0 21.5 19.5 18.0 18.5 29 18.5 17.5 18.0 22.0 20.5 21.0 22.0 21.0 21.0 21.0 18.5 18.0 18.5 29 18.5 17.5 18.0 22.0 20.5 21.0 22.0 21.0 21.0 21.5 19.0 18.0 18.5 29 18.5 17.5 18.0 22.0 20.5 21.0 22.0 21.0 21.0 21.0 18.0 18.5 30 17.5 17.0 17.5 22.0 20.0 20.0 21.0 22.0 21.0 21.0 21.0 | 1
2
3
4
5
6
7
8 | 17.0
20.5
19.0
16.5
17.0
19.0
21.0
19.5
21.5 | JUNE 15.0 14.5 14.0 14.0 15.5 16.5 19.0 17.5 18.0 19.5 | 15.5
17.0
16.0
15.5
16.5
18.0
19.5
18.5
19.5
21.0 | 17.5
17.5
17.5
18.5
19.5
20.5
20.5
20.5
20.5 | JULY
16.0
16.5
16.5
16.0 | 17.0
17.0
17.0
17.5
17.5
19.0
19.5
20.0
21.5 | 22.5
22.5
22.0
22.0
25.5
24.0
24.0
23.5
23.0 | 20.0
20.5
20.5
20.5
20.5
20.5 | 21.5
21.5
21.5
21.5
21.0
23.0
23.0
23.0
22.5
21.5 | 21.0
21.5
22.0
21.5
23.0
22.0
22.0
22.0
22.0
22.0 | 21.0
21.0
20.5
20.0
20.0
20.0 | 21.0
21.0
21.0
21.0
21.5
21.0
21.5
21.0
20.5
20.5 | | 22 20.5 18.5 19.5 22.0 20.5 21.0 22.0 21.0 21.5 20.0 19.5 20.0 23 21.5 19.5 20.5 22.0 20.0 21.0 23.0 21.0 21.5 21.5 19.5 20.0 24 21.0 20.0 20.5 22.0 20.5 21.0 21.5 21.0 21.0 21.0 21.0 21.0 19.5 20.0 25 20.5 19.5 20.0 21.5 20.5 21.0 23.0 21.0 22.0 20.5 19.5 20.0 26 20.0 18.5 19.5 21.0 20.5 21.0 22.5 21.5 19.5 19.0 19.5 27 19.0 17.5 18.5 22.0 20.5 21.0 22.5 21.0 21.5 19.5 18.0 18.5 28 18.5 17.5 18.0 21.5 20.5 21.0 22.0 21.0 21.0 21.5 19.5 18.0 18.5 29 18.5 <t< td=""><td>1
2
3
4
5
6
7
8
9
10
11
12
13</td><td>17.0
20.5
19.0
16.5
17.0
19.0
21.0
19.5
21.5
22.5
20.5
20.0</td><td>JUNE 15.0 14.5 14.0 14.0 15.5 16.5 19.0 17.5 18.0 19.5</td><td>15.5
17.0
16.0
15.5
16.5
18.0
19.5
18.5
19.5
21.0</td><td>17.5
17.5
17.5
18.5
19.5
20.5
20.5
20.5
20.5</td><td>JULY 16.0 16.5 16.5 16.0 17.0 17.5 18.5 19.0 17.5 19.5 20.5 20.0</td><td>17.0
17.0
17.0
17.5
17.5
19.0
19.5
20.0
21.5</td><td>22.5
22.5
22.0
22.0
25.5
24.0
24.0
23.5
23.0</td><td>20.0
20.5
20.5
20.5
20.5
20.5
21.0
22.0
21.5
20.5
20.5</td><td>21.5
21.5
21.5
21.5
21.0
23.0
23.0
23.0
22.5
21.5</td><td>21.0
21.5
22.0
21.5
23.0
22.0
22.0
22.0
22.0
22.0</td><td>21.0
21.0
20.5
20.0
20.0
20.0
20.5
20.0
20.0
20</td><td>21.0
21.0
21.0
21.0
21.5
21.5
21.0
20.5
20.5
20.5
21.0
21.0
20.5
20.5</td></t<> | 1
2
3
4
5
6
7
8
9
10
11
12
13 | 17.0
20.5
19.0
16.5
17.0
19.0
21.0
19.5
21.5
22.5
20.5
20.0 | JUNE 15.0 14.5 14.0 14.0 15.5 16.5 19.0 17.5 18.0 19.5 | 15.5
17.0
16.0
15.5
16.5
18.0
19.5
18.5
19.5
21.0 | 17.5
17.5
17.5
18.5
19.5
20.5
20.5
20.5
20.5 | JULY 16.0 16.5 16.5 16.0 17.0 17.5 18.5 19.0 17.5 19.5 20.5 20.0 | 17.0
17.0
17.0
17.5
17.5
19.0
19.5
20.0
21.5 | 22.5
22.5
22.0
22.0
25.5
24.0
24.0
23.5
23.0 | 20.0
20.5
20.5
20.5
20.5
20.5
21.0
22.0
21.5
20.5
20.5 | 21.5
21.5
21.5
21.5
21.0
23.0
23.0
23.0
22.5
21.5 | 21.0
21.5
22.0
21.5
23.0
22.0
22.0
22.0
22.0
22.0 | 21.0
21.0
20.5
20.0
20.0
20.0
20.5
20.0
20.0
20 | 21.0
21.0
21.0
21.0
21.5
21.5
21.0
20.5
20.5
20.5
21.0
21.0
20.5
20.5 | | 27 19.0 17.5 18.5 22.0 20.5 21.0 22.5 21.0 21.5 19.5 18.0 18.5 28 18.5 17.5 18.0 21.5 20.5 21.0 22.0 21.0 21.0 18.5 18.0 18.5 29 18.5 17.5 18.0 22.0 20.5 21.0 22.0 21.0 21.5 19.0 18.0 18.5 30 17.5 17.0 17.5 22.0 20.0 21.0 22.0 21.5 22.0 18.0 17.0 17.5 31 22.5 20.0 21.0 22.0 20.0 21.0 MONTH 22.5 14.0 18.5 24.5 16.0 20.1 25.5 20.0 21.5 23.0 17.0 20.1 | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 17.0
20.5
19.0
16.5
17.0
19.0
21.0
19.5
21.5
22.5
20.5
20.0
18.0
19.0
21.0
19.0 | JUNE 15.0 14.5 14.0 14.0 15.5 16.5 19.0 17.5 18.0 19.5 17.5 17.0 17.5 17.5 18.0 17.5 | 15.5
17.0
16.0
15.5
16.5
18.0
19.5
18.5
20.0
19.5
18.5
21.0 | 17.5
17.5
18.5
19.5
20.5
20.5
20.5
24.0
24.5
21.0
21.5
21.5
24.5
21.5
21.5 | JULY 16.0 16.5 16.5 16.0 17.0 17.5 18.5 19.0 17.5 19.5 20.0 20.0 19.0 19.5 20.5 | 17.0
17.0
17.5
17.5
18.5
19.0
19.5
20.0
21.5
21.5
21.5
20.5
21.5
21.5
21.5 | 22.5
22.5
22.0
22.0
22.0
25.5
24.0
24.0
23.5
23.0
22.5
23.0
22.5
23.0
22.5
23.0 |
20.0
20.5
20.5
20.5
20.5
20.5
21.0
22.0
21.5
20.5
20.5
21.0
20.5
21.0
20.5
21.0
20.5 | 21.5
21.5
21.5
21.5
21.0
23.0
23.0
23.0
22.5
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0 | 21.0
21.5
22.0
21.5
23.0
22.0
22.0
22.0
22.0
22.0
21.5
21.0
20.0 | 21.0
21.0
20.5
20.0
20.0
20.0
20.5
20.0
20.0
20 | 21.0
21.0
21.0
21.0
21.5
21.0
20.5
20.5
20.5
20.5
20.0
20.0
20.0
20 | | MONTH 22.5 14.0 18.5 24.5 16.0 20.1 25.5 20.0 21.5 23.0 17.0 20.1 | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 17.0
20.5
19.0
16.5
17.0
19.0
21.0
19.5
21.5
22.5
20.5
20.0
18.0
19.0
21.0
19.0
20.0
21.0
19.0 | JUNE 15.0 14.0 14.0 15.5 16.5 19.0 17.5 18.0 17.5 17.5 17.5 17.5 17.5 18.5 17.5 18.5 17.5 | 15.5
17.0
16.0
15.5
16.5
18.5
19.5
19.5
20.0
19.0
17.5
18.0
18.5
19.0
18.5
19.0
18.5 | 17.5
17.5
18.5
19.5
20.5
20.5
20.5
20.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
22.0
22.0 | JULY 16.0 16.5 16.5 16.0 17.5 18.5 19.0 17.5 19.5 20.5 20.0 19.0 19.5 20.5 20.5 20.5 20.5 | 17.0
17.0
17.0
17.5
17.5
17.5
18.5
19.0
19.5
20.0
21.5
21.5
21.5
21.5
21.0
20.5
21.0
21.0
21.0
21.0 | 22.5
22.5
22.5
22.0
22.0
25.5
24.0
23.5
23.0
22.5
23.0
22.5
23.0
22.5
23.0
22.5
23.0
22.5 | 20.0
20.5
20.5
20.5
20.5
20.5
21.0
22.0
21.5
20.5
20.5
21.0
20.5
21.0
20.5
20.5
20.5 | 21.5
21.5
21.5
21.5
21.0
23.0
23.0
22.5
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.5
21.0
21.5
21.5 | 21.0
21.5
22.0
21.5
23.0
22.0
22.0
22.0
22.0
22.0
21.5
21.0
20.0
20.5
21.5
20.5
20.5
20.5
20.5
20.5 | 21.0
21.0
20.5
20.0
20.0
20.0
20.5
20.0
20.0
20 | 21.0
21.0
21.0
21.0
21.5
21.0
21.5
21.0
20.5
20.5
20.5
20.0
20.0
20.0
20.0
20 | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
30
30
30
30
30
30
30
30
30
30
30
30
30 | 17.0
20.5
19.0
16.5
17.0
19.0
21.0
19.5
21.5
20.5
20.5
20.0
18.0
19.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21 | JUNE 15.0 14.0 14.0 14.0 15.5 16.5 19.0 17.5 18.0 19.5 17.0 17.5 17.0 17.5 18.5 17.5 18.5 19.5 17.5 18.5 17.5 18.5 17.5 17.5 | 15.5
17.0
16.0
15.5
18.5
19.5
18.5
19.5
20.0
19.5
18.0
17.5
18.0
18.5
18.5
19.5
20.5
20.5
20.5
18.5
18.5 | 17.5 17.5 18.5 19.5 20.5 20.5 20.5 20.5 21.0 21.5 21.5 21.5 21.5 22.0 21.5 22.0 21.5 22.0 22.0 22.0 22.0 22.0 22.0 22.0 | JULY 16.0 16.5 16.5 16.0 17.0 17.5 18.5 19.0 17.5 19.5 20.0 20.0 19.0 19.0 19.0 20.5 20.5 20.5 20.5 20.5 20.5 20.5 | 17.0
17.0
17.0
17.5
17.5
18.5
19.0
19.5
20.0
21.5
20.5
21.5
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0 | 22.5
22.5
22.0
22.0
25.5
24.0
24.0
24.0
23.5
23.0
22.5
23.0
22.5
23.0
22.5
23.0
22.5
23.0
22.5
23.0
22.5
23.0
22.5
23.0 | 20.0
20.5
20.5
20.5
20.5
20.5
21.0
22.0
21.5
20.5
20.5
21.5
20.5
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0 | 21.5
21.5
21.5
21.5
21.0
23.0
23.0
23.0
21.5
21.5
21.0
21.0
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5 | 21.0
21.5
22.0
21.5
23.0
22.0
22.0
22.0
22.0
22.0
21.5
21.0
20.5
21.5
21.0
20.5
21.5
21.0
20.5
21.5
21.5
21.0
20.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21 | 21.0
21.0
21.0
20.5
20.0
20.0
20.5
20.0
20.0
20.0
20 | 21.0
21.0
21.0
21.0
21.0
21.5
21.0
20.5
20.5
20.5
20.0
20.0
20.0
20.0
20 | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27
28
29
30
31
31
31
31
31
31
31
31
31
31
31
31
31 | 17.0
20.5
19.0
16.5
17.0
19.0
21.0
19.5
21.5
22.5
20.5
20.0
18.0
19.0
20.0
19.0
21.0
19.0
21.0
21.0
21.5
22.5
20.5
20.5
21.5
20.5
21.5
20.5
21.5
20.0
18.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21 | JUNE 15.0 14.5 14.0 14.0 15.5 16.5 19.0 17.5 18.0 19.5 17.0 17.5 17.0 17.5 18.5 17.5 18.5 19.5 17.5 18.5 19.5 17.5 18.5 19.5 | 15.5
17.0
16.0
15.5
18.5
19.5
18.5
19.5
20.0
19.5
18.0
17.5
18.0
18.5
19.0
18.5
19.0
18.5
19.0
18.5
19.0
18.5
19.5
20.5
20.5
20.5 | 17.5 17.5 18.5 19.5 20.5 20.5 20.5 20.5 21.0 21.5 21.0 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 | JULY 16.0 16.5 16.5 16.0 17.0 17.5 18.5 19.0 17.5 19.5 20.0 20.0 19.0 19.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 | 17.0
17.0
17.0
17.5
17.5
18.5
19.0
19.5
20.0
21.5
20.5
21.5
20.5
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0 | 22.5
22.5
22.0
22.0
24.0
24.0
23.5
22.5
23.0
22.5
23.0
22.5
23.0
22.5
23.0
22.5
23.0
22.5
23.0
22.5
23.0
22.5
23.0 | 20.0 20.5 20.5 20.5 20.5 21.0 22.0 21.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 | 21.5
21.5
21.5
21.5
21.5
21.0
23.0
23.0
23.0
21.5
21.0
21.0
21.5
21.0
21.0
21.5
21.0
21.0
21.5
21.5
21.0
21.0
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5 | 21.0
21.5
22.0
21.5
22.0
22.0
22.0
22.0
22.0
22.0
22.0
21.5
21.0
20.5
21.5
21.0
20.5
20.5
21.5
21.0
20.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21 | 21.0
21.0
20.5
20.0
20.5
20.0
20.5
20.0
20.0
20 | 21.0
21.0
21.0
21.0
21.5
21.0
20.5
20.5
20.5
20.0
20.0
20.0
20.0
20 | #### 01429500 DYBERRY CREEK NEAR HONESDALE, PA LOCATION.--Lat 41°36′26", long 75°16′03", Wayne County, Hydrologic Unit 02040103, on right bank 180 ft upstream from unnamed tributary, 1,700 ft downstream from General Edgar Jadwin Reservoir, 2.1 mi north of Honesdale, and 2.6 mi upstream from mouth. DRAINAGE AREA.--64.6 mi². **PERIOD OF RECORD.**--October 1943 to current year. Published as "at Dyberry" October 1943 to September 1959 and as "near Dyberry" October 1959 to September 1961. **REVISED RECORDS.--**WSP 1382: 1947(M), 1950(M), 1951-53. GAGE.--Water-stage recorder. Datum of gage is 970.70 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1957, nonrecording gage at site 1.9 mi upstream at datum 13.70 ft higher. REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow regulated since October 1959 by General Edgar Jadwin Reservoir (station 01429400) 1,700 ft upstream. Several measurements of water temperature were made during the year. Satellite and landline telemetry at station. **EXTREMES OUTSIDE PERIOD OF RECORD.**--Flood of May 23, 1942 reached a stage of 15.86 ft, from floodmarks, site and datum then in use, discharge not determined. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | | | | DAILY M | EAN VALUE | S | | | | | |----------------------------------|--------------------------------------|---------------------------------|--|---------------------------------------|------------------------------------|--|---------------------------------|--------------------------------------|---------------------------------|----------------------------------|------------------------------------|--------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 9.8
9.4
9.3
8.0 | 8.8
8.5
8.3
8.2
8.4 | 36
31
25
20
17 | 21
20
19
20
20 | 209
266
e150
132
e100 | e51
e48
71
e70
e52 | 183
155
141
132
116 | 306
369
363
226
193 | 84
68
57
51
81 | 40
35
33
30
27 | 9.1
8.9
9.1
9.1 | 9.9
9.1
8.6
15 | | 6
7
8
9
10 | 7.0
6.7
6.7
6.4
6.8 | 8.3
8.6
8.4
8.4 | 15
14
13
16
17 | 19
e19
29
28
27 | e100
88
81
78
80 | e52
51
49
47
62 | 106
97
106
92
92 | 156
137
127
136
138 | 180
597
302
186
132 | 25
23
22
23
26 | 12
9.7
8.4
7.7
7.3 | 11
11
12
11 | | 11
12
13
14
15 | 7.7
9.0
10
8.9 | 8.5
8.2
8.1
8.2
8.1 | 16
16
17
27
58 | 27
27
26
25
25 | 498
259
e160
e130
e120 | 54
48
49
50
46 | 77
69
69
113
233 | 111
140
562
1070
573 | 103
103
87
147
381 | 22
19
18
18
17 | 7.0
6.7
6.4
6.2
6.5 | 10
8.1
7.5
7.4
7.2 | | 16
17
18
19
20 | 14
14
15
12 | 7.9
7.8
8.0
7.8
8.3 | 42
40
149
104
71 | 25
24
e20
e17
25 | 109
104
e85
e79
78 | 62
66
59
60
69 | 176
132
111
98
90 | 300
226
428
470
274 |
458
261
174
149
120 | 16
15
14
13 | 6.2
7.9
7.4
6.8
8.7 | 15
16
11
9.1
8.0 | | 21
22
23
24
25 | 9.4
9.1
10
12
13 | 8.4
8.5
8.2
8.2
9.4 | 57
46
e38
46
44 | 25
25
26
30
e42 | 93
96
82
71
66 | 96
e120
e94
98
116 | 84
79
78
69
77 | 215
181
152
136
125 | 98
84
83
71
67 | 13
12
12
16
15 | 6.9
6.6
7.5
13 | 7.3
7.7
15
15 | | 26
27
28
29
30
31 | 12
11
9.7
9.3
8.8
8.8 | 22
20
16
15
17 | e30
e27
e27
e26
e23
e20 | e58
e60
e66
93
199
211 | 64
65
60
 | 146
809
462
281
230
188 | 116
86
403
825
407 | 139
116
108
124
99
84 | 61
56
58
49
46 | 13
12
12
12
11
10 | 12
9.0
7.5
14
18
12 | 9.8
71
252
69
38 | | TOTAL
MEAN
MAX
MIN | 306.8
9.897
15
6.4 | 298.3
9.943
22
7.8 | 1128
36.39
149
13 | 1298
41.87
211
17 | 3503
125.1
498
60 | 3756
121.2
809
46 | 4612
153.7
825
69 | 7784
251.1
1070
84 | 4394
146.5
597
46 | 587
18.94
40
10 | 286.6
9.245
19
6.2 | 706.7
23.56
252
7.2 | e Estimated. ### 01429500 DYBERRY CREEK NEAR HONESDALE, PA--Continued | • | PIMITPIT | CS OF | MONIALI MEAN | DAIA | FUR WAIER | ILAKS 1900 | - 2002, | DI WAIER | IEAR (WI) | (PINCE | REGULATI | ON) | | |---|-------------|----------------------|--------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------| | | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | ľ | XAM
(YW) | 57.50
292
1977 | 413
1973 | 123.5
388
1997 | 112.4
402
1996 | 141.6
466
1981 | 230.7
552
1977 | 240.8
572
1993 | 142.2
397
1989 | 77.91
291
1972 | 42.09
170
1973 | 29.62
145
1994 | 40.61
281
1987 | | ľ | MIN
(WY) | 4.17
1965 | 5.48
1965 | 17.4
1999 | 20.8
1981 | 20.2
1980 | 73.0
1981 | 83.6
1985 | 43.3
1965 | 12.0
1962 | 3.23
1962 | 5.21
1999 | 2.26
1980 | | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1960 - 2002 | |--------------------------|------------------------|---------------------|--------------------------| | ANNUAL TOTAL | 25668.8 | 28660.4 | | | ANNUAL MEAN | 70.3 | 78.5 | 112 | | HIGHEST ANNUAL MEAN | | | <u> 186 1973</u> | | LOWEST ANNUAL MEAN | | | 51.4 1965 | | HIGHEST DAILY MEAN | 925 Apr 10 | 1070 May 14 | 2460 Jan 20 1996 | | LOWEST DAILY MEAN | 5.2 Aug 26 | 6.2 Aug 14,16 | 1.2 Jul 29 1970 | | ANNUAL SEVEN-DAY MINIMUM | 5.6 Aug 21 | 6.6 Aug 10 | 1.8 Oct 5 1980 | | MAXIMUM PEAK FLOW | | 1160 May 14 | 2600 Jan 20 1996 | | MAXIMUM PEAK STAGE | | 5.29 May 14 | 7.32 Jan 20 1996 | | INSTANTANEOUS LOW FLOW | | | a 0.00 Oct 2 1968 | | 10 PERCENT EXCEEDS | 142 | 184 | 248 | | 50 PERCENT EXCEEDS | 30 | 27 | 56 | | 90 PERCENT EXCEEDS | 7.3 | 8.2 | 10 | | STATIST | rics of | MONTHLY | MEAN DATA | FOR WATER | YEARS 19 | 944 - 1959, | BY WATER | R YEAR (WY | (PRIOR | TO REGULA | TION) | | |---------|---------|---------|-----------|-----------|----------|-------------|----------|------------|--------|-----------|-------|------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 53.7 | 110 | 128 | 119 | 109 | 236 | 262 | 145 | 55.8 | 68.9 | 45.7 | 30.5 | | MAX | 348 | 263 | 255 | 248 | 227 | 539 | 628 | 345 | 127 | 293 | 339 | 90.8 | | (WY) | 1956 | 1946 | 1953 | 1952 | 1951 | 1945 | 1958 | 1947 | 1946 | 1952 | 1955 | 1952 | | MIN | 10.2 | 18.8 | 20.4 | 29.0 | 47.4 | 91.8 | 59.9 | 44.4 | 19.2 | 8.16 | 5.82 | 5.30 | | (WY) | 1948 | 1947 | 1947 | 1944 | 1958 | 1949 | 1946 | 1955 | 1959 | 1955 | 1953 | 1953 | | SUMMARY STATISTICS | WATER YEARS | 1944 - 1959 | | |--------------------------|----------------|-------------|---| | ANNUAL MEAN | 114 | | | | HIGHEST ANNUAL MEAN | 170 | 1952 | 2 | | LOWEST ANNUAL MEAN | 77.2 | 195' | 7 | | HIGHEST DAILY MEAN | 5880 | Jul 10 1952 | 2 | | LOWEST DAILY MEAN | 2.0 | Oct 5 1953 | 3 | | ANNUAL SEVEN DAY MINIMUM | 2.3 | Sep 29 1953 | 3 | | MAXIMUM PEAK FLOW | b 15500 | Jul 10 1952 | 2 | | MAXIMUM PEAK STAGE | c 14.60 | Jul 10 1952 | 2 | | ANNUAL RUNOFF (CFSM) | 1.76 | | | | ANNUAL RUNOFF (INCHES) | 23.91 | | | | 10 PERCENT EXCEEDS | 252 | | | | 50 PERCENT EXCEEDS | 54 | | | | 90 PERCENT EXCEEDS | 9.4 | | | | | | | | - a Result of shutoff at General Jadwin Reservoir. b From rating curve extended above 2,500 ft³/s on basis of slope-area measurement at gage height 13.78 ft. c Site and datum then in use. #### 01430000 LACKAWAXEN RIVER NEAR HONESDALE, PA LOCATION.--Lat 41°33'43", long 75°14'54", Wayne County, Hydrologic Unit 02040103, on right bank at Lemnitzer Bridge (Brown Street), on U.S. Highway 6, and 1.2 mi downstream from Dyberry Creek and Honesdale. DRAINAGE AREA.--164 mi². **PERIOD OF RECORD.**--October 1948 to September 1969, October 1985 to current year. Occasional discharge measurements and annual maximums, water years 1974-85. REVISED RECORDS.--WDR PA 90-1: 1989. WDR PA 94-1: 1989(M). GAGE.--Water-stage recorder. Datum of gage is 946.34 ft above National Geodetic Vertical Datum of 1929. **REMARKS**.--Records fair except those for estimated daily discharges, which are poor. Flow regulated since 1960 by Prompton Reservoir (station 01428900) and at high flow since 1959 by General Edgar Jadwin Reservoir (station 01429400). Several measurements of water temperature were made during the year. Satellite telemetry at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 **EXTREMES OUTSIDE PERIOD OF RECORD.**—The flood of May 1942 reached a stage of 24.5 ft, from data furnished by Corps of Engineers, discharge about 34,000 ft³/s. | | | | Бібенні | tol, cobie | LETTERS | | EAN VALUE | ES CODER 2 | 501 10 BEI 1 | ENIBER 200 | _ | | |----------|-------|-------|---------|------------|---------|-------|-----------|------------|--------------|------------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 32 | 26 | 74 | e64 | 513 | 124 | 506 | 949 | 237 | 129 | 34 | 30 | | 2 | 29 | 26 | 63 | e61 | 640 | 115 | 438 | 981 | 198 | 118 | 33 | 30 | | 3
4 | 28 | 25 | 52 | e59 | 452 | 148 | 381 | 966 | 164 | 112 | 32 | 29 | | 4 | 26 | 26 | 47 | e57 | 369 | 172 | 351 | 650 | 142 | 104 | 30 | 36 | | 5 | 25 | 27 | 42 | 55 | 290 | e130 | 305 | 520 | 167 | 98 | 30 | 35 | | 6 | 22 | 27 | 39 | e60 | 257 | 128 | 276 | 426 | 338 | 92 | 30 | 31 | | 7
8 | 20 | 27 | 36 | e73 | 228 | 122 | 248 | 366 | 1120 | 87 | 27 | 30 | | 8 | 19 | 26 | 35 | e80 | 210 | 116 | 243 | 323 | 737 | 82 | 24 | 30 | | 9 | 19 | 25 | 41 | 64 | 196 | 112 | 221 | 336 | 489 | 87 | 23 | 30 | | 10 | 18 | 24 | 45 | 62 | 189 | 137 | 228 | 340 | 363 | 90 | 21 | 29 | | 11 | 19 | 24 | 42 | 63 | 834 | 125 | 197 | 288 | 291 | 79 | 21 | 26 | | 12 | 21 | 22 | 41 | 63 | 668 | 115 | 173 | 359 | 265 | 73 | 21 | 22 | | 13 | 24 | 22 | 43 | 62 | 488 | 114 | 168 | 1440 | 246 | 69 | 21 | 20 | | 14 | 26 | 21 | 59 | 59 | 348 | 116 | 251 | 2720 | 397 | 65 | 21 | 20 | | 15 | 27 | 21 | 106 | 57 | 309 | 114 | 451 | 1660 | 942 | 64 | 23 | 22 | | 16 | 30 | 20 | 89 | 56 | 283 | 138 | 434 | 957 | 1190 | 61 | 23 | 46 | | 17 | 31 | 19 | 93 | 54 | 269 | 159 | 345 | 689 | 784 | 57 | 24 | 32 | | 18 | 29 | 19 | 253 | e52 | 235 | 147 | 291 | 1120 | 560 | 55 | 25 | 27 | | 19 | 26 | 19 | 255 | e56 | 203 | 144 | 257 | 1240 | 513 | 53 | 24 | 24 | | 20 | 24 | 19 | 206 | e80 | 192 | 162 | 229 | 800 | 410 | 53 | 32 | 23 | | 21 | 23 | 19 | 172 | e67 | 211 | 224 | 211 | 609 | 331 | 50 | 27 | 21 | | 22 | 23 | 19 | 140 | 56 | 226 | 310 | 193 | 496 | 280 | 48 | 28 | 21 | | 23 | 25 | 19 | 119 | 55 | 199 | 262 | 187 | 416 | 275 | 47 | 28 | 31 | | 24 | 29 | 18 | 119 | 63 | 171 | 253 | 165 | 360 | 249 | 51 | 39 | 35 | | 25 | 32 | 24 | 118 | 100 | 156 | 271 | 177 | 317 | 221 | 53 | 45 | 30 | | 26 | 30 | 41 | e95 | e120 | 146 | 362 | 249 | 312 | 199 | 49 | 35 | 28 | | 27 | 28 | 41 | e90 | e130 | 147 | 1770 | 205 | 285 | 184 | 47 | 32 | 124 | | 28 | 27 | 34 | e85 | e140 | 139 | 1210 | 907 | 265 | 177 | 46 | 28 | 392 | | 29 | 26 | 34 | e78 | 225 | | 781 | 2040 | 290 | 155 | 47 | 43 | 166 | | 30 | 26 | 43 | e74 | 409 | | 641 | 1230 | 255 | 143 | 42 | 43 | 121 | | 31 | 25 | | e68 | 537 | | 543 | | 233 | | 39 | 34 | | | TOTAL | 789 | 757 | 2819 | 3139 | 8568 | 9265 | 11557 | 20968 | 11767 | 2147 | 901 | 1541 | | MEAN | 25.45 | 25.23 | 90.94 | 101.3 | 306.0 | 298.9 | 385.2 | 676.4 | 392.2 | 69.26 | 29.06 | 51.37 | | MAX | 32 | 43 | 255 | 537 | 834 | 1770 | 2040 | 2720 | 1190 | 129 | 45 | 392 | | MIN | 18 | 18 | 35 | 52 | 139 | 112 | 165 | 233 | 142 | 39 | 21 | 20 | | 1,1 T TA | 10 | 10 | 33 | 34 | 133 | 112 | 103 | 233 | 172 | 33 | 21 | 20 | e Estimated. # 01430000 LACKAWAXEN RIVER NEAR HONESDALE, PA--Continued | STA | TISTICS | OF | MONTHLY | MEAN | DATA | FOR WATER | YEARS | 1960 | - 1969, | 1986 - | 2002, BY | WATER YEAR | (WY) | (SINCE R | EGULATION) | |--------------------------|---------|--------------------------|------------------------------|-------------|-----------------------------|------------------------------|-------------------------|------|------------------------------|------------------------------|-----------------------------|---------------------|------------------------------|------------------|---------------------------| | | (| OCT | NOV | 7 | DEC | JAN | FE | В | MAR | APR | MAY | JUN | JUL | AU | G SEP | | MEA
MAX
(WY
MIN |) 19 | 5.7
344
990
4.5 | 275.6
650
1987
16.5 |)
7
5 | 85.1
925
1997
39.1 | 268.1
884
1996
73.5 |
288.
71
199
10 | 6 | 552.6
1133
1986
261 | 557.8
1464
1993
240 | 347.2
985
1989
123 | 544
1989
43.9 | 90.73
255
1996
20.3 | 36
199
17. | 4 656
4 1987
2 12.3 | | (WY |) 19 | 965 | 1965 | 5 | 1999 | 1961 | 196 | 3 | 1965 | 1988 | 2001 | 1962 | 1965 | 196 | 4 1964 | | SUMMARY STATISTICS | FOR 2001 CALEN | IDAR YEAR | FOR 2002 WAT | ER YEAR | WATER YEARS | 1960 - 1969
1986 - 2002 | |--------------------------|----------------|-----------|--------------|-----------------|-------------|----------------------------| | ANNUAL TOTAL | 64200 | | 74218 | | | | | ANNUAL MEAN | 176 | | 203 | | 264 | | | HIGHEST ANNUAL MEAN | | | | | 400 | 1960 | | LOWEST ANNUAL MEAN | | | | | 130 | 1965 | | HIGHEST DAILY MEAN | e 2200 | Apr 10 | 2720 | May 14 | 6280 | Mar 15 1986 | | LOWEST DAILY MEAN | a 16 | Aug 22 | 18 | Oct 10 b | 8.8 | Sep 25 1964 | | ANNUAL SEVEN-DAY MINIMUM | 16 | Aug 21 | 19 | Nov 18 | 9.7 | Sep 21 1964 | | MAXIMUM PEAK FLOW | | | 2980 | May 14 | 7180 | Jan 19 1996 | | MAXIMUM PEAK STAGE | | | 5.68 | May 14 | 8.49 | Jan 19 1996 | | INSTANTANEOUS LOW FLOW | | | | | 6.2 | Sep 25 1964 | | 10 PERCENT EXCEEDS | 358 | | 492 | | 588 | | | 50 PERCENT EXCEEDS | 78 | | 87 | | 144 | | | 90 PERCENT EXCEEDS | 19 | | 23 | | 28 | | | STATIS | TICS OF | MONTHLY ME | AN DATA F | OR WATER | YEARS 1949 | - 1959, | BY WATER | YEAR (WY) | (PRIOR | TO REGULA | TION) | | |--------|---------|------------|-----------|----------|------------|---------|----------|-----------|--------|-----------|-------|------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 151 | 281 | 412 | 377 | 364 | 538 | 746 | 322 | 126 | 112 | 125 | 83.1 | | MAX | 955 | 520 | 649 | 669 | 664 | 788 | 1458 | 592 | 304 | 425 | 865 | 189 | | (WY) | 1956 | 1956 | 1951 | 1962 | 1951 | 1951 | 1958 | 1952 | 1956 | 1952 | 1955 | 1952 | | MIN | 37.9 | 80.6 | 154 | 130 | 127 | 291 | 379 | 108 | 47.8 | 26.2 | 20.6 | 26.2 | | (WY) | 1949 | 1958 | 1956 | 1956 | 1958 | 1949 | 1955 | 1951 | 1959 | 1955 | 1953 | 1957 | | SUMMARY STATISTICS | WATER YEARS | 1949 | - | 1959 | |--------------------------|----------------|------|----|------| | ANNUAL MEAN | 302 | | | | | HIGHEST ANNUAL MEAN | 428 | | | 1952 | | LOWEST ANNUAL MEAN | 209 | | | 1957 | | HIGHEST DAILY MEAN | 8920 | Aug | 19 | 1955 | | LOWEST DAILY MEAN | 12 | Aug | 29 | 1953 | | ANNUAL SEVEN DAY MINIMUM | 12 | Aug | 29 | 1953 | | MAXIMUM PEAK FLOW | c 18600 | Aug | 18 | 1955 | | MAXIMUM PEAK STAGE | 15.52 | Aug | 18 | 1955 | | ANNUAL RUNOFF (CFSM) | 1.84 | | | | | ANNUAL RUNOFF (INCHES) | 25.06 | | | | | 10 PERCENT EXCEEDS | 695 | | | | | 50 PERCENT EXCEEDS | 152 | | | | | 90 PERCENT EXCEEDS | 32 | | | | - a Also Aug. 23, 25-27, Sept. 18, 19. b Also Nov. 24 c From rating curve extended above 11,000 ft³/s. e Estimated. #### 01431500 LACKAWAXEN RIVER AT HAWLEY, PA LOCATION.--Lat 41°28'34", long 75°10'21", Wayne County, Hydrologic Unit 02040103, on left bank at bridge on Church Street in Hawley, 700 ft upstream from Wallenpaupack Creek, and 3,000 ft downstream from Middle Creek. DRAINAGE AREA -- 290 mi² **PERIOD OF RECORD.**—July 1908 to September 1917, August 1938 to current year. Monthly discharge only for some periods, published in WSP 1302. October 1917 to December 1919, gage heights and discharge measurements only, in reports of Water Supply Commission of Pennsylvania. REVISED RECORDS.--WSP 1951: 1938-41. WSP 1302: 1909-17. WSP 1432: 1942. WSP 1502: 1956. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 869.00 ft above National Geodetic Vertical Datum of 1929. Prior to 1938, nonrecording gage at same site and datum, and Aug 20, 1955, to Feb. 13, 1956, nonrecording gage at site 1,000 ft downstream at same datum. **REMARKS**.--Records fair except those for estimated daily discharges, which are poor. Regulation since 1960 by Prompton Reservoir (station 01428900) 14.9 mi upstream, and at high flow since 1959 by General Edgar Jadwin Reservoir (station 01429400) 13.0 mi upstream. Several measurements of water temperature were made during the year. Satellite telemetry at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 **EXTREMES OUTSIDE PERIOD OF RECORD.**—Flood of 1936 reached a stage of 19.1 ft at present site, 13.9 ft at former site, from floodmarks, discharge, $27,600 \text{ ft}^3/\text{s}$. | | | | | ŕ | | DAILY M | EAN VALUE | ES | | | | | |----------------------------------|----------------------------------|----------------------------|---|---|-----------------------|---|------------------------------------|--|---------------------------------|----------------------------|----------------------------------|--------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 54 | 33 | 118 | e92 | 666 | 176 | 773 | 1500 | 553 | 190 | 52 | 50 | | 2 | 48 | 36 | 120 | e89 | 889 | 166 | 682 | 1460 | 440 | 174 | 51 | 44 | | 3 | 44 | 35 | 97 | e87 | 636 | 202 | 592 | 1560 | 355 | e160 | 50 | 41 | | 4 | 39 | 35 | 85 | e86 | 513 | 244 | 544 | 1060 | 303 | e150 | 47 | 43 | | 5 | 37 | 40 | 75 | e85 | 392 | 199 | 472 | 837 | 295 | e140 | 47 | 51 | | 6 | 35 | 45 | 69 | e85 | 348 | 188 | 424 | 686 | 498 | e130 | 50 | 43 | | 7 | 33 | 43 | 64 | 96 | 306 | 178 | 379 | 595 | 1850 | e120 | 48 | 38 | | 8 | 31 | 44 | 62 | 112 | 284 | 168 | 359 | 524 | 1300 | e110 | 43 | 37 | | 9 | 29 | 41 | 73 | 117 | 268 | 162 | 336 | 544 | 834 | 112 | 39 | 35 | | 10 | 28 | 38 | 75 | 114 | 255 | 199 | 366 | 561 | 632 | 132 | 36 | 33 | | 11 | 28 | 43 | 73 | 116 | 860 | 197 | 336 | 463 | 531 | 114 | 34 | 31 | | 12 | 32 | 43 | 72 | 117 | 889 | 175 | 292 | 550 | 454 | 101 | 33 | 28 | | 13 | 40 | 35 | 75 | 113 | 648 | 169 | 276 | 2720 | 470 | 94 | 31 | 24 | | 14 | 39 | 35 | 90 | 105 | 457 | 170 | 387 | 4890 | 721 | 88 | 30 | 23 | | 15 | 40 | 33 | 146 | 103 | 400 | 168 | 635 | 2890 | 1660 | 88 | 34 | 25 | | 16 | 41 | 33 | 143 | 100 | 360 | 188 | 668 | 1630 | 2100 | 83 | 36 | 93 | | 17 | 46 | 31 | 135 | 96 | 339 | 231 | 522 | 1150 | 1370 | 79 | 31 | 64 | | 18 | 46 | 27 | 315 | 92 | 302 | 220 | 434 | 1900 | 964 | 75 | 32 | 47 | | 19 | 40 | 26 | 355 | 76 | 266 | 215 | 377 | 2190 | 905 | 73 | 31 | 37 | | 20 | 36 | 27 | 284 | e100 | 255 | 244 | 360 | 1360 | 716 | 76 | 38 | 34 | | 21 | 33 | 27 | 242 | e96 | 263 | 335 | 337 | 1020 | 565 | 72 | 40 | 31 | | 22 | 31 | 26 | 201 | e93 | 284 | 509 | 302 | 836 | 463 | 68 | 33 | 32 | | 23 | 33 | 26 | 174 | e90 | 260 | 418 | 292 | 702 | 425 | 67 | 40 | 34 | | 24 | 42 | 25 | 170 | 110 | 230 | 386 | 260 | 599 | 382 | 70 | 61 | 45 | | 25 | 44 | 28 | e160 | 173 | 209 | 393 | 264 | 517 | 328 | 73 | 77 | 42 | | 26
27
28
29
30
31 | 42
37
36
35
34
33 | 50
60
53
50
61 | e150
e140
e130
e110
e100
e95 | e200
e210
e220
309
502
726 | 197
201
196
 | 466
2730
2060
1260
994
830 | 371
318
1190
3350
2020 | 495
475
576
782
570
484 | 288
258
346
262
216 | 68
65
66
65
69 | 68
52
43
92
94
66 | 39
133
659
327
212 | | TOTAL | 1166 | 1129 | 4198 | 4710 | 11173 | 14240 | 17918 | 36126 | 20484 | 3034 | 1459 | 2375 | | MEAN | 37.6 | 37.6 | 135 | 152 | 399 | 459 | 597 | 1165 | 683 | 97.9 | 47.1 | 79.2 | | MAX | 54 | 61 | 355 | 726 | 889 | 2730 | 3350 | 4890 | 2100 | 190 | 94 | 659 | | MIN | 28 | 25 | 62 | 76 | 196 | 162 | 260 | 463 | 216 | 62 | 30 | 23 | e Estimated. # 01431500 LACKAWAXEN RIVER AT HAWLEY, PA--Continued | STATISTICS OF MONTHLY MEAN | N DATA FOR WATER | YEARS 1960 - | - 2002, BY WATER | R YEAR (WY) | (SINCE REGULA | TION) | |--|---|---------------------------|--|------------------------------------|--|------------------------------------| | OCT NOV | DEC JAN | FEB | MAR APR | MAY | JUN JUL | AUG SEP | | MEAN 239 434
MAX 1056 1643
(WY) 1977 1973
MIN 20.8 25.7
(WY) 1965 1965 | 534 492
1671 1915
1997 1996
62.6 92.0
1999 1981 | 1976
133 | 993 1007
2651 2392
1977 1994
280 348
1981 1988 | 620
1826
1989
196
1962 | 360 177
1475 680
1972 1984
63.6 29.7
1965 1965 | 522 1368
1994 1987
26.1 20.5 | | SUMMARY STATISTICS | FOR 2001 CAL | ENDAR YEAR | FOR 2002 W | NATER YEAR | WATER Y | EARS 1960 - 2002 | | ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN | 110168
302 | | 118012
323 | | 477
761 | 1973 | | LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN | 3740
25 | Mar 31
Aug 23 a | 4890
23 | May 14
Sep 14 | 204
11600
14 | 1965
Mar 15 1986 | | ANNUAL SEVEN-DAY MINIMUM
MAXIMUM PEAK FLOW
MAXIMUM PEAK STAGE | 26 | Nov 18 | 26
5520
8.1 | Nov 18
May 14 | 15
16400 | Aug 7 1999 | | 10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS | 692
132
31 | | 745
120
33 | | 1110
246
53 | | | SI | ATISTIC | SOF | MONTHLY | MEAN DATA | FOR WATER | YEARS 1 | 1909-17, | 1939-59, B | Y WATER YEAR | (WY) | (PRIOR TO | REGULATION | <u>v</u>) | |-----|---------|-----|---------|-----------|-----------|---------|----------|------------|--------------|------|-----------|------------|------------| | | | OCT | NOV | DEC | JAN | FEE | 3 M.Z | AR APR | MAY | JUN | I JUL | AUG | SEP | | ME | AN | 239 | 388 | 482 | 527 | 555 | 5 101 | 1117 | 629 | 296 | 236 | 209 | 156 | | MA | X 1 | 773 | 1116 | 1166 | 1235 | 1279 | 298 | 35 2644 | 1531 | 680 | 1246 | 2485 | 601 | | (W | (Y) 1 | 956 | 1956 | 1951 | 1913 | 1909 | 194 |
1940 | 1942 | 1916 | 1947 | 1955 | 1945 | | MI | N 2 | 5.4 | 28.6 | 89.0 | 116 | 180 | 35 | 3 280 | 166 | 79.7 | 38.2 | 32.1 | 24.6 | | (W | (Y) 1 | 910 | 1910 | 1909 | 1944 | 1940 |) 191 | 1946 | 1941 | 1959 | 1955 | 1957 | 1909 | | SUMMARY STATISTICS | WATER YEARS | 1909
1939 | | | |--|--|--------------------------|--------------------|--| | ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | 487
748
316
28100
8.0
12
b 51900
c 24.80
1.68
22.83
1110 | May
Sep
Sep
Aug | 23
8
4
19 | 1952
1917
1942
1909
1909
1955 | | 90 PERCENT EXCEEDS | 49 | | | | - a Also Aug. 26, 27, Nov. 24. b From rating curve extended above 12,000 ft³/s on basis of slope-area measurement at gage height 20.1 ft. c From floodmark. #### 01432000 WALLENPAUPACK CREEK AT WILSONVILLE, PA LOCATION.--Lat 41°27'33", long 75°11'08", Pike County, Hydrologic Unit 02040103, at hydroelectric plant of Pennsylvania Power and Light Co., at lower end of penstock, at Kimble, and 1.2 mi south of Hawley. **DRAINAGE AREA**.--228 mi². PERIOD OF RECORD.--October 1909 to current year. Monthly discharge only for some periods, published in WSP 1302. **REVISED RECORDS.**--WSP 756: Drainage area. WSP 1302: 1918, 1923-24. WSP 1432: 1920-21. WSP 2102: 1966 (monthly mean). WDR PA-92-1: 1990. GAGE.--Daily discharge determined from flow through turbines, computed from records of generator output and flow over roller gates on basis of head on gates. Prior to Nov. 3, 1925, nonrecording gage at site 1,000 ft downstream from dam at datum 1,146.78 ft above National Geodetic Vertical Datum of 1929. **REMARKS.**—No estimated daily discharges. Records good. No flow over spillway or roller gates. Flow regulated since 1925 by Lake Wallenpaupack (station 01431700). COOPERATION.--Records of generator load, operation of power plant, net operation head, water-surface elevations in lake, and daily discharges furnished by Pennsylvania Power and Light Co., in connection with a Federal Energy Regulatory Commission project. # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------------|-------| | | | | | | | | | | | | | | | 1 | 106 | 0 | 0 | 0 | 140 | 170 | 35 | 1720 | 0 | 569 | 387 | 0 | | 2 | 130 | 0 | 0 | 174 | 0 | 0 | 409 | 1720 | 0 | 604 | 342 | 414 | | 3
4 | 135 | 0 | 0 | 196 | 0 | 0 | 402 | 1130 | 696 | 585 | 0 | 445 | | | 126 | 0 | 0 | 177 | 0 | 0 | 391 | 0 | 699 | 405 | 0 | 353 | | 5 | 113 | 173 | 0 | 0 | 0 | 0 | 349 | 0 | 671 | 555 | 205 | 418 | | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 448 | 846 | 410 | 220 | 421 | | 7 | 0 | 0 | 168 | 139 | 0 | 0 | 0 | 440 | 1180 | 383 | 199 | 0 | | 8
9 | 113 | 0 | 0 | 0 | 0 | 0 | 476 | 357 | 69 | 502 | 199 | 0 | | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 534 | 402 | 0 | 499 | 175 | 494 | | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 510 | 470 | 1220 | 666 | 0 | 539 | | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 514 | 0 | 1410 | 537 | 0 | 653 | | 12 | Ö | Ő | 221 | Ö | Ö | Ö | 496 | Ö | 1220 | 507 | Ö | 580 | | 13 | Ö | Ő | 123 | Ö | 0 | 17 | 0 | 605 | 853 | 0 | Ö | 631 | | 14 | 0 | 0 | 132 | 0 | 16 | 0 | 0 | 1690 | 1080 | 0 | 0 | 512 | | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 330 | 1720 | 0 | 630 | 9.0 | 435 | | | U | O | O | O | U | O | 330 | 1720 | O | | 5.0 | | | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 341 | 1720 | 0 | 525 | 0 | 472 | | 17 | 0 | 0 | 0 | 0 | 0 | 20 | 370 | 1720 | 671 | 574 | 0 | 525 | | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 406 | 813 | 681 | 529 | 0 | 626 | | 19 | 0 | 0 | 0 | 0 | 0 | 0 | 391 | 1720 | 550 | 620 | 0 | 635 | | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1030 | 490 | 334 | 42 | 533 | | 21 | 0 | 0 | 0 | 121 | 0 | 0 | 0 | 449 | 611 | 251 | 0 | 451 | | 22 | 0 | 0 | 0 | 175 | 0 | 0 | 543 | 427 | 0 | 407 | 0 | 0 | | 23 | 0 | 0 | 0 | 159 | 0 | 0 | 664 | 483 | 211 | 383 | 0 | 312 | | 24 | 0 | 0 | 0 | 169 | 0 | 0 | 682 | 1210 | 619 | 506 | 0 | 491 | | 25 | 0 | 0 | 0 | 168 | 0 | 0 | 682 | 275 | 526 | 433 | 0 | 492 | | 26 | 0 | 0 | 0 | 0 | 0 | 0 | 672 | 0 | 626 | 360 | 421 | 426 | | 27 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 525 | 0 | 405 | 531 | | 28 | 0 | 0 | 0 | 169 | 0 | 15 | 0 | 893 | 577 | 0 | 419 | 0 | | 29 | Ö | Ō | Ō | 0 | | 0 | 1500 | 1460 | 0 | 390 | 386 | Ö | | 30 | 0 | n n | 0 | Ö | | Ő | 1680 | 1720 | 0 | 336 | 420 | 0 | | 31 | Ő | | Ö | Ö | | Ő | | 1630 | | 351 | 0 | | | TOTAL | 723 | 173 | 644 | 1647 | 156 | 222 | 12377 | 26252 | 16031 | 12851 | 3829 | 11389 | | | | 5.767 | | | | | | | | | 3829
123.5 | | | MEAN | 23.32 | | 20.77 | 53.13 | 5.571 | 7.161 | 412.6 | 846.8 | 534.4 | 414.5 | | 379.6 | | MAX | 135 | 173 | 221 | 196 | 140 | 170 | 1680 | 1720 | 1410 | 666 | 421 | 653 | | MIN | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ### 01432000 WALLENPAUPACK CREEK AT WILSONVILLE, PA--Continued | STATIS | TICS OF | MONTHLY | MEAN DATA | FOR WATER | YEARS 1 | 926 - 2002, | BY WATER | R YEAR (WY |) (SINC | E REGULATI | ION) | | |------------------------------------|--------------------------------------|---------------------------------------|----------------------|-----------|---------------------------------------|----------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------| | | OCT | NOV | DEC | JAN | FEB | B MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN
MAX
(WY)
MIN
(WY) | 272.5
750
1956
1.32
1996 | 245.6
1012
1956
.000
2001 | 1242
1997
.000 | | 439.1
1112
1978
.000
1926 | 2 1125
3 1998
0 .000 | 460.2
1500
1958
.000
1926 | 350.8
1849
1996
.000
1926 | 377.2
1573
1972
.000
1958 | 339.9
965
1928
.000
1956 | 300.9
995
1969
.000
1956 | 329.9
1018
1987
.000
1956 | | SUMMARY STATISTICS | FOR 2001 CALEN | IDAR YEAR | FOR 2002 | WATER | YEAR | WATER YEA | RS 1926 - | 2002 | |------------------------------------|----------------|----------------|----------|-------|------------|-------------------|-----------|-------------| | ANNUAL TOTAL | 74466 | | 86294 | | | 250 | | | | ANNUAL MEAN
HIGHEST ANNUAL MEAN | 204 | | 236 | | | 359
<u>638</u> | 19 | 96 | | LOWEST ANNUAL MEAN | | | | | | 86.9 | | 26 | | HIGHEST DAILY MEAN | 1720 | Apr 12,13 | 1720 | May | 1 a | 9650 | May 25 19 | | | LOWEST DAILY MEAN | 0 | Jan 1 b | 0 | Oct | 6 b | 0 | Nov 4 19 | 25 b | | ANNUAL SEVEN-DAY MINIMUM | 0 | May 5 | 0 | Oct | 9 | 0 | Nov 4 19 | 25 | | 10 PERCENT EXCEEDS | 544 | | 633 | | | 915 | | | | 50 PERCENT EXCEEDS | 126 | | 0 | | | 239 | | | | 90 PERCENT EXCEEDS | 0 | | 0 | | | 0 | | | | ST | ATISTICS | OF | MONTHLY | MEAN D | ATA FO | R WATER | YEARS | 1910 | - 1925, | BY WATER | R YEAR (V | VY) (PR | IOR TO | REGU | LATION) | | |-----|----------|-----|---------|--------|--------|---------|-------|------|---------|----------|-----------|---------|--------|------|---------|------| | | 00 | CT | NOV | D | EC | JAN | FEE | 3 | MAR | APR | MAY | JUI | N | JUL | AUG | SEP | | ME | AN 23 | 35 | 271 | 3 | 84 | 490 | 426 | ; | 868 | 831 | 468 | 30' | 7 | 206 | 143 | 144 | | MA | X 54 | 42 | 627 | 10 | 43 | 1219 | 1031 | _ | 1656 | 1677 | 682 | 838 | 3 | 575 | 532 | 366 | | (W | Y) 193 | 13 | 1920 | 19 | 21 | 1911 | 1915 | ; | 1920 | 1916 | 1924 | 191' | 7 1 | 916 | 1915 | 1915 | | MI | N 28 | . 0 | 32.0 | 69 | . 5 | 104 | 156 | ; | 344 | 396 | 283 | 11! | 5 5 | 7.0 | 49.0 | 35.0 | | (W | Y) 193 | 10 | 1910 | 19 | 23 | 1918 | 1920 |) | 1924 | 1925 | 1922 | 192 | 1 1 | 912 | 1910 | 1910 | | SUMMARY STATISTICS | WATER YEARS | 1910 - 1925 | |--------------------|-------------|-------------| | | | | | MEAN | 397 | | | HIGHEST MEAN | 527 | 1916 | | LOWEST MEAN | 279 | 1923 | | HIGHEST DAILY MEAN | 4840 | Mar 29 1914 | | LOWEST DAILY MEAN | 8.0 | Sep 30 1917 | | SEVEN-DAY MINIMUM | 10 | Aug 14 1911 | | 10 PERCENT EXCEEDS | 910 | | | 50 PERCENT EXCEEDS | 240 | | | 90 PERCENT EXCEEDS | 60 | | a Also May 2, 15-17, 19, 30.b Many days each year. OCTOBER 1, 2001 TO SEPTEMBER 30, 2002 #### LAKES AND RESERVOIRS IN LACKAWAXEN RIVER BASIN 01428900 PROMPTON RESERVOIR.--Lat 41°35'18", long 75°19'39", Wayne County, Hydrologic Unit 02040103, at dam on West Branch Lackawaxen River, 0.3 mi north of Prompton, 0.4 mi upstream from highway bridge, and 0.5 mi upstream from Van Auken Creek. DRAINAGE AREA, 59.6 mi². PERIOD OF RECORD, December 1960 to current year. GAGE, data collection platform (U.S. Army Corps of Engineers datum). REMARKS.--Reservoir formed by an earth and rockfill dam with ungated bedrock spillway at elevation 1,205.00 ft. Storage began July 1960. Capacity at elevation 1,205.00 ft is 51,700 acre-ft. Ordinary minimum (conservation) pool is 1,125.00 ft, capacity, 3,420 acre-ft. Reservoir is used for flood control and recreation. Figures given herein represent total contents. Regulation is accomplished by discharge through an ungated tunnel. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 8,170 acre-ft, June 29, 1973, elevation, 1,138.40 ft; minimum (after first filling), 2,500 acre-ft, June 5, 1991, elevation, 1,121.46 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 4,490 acre-ft, Apr. 29, elevation, 1,128.53 ft; minimum
contents, 2,930 acre-ft, Aug. 12-20, elevation, 1,122.96 ft. 01429400 GENERAL EDGAR JADWIN RESERVOIR.--Lat 41°36'44", long 75°15'55", Wayne County, Hydrologic Unit 02040103, at dam on Dyberry Creek, 0.4 mi upstream from unnamed tributary, 2.4 mi north of Honesdale, and 2.9 mi upstream from mouth. DRAINAGE AREA, 64.5 mi². PERIOD OF RECORD, October 1959 to current year. GAGE, data collection platform (U.S. Army Corps of Engineers datum). REMARKS.--Reservoir formed by an earth and rockfill dam with ungated concrete spillway at elevation 1,053.00 ft. Storage began October 1959. Capacity at elevation of 1,053.00 ft is 24,500 acre-ft. Reservoir is used for flood control. Figures given herein represent total contents. Regulation is accomplished by discharge through an ungated tunnel. Since Oct. 1, 1996, pool elevations below 990 ft NGVD are not recorded. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 6,520 acre-ft, June 19, 1973, elevation, 1,017.40 ft; minimum contents, no storage many times EXTREMES FOR CURRENT YEAR .-- Maximum contents, 867 acre-ft, May 14, elevation, 992.67 ft; minimum contents, no storage many times. 01431700 LAKE WALLENPAUPACK.--Lat 41°27'35", long 75°11'10", Wayne County, Hydrologic Unit 02040103, at dam on Wallenpaupack Creek at Wilsonville, 1.2 mi south of Hawley, and 1.5 mi upstream from mouth. DRAINAGE AREA, 228 mi². PERIOD OF RECORD, January 1926 to current year. GAGE, vertical staff. Datum of gage is sea level (levels by Pennsylvania Power and Light Co.). REMARKS.--Lake formed by concrete gravity-type and earthfill dam, with concrete spillway in two sections at elevation 1,176.00 ft. Spillway equipped with 14 ft high roller gate on each section. Storage began Nov. 3, 1925; water in reservoir first reached minimum pool elevation January 1926. Total capacity at elevation 1,190.00 ft (top of gates), is 209,300 acre-ft, of which 108,900 acre-ft, above elevation 1,170.00 ft (minimum pool), is controlled storage. Prior to 1984, minimum pool elevation was 1,160.00 ft. Reservoir is used for generation of hydroelectric power. Figures given herein represent usable contents. Records prior to 1984 included additional usable contents of 48,900 acre-ft. COOPERATION.--Records provided by Pennsylvania Power and Light Co. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 129,300 acre-ft, Aug. 19-21, 1955, elevation, 1,193.45 ft; minimum (after first filling), 12,280 acre-ft (old minimum pool), Mar. 28, 1958, elevation, 1,162.60 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 94,680 acre-ft, June 10, elevation, 1,187.7 ft; minimum contents, 32,050 acre-ft, Sept. 28-30, elevation 1,176.5 ft. # Lakes and Reservoirs in Lackawaxen River Basin--Continued | MONTHEND ELEVATION, IN FI | Elevation (feet) | Contents
(acre-
feet) | Change in contents (equivalent in ft ³ /s) | Elevation (feet) | Contents
(acre-
feet) | Change in contents (equivalent in ft ³ /s) | |---------------------------|------------------|-----------------------------|---|------------------|-----------------------------|---| | | 01428900 | Prompton Re | servoir | 01429400 Gener | al Edgar Jadwii | n Reservoir | | Sept. 30 | 1,123.35 | 3,040 | | | 0 | | | Oct. 31 | 1,123.25 | 3,010 | -0.5 | | 0 | 0 | | Nov. 30 | 1,123.42 | 3,060 | +0.8 | | 0 | 0 | | Dec. 31 | 1,124.38 | 3,330 | +4.4 | | 0 | 0 | | CAL YR 2001 | | | -0.3 | | | 0 | | Jan. 31 | 1,126.00 | 3,780 | +7.3 | | 0 | 0 | | Feb. 29 | 1,124.94 | 3,480 | -5.4 | | 0 | 0 | | Mar. 31 | 1,126.34 | 3,880 | +6.5 | | 0 | 0 | | Apr. 30 | 1,127.34 | 4,160 | +4.7 | | 0 | 0 | | May 31 | 1,125.11 | 3,530 | -10.2 | | 0 | 0 | | June 30 | 1,124.76 | 3,430 | -1.7 | | 0 | 0 | | July 31 | 1,123.19 | 2,990 | -7.2 | | 0 | ő | | Aug. 31 | 1,123.22 | 3,000 | +0.2 | | 0 | ő | | Sept. 30 | 1,124.98 | 3,490 | +8.2 | | 0 | 0 | | WTR YR 2002 | | | +0.6 | | | 0 | | | 01431700 | Lake Wallenp | aupack | | | | | Sept. 30 | 1,179.3 | 47,710 | | | | | | Oct. 31 | 1,179.1 | 46,370 | -21.8 | | | | | Nov. 30 | 1,179.6 | 49,780 | +57.3 | | | | | Dec. 31 | 1,180.6 | 55,440 | +92.1 | | | | | CAL YR 2001 | | | +8.8 | | | | | Jan. 31 | 1,181.0 | 57,340 | +30.9 | | | | | Feb. 29 | 1,182.4 | 64,520 | +129 | | | | | Mar. 31 | 1,185.7 | 83,810 | +314 | | | | | Apr. 30 | 1,186.9 | 90,170 | +107 | | | | | May 31 | 1,186.9 | 90,170 | 0 | | | | | une 30 | 1,186.1 | 85,880 | -72.1 | | | | | uly 31 | 1,182.0 | 62,390 | -382 | | | | | Aug. 31 | 1,180.7 | 55,910 | -105 | | | | | Sept. 30 | 1,176.5 | 32,050 | -401 | | | | | WTR YR 2002 | | | -21.6 | | | | #### 01432160 DELAWARE RIVER AT BARRYVILLE, NY **LOCATION.--**Lat 41°28'31", long 74°54'46", Pike County, Pa., Hydrologic Unit 02040104, at Shohola-Barryville Bridge at Barryville, just upstream from Halfway Brook, and 1,000 ft upstream from Shohola Creek. **DRAINAGE AREA.--**2,659 mi². **PERIOD OF RECORD.-**-Water years 1958, 1968 to current year. CHEMICAL DATA: 1958 (d), 1969 (a), 1973 (b), 1974 (d), 1975 (b). NUTRIENT DATA: 1973 (b), 1974 (d), 1975 (b). BIOLOGICAL DATA: Bacteria.--1973 (b), 1974 (d), 1975 (b). #### PERIOD OF DAILY RECORD.-- WATER TEMPERATURES: October 1967 to September 1973, March 1975 to current year. **INSTRUMENTATION.-**-Water-temperature recorder provides 15-minute-interval readings. From March 1975 to February 1994, water-temperature recorder provided one-hour-interval readings. Prior to September 1973, water-temperature recorder provided continuous recordings. **REMARKS.--**Unpublished records of daily temperatures for May to September 1964-66 are available in files of the Geological Survey. Temperature probe may be influenced by solar radiation during periods of low flow. ### EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURES: Maximum (water years 1968-73, 1976-78, 1980-82, 1986-88, 1990-2002), 32.0°C, July 20, 21, 1980; minimum, 0.0°C on many days during winter periods. ### EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURES: Maximum, 30.0°C, July 4; minimum, 0.0°C on many days during winter period. | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--|--|--------------------------------------|-----------------------------------|---------------------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | | (| OCTOBER | | N | OVEMBER | | D | ECEMBER | | | JANUARY | | | 1
2
3
4
5 | 15.5
16.0
17.5
18.5
19.0 | 13.5
14.0
15.0
16.0
16.5 | 14.5
15.0
16.0
17.5
18.0 | 10.0
11.0
11.5
12.0
11.0 | 7.5
9.0
10.0
10.0
9.0 | 9.0
10.0
11.0
11.0 | 10.0
9.0
8.5
7.5
8.5 | 9.0
8.0
6.5
6.0
6.5 | 9.5
8.5
7.5
6.5
7.5 | 1.0
1.0
0.5
0.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 6
7
8
9
10 | 18.0
16.5
13.0
12.0
12.5 | 16.0
13.0
11.0
10.0 | 17.0
14.5
12.0
11.0
11.5 | 9.0
8.5
8.0
8.0 | 7.5
7.0
7.0
6.0
5.5 | 8.5
8.0
7.5
7.0
6.0 | 8.5
8.5
6.5
5.5
4.5 | 6.5
6.5
3.5
3.0
2.5 | 7.5
7.5
5.0
4.0
3.5 | 0.5
0.5
1.0
0.5
0.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 11
12
13
14
15 | 14.0
15.5
17.5
17.0
16.5 | 11.0
13.0
14.5
16.0
15.5 | 12.5
14.5
16.0
16.5
16.0 | 6.5
5.5
4.5
5.0
6.5 | 4.5
3.5
3.0
3.0
4.5 | 6.0
4.5
4.0
4.0
5.5 | 5.0
4.5
5.5
5.5 | 2.5
2.5
3.0
4.0
3.5 | 3.5
3.5
4.5
5.0
4.5 | 0.5
0.5
1.0
0.5
1.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 16
17
18
19
20 | 16.0
15.0
12.0
11.5
12.0 | 14.0
11.5
10.5
9.5
10.0 | 15.0
13.5
11.5
10.5
11.0 | 8.0
7.0
6.5
7.5
7.0 | 5.5
5.5
5.0
5.5
5.0 | 6.5
6.5
6.5
6.5 | 4.0
3.5
4.0
4.5
4.0 | 2.5
2.5
3.0
3.0
3.0 | 3.0
3.0
3.5
3.5 | 1.0
1.0
0.5
1.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.5 | | 21
22
23
24
25 | 12.5
13.5
14.0
16.0
15.5 | 10.0
12.0
12.5
13.5
14.5 | 11.5
13.0
13.5
14.5
15.0 | 5.5
5.0
5.0
6.0
8.5 | 4.0
3.5
3.5
4.5
5.5 | 5.0
4.5
4.5
5.0
7.0 | 3.5
2.5
2.0
2.0
2.0 | 2.0
1.0
0.0
1.0
0.5 | 3.0
2.0
1.0
1.5 | 1.0
1.0
1.0
0.5
1.0 | 0.0
0.0
0.0
0.0 | 0.5
0.0
0.0
0.0 | | 26
27
28
29
30
31 | 14.5
12.0
10.0
9.5
9.0 | 12.0
10.0
8.0
7.0
8.0
7.5 | 13.0
11.0
9.0
8.0
8.5
8.0 | 9.0
9.0
9.5
9.5
10.0 | 7.5
7.5
8.0
8.0
8.5 | 8.5
9.0
9.0
9.0 | 1.5
0.5
0.5
0.5
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | | MONTH | 19.0 | 7.0 | 13.2 | 12.0 | 3.0 | 7.1 | 10.0 | 0.0 | 3.7 | 1.5 | 0.0 | 0.0 | # 01432160 DELAWARE RIVER AT BARRYVILLE, NY--Continued | DAY | MAX | MIN | MEAN | |---|--|--
--|--|--|--|--|--|--|--|--|--| | | | FEBRUAR | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 1.0
1.5
1.0
1.5
0.5 | 0.0
0.0
0.0
0.0 | 0.5
0.5
0.0
0.5
0.0 | 3.5
3.5
5.5
5.0
3.0 | 1.5
1.5
3.0
2.5 | 2.5
2.5
4.5
3.5
2.0 | 9.5
8.5
8.5
8.0
6.5 | 8.0
7.0
6.0
5.5
4.5 | 9.0
7.5
7.5
6.5
5.5 | 11.0
10.5
11.0
12.0
14.0 | 7.5
9.5
9.0
8.5
10.5 | 9.0
10.0
10.0
10.0
12.0 | | 6
7
8
9
10 | 1.0
1.0
2.0
3.0
3.5 | 0.0
0.0
0.0
1.0 | 0.0
0.5
1.0
2.0
2.5 | 3.5
4.5
6.0
8.0 | 1.0
2.0
3.0
5.5
5.0 | 2.5
3.5
4.5
6.5 | 6.0
7.0
7.0
9.5
11.5 | 3.5
3.0
5.0
5.5
7.5 | 5.0
5.0
6.0
7.5
9.5 | 15.0
16.5
17.0
15.5
16.0 | 12.0
13.5
14.0
13.0
12.5 | 13.5
15.0
15.5
14.5
14.0 | | 11
12
13
14
15 | 3.5
2.0
1.5
1.0 | 1.0
0.0
0.5
0.0 | 3.0
1.0
1.0
0.5
0.5 | | | | | | | 16.5
15.5
13.5
11.5
12.5 | | | | 16
17
18
19
20 | 3.0
3.5
3.0
3.0
4.0 | 0.5
1.5
0.5
0.0 | | | | | | | | 14.0
14.5
13.5
11.5 | | 12.0
13.5
12.5
11.0
10.0 | | 21
22
23
24
25 | | 3.5
4.0
3.0
2.0
2.5 | | | | | | | | 11.0
13.0
15.5
16.0
17.5 | | | | 26
27
28
29
30
31 | 6.0
5.5
4.0
 | 3.0
4.0
2.0
 | 4.5
5.0
3.0
 | 4.5
3.5
5.0
7.0
8.5
9.5 | 3.0
2.5
2.0
3.5
6.0
7.5 | 3.5
3.0
3.5
5.0
7.0
8.5 | 10.5
11.5
11.5
9.5
9.0 | 8.0
7.5
9.5
8.5
8.0 | 9.5
10.0
10.0
9.0
8.5 | 18.0
18.5
19.0
16.5
17.5 | 15.0
16.0
16.0
15.0
14.5
15.5 | 16.0 | | MONTH | 6.0 | 0.0 | | | | | | | | 19.0 | | 13.2 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | MAX | MIN
AUGUST | | MAX | | | | DAY 1 2 3 4 5 | MAX
19.5
19.5
18.5
18.0
20.0 | JUNE | | MAX
26.5
26.5
28.0
30.0
27.5 | JULY | | | AUGUST | | : | SEPTEMBE | :R | | 1
2
3
4
5
6
7
8
9 | 19.5
19.5
18.5
18.0
20.0 | 17.0
17.5
16.5
16.0
16.0 | 18.0
18.5
17.5
17.0
18.0 | 26.5
26.5
28.0
30.0
27.5 | JULY
24.5
22.5
24.0
24.5
24.0 | 25.5
25.0
26.0
27.5
26.0 | | 23.0
23.5
23.5
26.0
25.5 | 26.0
26.5
26.5
27.5
26.5 | | 19.0
18.5
18.5
20.5
20.5 | 19.5
19.5
21.0
23.0
22.0
21.0
21.0
21.5 | | 1
2
3
4
5
6
7
8
9 | 19.5
19.5
18.5
18.0
20.0 | 17.0
17.5
16.5
16.0
16.0
17.0
15.5
15.5
16.0
18.0 | 18.0
18.5
17.5
17.0
18.0
18.5
16.0
16.5
17.5 | 26.5
26.5
28.0
30.0
27.5 | JULY 24.5 22.5 24.0 24.5 24.0 21.0 20.5 20.5 21.5 21.5 | 25.5
25.0
26.0
27.5
26.0
23.0
23.5
23.0
23.5 | 29.0
29.0
29.5
29.0
27.5 | 23.0
23.5
23.5
26.0
25.5
23.0
20.5
20.0
19.5
20.5 | 26.0
26.5
26.5
27.5
26.5
24.5
22.0
21.5
22.0
22.5 | 20.5
20.5
25.0
25.0
23.5 | 19.0
18.5
18.5
20.5
20.5
19.0
20.0
20.0
20.0 | 19.5
19.5
21.0
23.0
22.0
21.0
21.5
22.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 19.5
19.5
18.5
18.0
20.0
19.5
17.0
19.0
20.0
21.5
21.0
20.0
18.5 | 17.0
17.5
16.5
16.0
16.0
17.0
15.5
16.0
18.0
17.5
18.5
18.5 | 18.0
18.5
17.5
17.0
18.0
18.5
16.0
16.5
17.5
19.0
20.0
19.0
20.0 | 26.5
26.5
28.0
30.0
27.5
24.5
25.0
26.5
26.0 | 24.5
22.5
24.0
24.5
24.0
20.5
21.5
21.5
21.5
19.5
19.5
19.5
22.5 | 25.5
25.0
26.0
27.5
26.0
23.0
23.0
23.5
23.5
22.5
22.5
24.0 | 29.0
29.0
29.5
29.0
27.5
26.5
23.5
24.0
24.5
25.0
25.5
26.5
27.0 | 23.0
23.5
23.5
26.0
25.5
20.0
20.5
20.5
20.5
20.5
20.5
20 | 26.0
26.5
26.5
27.5
26.5
22.0
21.5
22.0
22.5
23.5
24.0
25.0
25.5 | 20.5
20.5
25.0
25.0
23.5
23.0
22.5
23.0
24.5
25.0
21.0
20.5
21.1 | 19.0
18.5
18.5
20.5
20.5
19.0
20.0
20.0
20.0
20.5
19.5
17.0
17.0
18.0 | 19.5
19.5
21.0
23.0
22.0
21.0
21.5
22.0
22.5
21.0
19.0
19.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 19.5
19.5
18.5
18.0
20.0
19.5
17.0
20.0
21.5
21.0
20.0
21.5
21.0
18.5
16.5 | 17.0
17.5
16.5
16.0
16.0
17.0
15.5
16.0
18.0
17.5
18.5
16.5
16.5
16.5
17.0 | 18.0
18.5
17.5
17.0
18.0
18.5
16.0
16.5
17.5
19.0
19.0
17.5
16.0
17.5
16.0 | 26.5
26.5
28.0
30.0
27.5
24.5
25.0
26.5
26.0
26.5
26.0
26.5
26.0
26.5
27.5 | 24.5
22.5
24.0
24.5
24.0
20.5
20.5
21.5
21.5
19.5
19.5
19.5
22.5
22.5
21.5
22.5
23.0 | 25.5
25.0
26.0
27.5
26.0
23.0
23.5
23.5
23.5
22.5
24.0
24.0
23.5
23.5
25.0
25.0 | 29.0
29.0
29.5
29.0
27.5
26.5
23.5
24.0
24.5
25.0
25.5
27.0
27.0
26.0
26.0
26.5
26.5 | 23.0
23.5
23.5
26.0
25.5
20.5
20.5
20.5
20.5
20.5
22.5
23.0
29.5
20.5
20.5
20.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23 |
26.0
26.5
26.5
27.5
26.5
22.0
21.5
22.0
22.5
23.5
24.0
25.5
25.0
25.0
25.0
25.0 | 20.5
20.5
25.0
25.0
23.5
23.0
22.5
23.0
24.5
25.0
21.0
20.5
21.5
21.5
22.0
22.0 | 19.0
18.5
18.5
20.5
20.5
20.5
19.0
20.0
20.0
20.0
20.0
17.0
18.0
20.0
19.5
18.5
18.5
18.5 | 19.5
19.5
21.0
23.0
22.0
21.0
21.5
22.5
21.0
19.0
19.0
19.5
20.5
20.5
20.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 19.5
19.5
18.5
18.0
20.0
19.5
17.0
20.0
21.5
21.0
20.0
18.5
16.5
18.0
18.5
19.5
22.0
23.0
24.5
25.5 | 17.0
17.0
16.5
16.0
16.0
17.0
15.5
16.0
18.0
17.5
18.5
16.5
16.5
16.5
17.0
16.0
16.5
17.0
18.0 | 18.0
18.5
17.5
17.0
18.0
18.5
16.0
16.5
17.5
19.0
20.0
19.0
17.5
16.0
16.5
17.0
19.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0 | 26.5
26.5
28.0
30.0
27.5
24.5
25.0
26.5
26.0
26.5
26.0
26.5
27.5
27.5
28.5
29.0
28.0
27.0 | 24.5
22.5
24.0
24.5
24.0
20.5
21.5
21.5
21.5
21.5
22.5
22.5
22.5
22 | 25.5
25.0
26.0
27.5
26.0
23.0
23.5
23.0
23.5
22.5
23.0
24.0
24.0
25.0
25.0
25.0
25.5
26.0 | 29.0
29.0
29.5
29.0
27.5
26.5
23.5
24.0
24.5
25.0
27.0
26.0
26.0
26.0
26.0
25.0
23.5
24.0
27.0 | 23.0 23.5 23.5 26.0 25.5 20.0 20.5 20.5 20.5 20.5 21.5 22.0 23.5 24.0 23.5 23.5 23.5 23.5 23.5 23.5 23.5 | 26.0
26.5
26.5
27.5
26.5
27.5
22.0
21.5
22.0
22.5
23.5
24.0
25.5
25.0
25.0
25.0
25.0
25.0
25.0
25 | 20.5
20.5
25.0
25.0
23.5
23.0
22.5
23.0
24.5
25.0
21.0
20.5
21.5
21.5
21.5
22.0
22.0
22.5
21.5
21.5 | 19.0
18.5
18.5
20.5
20.5
20.5
20.5
19.0
20.0
20.0
20.0
17.0
18.0
20.0
19.5
18.5
18.5
18.5
19.0 | 19.5
19.5
19.5
21.0
23.0
22.0
21.0
21.5
22.5
22.0
22.5
21.0
19.0
19.5
20.5
20.5
20.5
20.0
21.0 | # 01432805 DELAWARE RIVER AT POND EDDY, NY LOCATION.--Lat 41°26′20", long 74°49′11", Pike County, Pa., Hydrologic Unit 02040104, at interstate bridge at Pond Eddy, 450 ft downstream from Mill Brook, and 4.5 mi upstream from Mongaup River. **DRAINAGE AREA.--**2,820 mi². #### PERIOD OF DAILY RECORD.-- WATER TEMPERATURES: October 1973 to current year. INSTRUMENTATION.--Water-temperature recorder provided 15-minute-interval readings. Prior to August 1994, water-temperature recorder provided one-hour-interval readings. # EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURES: Maximum (water years 1976, 1978, 1980-81, 1983-84, 1986, 1989-90, 1992-2002) 31.5°C, July 5, 1999; minimum (water years 1974, 1977-78, 1980, 1983-2002), 0.0°C on many days during winter periods, except 1978, 1980, 1985. **EXTREMES FOR CURRENT YEAR.--** WATER TEMPERATURES: Maximum, 30.0°C, Aug. 4; minimum, 0.0°C on many days during winter period. | DAY | MAX | MIN | MEAN | |----------------------------------|---|--------------------------------------|--------------------------------------|-------------------------------------|-----------------------------------|---------------------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | | | OCTOBER | | | NOVEMBE | R | D | ECEMBER | t | | JANUARY | | | 1
2
3
4
5 | 16.5
17.5
18.0
19.5
19.5 | 14.0
14.0
15.5
16.5 | 15.0
15.5
16.0
17.5
18.0 | 9.5
10.5
12.0
11.5
11.0 | 7.5
9.0
10.5
10.5
9.0 | 8.5
10.0
11.0
11.0 | 10.5
9.5
8.0
7.5
8.0 | 9.5
8.0
7.0
6.5
6.5 | 9.5
8.5
7.5
7.0
7.0 | 0.5
0.5
0.5
0.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 6
7
8
9
10 | 18.0
16.5
13.5
12.5
13.0 | 16.5
13.5
12.0
10.5
10.5 | 17.5
15.0
12.5
11.5 | 9.0
9.0
8.5
8.0
7.5 | 8.0
7.5
7.5
6.5
6.0 | 8.5
8.0
7.5
7.5
6.5 | 8.0
8.5
7.5
5.0
4.5 | 7.0
7.5
5.0
4.0
3.5 | 7.5
8.0
6.5
4.5
4.0 | 0.5
0.5
0.5
0.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 11
12
13
14
15 | 14.5
15.5
17.0
17.0
17.0 | 11.5
13.0
15.0
16.0
15.5 | 12.5
14.0
15.5
16.5 | 6.5
5.5
5.0
5.0
6.5 | 5.5
4.0
3.5
3.5
4.5 | 6.0
4.5
4.0
4.0
5.5 | 4.5
4.0
4.5
5.5 | 3.5
3.0
3.5
4.5
4.0 | 4.0
3.5
4.0
5.0
5.0 | 0.0
0.5
0.5
0.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 16
17
18
19
20 | 16.0
14.5
12.5
12.0
12.0 | 14.5
12.5
11.0
10.5
10.5 | 15.0
14.0
11.5
11.0 | 7.5
7.0
7.0
7.5
7.0 | 5.5
6.0
5.5
6.0 | 6.5
6.5
6.0
6.5
6.5 | 4.0
3.5
4.0
4.0 | 3.0
3.0
3.0
3.5
3.5 | 3.5
3.0
3.5
3.5
3.5 | 0.5
0.5
0.5
0.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.5
0.5 | | 21
22
23
24
25 | 12.5
13.5
14.0
16.0
16.0 | 10.5
12.0
13.0
13.5
14.5 | 11.5
12.5
13.0
14.5
15.0 | 6.0
5.5
5.5
6.0
7.5 | 5.0
4.0
4.0
4.5
5.5 | 5.5
4.5
4.5
5.0
6.5 | 3.5
2.5
2.0
2.5
1.5 | 2.5
1.5
1.5
1.5 | 3.0
2.0
1.5
2.0 | 0.5
0.5
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.5
0.0
0.0
0.0 | | 26
27
28
29
30
31 | 14.5
12.0
10.0
9.5
9.5
8.5 | 12.0
10.0
8.5
8.0
8.0 | 13.5
11.0
9.5
8.5
8.5 | 8.5
8.5
9.5
9.0
9.5 | 7.5
8.0
8.0
8.5
8.5 | 8.0
8.5
8.5
9.0 | 1.0
0.5
0.5
0.5
0.5 | 0.0
0.0
0.0
0.0
0.0 | 1.0
0.0
0.0
0.0
0.0 | 0.5
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | | MONTH | 19.5 | 8.0 | 13.3 | 12.0 | 3.5 | 7.1 | 10.5 | 0.0 | 3.9 | 0.5 | 0.0 | 0.0 | # 01432805 DELAWARE RIVER AT POND EDDY, NY--Continued | DAY | MAX | MIN | MEAN | |---|--|---|--|--
--|--|--|--|--|--|--|--| | | | FEBRUAR | Y | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 0.5
0.5
0.5
0.5 | 0.0
0.0
0.0
0.0 | 0.0
0.5
0.0
0.5 | 3.0 | 2.5
2.0
3.0
3.0 | 3.0
2.5
4.0
4.0
2.5 | 9.5
8.5
8.0
7.5
6.5 | 8.5
7.5
7.0
6.0
5.0 | 9.0
8.0
7.5
6.5
6.0 | | 8.0
9.5
9.5
9.0
10.5 | 9.0
10.0
10.0
10.0
12.0 | | 7 | 1.5 | 0.0
0.0
0.5
1.0
2.0 | 0.0
0.5
1.0
1.5
2.5 | 3.5
4.0
6.0
7.0
7.5 | 2.0
2.5
3.5
5.0
5.5 | 2.5
3.5
4.5
6.0
7.0 | 5.5
6.0
6.5
9.0
11.0 | 4.0
3.5
5.5
6.5
8.5 | 5.0
5.0
6.0
7.5
9.5 | 15.0
16.5
16.5
16.5 | 14.0
14.5
14.0 | 15.0 | | 12 | 2.0 | 2.0
1.0
0.5
0.0 | 3.0
1.0
1.0
0.5
0.5 | 4.0 | 4.0
3.5
3.0
3.0
5.5 | 4.5
4.0
3.5
4.5
6.5 | 11.5
11.0
12.0
14.5
16.5 | 9.0
9.5
10.5
12.0
14.5 | 10.5
10.5
11.5
13.0
15.5 | 15.5
15.5
13.5
11.5
12.0 | 13.5
13.5
11.5
11.0
10.0 | 12.5
11.0 | | | 3.0 | 0.5
2.0
1.5
1.5
2.5 | 1.5
2.5
2.0
2.0
3.0 | 8.5
7.5
6.0
5.0
4.5 | 7.5
6.0
4.5
4.5
3.5 | 8.0
6.5
5.5
4.5
4.0 | 18.0
19.5
20.5
20.5
20.0 | 15.0
16.0
17.5
18.0
17.5 | 16.5
18.0
19.0
19.0
18.0 | 13.5
14.5
14.0
12.0
10.5 | 11.0
13.0
12.0
10.5
9.5 | 13.5 | | 21
22
23
24
25 | 5.0 | 3.0
4.5
4.0
3.0
3.5 | 4.0
5.0
4.5
4.0
4.0 | 5.5
5.0
3.5
5.0 | | | | | | 12.5
14.5
16.0
17.0 | | 12.5
14.5 | | 26
27
28
29
30
31 | 5.5
5.5
4.0
 | 4.0
4.0
2.5
 | 4.5
5.0
3.5
 | 3.5 | 3.5
3.0
2.5
4.0
6.0
8.0 | 4.0
3.5
3.5
5.0
7.0
8.5 | 10.0
11.0
11.0
10.0
8.5 | 8.5
8.5
10.0
8.5
8.0 | 9.5
10.0
10.5
9.5
8.5 | 17.5
18.5
19.0
17.0
18.0
18.5 | 16.0
17.0
17.0
16.0
15.5
16.5 | 17.5 | | MONTH | 5.5 | 0.0 | | | | | 20.5 | | | 19.0 | | 13.4 | | DAY | | | | | | | | | | | | | | 1 1 4 Y | MΔX | MTN | MEAN | MAY | MTN | MEAN | MAX | MTN | MEAN | MAY | MTN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | MAX | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMBE | MEAN | | 1
2
3
4
5 | 20.0
19.0
19.0
18.5
20.0 | JUNE | | 27.0
26.0
27.5
28.5
28.0 | JULY | | | AUGUST | | | SEPTEMBE | | | 1
2
3
4 | 20.0
19.0
19.0
18.5 | 17.5
18.0
17.0
16.5
17.0 | 18.5
18.5
18.0
17.5
18.5 | | JULY
24.5
24.0
25.0
26.0
25.0 | 25.5
25.5
26.0
27.0
26.5 | | 25.0
25.5
25.5
26.0
26.5 | 26.0
26.5
27.0
27.5
27.5 | | 19.5
19.0
19.5
21.5
22.0 | 20.0
19.5
21.0
22.5 | | 1
2
3
4
5
6
7
8
9 | 20.0
19.0
19.0
18.5
20.0
20.0
18.0
17.5
19.0 | JUNE 17.5 18.0 17.0 16.5 17.0 18.0 16.5 15.5 16.5 18.0 18.5 | 18.5
18.5
18.0
17.5
18.5
19.0
17.0
16.5
17.5 | 27.0
26.0
27.5
28.5
28.0 | 24.5
24.0
25.0
25.0
25.0
25.0
22.5
21.5
22.0
23.0
22.5 | 25.5
25.5
26.0
27.0
26.5
23.5
23.0
24.0
23.5
23.5 | 28.5
28.5
29.5
30.0
28.5 | 25.0
25.5
25.5
26.0
26.5
24.5
22.0
20.5
20.5
21.5 | 26.0
26.5
27.0
27.5
27.5
25.5
23.0
22.0
22.5
23.0 | 21.0
20.0
23.5
25.0
24.5 | 19.5
19.0
19.5
21.5
22.0
20.5
20.0
20.5
20.5
20.5 | 20.0
19.5
21.0
22.5
22.5
21.5
21.5
22.0
22.5
23.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 20.0
19.0
19.0
18.5
20.0
20.0
17.5
19.0
20.5
21.5
21.5
21.0 | JUNE 17.5 18.0 17.0 16.5 17.0 18.0 16.5 15.5 16.5 18.0 18.5 20.0 19.5 17.5 | 18.5
18.5
18.0
17.5
18.5
19.0
17.0
16.5
17.5
19.0
20.0
20.5
20.0
18.0 | 27.0
26.0
27.5
28.5
28.0
25.5
24.5
26.5
24.5
25.5
25.5 | 24.5
24.0
25.0
25.0
25.0
26.0
25.0
22.5
21.5
22.0
22.5
21.0
20.5
21.5
21.5 | 25.5
25.5
26.0
27.0
26.5
23.5
23.0
24.0
23.5
23.5
22.5
22.5
23.0
23.0 | 28.5
28.5
29.5
30.0
28.5
27.5
24.5
25.0
25.5
26.5
27.0
27.5 | 25.0
25.5
25.5
26.0
26.5
24.5
22.0
20.5
20.5
21.5
22.0
23.0
24.0
24.5 | 26.0
26.5
27.0
27.5
27.5
25.5
23.0
22.0
22.5
23.0
24.0
24.5
25.5
26.0 | 21.0
20.0
23.5
25.0
24.5
24.0
23.5
25.0
25.5
23.0
21.5
21.5 | 19.5
19.5
19.5
21.5
22.0
20.5
20.0
20.5
22.0
20.5
22.0 | 20.0
19.5
21.0
22.5
22.5
22.5
21.5
22.0
22.5
23.0
22.5
23.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 20.0
19.0
19.0
18.5
20.0
20.0
17.5
19.0
20.5
21.5
21.5
21.0
19.5
17.5 | JUNE 17.5 18.0 17.0 16.5 17.0 18.0 16.5 15.5 16.5 18.0 18.5 20.0 19.5 17.5 16.0 16.0 16.5 17.0 18.0 | 18.5
18.5
18.0
17.5
18.5
19.0
17.0
16.5
17.5
19.0
20.0
20.0
18.0
16.5
17.5
18.0
19.5 | 27.0
26.0
27.5
28.5
28.0
25.5
24.5
24.5
25.5
24.5
25.5
25.0
26.5
27.0
26.0 | 24.5
24.0
25.0
25.0
25.0
22.5
21.5
22.0
23.0
22.5
21.5
21.5
22.5
21.5
22.5
21.5
22.5
21.5
22.5
21.5
22.5
21.5
22.5
21.5
22.5
22 | 25.5
25.5
25.5
26.0
27.0
26.5
23.5
23.5
23.5
23.5
22.5
23.0
24.5
24.5
24.0
25.5 | 28.5
28.5
29.5
30.0
28.5
27.5
24.5
24.0
25.0
25.5
26.5
27.5
28.0
27.5
28.0 | 25.0
25.5
25.5
26.0
26.5
24.5
22.0
20.5
20.5
21.5
22.0
23.0
24.5
25.0
24.5
25.0
24.5
24.5 | 26.0
26.5
27.0
27.5
27.5
25.5
23.0
22.0
22.5
23.0
24.0
24.5
26.0
26.0
25.5
26.0
25.5
26.0
25.5 | 21.0
20.0
23.5
25.0
24.5
24.0
23.5
25.0
25.5
21.5
21.5
21.0
22.0
23.5
22.5
21.5 | 19.5
19.5
19.5
21.5
22.0
20.5
20.0
20.5
22.0
20.5
22.0
20.5
22.0
20.5
22.0
20.5
22.0 | 20.0
19.5
21.0
22.5
22.5
22.5
21.5
21.5
22.0
22.5
23.0
22.0
19.5
19.0
20.0
20.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 20.0
19.0
19.0
18.5
20.0
20.0
17.5
19.0
20.5
21.5
21.5
21.0
19.5
17.5
18.0
20.2
21.0
22.0
22.5
23.5
25.5
25.5 | JUNE 17.5 18.0 17.0 16.5 17.0 18.0 16.5 15.5 16.5 18.0 18.5 20.0 19.5 17.5 16.0 16.0 16.5 17.0 20.0 21.0 23.5 23.5 | 18.5
18.5
18.0
17.5
18.5
19.0
17.0
16.5
17.5
19.0
20.0
20.0
18.0
16.5
17.5
18.0
19.5
20.5
20.5 | 27.0
26.0
27.5
28.5
28.0
25.5
24.5
25.5
24.5
25.5
25.0
26.5
27.0
26.0
27.0
26.0
27.0 | 24.5 24.0 25.0 25.0 25.0 22.5 21.0 23.0 22.5 21.5 21.5 22.5 21.5 22.5 24.0 22.5 24.0 24.5 24.5 24.0 | 25.5
25.5
26.0
27.0
26.5
23.5
23.5
23.5
23.5
22.5
23.0
24.5
24.0
25.5
24.0
25.5
24.0
25.5
25.0
25.5
25.0
25.5
25.0 | 28.5
28.5
29.5
30.0
28.5
27.5
24.5
24.0
25.0
25.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5 | 25.0
25.5
25.5
26.0
26.5
24.5
22.0
20.5
21.5
22.0
23.0
24.0
24.5
25.0
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5 | 26.0
26.5
27.0
27.5
27.5
25.5
23.0
22.5
23.0
24.0
24.5
25.5
26.0
26.0
25.5
25.5
26.0
26.0
27.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28 | 21.0
20.0
23.5
25.0
24.5
24.0
23.5
25.0
25.5
21.5
21.0
22.0
23.5
21.5
21.5
21.5
21.5
21.5
22.0
23.5 | 19.5
19.5
19.5
21.5
22.0
20.5
20.5
20.5
22.0
20.5
20.5
20 |
20.0
19.5
21.0
22.5
22.5
22.5
21.5
21.5
22.0
22.5
23.0
22.5
23.0
20.0
20.5
21.0
20.0
20.5
21.0
22.5
21.0 | # 01434000 DELAWARE RIVER AT PORT JERVIS, NY (Pennsylvania Water-Quality Network Station LOCATION.--Lat 41°22'14", long 74°41'52", Pike County, PA, Hydrologic Unit 02040104, on right bank 250 ft downstream from bridge (on U.S. Highways 6 and 209) between Port Jervis, N.Y. and Matamoras, PA, 1.2 mi upstream from Neversink River, and 6.5 mi downstream from Mongaup River. **DRAINAGE AREA.--**3,070 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1904 to current year. REVISED RECORDS.--WSP 1031: 1905-36. WDR NY-71-1: 1970. WDR NY-82-1: Drainage area. WDR NY-86-1: 1979-80. GAGE.--Water-stage recorder. Datum of gage is 415.35 ft above National Geodetic Vertical Datum of 1929. October 1904 to August 13, 1928, non-recording gage at bridge 250 ft upstream at present datum; operated by U.S. Weather Service prior to June 20, 1914. REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow regulated by Lake Wallenpaupack (station 01431700) and by Toronto, Cliff Lake, and Swinging Bridge Reservoirs and smaller reservoirs. Large diurnal fluctuations at medium and low flows caused by powerplants on tributary streams. Subsequent to September 1954, entire flow from 371 mi² of drainage area controlled by Pepacton Reservoir, and subsequent to October 1963, entire flow from 454 mi² of drainage area controlled by Cannonsville Reservoir. Information on the above lakes and reservoirs can be found in the annual Water-Data Report NY-02-1. Part of flow from these reservoirs diverted for New York City municipal supply. Remainder of flow (except for conservation releases and spill) impounded for release during periods of low flow in the lower Delaware River basin, as directed by the Delaware River Master. Satellite and telephone gage-height telemeters and National Weather Service telephone gage-height telemeter at station. **EXTREMES FOR PERIOD OF RECORD.-**-Maximum discharge prior to current degree of regulation, 233,000 ft³/s, Aug. 19, 1955, gage height, 23.91 ft, from floodmarks in gage house, from rating curve extended above 89,000 ft³/s, on basis of slope-area measurement of peak flow; maximum discharge since current degree of regulation, 134,000 ft³/s, Jan. 20, 1996, gage height, 18.37 ft; maximum gage height, 26.6 ft, Feb. 12, 1981 (ice jam), from floodmarks; minimum observed discharge, 175 ft³/s, Sept. 23, 1908, gage height, 0.6 ft. **EXTREMES OUTSIDE PERIOD OF RECORD.-**The U.S. Weather Bureau reported a discharge of 205,000 ft³/s, Oct. 10, 1903, gage height, 23.1 ft, from rating curve extended above 70,000 ft³/s, by velocity-area studies; maximum gage height, 25.5 ft, Mar. 8, 1904 (ice jam). EXTREMES FOR CURRENT YEAR.--Maximum discharge, 25,400 ft³/s, May 14, gage height, 7.68 ft; minimum, 560 ft³/s, Jan. 20, gage height, 1.53 ft, result of freezeup. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 #### DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR MAY JUN JUL AUG SEP e980 2030 872 4790 1830 1670 e980 e940 e1100 ---TOTAL MEAN MAX MIN STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1964 - 2002, BY WATER YEAR (WY) MEAN 1978 1996 1976 1977 1984 1972 1973 1987 MAX (WY) (WY) e Estimated. # 01434000 DELAWARE RIVER AT PORT JERVIS, NY--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1964 - 2002 | |---|---|---|---| | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | 1225225
3357
32600 Apr 10
985 Dec 11
1100 Dec 8
5880
1920 | 1162320
3184
23900 May 14
666 Jan 20
842 Jan 16
7190
1830 | 4698 7216 1973 2028 1965 95200 Jan 20 1996 385 Jul 6 1965 432 Jul 1 1965 10200 2800 | | 90 PERCENT EXCEEDS | 1410 | 1330 | 1500 | CURRENT WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR. ### 01434000 DELAWARE RIVER AT PORT JERVIS, NY--Continued (Pennsylvania Water-Quality Network Station) ### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1957-60, 1964 to January 1994, June 1997, 1999 to August 2001, April 2002 to current year. CHEMICAL DATA: 1958-59 (e), 1964-65 (c), 1966 (a), 1967-68 (c), 1969-76 (d), 1987 (b), 1988-89 (c), 1990-91 (b), 1992, 1997 (a), 1999-2001 (d). MINOR ELEMENTS DATA: 1970, 1972-73 (a), 1974-76 (c), 1987 (b), 1988-89 (c), 1990-91 (b), 1992 (a). PESTICIDE DATA: 1974 (a), 1987 (b), 1988-89 (c), 1990 (b), 1999 (c), 2000-01 (d). ORGANIC DATA: OC--1974 (b), 1975, 1999-2001 (d). NUTRIENT DATA: 1968 (a), 1969-76 (d), 1987 (b), 1988-89 (c), 1990 (b), 1999-2001 (d). BIOLOGICAL DATA: Bacteria--1973-76 (d) Phytoplankton--1974 (b), 1975-76 (c). Periphyton--1976 (a). SEDIMENT DATA: 1959, 1976 (c), 1988 (b), 1989 (c), 1990-91 (b), 1992 (a), 1999-2001 (d). #### PERIOD OF DAILY RECORD.-- SPECIFIC CONDUCTANCE: January to September 1973 WATER TEMPERATURE: February 1957 to September 1960, January to September 1973, June 1974 to January 1994, October 1998 to August 2001. SUSPENDED-SEDIMENT DISCHARGE: February 1957 to September 1960, March 1970 to June 1976. REMARKS.--Other data for the Water-Quality Network can be found on pages 410-425. #### EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: Maximum (water years 1957-59, 1973-81, 1983-84, 1988-93, 1999-2000), 30.5°C, July 5, 1999; minimum (water years 1958-60, 1973, 1975-93, 1999, 2001), 0.0°C on many days during winter periods, except 1984. SUSPENDED-SEDIMENT CONCENTRATION: (water years 1957-60, 1970-76): Maximum daily mean, 760 mg/L, June 29, 1973; minimum daily mean, less than 1 mg/L on many days. SUSPENDED-SEDIMENT DISCHARGE: (water years 1957-60, 1970-76): Maximum daily, 187,000 tons, June 29, 1973; minimum daily, 1 ton, Aug. 29, 1957. COOPERATION .-- Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
TOTAL
RECOV-
ERABLE
(MG/L
AS CA)
(00916) | MAGNE-
SIUM,
TOTAL
RECOV-
ERABLE
(MG/L
AS MG)
(00927) | ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | |----------------|---|--|---|---|---|--|--|---|--|--|--|--|--| | APR 2002 | | | | | | | | | | | | | | | 04
JUN | 0930 | 9813 | 5050 | 40 | 12.5 | 7.2 | 69 | 6.9 | 19 | 5.8 | 1.2 | 11 | 7.6 | | 05
AUG | 0930 | 9813 | 3990 | 40 | 9.3 | 7.3 | 75 | 17.9 | 20 | 5.9 | 1.2 | 12 | 7.4 | | 07 | 0900 | 9813 | 1550 | 40 | 8.3 | 7.7 | 98 | 22.9 | 26 | 7.5 | 1.8 | 17 | 7.7 | | Date | RESIDUE
AT 105
DEG. C,
DIS-
SOLVED
(MG/L)
(00515) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N)
(00620) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N)
(00615) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | PHOS-PHORUS
ORTHOTOTAL
(MG/LAS P)
(70507) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | COPPER,
TOTAL
RECOV-
ERABLE
(µG/L
AS CU)
(01042) | IRON,
TOTAL
RECOV-
ERABLE
(µG/L
AS FE)
(01045) | LEAD,
TOTAL
RECOV-
ERABLE
(µG/L
AS PB)
(01051) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(µG/L
AS MN)
(01055) | | APR 2002
04 | 210 | 2 | <.020 | .22 | <.040 | .48 | <.01 | .020 | 2.3 | <10 | 100 | <1.0 | 30 | | JUN | | _ | | | | | | | | | | | | | 05
AUG | 50 | <2 | <.020 | .08 | <.040 | .23 | <.01 | .020 | 2.9 | <10 | 270 | <1.0 | 40 | | | NICKEL, | ZINC, | |----------|---------|---------| | | TOTAL | TOTAL | | | RECOV- | RECOV- | | | ERABLE | ERABLE | | Date | (µG/L | (µg/L | | | AS NI) | AS ZN) | | | (01067) | (01092) | | | | | | APR 2002 | | | | 04 | <50 | <10 | | JUN | | | | 05 | < 50 |
<10 | | AUG | | | | 07 | < 50 | <10 | #### 01438500 DELAWARE RIVER AT MONTAGUE, NJ LOCATION.--Lat 41°18'33", long 74°47'44", Pike County, PA, Hydrologic Unit 02040104, on right bank 1,500 ft upstream from toll bridge (on U.S. Route 206) between Montague, NJ and Milford, PA, 0.8 mi downstream from Sawkill Creek, and at river mile 246.3. **DRAINAGE AREA**.--3,480 mi². #### WATER-DISCHARGE RECORDS **PERIOD OF RECORD.**—March 1936 to September 1939 (gage heights only, published as "at Milford, PA"). October 1939 to current year. Monthly discharge only for some periods, published in WSP 1302. REVISED RECORDS.--WDR-NJ-81-2: 1980. (WY) GAGE.--Water-stage recorder. Datum of gage is 369.93 ft above National Geodetic Vertical Datum of 1929. Prior to Feb. 9, 1940, nonrecording gage on upstream side of left span of subsequently dismantled bridge at present site at datum 70 ft lower. REMARKS.-- Records good. Diurnal fluctuation at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lake Wallenpaupack (station 01431700), Cliff Lake, and by Pepacton, Cannonsville, Swinging Bridge, Toronto, and Neversink Reservoirs. Information on the above lakes and reservoirs can be found in the annual Water-Data Report NJ-02-1. Several measurements of water temperature were made during the year. Satellite telemetry at station. #### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR MAY JUL AUG SEP APR JUN 1700 2950 2310 1960 1360 6450 1760 7770 2.2 TOTAL MEAN MAX MIN STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1940 - 2002, BY WATER YEAR (WY) 15120 9167 MEAN MAX (WY) MTN # 01438500 DELAWARE RIVER AT MONTAGUE, NJ--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEA | R WATER YEARS 1940 - 2002 | |--------------------------|------------------------|--------------------|-------------------------------| | ANNUAL TOTAL | 1379530 | 1288474 | | | ANNUAL MEAN | 3780 | 3530 | 5646 | | HIGHEST ANNUAL MEAN | | | 8621 1952 | | LOWEST ANNUAL MEAN | | | 2309 1965 | | HIGHEST DAILY MEAN | 35800 Apr 11 | 23800 May 1 | 4 187000 Aug 19 1955 | | LOWEST DAILY MEAN | 1180 Dec 11 | 943 Jan 2 | 1 412 Aug 23 1954 | | ANNUAL SEVEN-DAY MINIMUM | 1290 Dec 6 | 1050 Jan 1 | 6 565 Jul 1 1965 | | MAXIMUM PEAK FLOW | | 26300 May 1 | 4 a 250000 Aug 19 1955 | | MAXIMUM PEAK STAGE | | 11.91 May 1 | 4 35.15 Aug 19 1955 | | INSTANTANEOUS LOW FLOW | | 776 Jan 2 | 1 382 Aug 24 1954 | | 10 PERCENT EXCEEDS | 6630 | 7870 | 12000 | | 50 PERCENT EXCEEDS | 2200 | 2080 | 3400 | | 90 PERCENT EXCEEDS | 1590 | 1470 | 1600 | $[\]boldsymbol{a}~$ From rating curve extended above 90,000 ft^3/s on basis of flood-routing study. ### 01438500 DELAWARE RIVER AT MONTAGUE, NJ--Continued # WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1956-73, 1976-78, July 1991 to current year. COOPERATION.—Field data and samples for laboratory analyses were provided by the New Jersey Department of Environmental Protection. Determination of dissolved ammonia, total ammonia, dissolved nitrite, dissolved orthophosphate, biochemical oxygen demand, total suspended solids, fecal coliform, E. coli, and enterococcus bacteria was performed by the New Jersey Department of Health and Senior Services, Public Health and Environmental Laboratories, Environmental and Chemical Laboratory Services. Determination of chlorophyll a was performed by the New Jersey Department of Environmental Protection, Bureau of Freshwater and Biological Monitoring Laboratory. **COOPERATIVE NETWORK SITE DESCRIPTOR.**-- Delaware River Main Stem, New Jersey Department of Environmental Protection Watershed Management Area 1. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TUR-
BID-
ITY
FIELD
WATER
UNFLTRD
(NTU)
(61028) | UV ABSORB- ANCE 254 NM, WTR FLT (UNITS /CM) (50624) | UV ABSORB- ANCE 280 NM, WTR FLT (UNITS /CM) (61726) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | |-----------|---|--|--|--|--|---|---|--|--|---|--|--|--| | NOV
15 | 1030 | 1470 | .6 | .042 | .032 | 758 | 100 | 12.4 | 7.4 | 96 | 16.0 | 6.0 | 26 | | FEB 20 | 1030 | 2480 | 1.0 | .050 | .039 | 753 | 98 | 13.1 | 7.2 | 89 | 6.0 | 3.0 | 22 | | JUN
19 | 1030 | 6630 | 2.8 | .127 | .097 | 760 | 89 | 8.3 | 7.3 | 81 | 26.0 | 18.5 | 20 | | AUG
07 | 1100 | 2170 | 1.7 | .061 | .046 | 754 | 105 | 8.8 | 7.4 | 102 | 20.0 | 23.5 | 27 | | DATE | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC
UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
(90410) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA+
ORGANIC
DIS.
(MG/L
AS N)
00623) | | NOV
15 | 7.67 | 1.70 | .85 | 6.52 | 20 | 11.5 | <.1 | .9 | 6.9 | 56 | 49 | <.030 | .13 | | FEB 20 | 6.65 | 1.37 | .69 | 6.12 | 12 | 10.9 | <.1 | 2.4 | 8.2 | 52 | 45 | <.030 | .12 | | JUN
19 | 6.13 | 1.20 | .63 | 6.21 | 14 | 9.70 | <.1 | 2.4 | 6.8 | 40 | 42 | <.030 | .18 | | AUG
07 | 7.87 | 1.77 | .85 | 7.69 | 19 | 12.6 | <.1 | 1.2 | 7.5 | 71 | 51 | <.030 | .18 | | DATE | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN
DIS-
SOLVED
(MG/L
AS N)
(00602) | NITRO-
GEN,PAR
TICULTE
WAT FLT
SUSP
(MG/L
AS N)
(49570) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | CARBON,
INORG +
ORGANIC
PARTIC.
TOTAL
(MG/L
AS C)
(00694) | | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) | | NOV
15 | .030 | . 24 | <.003 | .36 | .05 | E.003 | | .006 | . 4 | <.1 | 2.0 | . 4 | <1.0 | | FEB 20 | <.030 | . 24 | .004 | .35 | <.02 | .006 | <.020 | .008 | .3 | <.1 | 1.8 | . 3 | <1.0 | | JUN
19 | .040 | .10 | <.003 | .28 | .04 | .013 | <.020 | .006 | .5 | <.1 | 3.6 | .5 | <1.0 | | AUG
07 | <.030 | .16 | <.003 | .35 | .06 | .016 | <.020 | .023 | .5 | <.1 | 2.5 | .5 | <1.0 | # 01438500 DELAWARE RIVER AT MONTAGUE, NJ--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | CHLORO-
PHYLL A
FLUORO-
METRIC | BORON,
DIS- | RESIDUE
TOTAL
AT 105
DEG. C, | |------|---|-------------------------------------|---------------------------------------| | DATE | METHOD
CORR.
(µG/L)
(32209) | SOLVED
(µG/L
AS B)
(01020) | | | NOV | | | | | 15 | | E10 | 2 | | FEB | | 77 | 0 | | 20 | | E7 | 2 | | 19 | 1.80 | E9 | <1 | | AUG | | | | | 07 | 1.00 | E9 | 1 | # WATER-COLUMN BACTERIA ANALYSES Samples collected synoptically during the summer months | DATE | TIME | COLI-
FORM,
FECAL,
EC
BROTH
(MPN)
(31615) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | ENTERO-
COCCI,
ME MF,
WATER
(COL/
100 ML)
(31649) | DATE | TIME | COLI-
FORM,
FECAL,
EC
BROTH
(MPN)
(31615) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | ENTERO-
COCCI,
ME MF,
WATER
(COL/
100 ML)
(31649) | |------|------|---|--|---|------|------|---|--|---| | MAY | | | | | JUN | | | | | | 08 | 1025 | <20 | <100 | 20 | 05 | 1037 | 40 | <10 | <100 | | 15 | 1030 | 110 | 100 | 110 | | | | | | |
22 | 1015 | 20 | <100 | <10 | | | | | | | 29 | 1020 | 1300 | 500 | 890 | | | | | | ## BUSH KILL BASIN ### 01439500 BUSH KILL AT SHOEMAKERS, PA (Pennsylvania Water-Quality Network Station) LOCATION.--Lat 41°05'17", long 75°02'17", Monroe County, Hydrologic Unit 02040104, on right bank 30 ft downstream from bridge on township route 523, 0.1 mi downstream from Saw Creek, 0.7 mi northwest of Shoemakers, and 2.0 mi southwest of Bushkill. **DRAINAGE AREA**.--117 mi². ### WATER-DISCHARGE RECORDS **PERIOD OF RECORD.**—October 1908 to current year. Monthly discharge only for some periods, published in WSP 1302. Prior to October 1928, published as Bushkill Creek near Shoemakers; October 1928 to September 1952, published as Bushkill Creek at Shoemakers. **REVISED RECORDS**.--WSP 756: Drainage area. WSP 1202: 1921, 1932(M), 1933, 1935-36, 1938(M), 1939-40, 1942, 1945, 1946(M), 1948(M). WSP 1302: 1909-15, 1920(M), 1922-29. WDR PA-89-1: 1988. GAGE.--Water-stage recorder. Datum of gage is 421.13 ft above National Geodetic Vertical Datum of 1929. Sept. 19, 1908, to Aug. 12, 1938, nonrecording gage, and Aug. 13, 1938, to June 20, 1956, water-stage recorder at site 50 ft upstream at same datum. **REMARKS.**—Records good except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. Satellite telemetry at station. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,100 ft³/s and maximum (*): | Date
May 2 | | me | rischarge
ft ³ /s
1,210 | Gage Heigh
(ft)
*3.51 | t | | Date
June | Tim
7 064 | e | ischarge
ft ³ /s | Gage Height
(ft)
3.48 | i | |------------------------------------|---|--|--|--|---|--|---|---|---|--|--|---| | | | | DISCHA | ARGE, CUBIC F | FEET PER SI | | TER YEAR OO
EAN VALUES | CTOBER 200 | 1 TO SEP | TEMBER 20 | 02 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 96
81
72
65
55 | 31
32
32
32
32
29 | 128
120
114
108
100 | e140
e140
e130
e130 | 146
170
151
144
127 | 101
98
224
236
191 | 352
318
296
288
259 | 494
516
513
439
398 | 546
433
360
314
284 | 113
106
95
83
74 | 30
e40
e50
e40
e32 | 26
23
21
19
21 | | 6
7
8
9
10 | 49
47
42
38
34 | 28
27
26
26
25 | 94
92
87
109
108 | 121
133
127
122
117 | e130
118
116
115
116 | 168
156
148
141
177 | 236
215
200
192
201 | 359
333
305
298
316 | 371
1070
752
579
477 | 64
60
55
51
52 | 28
24
21
19
18 | 21
20
16
11
10 | | 11
12
13
14
15 | 35
33
31
30
51 | 26
24
24
24
24 | 99
99
102
118
143 | 126
124
107
96
86 | 156
146
133
e110
119 | 173
163
154
146
142 | 193
177
172
188
405 | 296
326
622
938
802 | 394
334
298
381
486 | 45
40
38
36
35 | 17
15
14
13
13 | 9.0
8.6
8.2
8.0 | | 16
17
18
19
20 | 63
50
43
38
34 | 25
25
24
23
25 | 132
131
184
198
181 | 85
81
79
e80
e100 | 118
115
115
112
115 | 144
140
146
146
193 | 371
327
287
277
314 | 656
557
837
846
687 | 424
348
288
246
215 | 35
29
27
28
70 | 12
12
11
10
13 | 88
97
59
43
34 | | 21
22
23
24
25 | 32
31
30
29
28 | 25
25
23
24
33 | 160
145
134
146
138 | e96
e90
81
84
113 | 122
119
116
112
110 | 259
280
248
227
213 | 295
288
277
252
253 | 592
520
458
401
352 | 183
157
141
126
117 | 65
47
46
130
93 | 12
12
13
15
17 | 29
27
26
24
21 | | 26
27
28
29
30
31 | 28
28
29
30
30 | 85
71
56
51
58 | 125
117
136
135
e130
e120 | 112
111
113
118
126
134 | 109
111
108
 | 220
472
445
400
368
341 | 299
266
427
608
518 | 318
291
415
1010
678
546 | 125
218
183
148
123 | 63
54
47
45
41
35 | 18
15
13
24
43
35 | 20
45
124
105
80 | | TOTAL MEAN MAX MIN CFSM IN. | 1312
42.32
96
28
0.36
0.42 | 983
32.77
85
23
0.28
0.31 | 3933
126.9
198
87
1.08
1.25 | 3432
110.7
140
79
0.95
1.09 | 3479
124.2
170
108
1.06
1.11 | 6660
214.8
472
98
1.84
2.12 | 8751
291.7
608
172
2.49
2.78 | 16119
520.0
1010
291
4.44
5.13 | 10121
337.4
1070
117
2.88
3.22 | 1802
58.13
130
27
0.50
0.57 | 649
20.94
50
10
0.18
0.21 | 1055.8
35.19
124
8.0
0.30
0.34 | | STATIST | CICS OF M | ONTHLY M | EAN DATA | FOR WATER | YEARS 190 | 9 - 2002, | BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 121.6
773
1956
7.74
1965 | 207.9
643
1933
13.6
1965 | 262.1
841
1997
21.7
1999 | 257.5
807
1979
44.2
1981 | 272.1
706
1909
39.7
1934 | 431.3
1119
1936
156
1981 | 429.8
1002
1993
141
1985 | 304.7
773
1989
90.7
1941 | 194.5
919
1972
32.8
1962 | 127.6
747
1945
13.4
1999 | 96.47
864
1955
8.33
1964 | 91.98
569
1933
4.39
1964 | e Estimated. # BUSH KILL BASIN # 01439500 BUSH KILL AT SHOEMAKERS, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YE | TEAR FOR 2002 WATER | YEAR WATER YEARS 1909 - 2002 | |--------------------------|----------------------|---------------------|-----------------------------------| | ANNUAL TOTAL | 56468 | 58296.8 | | | ANNUAL MEAN | 155 | 160 | 233 | | HIGHEST ANNUAL MEAN | | | 419 1928 | | LOWEST ANNUAL MEAN | | | 95.4 1965 | | HIGHEST DAILY MEAN | 999 Mar | r 31 1070 J | Jun 7 11800 Aug 19 1955 | | LOWEST DAILY MEAN | 10 Sep | p 10 8.0 S | Sep 14 2.6 Sep 25 1964 | | ANNUAL SEVEN-DAY MINIMUM | 13 Sep | p 6 9.5 S | Sep 9 2.7 Sep 21 1964 | | MAXIMUM PEAK FLOW | | 1210 N | May 29 a 23400 Aug 19 1955 | | MAXIMUM PEAK STAGE | | 3.51 N | May 29 b 13.95 Aug 19 1955 | | INSTANTANEOUS LOW FLOW | | | 2.6 Sep 25 1964 | | ANNUAL RUNOFF (CFSM) | 1.32 | 1.37 | 1.99 | | ANNUAL RUNOFF (INCHES) | 17.95 | 18.54 | 27.04 | | 10 PERCENT EXCEEDS | 359 | 396 | 518 | | 50 PERCENT EXCEEDS | 120 | 112 | 160 | | 90 PERCENT EXCEEDS | 23 | 22 | 26 | $^{{\}bf a}~$ From rating curve extended above 2,600 ${\rm ft^3/s}$ on basis of slope-area measurement of peak flow. ${\bf b}~$ From floodmark. # BUSH KILL BASIN # 01439500 BUSH KILL AT SHOEMAKERS, PA--Continued (Pennsylvania Water-Quality Network Station) # WATER-QUALITY RECORDS **PERIOD OF RECORD**.--April 2002 to current year. **REMARKS.**—Other data for the Water-Quality Network can be found on pages 410-425. Some values for "dissolved" parameters exceed values for the corresponding "total" parameter. These results are within the limits of analytical precision and methods. **COOPERATION.**--Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection. ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | CALCIUM
TOTAL
RECOV-
ERABLE
(MG/L
AS CA)
(00916) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | MAGNE-
SIUM,
TOTAL
RECOV-
ERABLE
(MG/L
AS MG)
(00927) | |-----------------------|--|---|---|--|---|--|--|---|--|---|---|---|--| | APR 2002
02 | 1150 | 9813 | 317 | 30 | 12.3 | 6.9 | 37 | 8.2 | 13 | 3.31 | 3.2 | 1.08 | 1.1 | | JUN
03 | 1330 | 9813 | 355 | 30 | 9.7 | 6.8 | 36 | 17.7 | 13 | 3.34 | 3.5 | 1.01 | 1.1 | | AUG
06 | 1120 | 9813 |
28 | 30 | 9.0 | 7.5 | 57 | 22.5 | 17 | 4.38 | 4.4 | 1.33 | 1.3 | | Date | ANC
WATER
UNFLTRD
FET
LAB
(MG/L AS
CACO3)
(00417) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RESIDUE
AT 105
DEG. C,
DIS-
SOLVED
(MG/L)
(00515) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N)
(00620) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N)
(00615) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | PHOS-PHORUSORTHOTOTAL (MG/LAS P) (70507) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | OXYGEN
DEMAND,
BIO-
CHEM-
ICAL,
5 DAY
(MG/L)
(00310) | COPPER,
DIS-
SOLVED
(µG/L
AS CU)
(01040) | COPPER,
TOTAL
RECOV-
ERABLE
(µG/L
AS CU)
(01042) | | APR 2002
02
JUN | 5 | 7.2 | 20 | <2 | <.020 | <.04 | <.040 | .24 | .01 | .018 | 2.7 | <4 | <4 | | 03
AUG | 7 | 6.3 | 52 | 6 | <.020 | <.04 | <.040 | .12 | .02 | .020 | 1.4 | <4 | <4 | | 06 | 11 | 6.3 | 44 | 4 | <.020 | .28 | <.040 | .46 | .03 | .058 | .5 | <4 | <4 | | | | Date | IRON,
DIS-
SOLVED
(µG/L
AS FE)
(01046) | IRON,
TOTAL
RECOV-
ERABLE
(µG/L
AS FE)
(01045) | LEAD,
DIS-
SOLVED
(µG/L
AS PB)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µG/L
AS PB)
(01051) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(µG/L
AS MN)
(01055) | NICKEL,
DIS-
SOLVED
(µG/L
AS NI)
(01065) | NICKEL,
TOTAL
RECOV-
ERABLE
(µG/L
AS NI)
(01067) | ZINC,
DIS-
SOLVED
(µG/L
AS ZN)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µG/L
AS ZN)
(01092) | | | | | | PR 2002
02 | 40 | 150 | <1.0 | <1.0 | 10 | <4.0 | <4.0 | <5.0 | <5.0 | | | | | | UN
03 | 90 | 200 | <1.0 | <1.0 | 40 | <4.0 | <4.0 | 5.0 | 7.0 | | | | | A | .UG
06 | 60 | 70 | <1.0 | <1.0 | 10 | <4.0 | <4.0 | <5.0 | <5.0 | | | ## 01440400 BRODHEAD CREEK NEAR ANALOMINK, PA **LOCATION.**--Lat 41°05'05", long 75°12'54", Monroe County, Hydrologic Unit 02040104, on left bank, along State Highway 447, 1.5 mi upstream from Paradise Creek, 1.6 mi southeast of Henryville, and 2.3 mi north of Analomink. **DRAINAGE AREA**.--65.9 mi². PERIOD OF RECORD.--October 1957 to current year. GAGE.--Water-stage recorder. Datum of gage is 586.50 ft above National Geodetic Vertical Datum of 1929. Prior to Dec. 12, 1957, nonrecording gage at same site and datum. **REMARKS**.--Records good except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. Satellite telemetry at station. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,100 ft³/s and maximum (*): | Date
May 2 | | ime
945 | Discharge
ft ³ /s
*1,720 | Gage Height
(ft)
*5.27 | ht | | Date
No othe | | me | Discharge
ft ³ /s
than base | Gage Heigh
(ft)
discharge. | t | |--|--|--|---|---|--|--|---|---|--|--|--|--| | | | | DISCHA | ARGE, CUBIC | FEET PER S | | TER YEAR O | | 001 TO SE | PTEMBER 20 | 002 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | e36
e32
29
27
24 | 19
19
19
19 | 117
93
80 | e54
e52
e50
47
47 | 98
115
96
90
e80 | 54
52
191
158
124 | 234
197
183
177
155 | 280
307
286
232
205 | 368
261
210
180
162 | 62
57
52
e47
e44 | 21
21
35
24
22 | 16
18
16
15 | | 6
7
8
9 | 24
24
22
21
21 | 19
20
19
18
18 | 63
59
73 | 47
54
50
48
48 | 77
76
74
71
70 | 111
105
98
95
150 | 143
132
123
119
121 | 185
171
157
158
193 | 216
672
392
297
239 | 41
39
36
35
34 | 21
19
18
17
16 | 12
12
11
10 | | 11
12
13
14
15 | 20
20
20
20
20
43 | 17
17
17
17
17 | 63
67
83 | 52
54
51
48
46 | 129
100
89
80
77 | 128
112
108
105
99 | 109
101
102
118
258 | 156
219
461
655
435 | 201
173
159
241
281 | 31
30
29
29
29 | 16
15
14
13 | 10
9.9
9.9
9.8
19 | | 16
17
18
19
20 | 37
33
30
28
26 | 17
16
17
17 | 91
133
125 | 46
45
43
41
44 | 76
76
71
67
66 | 100
92
97
99
130 | 201
175
153
142
154 | 333
279
561
466
357 | 236
183
151
134
126 | 25 | 13
e12
e12
e12
12 | 127
52
33
26
22 | | 21
22
23
24
25 | 24
22
22
22
21 | 18
17
17
17
27 | 91
85
93 | 43
42
41
47
63 | 76
72
67
62
59 | 176
193
156
144
143 | 147
140
132
117
127 | 303
258
223
198
173 | 111
99
89
82
76 | 23
42 | 12
12
13
15
17 | 19
20
19
17
16 | | 26
27
28
29
30
31 | 21
21
20
20
20
19 | 63
45
38
37
62 | 74
66
63
59 | 58
58
62
70
80
85 | 58
61
58
 | 156
473
336
283
252
220 | 151
124
315
401
306 | 157
146
506
790
427
344 | 91
122
104
80
68 | 28
28 | 14
13
12
25
26
18 | 16
40
104
56
43 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 769
24.81
43
19
0.38
0.43 | 699
23.30
63
16
0.35
0.39 | 85.42
163
58
1.30 | 1616
52.13
85
41
0.79
0.91 | 2191
78.25
129
58
1.19
1.24 | 4740
152.9
473
52
2.32
2.68 | 5057
168.6
401
101
2.56
2.85 | 9621
310.4
790
146
4.71
5.43 | 5804
193.5
672
68
2.94
3.28 | 1066
34.39
62
22
0.52
0.60 | 523
16.87
35
12
0.26
0.30 | 801.6
26.72
127
9.8
0.41
0.45 | | STATIST | CICS OF I | MONTHLY | MEAN DATA | FOR WATER | YEARS 19 | 58 - 2002, | BY WATER | YEAR (WY | ") | | | | | MEAN
MAX
(WY)
MIN
(WY) | 70.15
237
1977
8.36
1964 | 122.0
336
1973
10.2
1965 | 508
1997
19.8 | 151.6
559
1996
15.1
1981 | 159.2
371
1981
41.8
1980 | 246.9
537
1977
92.7
1989 | 250.3
596
1983
84.0
1985 | 180.7
440
1989
62.3
1962 | 107.3
474
1972
23.2
1962 | 1969
10.6 | 40.75
159
1973
7.91
1999 | 52.53
464
1987
7.56
1964 | | e Es | stimated. | | | | | | | | | | | | # 01440400 BRODHEAD CREEK NEAR ANALOMINK, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENI | DAR YEAR | FOR 2002 WAT | ER YEAR | WATER YEARS | 1958 - | 2002 | |--------------------------|-----------------|-----------|--------------|---------|----------------|--------|---------------| | ANNUAL TOTAL | 32993 | | 35535.6 | | | | | | ANNUAL MEAN | 90.4 | | 97.4 | | 134 | | | | HIGHEST ANNUAL MEAN | | | | | 213 | | 1973 | | LOWEST ANNUAL MEAN | | | | | 59.6 | | 1965 | | HIGHEST DAILY MEAN | 774 | Mar 30 | 790 | May 29 | 6070 | Jul 28 | 1969 | | LOWEST DAILY MEAN | 10 | Sep 18,19 | 9.8 | Sep 14 | 5.1 | Aug 13 | 1999 | | ANNUAL SEVEN-DAY MINIMUM | 12 | Sep 13 | 10 | Sep 8 | 5.5 | Aug 7 | 1999 | | MAXIMUM PEAK FLOW | | | 1720 | May 28 | a 12900 | Jul 28 | 1969 | | MAXIMUM PEAK STAGE | | | 5.27 | May 28 | 11.82 | Jul 28 | 1969 | | INSTANTANEOUS LOW FLOW | | | | | 4.9 | Aug 7 | 1999 b | | ANNUAL RUNOFF (CFSM) | 1.37 | | 1.48 | | 2.03 | | | | ANNUAL RUNOFF (INCHES) | 18.62 | | 20.06 | | 27.58 | | | | 10 PERCENT EXCEEDS | 211 | | 227 | | 290 | | | | 50 PERCENT EXCEEDS | 63 | | 61 | | 84 | | | | 90 PERCENT EXCEEDS | 17 | | 17 | | 16 | | | $^{{\}bf a}$ From rating curve extended above 1,400 ft $^3\!/\!s$ on basis of slope-area measurement of peak flow. ${\bf b}$ Also Aug. 8, 12, 13, Sept. 5, 1999. ## PARADISE CREEK BASIN ## 01440485 SWIFTWATER CREEK AT SWIFTWATER, PA LOCATION.--Lat 41°05'38", long 75°19'21", Monroe County, Hydrologic Unit 02040104, on left bank at Aventis Pasteur Laboratories complex, at Discovery Drive in Swiftwater, Pocono Township, and 3.0 mi above mouth. **DRAINAGE AREA**.--6.59 mi². PERIOD OF RECORD.--April 2001 to current year. GAGE.--Water-stage recorder. Datum of gage is 1,114.73 ft above National Geodetic Vertical Datum of 1929. Prior to Apr. 18, 2001, nonrecording gage at site 500 ft downstream (datum undetermined). **REMARKS**.--Records good except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. Satellite telemetry at station. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 100 ft³/s and maximum (*): | Date
Sept. | | Time
345 | Discharge
ft ³ /s
*109 | Gage Heigl
(ft)
*1.59 | nt | | Date
No othe | | e | hischarge
ft ³ /s
than base | Gage Height (ft) discharge. | | |--|---|--------------------------------------|---|--|--|--|---
---|---|--|---|--| | | | | DISCHA | ARGE, CUBIC | FEET PER SI | | ΓER YEAR O
EAN VALUES | | I TO SEI | PTEMBER 20 | 02 | | | DAY | OCT | NOV | / DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 5.7
5.5
5.3
5.3 | 5.4
5.4
5.5
5.0 | 15
5 12
0 11 | e8.4
8.0
8.0
7.9
7.6 | 12
13
e12
e11
e11 | 8.4
8.8
28
18
17 | 24
21
21
20
19 | 23
27
25
23
21 | 23
21
19
18
18 | 11
11
10
9.8
9.5 | 6.5
6.3
6.3
6.1
6.3 | 5.5
5.3
4.9
4.8
4.5 | | 6
7
8
9
10 | 5.5
5.3
5.1
5.1
5.2 | 5.0
5.2
5.2 | 9.0
8.8
L 9.6 | e7.8
e8.0
7.6
7.6
7.8 | 10
10
9.8
9.6 | 16
15
14
14 | 18
17
17
17
17 | 20
19
18
18 | 31
62
33
27
25 | 9.4
9.4
9.0
8.9
8.7 | 6.3
6.0
6.0
5.7
5.6 | 4.5
4.5
4.4
4.2
4.2 | | 11
12
13
14
15 | 5.1
5.1
5.6
8.9 | 4.8
4.8
4.8
4.9 | 8 8.6
9 9.4
9 12 | 8.1
7.7
7.6
7.2
7.2 | 17
13
11
10 | 16
15
14
14
13 | 16
15
14
15
26 | 17
20
25
31
24 | 23
21
20
25
26 | 8.4
8.2
8.1
8.1 | 5.5
5.4
5.2
5.1
5.1 | 4.2
4.3
4.2
4.2
7.8 | | 16
17
18
19
20 | 6.1
6.3
5.8
5.7
5.7 | 5.0
4.9
4.7
5.2 | 9 11
7 15
7 15 | 7.2
7.2
6.9
e6.8
e6.8 | 10
10
9.7
9.5
e9.6 | 13
13
13
13
16 | 19
18
17
17 | 23
21
40
32
27 | 22
19
18
17
17 | 7.7
7.4
7.5
7.5 | 5.2
5.2
4.9
4.8
4.9 | 35
10
8.6
7.9
7.3 | | 21
22
23
24
25 | 5.6
5.7
5.7
5.7 | 4.9
5.0
5.0
4.9 |) 11
) 11
) 12 | 6.8
6.8
7.0
7.8
9.4 | 10
9.6
9.3
9.0
8.9 | 19
19
17
17 | 17
17
16
14
15 | 25
23
22
21
19 | 16
16
14
14
13 | 7.2
7.0
11
9.5
7.4 | 4.7
4.9
5.3
6.0
5.2 | 7.0
6.9
6.7
6.3 | | 26
27
28
29
30
31 | 5.7
5.8
5.7
5.8
e5.6
e5.6 | 9.7
6.6
6.2
6.9
18 | 9.7
9.5
9.3
9.0 | 8.1
8.0
8.2
8.8
9.8 | 9.0
9.1
8.8
 | 22
44
30
26
25
23 | 15
13
29
28
24 | 19
18
31
42
27
24 | 17
19
14
13
12 | 7.1
7.1
7.1
7.0
7.0
6.6 | 4.9
4.8
4.7
9.6
5.6
5.1 | 6.5
14
19
8.7
7.4 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 175.0
5.65
8.9
5.1
0.86
0.99 | 176.9
5.90
18
4.7
0.89 | 11.3
3 28
7 8.6
9 1.72 | 242.1
7.81
10
6.8
1.19
1.37 | 292.9
10.5
17
8.8
1.59
1.65 | 557.2
18.0
44
8.4
2.73
3.15 | 553
18.4
29
13
2.80
3.12 | 743
24.0
42
17
3.64
4.19 | 633
21.1
62
12
3.20
3.57 | 259.1
8.36
11
6.6
1.27
1.46 | 173.2
5.59
9.6
4.7
0.85
0.98 | 229.0
7.63
35
4.2
1.16
1.29 | | STATIST | CS OF | MONTHLY | MEAN DATA | FOR WATER | YEARS 200 | 1 - 2002, | BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 5.65
5.65
2002
5.65
2002 | 5.90
5.90
2002
5.90
2002 | 11.3
2 2002
11.3 | 7.81
7.81
2002
7.81
2002 | 10.5
10.5
2002
10.5
2002 | 18.0
18.0
2002
18.0
2002 | 18.4
18.4
2002
18.4
2002 | 18.5
24.0
2002
13.1
2001 | 18.1
21.1
2002
15.2
2001 | 8.43
8.50
2001
8.36
2002 | 6.21
6.84
2001
5.59
2002 | 7.64
7.65
2001
7.63
2002 | e Estimated. # PARADISE CREEK BASIN # 01440485 SWIFTWATER CREEK AT SWIFTWATER, PA--Continued | SUMMARY STATISTICS | FOR 2002 WATER YEAR | WATER YEARS 2001 - 2002 | |--------------------------|---------------------|-------------------------| | ANNUAL TOTAL | 4385.5 | | | ANNUAL MEAN | 12.0 | 12.0 | | HIGHEST ANNUAL MEAN | | 12.0 2002 | | LOWEST ANNUAL MEAN | | 12.0 2002 | | HIGHEST DAILY MEAN | 62 Jun 7 | 62 Jun 7 2002 | | LOWEST DAILY MEAN | 4.2 Sep 9 a | 4.2 Sep 9 2002 a | | ANNUAL SEVEN-DAY MINIMUM | 4.2 Sep 8 | 4.2 Sep 8 2002 | | MAXIMUM PEAK FLOW | 109 Sep 16 | 109 Sep 16 2002 | | MAXIMUM PEAK STAGE | 1.59 Sep 16 | 1.59 Sep 16 2002 | | ANNUAL RUNOFF (CFSM) | 1.82 | 1.82 | | ANNUAL RUNOFF (INCHES) | 24.76 | 24.77 | | 10 PERCENT EXCEEDS | 23 | 23 | | 50 PERCENT EXCEEDS | 9.4 | 9.4 | | 90 PERCENT EXCEEDS | 5.1 | 5.1 | a Also Sept. 10, 11, 13, 14. ## McMICHAEL CREEK BASIN ## 01441495 POCONO CREEK ABOVE WIGWAM RUN NEAR STROUDSBURG, PA LOCATION.--Lat 40°59'27", long 75°15'20", Monroe County, Hydrologic Unit 02040104, on right bank at bridge on SR2005, 150 ft upstream from Wigwam Run, 4.0 mi upstream from mouth, and 4.0 mi west of Stroudsburg, Pa. **DRAINAGE AREA**.--38.9 mi². PERIOD OF RECORD.--June 2002 to current year. GAGE.--Water-stage recorder. Datum of gage is 574.57 ft above National Geodetic Vertical Datum of 1929. **REMARKS**.--Records good except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. Satellite telemetry at station. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 800 ft³/s and maximum (*): | 1 | Date
Sept. | | Time
0700 | Disch
ft ³ /
*18 | 's
36 | Gage Heigh
(ft)
*9.56 | | ECOND WA | | Tir
peaks a | me
above ba | | | t | |---|---------------|-------|--------------|-----------------------------------|----------|-----------------------------|-----------|-----------|----------|----------------|----------------|----------|------------|----------------------| | 1 | | | | | DISCITA | KGL, CODIC | TELTTERSI | | | | or to ser i | LWBLK 20 | 02 | | | 2 | DAY | OCT | | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 4 | 2 | | | | | | | | | | | e33 | 10 | 13
14 | | 7 | 4 | | | | | | | | | | | 27 | 9.8 | 11
11
9.5 | | 8 | | | | | | | | | | | | | | 8.8
8.4 | | 11 | 8
9 | | | | | | | | | | | 20
19 | 9.5
9.0 | 8.0
7.7 | | 12 17 7.8 6 13 17 7.6 6 14 17 7.6 6 15 16 7.2 6 15 17 6.6 14 16 17 6.6 14 16 17 6.6 14 16 18 6 14 17 18 6 14 18 8.8 29 18 8 18 6 14 19 19 14 8.8 29 18 19 14 6.9 18 20 14 6.9 18 21 14 6.9 18 22 14 6.9 18 23 15 5 13 8.1 12 24 16 7.2 18 24 17 7.8 18 25 18 7.8 18 26 18 7.8 18 27 18 7.8 18 28 18 7.9 18 29 18 7.3 12 20 7.3 12 21 18 7.8 18 22 18 18 7.9 18 23 18 7.3 12 24 18 7.3 12 25 18 7.9 18 26 18 7.9 18 27 18 7.3 12 28 7.3 12 29 7.3 12 20 7.3 12 20 7.3 12 21 10 10 10 10 10 10 10 10 10 10 10 10 10 | | | | | | | | | | | | | | 7.4
6.8 | | 15 17 6.6 14 16 15 7.1 81 17 14 8.8 29 18 13 7.8 18 19 14 6.9 15 20 14 6.9 15 21 14 6.9 15 22 14 6.9 15 22 14 6.9 15 22 14 7.3 12 23 49 13 7.3 12 23 49 13 7.3 12 24 49 13 7.3 12 25 45 17 9.3 12 26 45 17 9.3 12 26 45 17 9.3 12 26 15 16 9.4 10 27 15 16 9.4 10 27 15 16 9.4 10 27 15 16 9.4 10 27 15 16 9.4 10 27 15 16 9.4 10 27 15 16 9.4 10 27 15 16 9.4 10 27 15 16 9.4 10 27 15 16 9.4 10 28 15 16 9.4 10 29 15 15 6 9.9 18 MAX 18.6 9.99 | 12
13 | | | | | | | | | | | 17
17 | 7.8
7.6 | 6.6
6.9 | | 17 14 8.8 29 18 13 7.8 118 19 14 6.9 15 20 14 6.9 15 20 14 6.9 15 20 14 6.9 15 21 14 6.9 15 22 14 6.9 15 22 14 9.7 13 21 49 13 7.3 12 22 49 13 7.3 12 24 45 17 9.3 12 24 45 17 9.3 12 25 45 17 9.3 12 26 39 17 12 10 26 15 1 16 9.4 10 27 15 1 15 8.5 43 28 15 8 15 7.9 77 29 15 8 15 7.9 77 29 11 13 31 11 13 31 11 13 31 11 13 31 11 13 31 11 13 31 11 13 31 11 13 31 11 13 31 11 13 31 11 13 32 11 6.6 9.99 18 MAX 15 18.6 9.99 18 MAX 16.6 9.99 18 MAX 18.6 | | | | | | | | | | | | | | 6.9
14 | | 19 14 6.9 15 20 14 9.7 13 21 55 13 8.1 12 22 49 13 7.3 12 23 45 17 9.3 12 24 39 17 12 10 26 39 17 12 10 26 51 16 9.4 10 27 51 16 9.4 10 27 51 16 9.4 10 27 51 16 9.4 10 27 51 16 9.4 10 28 51 16 9.4 10 29 51 16 9.4 10 20 51 16 9.4 10 21 11 11 11 11 11 11 11 11 11 11 11 11 1 | 17 | | | | | | | | | | | 14 | 8.8 | 81
29 | | 22 49 13 7.3 12 23 45 17 9.3 12 24 42 25 11 11 25 39 17 12 10 26 51 16 9.4 10 27 58 15 7.9 77 28 58 15 7.9 77 29 58 15 7.9 77 29 44 14 25 32 30 44 14 25 32 30 44 14 25 32 31 11 13 TOTAL 578 309.8 539 MEAN 18.6 9.99 18 MAX 11 6.6 6 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 2002 - 2002, BY WATER YEAR (WY) MEAN 18.6 9.99 18 MAX 18.6 9.99 18 MAX 11 6.6 9.99 18 MAX 18.6 9.99 18 MAX 18.6 9.99 18 MAX | 19 | | | | | | | | | | | 14 | 6.9 | 18
15
13 | | 23 45 17 9.3 12 24 42 25 11 11 25 39 17 12 10 26 51 16 9.4 10 27 91 15 8.5 43 28 58 15 7.9 77 29 58 15 7.9 77 29 58 15 7.9 77 29 44 14 25 32 30 44 14 25 32 31 11 13 TOTAL 18.6 9.99 18 MAX | | | | | | | | | | | | | | 12 | | 26 51 16 9.4 10 27 51 15 8.5 43 28 58 15 7.9 77 29 58 15 7.9 77 29 1 1 1 2 2 3 3 3 3 3 3 3 5 3 5 3 5 3 5 3 5 3 5 | 23
24 | | | | | | | | | | 45
42 | 17
25 | 9.3
11 | 12
11 | | 27 | | | | | | | | | | | | | | 10 | | 30 38 12 19 23 31 11 13 TOTAL 578 309.8 539 MEAN 18.6 9.99 18 MAX 36 25 MIN 11 6.6 6 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 2002 - 2002, BY WATER YEAR (WY) MEAN 18.6 9.99 18 MAX MIN 18.6 9.99 18 | 27
28 | | | | | | | | | |
91
58 | 15
15 | 8.5
7.9 | 43
77 | | MEAN 18.6 9.99 18 MAX 36 25 MIN 11 6.6 6 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 2002 - 2002, BY WATER YEAR (WY) MEAN 18.6 9.99 18 MAX 18.6 9.99 18 MAX 18.6 9.99 18 MAX 18.6 9.99 18 MAX 18.6 9.99 18 MIN 18.6 9.99 18 | 30 | | | | | | | | | | 38 | 12 | 19 | 23 | | MIN 11 6.6 6 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 2002 - 2002, BY WATER YEAR (WY) MEAN 18.6 9.99 18 MAX 18.6 9.99 18 (WY) 18.6 9.99 18 MIN 18.6 9.99 18 | MEAN | | | | | | | | | | | 18.6 | 9.99 | 539.0
18.0 | | MEAN 18.6 9.99 18 MAX 18.6 9.99 18 (WY) 18.6 9.99 18 MIN 18.6 9.99 18 | | | | | | | | | | | | | | 81
6.6 | | MAX 18.6 9.99 18 (WY) 2002 2002 20 MIN 18.6 9.99 18 | STATIST | CS OF | MONTE | HLY MEAN | DATA | FOR WATER | YEARS 200 | 2 - 2002, | BY WATER | YEAR (WY |) | | | | | MIN 18.6 9.99 18 | MAX | | | | | | | | | | | 18.6 | 9.99 | 18.0
18.0 | | | MIN | | | | | | | | | | | 18.6 | 9.99 | 2002
18.0
2002 | e Estimated. # McMICHAEL CREEK BASIN # 01441495 POCONO CREEK ABOVE WIGWAM RUN NEAR STROUDSBURG, PA--Continued JUNE 21, 2002 TO SEPTEMBER 30, 2002 ### 01442500 BRODHEAD CREEK AT MINISINK HILLS, PA (Pennsylvania Water-Quality Network Station) **LOCATION.**--Lat 40°59'55", long 75°08'35", Monroe County, Hydrologic Unit 02040104, on left bank at end of township route 646 at Minisink Hills, 500 ft upstream from Marshall Creek, 0.8 mi upstream from mouth, and 3.0 mi southeast of East Stroudsburg. **DRAINAGE AREA**.--259 mi². ## WATER-DISCHARGE RECORDS PERIOD OF RECORD.--November 1950 to current year. REVISED RECORDS.--WSP 1232: 1951(P). GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 301.84 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 19, 1955, water-stage recorder, and Aug. 23 to Nov. 24, 1955, nonrecording gage at site about 1,300 ft upstream at datum 2.19 ft higher. Nov. 25, 1955, to July 24, 1956, nonrecording gage at site 40 ft upstream at present datum. **REMARKS.**—Records good except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. Satellite telemetry at station. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 4,300 ft³/s and maximum (*): | Date
May 2 | | Γime
1015 | Discharge
ft ³ /s
*4,060 | Gage Heigh
(ft)
*5.76 | t | | Date
(No | | Di
ime
above ba | ischarge
ft ³ /s
ase disc | Gage Heig
(ft)
harge.) | ht | |--|---|--|---|---|---|---|---|--|---|--|--|--| | | | | DISCHA | ARGE, CUBIC I | FEET PER S | | ATER YEAR (
EAN VALUE | | 2001 TO SEP | TEMBER 20 | 02 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 216
196
178
e170
e150 | 101
102
102
102
106 | 340
268
233 | e180
e180
e170
e180
191 | 353
409
341
325
294 | 217
214
748
577
456 | 767
648
604
592
522 | 1050
1360
1220
961
851 | 816
636
533
471
447 | 234
218
204
191
180 | 86
92
95
90
85 | 86
95
87
78
69 | | 6
7
8
9
10 | e150
e140
e140
129
126 | 106
103
98
96
95 | 200
197
280 | 192
217
202
196
199 | e280
286
283
273
268 | 418
404
378
364
485 | 487
454
432
e410
e440 | 759
695
635
629
646 | 644
2710
1270
917
741 | 168
160
150
146
144 | 89
80
75
72
68 | 65
62
61
59
57 | | 11
12
13
14
15 | 122
120
119
116
212 | 94
92
91
90
91 | 233
231
269 | 219
235
224
209
207 | 411
346
311
e270
e260 | 424
383
369
365
345 | e400
e380
e380
e420
e1400 | 551
614
1180
1890
1230 | 631
555
526
788
940 | 136
128
124
121
123 | 65
63
61
58
56 | 54
49
48
49
73 | | 16
17
18
19
20 | 178
158
145
133
130 | 90
88
87
86
91 | 288
425
414 | 209
201
e190
e180
e180 | 274
275
259
246
249 | 344
324
370
399
551 | e900
773
670
614
601 | 963
834
2040
1590
1210 | 741
594
502
451
421 | 115
107
104
109
110 | 57
59
58
55
88 | 353
203
127
101
90 | | 21
22
23
24
25 | 123
119
117
115
112 | 89
87
88
90
123 | 302
288
339 | 193
191
188
213
274 | 300
278
257
241
233 | 731
697
589
551
528 | 570
538
508
455
467 | 1030
888
775
690
613 | 384
349
321
298
281 | 103
99
115
222
141 | 69
60
65
74
98 | 83
82
81
76
70 | | 26
27
28
29
30
31 | 107
105
104
104
103
100 | 269
184
155
148
173 | 259
244
239 | 252
243
247
263
286
306 | 231
247
231
 | 530
1560
1050
880
795
707 | 543
453
1200
1700
1150 | 564
526
957
2270
1090
818 | 280
438
366
288
253 | 119
110
110
111
102
93 | 77
69
64
124
140
95 | 68
181
367
209
153 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 4237
136.7
216
100
0.53
0.61 | 3317
110.6
269
86
0.43
0.48 | 283.1
501
180
1.09 | 6617
213.5
306
170
0.82
0.95 | 8031
286.8
411
231
1.11
1.15 | 16753
540.4
1560
214
2.09
2.41 | 19478
649.3
1700
380
2.51
2.80 | 31129
1004
2270
526
3.88
4.47 | 18592
619.7
2710
253
2.39
2.67 | 4297
138.6
234
93
0.54
0.62 | 2387
77.00
140
55
0.30
0.34 | 3236
107.9
367
48
0.42
0.46 | | STATIST | CS OF | MONTHLY | MEAN DATA | FOR WATER | YEARS 19 | 51 - 2002 | , BY WATER | YEAR (W | TY) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 307.5
1560
1956
54.4
1964 | 531.9
1634
1973
68.1
1965 | 2321
1997
83.4 | 618.8
2051
1996
50.6
1981 | 662.3
1498
1951
196
1980 | 975.7
2108
1977
387
1985 | 982.2
2293
1983
312
1985 | 703.3
1619
1989
268
1962 | 421.9
1876
1972
119
1962 | 252.1
923
1969
58.1
1999 | 235.8
2505
1955
46.4
1957 | 233.9
1649
1987
40.8
1964 | e Estimated. # 01442500 BRODHEAD CREEK AT MINISINK HILLS, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1951 - 2002 | |--------------------------|------------------------|---------------------|----------------------------| | ANNUAL TOTAL | 133823 | 126850 | | | ANNUAL MEAN | 367 | 348 | 553 | | HIGHEST ANNUAL MEAN | | | 957 195 <u>2</u> | | LOWEST ANNUAL MEAN | | | 238 1965 | | HIGHEST DAILY MEAN | 2760 Mar 30 | 2710 Jun 7 | 30500 Aug 19 1955 | | LOWEST DAILY MEAN | 69 Sep 9,19 | 48 Sep 13 | 30 Sep 26 1964 | | ANNUAL SEVEN-DAY MINIMUM | a 78 Sep 3 | 54 Sep 8 | 33 Sep 6 1964 | | MAXIMUM PEAK FLOW | | 4060 May 29 | b 68800 Aug 19 1955 | | MAXIMUM PEAK STAGE | | 5.76 May 29 | c 27.00 Aug 19 1955 | | INSTANTANEOUS LOW FLOW | | | 29 Sep 27 1964 | | ANNUAL RUNOFF (CFSM) | 1.42 | 1.34 | 2.14 | | ANNUAL RUNOFF (INCHES) | 19.22 | 18.22 | 29.01 | | 10 PERCENT EXCEEDS | 838 | 769 | 1190 | | 50 PERCENT EXCEEDS | 250 | 231 | 344 | | 90 PERCENT EXCEEDS | 91 | 82 | 92 | ^{a Computed using estimated daily discharges. b From rating curve extended above 10,100 ft³/s on basis of slope-area measurement of peak flow. c From floodmark, at site about 1,300 ft upstream at datum 2.19 ft higher.} # 01442500 BRODHEAD CREEK AT MINISINK HILLS, PA--Continued (Pennsylvania Water-Quality Network Station) # WATER-QUALITY RECORDS **PERIOD OF RECORD.**--April 2002 to current year. REMARKS.--Other data for the Water-Quality Network can be found on pages 410-425. COOPERATION.--Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection. ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
TOTAL
RECOV-
ERABLE
(MG/L
AS CA)
(00916) | MAGNE-
SIUM,
TOTAL
RECOV-
ERABLE
(MG/L
AS MG)
(00927) | ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | |----------------|---|--|---|---|---
--|--|---|--|--|--|--|--| | APR 2002 | 1245 | 0012 | 640 | 4.0 | 10.6 | 7.7 | 120 | 0.7 | 36 | 10.0 | 0 1 | 17 | 10.0 | | 02
JUN | 1345 | 9813 | 649 | 40 | 12.6 | 7.7 | 120 | 8.7 | 30 | 10.8 | 2.1 | 1/ | 10.8 | | 03
AUG | 1140 | 9813 | 541 | 40 | 10.6 | 7.4 | 115 | 15.7 | 35 | 10.8 | 1.9 | 18 | 10.1 | | 05 | 1500 | 9813 | 86 | 40 | 8.4 | 8.4 | 201 | 24.8 | 55 | 17.5 | 2.6 | 34 | 13.9 | | Date | RESIDUE
AT 105
DEG. C,
DIS-
SOLVED
(MG/L)
(00515) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N)
(00620) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N)
(00615) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | PHOS-
PHORUS
ORTHO
TOTAL
(MG/L
AS P)
(70507) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | COPPER,
TOTAL
RECOV-
ERABLE
(µG/L
AS CU)
(01042) | IRON,
TOTAL
RECOV-
ERABLE
(µG/L
AS FE)
(01045) | LEAD,
TOTAL
RECOV-
ERABLE
(µG/L
AS PB)
(01051) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(µG/L
AS MN)
(01055) | | APR 2002
02 | 76 | <2 | .070 | .41 | <.040 | .69 | .04 | .040 | 1.9 | <10 | 100 | <1.0 | 20 | | JUN
03 | 100 | 6 | <.020 | .31 | <.040 | .94 | .02 | .040 | 2.2 | <10 | 130 | <1.0 | 20 | | AUG
05 | 230 | 8 | <.020 | .57 | <.040 | .77 | .11 | .170 | 2.0 | <10 | 160 | 1.6 | 50 | | | NICKEL, | ZINC, | |----------|---------|--------| | | TOTAL | TOTAL | | | RECOV- | RECOV | | | ERABLE | ERABL | | Date | (µG/L | (µg/I | | | AS NI) | AS ZN | | | (01067) | (01092 | | | | | | APR 2002 | | | | 02 | < 50 | <10 | | JUN | | | | 03 | < 50 | <10 | | AUG | | | | 05 | < 50 | <10 | | | | | ### 01443000 DELAWARE RIVER AT PORTLAND, PA LOCATION.--Lat 40°55'26", long 75°05'46", Northampton County, Hydrologic Unit 02040105, at walkbridge connecting Portland, PA and Columbia, NJ, and 0.5 mi upstream from Paulins Kill. **DRAINAGE AREA**.--4,165 mi². PERIOD OF RECORD.--Water years 1976 to current year. **REMARKS.**—Total nitrogen (00600) equals the sum of dissolved ammonia plus organic nitrogen (00623), dissolved nitrite plus nitrate nitrogen (00631), and total particulate nitrogen (49570). COOPERATION.--Determination of dissolved ammonia, total ammonia, dissolved nitrite, dissolved orthophosphate, biochemical oxygen demand, total suspended solids, fecal coliform, *E. coli*, and enterococcus bacteria was performed by the New Jersey Department of Health and Senior Services, Public Health and Environmental Laboratories, Environmental and Chemical Laboratory Services. Determination of chlorophyll a was performed by the New Jersey Department of Environmental Protection, Bureau of Freshwater and Biological Monitoring Laboratory. COOPERATIVE NETWORK SITE DESCRIPTOR.--Delaware River Main Stem, New Jersey Department of Environmental Protection Watershed Management Area 1. ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TUR-BID-ITY FIELD WATER UNFLTRD (NTU) (61028) | UV ABSORB- ANCE 254 NM, WTR FLT (UNITS /CM) (50624) | UV ABSORB- ANCE 280 NM, WTR FLT (UNITS /CM) (61726) | HG) | OXYGEN, DIS- SOLVED (PER- CENT ATUR- SATION) (00301) | (MG/L) | PH WATER WHOLE FIELD (STAND- ARD AI UNITS) (00400) | SPE-
CIFIC
CON-
DUCT-
NCE
(µS/CM)
(00095) | TEMPER-
ATURE
AIR W
(DEG C)
(00020) | TEMPER-
ATURE
ATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | |------------------|---|--|--|--|--|--|---|--|--|---|---|--|---| | NOV
15
FEB | 1130 | 1540 | . 4 | .039 | .030 | 757 | 109 | 13.5 | 7.8 | 110 | 20.5 | 6.0 | 32 | | 06
MAY | 1250 | 4440 | 2.2 | .066 | .050 | 764 | 102 | 14.8 | | 92 | 9.5 | .5 | 23 | | 29 | 0930 | 16400 | 18 | .118 | .090 | 760 | 99 | 9.4 | 7.7 | 89 | 22.0 | 17.5 | 23 | | AUG
05 | 1030 | 1860 | .8 | .063 | .047 | 747 | 100 | 7.6 | 8.6 | 116 | 31.0 | 28.5 | 32 | | DATE | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410) | | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SULFATE | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | CONSTI- | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,AM-
MONIA+
ORGANIC
DIS.
(MG/L
AS N) | | NOV
15
FEB | 9.51 | 1.98 | .86 | 7.29 | 25 | 12.7 | <.1 | .8 | 8.5 | 60 | 57 | .040 | .12 | | 06 | 7.07 | 1.40 | .72 | 7.20 | 12 | 12.6 | <.1 | 3.4 | 8.6 | 56 | 50 | <.030 | .12 | | MAY
29 | 7.01 | 1.43 | .62 | 6.40 | 15 | 10.6 | <.1 | 2.2 | 8.3 | 49 | 46 | <.030 | .20 | | AUG
05 | 9.44 | 1.95 | .82 | 8.36 | 22 | 13.3 | <.1 | 1.3 | 8.4 | 62 | 58 | <.030 | .21 | | DATE | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN
DIS-
SOLVED
(MG/L
AS N)
(00602) | NITRO-
GEN,PAR
TICULTE
WAT FLT
SUSP
(MG/L
AS N)
(49570) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-PHOS-PHATE, DIS-SOLVED (MG/LAS P) (00671) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | CARBON,
INORG +
ORGANIC
PARTIC.
TOTAL
(MG/L
AS C)
(00694) | CARBON,
INOR-
GANIC,
PARTIC.
TOTAL
(MG/L
AS C)
(00688) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | OXYGEN
DEMAND,
BIO-
CHEM-
ICAL,
5 DAY
(MG/L)
(00310) | | NOV | | | | | | | | | | | | | | | 15
FEB | .040 | .17 | <.003 | . 29 | .04 | .008 | | .011 | .3 | <.1 | 1.8 | . 3 | 2.4 | | 06
MAY | <.030 | .41 | .002 | .53 | <.02 | .008 | <.020 | .015 | .5 | <.1 | 2.3 | .5 | <1.0 | | 29
AUG | <.030 | .12 | <.003 | .31 | .44 | <.05 | <.020 | .06 | 1.8 | <.1 | 3.4 | 1.8 | <1.0 | | 05 | <.030 | .12 | <.003 | .33 | .06 | .025 | <.020 | .031 | . 4 | <.1 | 2.4 | . 4 | <1.0 | # 01443000 DELAWARE RIVER AT PORTLAND, PA--Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DATE | CHLORO-
PHYLL A
FLUORO-
METRIC
METHOD
CORR.
(µG/L)
(32209) | | | |-----------|---|-----|----| | NOV
15 | | E10 | 3 | | FEB
06 | | E8 | 3 | | MAY
29 | 5.30 | E8 | 26 | | AUG
05 | 1.60 | 20 | 1 | # WATER-COLUMN BACTERIA ANALYSES Samples collected synoptically during the summer months | DATE | TIME | COLI-
FORM,
FECAL,
EC
BROTH
(MPN)
(31615) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | ENTERO-
COCCI,
ME MF,
WATER
(COL/
100 ML)
(31649) | DATE | TIME | COLI-
FORM,
FECAL,
EC
BROTH
(MPN)
(31615) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | ENTERO-
COCCI,
ME MF,
WATER
(COL/
100 ML)
(31649) | |-----------------------------|------------------------------|---|--|---|-----------|------|---|--|---| | JUL
10
17
24
31 | 0935
0950
0925
0930 | 80
<20
<20
40 | <100
<100
<100
<100 | 20
30
400
50 | AUG
07 | 0930 | 40 | <100 | 140 | ### 01446500 DELAWARE RIVER AT BELVIDERE, NJ (Pennsylvania Water-Quality Network Station) LOCATION.--Lat 40°49'36", long 75°05'02", Warren County, Hydrologic Unit 02040105, on left bank at Belvidere, 800 ft downstream from Pequest River, and at river mile 197.7. **DRAINAGE AREA**.--4,535 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1922 to current year. REVISED RECORDS.--WSP 781: 1933(M). WSP 951: 1940-41, Drainage area. WSP 1432: 1923, 1924(M).
GAGE.--Water-stage recorder. Datum of gage 226.43 ft above National Geodetic Vertical Datum of 1929. Prior to Jan. 1, 1929, nonrecording gage at site 200 ft upstream at same datum. **REMARKS.**—Records good. Diurnal fluctuations at medium and low flow caused by powerplants on tributary streams. Flow regulated by lakes Wallenpaupack (station 01431700) and Cliff, and by Pepacton, Cannonsville, Swinging Bridge, Toronto, and Neversink Reservoirs and smaller reservoirs. Diversions from Pepacton, Cannonsville, and Neversink Reservoirs. Satellite telemetry and National Weather Service gage-height telemetry at station. Information on the above lakes and reservoirs can be found in the annual Water-Data Report NJ-02-1. **EXTREMES OUTSIDE PERIOD OF RECORD.**—Flood of Oct. 10, 1903, reached a stage of 28.6 ft, from floodmark, discharge, 220,000 ft ³/s, from rating curve extended above 170,000 ft ³/s. # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------|------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------|----------------------------------|--------------------------------|----------------------------------|--------------------------------|------------------------------|--------------------------------------|--------------------------------------| | 1
2
3
4 | 1940
2120
2120
2240 | 2070
1920
2030
2010
1940 | 2210
2320
2870
2720
2200 | 1700
1590
1490
1740
1820 | 7810
7820
8250
6840 | 2870
2870
3330
3940 | 11200
10500
9760
8370 | 17300
15800
16600
14800 | 11100
11600
9320
8040 | 3640
3720
4200
3960 | 2040
2000
2140
2080
2070 | 2330
1820
1950
2030
1970 | | 5
6 | 2170 | 1950 | 1950 | 1860 | 5710
4910 | 4270
4180 | 7030 | 9980
9980 | 7030
7580 | 3470
3310 | 2000 | 1910 | | 7 | 2260 | 1960 | 1820 | 1880 | 4530 | 3630 | 6060 | 8980 | 19000 | 3010 | 2150 | 2060 | | 8 | 2070 | 1850 | 1810 | 1600 | 4110 | 3450 | 5240 | 8010 | 28800 | 2780 | 2050 | 2030 | | 9 | 2100 | 1840 | 2040 | 1650 | 3680 | 3260 | 5390 | 7460 | 18600 | 2620 | 1980 | 1900 | | 10 | 2100 | 1780 | 2030 | 1540 | 3440 | 3300 | 5500 | 7260 | 13800 | 2770 | 1930 | 1870 | | 11 | 2050 | 1810 | 1870 | 1790 | 3490 | 3450 | 5390 | 7060 | 12100 | 2820 | 1940 | 1980 | | 12 | 2140 | 1770 | 1780 | 1900 | 7300 | 3670 | 5190 | 6200 | 10400 | 2680 | 1910 | 1900 | | 13 | 2110 | 1730 | 1780 | 1880 | 8760 | 3600 | 4880 | 7820 | 9180 | 2420 | 1910 | 1940 | | 14 | 2180 | 1720 | 2010 | 1780 | 6850 | 3390 | 4210 | 24200 | 8980 | 2280 | 1960 | 1970 | | 15 | 2210 | 1720 | 2100 | 1730 | 5390 | 3300 | 6340 | 29900 | 11400 | 1950 | 2000 | 2150 | | 16 | 2210 | 1720 | 2410 | 1790 | 4710 | 3320 | 8750 | 21500 | 12600 | 2020 | 2000 | 2690 | | 17 | 2270 | 1730 | 2830 | 1660 | 4430 | 3240 | 9160 | 16200 | 13000 | 2290 | 2110 | 3020 | | 18 | 2250 | 1740 | 3110 | 1600 | 4020 | 3570 | 8030 | 16400 | 11200 | 2200 | 2160 | 2480 | | 19 | 2240 | 1700 | 4080 | 1440 | 3720 | 3740 | 7250 | 22300 | 9380 | 2390 | 2090 | 2170 | | 20 | 2140 | 1720 | 6650 | 1240 | 3360 | 3840 | 6970 | 20900 | 8530 | 2410 | 2090 | 2150 | | 21 | 2100 | 1700 | 5420 | 1230 | 3270 | 4930 | 6000 | 15900 | 7440 | 2450 | | 2020 | | 22 | 2070 | 1710 | 4640 | 1240 | 3280 | 5220 | 5540 | 13300 | 6610 | 2420 | 2050 | 1850 | | 23 | 2080 | 1730 | 3940 | 1470 | 3580 | 5760 | 5450 | 11200 | 5570 | 2360 | 2150 | 2000 | | 24 | 2110 | 1750 | 3600 | 1820 | 3650 | 5380 | 5410 | 9810 | 5030 | 2880 | 2070 | 1370 | | 25 | 2100 | 1830 | 3350 | 2030 | 3300 | 4930 | 5140 | 9300 | 5160 | 2720 | 2130 | 2060 | | 26 | 2180 | 2200 | 3220 | 2150 | 3070 | 4990 | 5560 | 7700 | 5140 | 2670 | 2130 | 2170 | | 27 | 2290 | 2120 | 3090 | 2430 | 3020 | 7310 | 6250 | 6720 | 5910 | 2350 | 2150 | 2250 | | 28
29
30
31 | 2160
2130
2100
2080 | 2240
2090
1890 | 2350
2110
1940
1630 | 2940
3000
3370
3770 | 2910

 | 19000
15900
12900
11600 | 6950
13500
20500 | 6440
13900
16200
12200 | 5960
5400
4590
 | 2110
2150
2130
2210 | 1940
2060
2530
2610 | 2890
4420
3920 | | TOTAL | 66490 | 55970 | 85880 | 59130 | 135210 | 168140 | 223550 | 412840 | 298450 | 83390 | 64510 | 67270 | | MEAN | 2145 | 1866 | 2770 | 1907 | 4829 | 5424 | 7452 | 13320 | 9948 | 2690 | 2081 | 2242 | | MAX | 2290 | 2240 | 6650 | 3770 | 8760 | 19000 | 20500 | 29900 | 28800 | 4200 | 2610 | 4420 | | MIN | 1940 | 1700 | 1630
MEAN DATA | 1230 | 2910 | 2870 | 4210 | 6200 | 4590 | 1950 | 1910 | 1370 | | MEAN | 4567 | 7042 | 8351 | 7949 | 8303 | 13860 | 15740 | 9910 | 6033 | 4294 | 3614 | 3738 | | MAX | 19570 | 21140 | 27730 | 21020 | 19930 | 42520 | 40720 | 21470 | 22280 | 16840 | 19260 | 13940 | | (WY) | 1956 | 1928 | 1997 | 1996 | 1976 | 1936 | 1940 | 1989 | 1972 | 1928 | 1955 | 1938 | | MIN | 1055 | 1226 | 1481 | 1683 | 2452 | 5243 | 4512 | 3261 | 1590 | 1017 | 881 | 1199 | | (WY) | 1942 | 1965 | 1923 | 1981 | 1980 | 1981 | 1985 | 1965 | 1965 | 1965 | 1954 | 1941 | # 01446500 DELAWARE RIVER AT BELVIDERE, NJ--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1923 - 2002 | |--------------------------|------------------------|---------------------|-----------------------------| | ANNUAL TOTAL | 1918750 | 1720830 | | | ANNUAL MEAN | 5257 | 4715 | 7776 | | HIGHEST ANNUAL MEAN | | | 14130 1928 | | LOWEST ANNUAL MEAN | | | 2990 1965 | | HIGHEST DAILY MEAN | 46200 Apr 11 | 29900 May 15 | 184000 Aug 19 1955 | | LOWEST DAILY MEAN | 1630 Dec 31 | 1230 Jan 21 | 610 Aug 25 1954 | | ANNUAL SEVEN-DAY MINIMUM | 1720 Nov 16 | 1410 Jan 17 | 782 Aug 14 1954 | | MAXIMUM PEAK FLOW | | 34100 May 14 | a 273000 Aug 19 1955 | | MAXIMUM PEAK STAGE | | 10.45 May 14 | b 30.21 Aug 19 1955 | | INSTANTANEOUS LOW FLOW | | 1070 Jan 20 | 609 Sep 28 1943 | | 10 PERCENT EXCEEDS | 9690 | 10700 | 16500 | | 50 PERCENT EXCEEDS | 3180 | 2720 | 4960 | | 90 PERCENT EXCEEDS | 1960 | 1800 | 1950 | $^{{\}bf a}~$ From rating curve extended above 170,000 ${\rm ft}^3/{\rm s}$ on basis of flood-routing study. ${\bf b}~$ From high-water mark in gage house. # 01446500 DELAWARE RIVER AT BELVIDERE, NJ--Continued (Pennsylvania Water-Quality Network Station) # WATER-QUALITY RECORDS **PERIOD OF RECORD**.--April 2002 to current year. **REMARKS**.--Other data for the Water-Quality Network can be found on pages 410-425. **COOPERATION.**—Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection. ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
TOTAL
RECOV-
ERABLE
(MG/L
AS CA)
(00916) | MAGNE-
SIUM,
TOTAL
RECOV-
ERABLE
(MG/L
AS MG)
(00927) | ANC
WATER
UNFLTRD
FET
LAB
(MG/L AS
CACO3)
(00417) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | |-----------------------|---|--|---|---|---|--|--|---|--|--|--|--|--| | APR 2002
25 | 1300 | 9813 | 4870 | 40 | 10.8 | 7.7 | 123 | 12.7 | 36 | 10.4 | 2.5 | 24 | 10.1 | | JUN | 1300 | J013 | 1070 | 10 | 10.0 | ,., | 123 | 12.7 | 50 | 10.1 | 2.5 | 21 | 10.1 | | 20 | 1240 | 9813 | 8840 | 40 | 10.1 | 7.8 | 106 | 20.8 | 32 | 9.3 | 2.1 | 22 | 8.0 | | AUG
19 | 1050 | 9813 | 2120 | 40 | 8.5 | 8.5 | 132 | 32.2 | 38 | 10.9 | 2.6 | 26 | 9.8 | | Date | RESIDUE
AT 105
DEG. C,
DIS-
SOLVED
(MG/L)
(00515) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N)
(00620) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N)
(00615) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | PHOS-PHORUSORTHOTOTAL (MG/LAS P) (70507) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | COPPER,
TOTAL
RECOV-
ERABLE
(µG/L
AS CU)
(01042) | IRON,
TOTAL
RECOV-
ERABLE
(µG/L
AS FE)
(01045) | LEAD,
TOTAL
RECOV-
ERABLE
(µG/L
AS PB)
(01051) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(µG/L
AS MN)
(01055) | | APR 2002
25
JUN | 60 | 34 | <.020 | .17 | <.040 | .44 | .01 | .030 | 3.1 | <10 | 140 | <1.0 | 30 | | 20 | 76 | 12 | <.020 | .17 | <.040 | .36
 .02 | .030 | 4.0 | <10 | 250 | <1.0 | 40 | | AUG
19 | 410 | 2 | .040 | .14 | <.040 | .40 | .03 | .024 | 2.7 | <10 | 50 | <1.0 | 30 | | | | | | | | | | | | | | | | | Date | TOTAL RECOV- ERABLE (µG/L AS NI) (01067) | | |-----------------------|--|-----| | APR 2002
25
JUN | <50 | <10 | | 20
AUG | <50 | <10 | | 19 | < 50 | <10 | ### 01447500 LEHIGH RIVER AT STODDARTSVILLE, PA (Pennsylvania Water-Quality Network Station) LOCATION.--Lat 41°07'49", long 75°37'33", Monroe County, Hydrologic Unit 02040106, on left bank 75 ft upstream from bridge on State Highway 115, at Stoddartsville, 1.9 mi upstream from Tobyhanna Creek, and 4.0 mi southwest of Thornhurst. **DRAINAGE AREA**.--91.7 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1943 to current year. **REVISED RECORDS**.--WSP 1382: 1947, 1951. GAGE.--Water-stage recorder. Datum of gage is 1,463.81 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1946, nonrecording gage at site 350 ft downstream at datum 2.14 ft lower. REMARKS.--Records good except those for estimated daily discharges, which are poor. Satellite and landline telemetry at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of May 22, 1942, reached a stage of 12.03 ft, from floodmark, present site and datum, discharge, $15,700 \text{ ft}^3/\text{s}.$ PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,300 ft³/s and maximum (*): | Date
May 2 | | me | Discharge
ft ³ /s
*5,440 | Gage Heigh
(ft)
*8.34 | t | | Date
No othe | | me | Discharge
ft ³ /s
than base | Gage Heigh
(ft)
discharge | | |--|---|--|--|--|--|--|---|--|---|--|--|--| | | | | DISCHA | ARGE, CUBIC F | FEET PER S | | TER YEAR O | | 001 TO SE | PTEMBER 20 | 002 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 33
28
26
24
23 | 21
20
21
20
21 | 122
102
86
76
68 | 93
86
82
79
72 | 175
203
164
e130
e120 | 84
81
153
154
127 | 272
244
228
235
208 | 434
440
424
340
295 | 457
367
298
263
243 | 126
113
92 | 25
25
28
27
31 | 24
27
24
20
18 | | 6
7
8
9
10 | 24
25
21
20
19 | 21
21
19
19
20 | 65
61
56
62
62 | 67
96
100
89
81 | e120
117
114
109
108 | 116
113
107
105
219 | 191
177
167
164
181 | 268
254
239
250
260 | 305
820
576
424
345 | 62
58
57 | 61
32
26
24
22 | 16
15
15
15
14 | | 11
12
13
14
15 | 44
67
67
58
63 | 23
21
19
19 | 58
59
65
82
95 | 80
77
68
64
62 | 185
158
135
123
117 | 187
159
148
143
134 | 168
157
163
255
368 | 221
298
757
934
654 | 283
253
254
274
322 | 70
69
67 | 20
20
19
19 | 13
12
12
13
23 | | 16
17
18
19
20 | 57
56
48
45
42 | 18
18
18
19
21 | 84
81
121
126
109 | 57
55
52
43
65 | 111
111
106
102
100 | 141
138
133
132
148 | 339
272
233
215
252 | 478
400
800
748
530 | 317
272
226
202
190 | 40
37
36 | 18
20
19
17
24 | 78
41
28
23
21 | | 21
22
23
24
25 | 38
36
36
40
38 | 22
21
20
19
35 | 99
88
85
90
85 | 60
57
54
65
e97 | 116
114
105
98
94 | 194
210
182
174
168 | 225
217
214
191
198 | 435
370
321
289
262 | 176
155
140
129
120 | 36
42
55 | 42
35
26
24
24 | 19
20
25
22
18 | | 26
27
28
29
30
31 | 33
29
26
25
23
22 | 98
67
56
56
67 | 77
81
82
77
68
76 | 91
88
90
98
141
170 | 91
94
89
 | 181
583
411
320
278
252 | 228
203
425
614
482 | 250
235
1020
2020
769
537 | 155
155
198
168
133 | 33
33
34
31 | 21
18
17
27
39
27 | 19
79
173
104
72 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 1136
36.65
67
19
0.40
0.46 | 858
28.60
98
18
0.31
0.35 | 2548
82.19
126
56
0.90
1.03 | 2479
79.97
170
43
0.87
1.01 | 3409
121.8
203
89
1.33
1.38 | 5675
183.1
583
81
2.00
2.30 | 7486
249.5
614
157
2.72
3.04 | 15532
501.0
2020
221
5.46
6.30 | 8220
274.0
820
120
2.99
3.33 | 58.00
126
27
0.63 | 795
25.65
61
17
0.28
0.32 | 1003
33.43
173
12
0.36
0.41 | | MEAN
MAX
(WY)
MIN
(WY) | 116.4
613
1956
14.1
1964 | 177.5
439
1973
17.1
1965 | 211.2
561
1974
35.5
1981 | 194.5
665
1996
18.3
1981 | 197.7
709
1981
62.2
1980 | 303.0
577
1977
131
1989 | 353.8
867
1993
135
1995 | YEAR (WY
254.1
604
1989
92.9
1995 | 159.3
655
1972
43.0
1962 | 528
1947
19.8 | 88.31
1101
1955
14.2
1964 | 84.42
511
1987
9.18
1964 | e Estimated. # 01447500 LEHIGH RIVER AT STODDARTSVILLE, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALEN | DAR YEAR | FOR 2002 WAT | ER YEAR | WATER YEARS | 1944 - 2002 | |--------------------------|----------------|-----------|---------------|-----------|----------------|-------------| | ANNUAL TOTAL | 41203 | | 50939 | | | | | ANNUAL MEAN | 113 | | 140 | | 187 | | | HIGHEST ANNUAL MEAN | | | | | 268 | 1973 | | LOWEST ANNUAL MEAN | | | | | 86.2 | 1965 | | HIGHEST DAILY MEAN | 674 | Apr 10 | 2020 | May 29 | 18900 | Aug 19 1955 | | LOWEST DAILY MEAN | 18 | Nov 15-18 | 12 | Sep 12,13 | 7.0 | Sep 26 1964 | | ANNUAL SEVEN-DAY MINIMUM | 18 | Nov 13 | 13 | Sep 8 | 7.4 | Sep 21 1964 | | MAXIMUM PEAK FLOW | | | a 5440 | May 28 | a 31900 | Aug 19 1955 | | MAXIMUM PEAK STAGE | | | 8.34 | May 28 | b 16.37 | Aug 19 1955 | | INSTANTANEOUS LOW FLOW | | | | | 7.0 | Sep 26 1964 | | ANNUAL RUNOFF (CFSM) | 1.23 | | 1.52 | | 2.04 | | | ANNUAL RUNOFF (INCHES) | 16.71 | | 20.66 | | 27.72 | | | 10 PERCENT EXCEEDS | 238 | | 301 | | 386 | | | 50 PERCENT EXCEEDS | 79 | | 82 | | 126 | | | 90 PERCENT EXCEEDS | 23 | | 20 | | 32 | | $^{{\}bf a}\;$ From rating curve extended above 1,700 ft³/s on basis of slope-area measurement of peak flow. ${\bf b}\;$ From floodmark. ## 01447500 LEHIGH RIVER AT STODDARTSVILLE, PA--Continued (Pennsylvania Water-Quality Network Station) ## WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1926 to 1982; April 2002 to current year. ### PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: Water years 1981 to current year. **INSTRUMENTATION**.--Temperature probe interfaced with a data collection platform. REMARKS.--Water temperature records rated good. Interruptions in the record were due to malfunctions of the recording instrument. Other data for the Water-Quality Network can be found on pages 410-425. COOPERATION.--Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection. **EXTREMES FOR PERIOD OF DAILY RECORD.**-WATER TEMPERATURE: Maximum recorded, 31.5°C, July 6, 1999; minimum, 0.0°C, many days during winters. ### EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum, 30.0°C, Aug. 2; minimum, 0.0°C, many days during winter. ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM) | TEMPER -
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | CALCIUM
TOTAL
RECOV-
ERABLE
(MG/L
AS CA)
(00916) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | MAGNE-
SIUM,
TOTAL
RECOV-
ERABLE
(MG/L
AS MG)
(00927) | |----------------|---|--|---|---|--|--|---|---|--|--|--|---|--| | APR 2002
01 | 1200 | 9813 | 279 | 30 | 11.6 | 6.3 | 61 | 9.5
| 16 | 4.59 | 4.7 | 1.00 | 1.0 | | JUN | | | | | | | | | | | | | | | 04
AUG | 1330 | 9813 | 263 | 30 | 9.8 | 6.4 | 54 | 16.3 | 15 | 4.38 | 4.5 | .88 | .9 | | 08 | 0940 | 9813 | 26 | 30 | 9.5 | 7.1 | 89 | 15.4 | 23 | 6.86 | 6.9 | 1.39 | 1.4 | | Date | ACIDITY
TOTAL
HEATED
(MG/L
AS
CAC03) | ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RESIDUE
AT 105
DEG. C,
DIS-
SOLVED
(MG/L)
(00515) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N)
(00620) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N)
(00615) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | PHOS-
PHORUS
ORTHO
TOTAL
(MG/L
AS P)
(70507) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) | COPPER,
DIS-
SOLVED
(µG/L
AS CU)
(01040) | | APR 2002
01 | 18 | 5 | 7.0 | 60 | <2 | <.020 | .15 | <.040 | . 45 | .01 | .014 | .9 | <4 | | JUN
04 | 18 | 5 | 6.0 | 80 | 4 | <.020 | .11 | <.040 | .34 | .01 | .014 | 1.4 | <4 | | AUG
08 | 7.0 | 12 | 6.3 | 72 | 4 | <.020 | .16 | <.040 | .37 | <.01 | <.010 | 1.8 | <4 | | | Date | COPPER,
TOTAL
RECOV-
ERABLE
(µG/L
AS CU)
(01042) | | IRON,
TOTAL
RECOV-
ERABLE
(µG/L
AS FE)
(01045) | | LEAD,
TOTAL
RECOV-
ERABLE
(µG/L
AS PB)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μG/L
AS MN) | TOTAL
RECOV-
ERABLE
(µG/L
AS MN) | NICKEL,
DIS-
SOLVED
(µG/I
AS NI)
(01065) | RECOV-
ERABLE | ZINC,
DIS-
SOLVED
(µG/L
AS ZN)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µG/
AS ZN)
(01092) | | | | APR 2002
01
JUN | <4 | 60 | 180 | <1.0 | <1.0 | 50 | 90 | <4.0 | <4.0 | 10 | 10 | | | | 04 | <4 | 120 | 260 | <1.0 | <1.0 | 60 | 70 | <4.0 | <4.0 | 10 | 10 | | | | AUG
08 | <4 | 50 | 50 | <1.0 | <1.0 | 30 | 40 | <4.0 | <4.0 | <5.0 | <5.0 | | # 01447500 LEHIGH RIVER AT STODDARTSVILLE, PA--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|---|--|---|---|--|---|---|---|---|--|--|---| | | | OCTOBER | | | NOVEMBER | | | DECEMBER | | | JANUARY | | | 1
2
3
4
5 | 14.5
16.0
17.0
17.5
17.5 | 10.0
9.0
10.5
11.5 | 11.5
12.0
13.5
14.5
14.5 | 9.5
11.5
12.5
11.0
8.5 | 4.5
7.0
9.0
7.5
5.5 | 7.0
9.5
11.0
9.0
7.0 | 11.0
8.0
6.0
6.0
9.0 | 8.0
5.5
4.0
3.5
5.5 | 10.0
7.0
5.0
5.0
7.0 | 0.0
0.0
0.0
0.5
0.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 6
7
8
9
10 | 12.0 | 8.5 | 14.0
10.0
8.5
7.5
8.5 | 7.5
8.0
8.0
7.5
6.5 | 5.0
4.0
4.0
4.5
3.0 | 6.0
6.5
6.5
4.5 | 9.0
9.0
6.0
4.0
3.5 | 7.0
6.0
2.5
2.5 | 8.0
8.0
4.5
3.0
2.5 | 0.5
0.0
0.0
0.5
0.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.5 | | 11
12
13
14
15 | | 10.0
12.0
14.0 | 10.0
12.0
14.0
14.5
14.0 | 5.5
3.5
4.0
5.0
7.5 | 2.5
0.5
0.0
0.5
3.5 | 4.5
2.0
2.0
2.5
5.0 | 4.5
3.0
5.5
7.0 | 2.5
1.0
3.0
5.5
3.0 | 3.0
2.5
4.5
6.0
5.0 | 0.5
0.5
0.5
0.5 | 0.5
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5 | | 16
17
18
19
20 | 11.5 | 9.5
8.5
6.5
5.5
7.5 | 11.5
10.5
8.0
7.5
9.5 | 8.5
7.0
6.5
7.0
6.0 | 4.5
4.0
2.5
3.5
3.0 | 6.5
5.5
4.5
5.0
5.0 | 3.5
4.0
4.5
4.5
3.5 | | 2.5
3.0
4.0
3.5
3.0 | 0.5
0.5
0.5
0.5
0.0 | 0.0
0.0
0.0
0.0 | 0.5
0.5
0.0
0.0 | | 21
22
23
24
25 | 12.5
12.0
13.0
16.5
15.0 | 10.0
12.5 | 9.5
10.5
11.5
14.0
13.5 | 4.0
4.0
4.5
7.5
10.0 | 1.5
1.0
1.0
3.5
7.5 | 3.0
2.5
3.0
5.5
9.0 | 2.5

2.5 | 0.5

1.0 | 2 0 | 0.0
0.5
0.5
1.0
0.5 | 0.0 | 0.0
0.0
0.5
0.5 | | 27
28 | 7.5
7.5
7.5 | 7.0
6.0
4.5
2.5
4.5
4.5 | 9.5
7.0
5.5
5.0
6.0
5.5 | 9.5
7.5
9.5
8.5
11.0 | | 8.5
6.5
8.5
8.5
10.0 |

0.0 |

0.0 |

0.0 | 1.0
1.5
2.0
3.0
3.5
3.0 | 0.0
0.0
0.0
0.5
2.0 | 0.5
0.5
1.0
1.5
3.0
2.5 | | MONTH | 17.5 | 2.5 | 10.4 | 12.5 | 0.0 | 6.0 | 11.0 | 0.0 | 4.4 | 3.5 | 0.0 | 0.5 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | | MIN
FEBRUARY | MEAN | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | DAY 1 2 3 4 5 | 3.5 | | | 4.0 | MARCH | 1.5
2.0
5.0 | 10.5
9.5
9.5 | APRIL | 9.0
7.5
8.5
6.5
5.5 | MAX
12.0
11.5
11.0
13.0
15.0 | | 9.5
10.5
10.5
10.5 | | 1
2
3
4 | 3.5
2.0
1.0
1.5
0.5 | 2.0
0.0
0.0
0.0 | 2.5
1.0
0.5
0.5 | 4.0
3.5
7.0
4.5
2.0 | MARCH 0.0 0.5 3.0 0.5 0.5 | 1.5
2.0
5.0 | 10.5
9.5
9.5 | 8.0
6.0
7.0
5.0
4.5
3.5
2.5 | 9.0
7.5
8.5
6.5 | 12.0
11.5
11.0
13.0
15.0 | 7.0
9.5
9.5
7.5
9.5
11.0
13.5
13.5
12.0 | 9.5
10.5
10.5
10.5 | | 1
2
3
4
5
6
7
8
9 | 3.5
2.0
1.0
1.5
0.5
1.5
2.5
3.5
4.0
4.0 | 2.0
0.0
0.0
0.0
0.0
0.0 | 2.5
1.0
0.5
0.5
0.0
0.5
1.0
1.5
2.5
3.0 | 4.0
3.5
7.0
4.5
2.0 | 0.0
0.5
3.0
0.5
0.5
0.5
0.6
0.5
2.0
3.0
6.0 | 1.5
2.0
5.0 | 10.5
9.5
9.5
9.0
6.5
6.5
8.0 | 8.0
6.0
7.0
5.0
4.5
3.5
2.5
5.5
7.5
9.0 | 9.0
7.5
8.5
6.5
5.5 | 12.0
11.5
11.0
13.0
15.0
16.0
17.0
15.5 | 7.0
9.5
9.5
7.5
9.5
11.0
13.5
12.0
11.5 | 9.5
10.5
10.5
12.5
13.5
14.5
13.0
14.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
| 3.5
2.0
1.0
1.5
0.5
1.5
2.5
4.0
4.0
4.0 | 2.0
0.0
0.0
0.0
0.0
0.0
0.0
0.5
0.0
1.5
2.5 | 2.5
1.0
0.5
0.5
0.0
0.5
1.0
1.5
2.5
3.0
2.5
1.0
0.5 | 4.0
3.5
7.0
4.5
2.0
4.0
5.5
8.0
9.0
9.0
3.5
4.0
9.0 | 0.0
0.5
3.0
0.5
0.5
0.5
0.5
0.6
0.0
3.0
1.0
2.0
2.5
4.0 | 1.5
2.0
2.5
1.0
2.0
3.5
5.0
7.5
6.0 | 10.5
9.5
9.5
9.0
6.5
8.0
8.5
11.0
13.5 | 8.0
6.0
7.0
5.0
4.5
3.5
2.5
5.5
7.5
9.0
8.0
8.5
10.0 | 9.0
7.5
8.5
6.5
5.5
4.5
5.0
6.5
9.0
11.0 | 12.0
11.5
11.0
13.0
15.0
16.0
17.0
15.5
16.5 | 7.0
9.5
9.5
7.5
9.5
11.0
13.5
12.0
11.5
11.5
11.5 | 9.5
10.5
10.5
12.5
13.5
14.0
14.0
14.0
12.5
12.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 3.5
2.0
1.0
1.5
0.5
1.5
2.5
4.0
4.0
4.0
1.5
2.5
2.5
2.5 | 2.0
0.0
0.0
0.0
0.0
0.0
0.5
0.5
0.0
0.5
2.5 | 2.5
1.0
0.5
0.5
0.0
0.5
1.0
2.5
1.0
0.5
1.0
2.5
1.0 | 4.0
3.5
7.0
4.5
2.0
4.0
5.5
8.0
9.0
9.0
3.5
4.0
9.0
9.0 | MARCH 0.0 0.5 3.0 0.5 0.5 0.5 2.0 3.0 6.0 3.0 1.0 2.0 2.5 4.0 6.5 | 1.5
2.0
2.5
1.0
2.5
5.0
7.5
6.0
2.0
2.5
3.5
6.0
8.0
8.5
4.5 | 10.5
9.5
9.5
9.0
6.5
8.5
11.0
13.5
13.0
10.5
12.0
15.0
16.5 | 8.0
6.0
7.0
5.0
4.5
3.5
2.5
5.5
7.5
9.0
8.0
8.0
10.5
13.0 | 9.0
7.5
8.5
6.5
5.5
4.5
5.0
11.0
10.5
9.0
11.0
12.5
14.5
14.5 | 12.0
11.5
11.0
13.0
15.0
16.0
17.0
15.5
16.5
14.0
12.0
12.0
13.0 | 7.0
9.5
9.5
7.5
9.5
11.0
13.5
12.0
11.5
11.5
11.5
11.5
10.5
9.5 | 9.5
10.5
10.5
12.5
13.5
14.0
13.0
14.0
12.5
11.5
11.5
12.5
11.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 3.5
2.0
1.0
1.5
0.5
1.5
2.5
3.5
4.0
4.0
4.0
1.5
2.5
2.5
3.5
3.5
3.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5 | 2.0
0.0
0.0
0.0
0.0
0.0
0.5
0.0
1.5
2.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0 | 2.5
1.0
0.5
0.5
0.0
0.5
1.0
2.5
3.0
2.5
1.0
0.5
1.0
2.5
3.5
4.0
3.5
3.5 | 4.0
3.5
7.0
4.5
2.0
4.0
5.5
8.0
9.0
9.0
10.5
4.0
7.5
4.5
5.5
5.0
4.0
6.0
8.0
6.0
8.0 | MARCH 0.0 0.5 3.0 0.5 0.5 0.5 2.0 3.0 6.0 3.0 1.0 2.5 4.0 6.5 6.0 3.5 3.0 2.5 2.5 1.0 0.5 2.0 3.5 2.0 4.0 7.0 | 1.5
2.0
5.5
1.0
2.5
5.0
2.5
5.0
7.5
6.0
2.0
3.5
6.0
8.0
8.5
3.5
4.5
3.0
4.5
4.0
2.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4 | 10.5
9.5
9.5
9.0
6.5
8.0
8.5
11.0
13.5
13.0
10.5
12.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0 | 8.0
6.0
7.0
5.0
4.5
3.5
5.5
7.5
9.0
8.0
8.5
10.0
11.0
10.5
11.0
10.5
11.0
10.5
11.0
10.5
11.0
10.5
11.0
10.5
11.0
10.5
11.0
10.5
11.0
10.0
10 | 9.0
7.5
8.5
6.5
5.5
4.5
5.0
9.0
11.0
10.5
9.5
11.0
12.5
14.5
16.0
17.5
18.5
16.0
10.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 12.0
11.5
11.0
13.0
15.0
16.0
17.0
15.5
16.5
14.0
12.0
12.0
13.0
14.5
16.0
14.5
16.5
13.5
16.5
17.5 | 7.0
9.5
9.5
7.5
9.5
11.0
13.5
12.0
11.5
11.5
10.5
9.5
10.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0 | 9.5
10.5
10.5
12.5
13.5
14.5
15.0
14.0
12.5
12.5
11.5
11.5
11.5
12.5
11.5
12.5
11.5
12.5
11.5
12.5
11.5
12.5
11.5
12.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 3.5
2.0
1.5
0.5
1.5
2.5
3.5
4.0
4.0
1.5
2.5
2.5
2.5
3.5
3.5
3.5
3.5
5.0
6.5
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5 | 2.0
0.0
0.0
0.0
0.0
0.0
0.5
0.5
0.0
0.0
0 | 2.5
1.0
0.5
0.5
0.0
0.5
1.0
2.5
3.0
2.5
1.0
0.5
1.0
2.5
1.5
2.5
3.5
4.0
3.5
4.0
3.5
4.0
3.5
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5 | 4.0
3.5
7.0
4.5
2.0
4.0
5.5
8.0
9.0
9.0
3.5
4.0
9.0
10.5
9.5
6.0
3.5
5.0
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5 | MARCH 0.0 0.5 3.0 0.5 0.5 0.5 0.5 2.0 3.0 6.0 3.0 1.0 2.5 4.0 6.5 6.0 3.5 3.0 2.5 1.0 0.5 2.5 1.0 0.5 2.0 3.0 4.0 | 1.5
2.0
2.5
1.0
2.0
3.5
6.0
2.0
2.3
3.0
6.0
8.0
8.5
4.5
4.5
3.0
4.0
2.0
4.0
4.0 | 10.5
9.5
9.5
9.0
6.5
8.5
11.0
13.5
13.0
10.5
12.0
21.0
21.0
21.0
21.0
18.5
11.5
11.5
11.5
11.5
11.5 | 8.0
6.0
7.0
5.0
4.5
3.5
2.55
7.5
9.0
8.0
8.0
10.5
13.0
14.0
15.5
14.0
10.5
14.0
7.5
7.0
7.5
7.0
7.5 | 9.0
7.5
8.5
6.5
5.5
4.5
5.5
9.0
11.0
10.5
9.5
11.0
12.5
14.5
16.0
17.5
18.5
16.0
12.0
10.0
9.5
9.0
12.0
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
9.5
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10 | 12.0
11.5
11.0
13.0
15.0
16.0
17.0
15.5
16.5
14.0
12.0
13.0
14.5
16.0
14.5
13.0
11.5
13.5
16.5
17.5 | 7.0
9.5
9.5
7.5
9.5
11.0
13.5
12.0
11.5
11.5
11.5
11.5
10.5
9.5
10.0
13.0
9.5
8.5
10.0
12.0
13.5 | 9.5
10.5
10.5
12.5
13.5
14.0
13.0
14.0
12.5
11.5
11.5
12.5
11.5
12.5
11.5
12.5
11.5
12.5
11.0
10.5 | # 01447500 LEHIGH RIVER AT STODDARTSVILLE, PA--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|------------------------------|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | | | JUNE | | | JULY | | | AUGUST | | s | EPTEMBER | | | 1 | 20.0 | 16.0 | 18.0 | 24.5 | 19.0 | 21.5 | 29.5 | 20.5 | 25.0 | 18.5 | 16.0 | 17.0 | | 2 | 19.5 | 16.0 | 17.5 | 26.5 | 20.5 | 23.0 | 30.0 | 21.0 | 25.0 | 19.5 | 16.0 | 17.5 | | 3 | 18.0 | 14.5 | 16.5 | 28.0 | 22.0 | 24.5 | 28.5 | 21.5 | 25.0 | 24.0 | 16.0 | 19.5 | | 4 | 17.0 | 15.0 | 16.0 | 28.0 | 22.5 | 25.0 | 28.5 | 21.0 | 25.0 | 25.0 | 19.0 | 21.5 | | 5 | 20.0 | 16.0 | 17.5 | 25.5 | 20.0 | 22.5 | 26.0 | 21.5 | 23.5 | 22.5 | 17.5 | 20.0 | | 6 | 19.0 | 16.0 | 18.0 | 22.5 | 18.0 | 20.0 | 24.5 | 19.5 | 21.5 | 22.5 | 14.5 | 18.5 | | 7 | 17.5 | 14.5 | 16.0 | 23.0 | 16.0 | 19.5 | 22.0 | 16.5 | 19.0 | 22.5 | 14.5 | 18.5 | | 8 | 19.0 | 15.5 | 17.5 | 24.5 | 16.0 | 20.0 | 24.0 | 15.0 | 19.0 | 23.0 | 14.5 | 19.0 | | 9 | 20.0 | 16.0 | 18.0 | 23.5 | 18.0 | 20.5 | 25.0 | 15.5 | 20.0 | 24.0 | 15.0 | 19.5 | | 10 | 21.5 | 17.0 | 19.0 | 25.5 | 19.5 | 21.5 | 26.0 | 16.0 | 21.0 | 24.5 | 17.0 | 20.5 | | 11 | 22.0 | 18.0 | 20.0 | 24.0 | 17.0 | 20.0 | 26.5 | 17.0 | 22.0 | 21.0 | 16.5 | 18.5 | | 12 | 20.5 | 19.0 | 20.0 | 24.5 | 15.5 | 19.5 | 27.0 | 19.0 | 22.5 | 19.5 | 13.0 | 16.5 | | 13 | 19.5 | 18.0 | 18.5 | 23.0 | 16.0 | 19.5 | 28.5 | 20.0 | 24.0 | 20.0 | 12.0 | 16.0 | | 14 | 18.0 | 15.5 | 16.5 | 21.5 | 18.5 | 20.0 | 28.0 | 20.5 | 24.0 | 21.0 | 13.5 | 17.5 | | 15 | 16.0 | 15.0 | 15.5 | 25.0 | 18.0 | 21.0 | 28.0 | 20.5 | 24.5 | 20.0 | 18.5 | 19.0 | | 16 | 18.0
| 15.0 | 16.0 | 26.0 | 19.0 | 22.0 | 28.5 | 22.0 | 25.0 | 19.5 | 17.5 | 18.5 | | 17 | 18.5 | 14.5 | 16.5 | 26.5 | 17.5 | 22.0 | 28.5 | 21.5 | 25.0 | 21.5 | 15.0 | 18.0 | | 18 | 18.5 | 14.5 | 16.5 | 26.0 | 20.5 | 23.0 | 28.5 | 21.5 | 25.0 | 20.0 | 14.0 | 16.5 | | 19 | 19.0 | 15.5 | 17.0 | 26.5 | 20.5 | 23.0 | 26.5 | 20.5 | 24.0 | 18.5 | 14.0 | 16.5 | | 20 | 21.0 | 16.5 | 18.5 | 27.0 | 20.0 | 23.0 | 25.0 | 21.5 | 23.0 | 21.0 | 16.5 | 18.5 | | 21 | 22.0 | 17.0 | 19.5 | 26.0 | 19.5 | 22.5 | 26.0 | 18.0 | 21.5 | 21.0 | 18.0 | 19.5 | | 22 | 23.0 | 18.0 | 20.0 | 28.0 | 20.0 | 24.0 | 24.0 | 18.5 | 21.0 | 20.5 | 19.0 | 19.5 | | 23 | 23.5 | 19.5 | 21.0 | 26.0 | 21.0 | 23.0 | 25.0 | 21.0 | 22.5 | 20.5 | 16.5 | 18.5 | | 24 | 24.5 | 19.5 | 21.5 | 24.0 | 20.0 | 21.5 | 22.5 | 20.0 | 21.0 | 19.0 | 12.5 | 16.0 | | 25 | 24.5 | 20.0 | 22.0 | 25.0 | 19.5 | 21.5 | 25.5 | 18.0 | 21.0 | 17.5 | 12.5 | 15.0 | | 26
27
28
29
30
31 | 23.0
22.5
22.5
23.5
24.0 | 19.0
19.0
19.5
18.5 | 20.5
20.5
20.5
21.0
21.0 | 22.0
21.5
23.0
28.0
27.5
28.5 | 18.5
18.5
19.5
20.5
22.0 | 20.0
20.0
21.0
23.5
24.5
24.0 | 23.0
23.5
21.5
19.0
19.5
21.5 | 17.0
17.0
19.0
16.5
16.5 | 20.0
20.5
20.0
17.5
17.5 | 15.5
16.0
17.0
17.0
16.5 | 14.0
13.5
15.0
12.5
13.0 | 14.5
14.5
16.0
14.5
14.5 | | MONTH | 24.5 | 14.5 | 18.6 | 28.5 | 15.5 | 21.8 | 30.0 | 14.5 | 22.0 | 25.0 | 12.0 | 17.6 | | YEAR | 30.0 | 0.0 | 11.1 | | | | | | | | | | ### 01447680 TUNKHANNOCK CREEK NEAR LONG POND, PA LOCATION.--Lat 41°03'55", long 75°31'19", Monroe County, Hydrologic Unit 02040106, on left bank 0.6 mi downstream from unnamed tributary, 0.9 mi downstream from bridge on SR 4002, 3.0 mi west of Long Pond, and 5.0 mi upstream from mouth. **DRAINAGE AREA**.--20.0 mi² (revised). At site used prior to July 7, 1966, 16.8 mi². PERIOD OF RECORD.--March 1965 to current year. REVISED RECORDS.--WDR PA-90-1: 1990 (monthly runoff). GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,804.83 ft above National Geodetic Vertical Datum of 1929. Prior to July 7, 1966, nonrecording gage at site 0.8 mi upstream at different datum. **REMARKS.**--Records fair except those for estimated daily discharges, which are poor. Diversion upstream to Wild Creek Basin since October 1969. Several measurements of water temperature were made during the year. Satellite telemetry at station. COOPERATION .-- Records of diversion provided by the city of Bethlehem. # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |------------------------------------|--|-----------------------------------|--------------------------------------|-----------------------------------|--------------------------------|------------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------------|-----------------------------------|------------------------------------| | 1
2
3
4
5 | 14
13
11
10
9.7 | 8.0
7.9
7.4
7.4
6.6 | 70
56
38
29
23 | e19
e17
e15
16
16 | 40
e36
e34
30
24 | 23
23
63
80
e50 | 59
60
48
49
46 | 49
52
53
45
36 | 46
38
36
34
32 | 28
25
24
23
20 | 12
11
10
10 | 16
15
14
13 | | 6
7
8
9
10 | 9.5
9.2
9.2
9.6
9.1 | 6.3
8.0
9.1
6.7
8.0 | 20
19
20
20
21 | 15
15
17
19
19 | 24
23
23
23
25 | 40
35
33
33
43 | 40
40
36
36
42 | 34
31
32
34
33 | 55
175
172
125
72 | 20
20
19
19 | 11
14
14
12
11 | 11
11
9.7
8.9
8.1 | | 11
12
13
14
15 | 8.4
7.8
7.9
8.5 | 6.4
7.0
7.2
7.0
6.8 | 20
22
23
27
27 | 19
21
20
e17
19 | e36
e44
42
e34
e24 | 50
40
34
32
32 | e46
e38
e36
e46
83 | 32
35
54
75
81 | 49
46
69
75
95 | 19
19
18
17
17 | 9.8
9.4
9.0
8.6
8.1 | 6.8
6.6
6.7
6.3
8.9 | | 16
17
18
19
20 | 19
17
15
14
12 | 6.4
6.9
6.8
6.7
6.1 | 28
25
27
34
25 | 18
17
e16
15
16 | 26
23
22
e24
25 | 30
34
32
31
34 | e100
e48
35
31
e29 | 65
49
91
123
99 | 86
65
49
42
44 | 16
16
16
18 | 7.7
8.2
8.6
8.4
7.9 | 76
103
86
54
28 | | 21
22
23
24
25 | 9.8
9.5
9.0
8.3 | 7.6
7.3
7.3
7.2 | 21
20
22
22
22
e20 | 16
15
15
19
27 | 27
32
28
25
24 | e36
e48
e50
43
40 | e29
e29
e29
e30
29 | 69
56
50
45
44 | 40
36
36
32
31 | 17
15
17
25
25 | 8.1
8.6
9.0
9.5
9.9 | 18
15
13
13 | | 26
27
28
29
30
31 | 8.1
7.7
7.7
8.4
7.8
8.1 | 41
35
24
20
28 | e18
e15
16
15
e14
e16 | 27
e24
24
28
38
50 | 23
23
23
 | 43
105
116
91
67
60 | 32
30
54
87
66 | 41
40
40
69
84
62 | 31
36
49
41
32 | 19
16
15
14
13 | 10
10
9.7
11
17
19 | 11
21
60
71
56 | | TOTAL
MEAN
MAX
MIN
(†) | 321.3
10.4
19
7.7
3.0 | 336.1
11.2
41
6.1
0.9 | 773
24.9
70
14
6.9 | 629
20.3
50
15
0.5 | 787
28.1
44
22
0.0 | 1471
47.5
116
23
0.0 | 1363
45.4
100
29
5.8 | 1703
54.9
123
31
6.9 | 1769
59.0
175
31
0.0 | 580
18.7
28
13
0.0 | 323.5
10.4
19
7.7
0.0 | 791.0
26.4
103
6.3
0.0 | [†] Diversion to Wild Creek Basin, equivalent in cubic feet per second. e Estimated. # 01447680 TUNKHANNOCK CREEK NEAR LONG POND, PA--Continued | STATIST | TATISTICS OF MONTHLY MEA | | DATA | FOR WATER | YEARS 1970 | - 2002, | BY WATER | YEAR (WY) | (SINC | E REGULATION |) | | | |---|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------|-------------------------------------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | | SEP | | MEAN
MAX
(WY)
MIN
(WY) | 33.0
93.2
1978
7.13
2001 | 42.9
90.1
1971
9.39
1981 | 51.7
161
1997
7.07
1981 | 46.5
137
1996
3.85
1981 | 45.0
89.3
1996
13.2
1980 | 64.6
148
1977
21.1
1989 | 80.0
209
1993
20.5
1985 | 58.6
115
1990
20.5
1999 | 43.1
116
1972
10.5
1999 | 27.9
89.5
1984
4.19
1999 | 20.4
63.6
1990
2.52
1999 | | 26.3
142
1987
4.59
1995 | | SUMMARY STATISTICS | | | FOR | R 2001 CAL | ENDAR YEAR | F | OR 2002 WA | ATER YEAR | | WATER YEARS | 1970 | - | 2002 | | ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN | | | | 7732. | | | 10846.9
29.7 | | | 45.0
65.9 | | | 1978 | | LOWEST . | ANNUAL
DAILY | MEAN
MEAN | | 114 | Apr 11
1 Nov 20 | | 175
6.1 | Jun 7
Nov 20 | | 22.2
643 | Apr
q 11,1 | 6 | 2001
1984 | | LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE | | | | 6. | | | 6.7
191
3.07 | Nov 14
Jun 7 | | a 1.7
679
4.76 | Aug
Apr
Apr | 7
6 | 1999
1984
1984 | | 10 PERC
50 PERC
90 PERC | ENT EXC | CEEDS | | 39
18
7. | 8 | | 60
23
8.1 | | | 91
32
10 | STATIS | STICS OF | MONTHLY MEA | N DATA FOI | WATER | YEARS 1965 | - 1969, | BY WATER | YEAR (WY) | (PRIOR T | O REGULA | rion) | |---|---|---|--------------------------------------|---|---|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | | MEAN
MAX
(WY)
MIN
(WY) | 21.5
36.3
1966
12.5
1969 | 29.2
35.8
1969
22.9
1966 | 37.5
63.0
1969
21.0
1966 | 25.7
33.0
1969
17.1
1966 | 23.3
27.8
1968
21.1
1967 | 55.7
64.7
1966
42.2
1969 | 42.6
53.3
1967
29.4
1966 | 38.3
49.0
1968
20.8
1965 | 38.8
83.3
1969
10.4
1965 | 26.6
77.1
1969
7.17
1965 | 27.7
80.8
1969
8.46
1966 | | SUMMAR | RY STATIS | STICS | WATER | YEARS | 1965 - 1969 | | | | | | | | HIGHES LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU INSTAN ANNUAL ANNUAL 10 PER 50 PER | T ANNUAL T ANNUAL T DAILY T DAILY T DAILY T SEVEN I JM PEAK JM PEAK TTANEOUS L RUNOFF | MEAN MEAN MEAN MEAN DAY MINIMUM FLOW STAGE LOW FLOW (CFSM) (INCHES) CEEDS CEEDS | 480
4.
3.
1. | 0
7
0
7
34
0
88
53 | 1969
1966
Jul 30
1969
Sep 13 1966
Sep 8 1966
Jul 30 1969
Jul 30 1969
Mar 11 1969 | | | | | | | SEP 16.0 26.6 1969 8.86 1966 a Computed using estimated daily discharges. ### 01447720 TOBYHANNA CREEK NEAR BLAKESLEE, PA (Pennsylvania Water-Quality Network Station) **LOCATION.**—Lat 41°05′05", long 75°36′21", Carbon County, Hydrologic Unit 02040106, on left bank 50 ft downstream from bridge on State Highway 940, 500 ft downstream from Shingle Mill Run, and 1.5 mi southwest of Blakeslee. **DRAINAGE AREA**.--118 mi². # WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1961 to current year. GAGE.--Water-stage recorder. Datum of gage is 1,511.23 ft above National Geodetic Vertical Datum of 1929. Prior to Jan. 16, 1962, nonrecording gage at site 50 ft upstream at same datum. **REMARKS.**--Records good except those for estimated daily discharges, which are poor. Power generation at Pocono Lake about 5.0 mi upstream since 1985 and minor diversion from Tunkhannock Creek Basin into Wild Creek Basin. Satellite and landline telemetry at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Aug. 19, 1955, reached a stage of 19.41 ft, from floodmark, discharge, 35,300 ft³/s, by slope-area measurement. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,600 ft³/s and maximum (*): | Date
June | | me | oischarge
ft ³ /s
f1,120 | Gage Heigh
(ft)
*5.10 | t | | Date
(No | | Di
ime
above ba | scharge
ft ³ /s
ase disc | Gage Heigl
(ft)
harge.) | ht | |--|---|--|--|--|---|---|---|--|---|--|--|--| | | | | DISCHA | ARGE, CUBIC I | FEET PER S | | ATER YEAR (
EAN VALUE | | 2001 TO SEP | TEMBER 20 | 02 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 81
77
74
73
71 | 53
53
53
53
54 | 345
327
238
188
163 | e180
e160
133
84
70 | 242
256
212
181
141 | 122
122
366
419
321 | 346
334
309
302
280 | 441
438
433
355
300 | 326
294
229
188
180 | 208
168
141
121
112 | 75
73
74
73
79 | 85
77
67
61
53 | | 6
7
8
9
10 | 74
72
71
69
69 | 51
53
51
48
47 | 127
110
121
119
113 | 61
107
118
113
114 | 138
135
131
129
137 | 253
197
181
187
317 | 239
216
208
207
248 | 256
232
217
236
278 | 294
1000
845
563
381 | 100
94
93
96
115 | 86
76
76
73
72 | 46
42
39
37
35 | | 11
12
13
14
15 | 69
63
54
54
69 | 48
48
47
48
48 | 108
113
123
157
183 | 117
116
116
113
88 | 299
286
225
164
149 | 308
258
208
192
184 | 225
e220
e240
e400
e600 | 257
284
558
877
685 | 238
293
318
369
468 | 84
83
81
81 | 70
38
35
33
33 | 33
27
27
28
62 | | 16
17
18
19
20 | 68
71
66
63
59 | 47
44
44
44 | 153
151
223
233
179 | 64
62
e80
e100 | 146
137
130
131
129 | 207
213
213
209
195 | 532
388
305
244
237 | 492
384
752
868
619 | 439
360
287
258
235 | 78
74
83
66
63 | 33
32
33
32
36 | 452
411
261
164
99 | | 21
22
23
24
25 | 57
56
55
56
55 | 45
45
45
45
89 | 155
128
122
134
121 | 111
109
108
117
134 | 144
161
145
136
129 | 259
291
274
245
234 | 224
213
212
193
206 | 468
369
349
306
272 | 199
172
160
148
135 | 61
58
136
303
220 | 28
27
30
41
47 | 79
74
72
69
67 | | 26
27
28
29
30
31 | 53
53
53
54
54
53 | 121
150
182
126
195 | 105
e120
115
84
78
e160 | 127
124
126
132
210
251 | 126
131
128
 | 267
623
601
465
377
330 | 231
204
413
643
528 | 252
239
251
410
447
370 | 321
662
555
383
264 | 123
99
96
85
92
78 | 44
42
42
70
100
97 | 67
135
e220
e180
e140 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 1966
63.42
81
53
0.54
0.62 | 2023
67.43
195
44
0.57
0.64 | 4796
154.7
345
78
1.31
1.51 | 3609
116.4
251
61
0.99
1.14 | 4598
164.2
299
126
1.39
1.45 | 8638
278.6
623
122
2.36
2.72 | 9147
304.9
643
193
2.58
2.88 | 12695
409.5
877
217
3.47
4.00 | 10564
352.1
1000
135
2.98
3.33 | 3372
108.8
303
58
0.92
1.06 | 1700
54.84
100
27
0.46
0.54 | 3209
107.0
452
27
0.91
1.01 | | STATIST | ICS OF M | ONTHLY M | EAN DATA | FOR WATER | YEARS 19 | 62 - 2002 | , BY WATER | YEAR (W | Y) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 185.7
598
1977
31.2
1964 | 258.2
644
1973
48.1
1965 | 290.2
827
1997
58.0
1981 | 271.5
1019
1996
40.6
1981 | 272.0
768
1981
100
1980 | 410.0
948
1977
172
1989 | 465.7
1247
1993
162
1985 | 325.0
784
1989
134
1999 | 225.1
777
1972
64.1
1999 | 148.0
481
1969
30.3
1999 | 115.4
372
1969
34.3
1964 | 157.1
785
1987
28.0
1964 | e Estimated. ## 01447720 TOBYHANNA CREEK NEAR BLAKESLEE, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALEN | DAR YEAR | FOR 2002 WAT | ER YEAR | WATER YEARS | 1962 - 2002 | |--------------------------|----------------|-----------------|--------------|-----------------|-------------|----------------------| | ANNUAL TOTAL | 55034 | | 66317 | | | | | ANNUAL MEAN | 151 | | 182 | | 260 | | | HIGHEST ANNUAL MEAN | | | | | 399 | 1973 | | LOWEST ANNUAL MEAN | | | | | 129 | 1965 | | HIGHEST DAILY MEAN | 765 | Mar 31 | 1000 | Jun 7 | 5540 | Apr 6 1984 | | LOWEST DAILY MEAN | 44 | Sep 19 a | 27 | Aug 22 b | 21 | Aug 12 1999 c | | ANNUAL SEVEN-DAY MINIMUM | 45 | Nov 17 | 31 | Aug 17 | 23 | Sep 21 1964 | | MAXIMUM PEAK FLOW | | | 1120 | Jun 7 | 9190 | Sep 27 1985 | | MAXIMUM PEAK STAGE | | | 5.10 | Jun 7 | 12.33 | Sep 27 1985 | | INSTANTANEOUS LOW FLOW | | | | | 16 | Aug 8 1991 | | ANNUAL RUNOFF (CFSM) | 1.28 | | 1.54 | | 2.20 | | | ANNUAL RUNOFF (INCHES) | 17.35 | | 20.91 | | 29.94 | | | 10 PERCENT EXCEEDS | 303 | | 379 | | 524 | | | 50 PERCENT EXCEEDS | 116 | | 129 | | 175 | | | 90 PERCENT EXCEEDS | 49 | | 47 | | 57 | | a Also Nov. 17-19.b Also Sept. 12, 13.c Also Sept. 3, 4, 1999. ## 01447720 TOBYHANNA CREEK NEAR BLAKESLEE, PA--Continued (Pennsylvania Water-Quality Network Station) ### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1930 to 1982, 2002 to current year. ## PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: Water years 1980 to current year. **INSTRUMENTATION**.--Temperature probe interfaced with a data collection platform. **REMARKS**.--Water temperature records rated good. Interruptions in the record were due to malfunctions of the recording instrument. Other data for the Water-Quality Network can be found on pages 410-425. **EXTREMES FOR PERIOD OF DAILY RECORD.**-- WATER TEMPERATURE: Maximum, 28.5°C, July 5, 6, 1999; minimum, 0.0°C, many days during winters. $\begin{tabular}{llll} \textbf{EXTREMES FOR CURRENT YEAR--}\\ \textbf{WATER TEMPERATURE: } & \textbf{Maximum, } 26.0^{\circ}\text{C, Aug. } 2\text{-4; minimum, } 0.0^{\circ}\text{C, many days during winter.} \\ \end{tabular}$ ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Dat | :e | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER) | | SAM-
PLING
METHOD,
CODES
(82398) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS
(00400 | CIFIC
CON-
- DUCT-
ANCE
) (µS/CM | TEMPER-
ATURE
WATER
(DEG C) | (MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | CALCIUM
TOTAL
RECOV-
ERABLE
(MG/L
AS CA)
(00916) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | MAGNE-
SIUM,
TOTAL
RECOV-
ERABLE
(MG/L
AS MG)
(00927) | |---------------|-------------|---|--|--|---|--|--|---|--|--|--|--|---|--| | APR 20 | | 0830 | 9813 | 329 | 40 | 12.3 | 6.5 | 82 | 5.9 | 17 | 4.83 | 4.8 | 1.11 | 1.1 | | JUN
04 | | 1210 | 9813 | 182 | 40 | 9.5 | 6.7 | 73 | 18.0 | 13 | 3.76 | 3.8 | .94 | 1.0 | | AUG
08 | | 0800 | 9813 | 77 | 40 | 8.9 | 7.0 | 80 | 16.7 | 17 | 4.59 | 4.8 | 1.17 | 1.2 | |
Dat
APR 20 | | ACIDITY
TOTAL
HEATED
(MG/L
AS
CAC03) | ANC WATER UNFLTRI FET LAB MG/L AS CACO3 | DIS-
SOLVED
(MG/L
AS SO4) | RESIDUE
AT 105
DEG. C,
DIS-
SOLVED
(MG/L)
(00515) | AT 105
DEG. C,
SUS-
PENDED
(MG/L) | NITRO-
GEN, | GEN,
A NITRATI
TOTAL
(MG/L
AS N) | GEN,
E NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | PHOS-PHORUS
ORTHO
TOTAL
(MG/L
AS P)
(70507) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) | COPPER,
DIS-
SOLVED
(µG/L
AS CU)
(01040) | | 02
JUN | | 20 | 5 | 5.9 | 62 | <2 | <.020 | .21 | <.040 | .47 | .01 | .014 | 1.9 | <4 | | 04 | | 17 | 5 | 4.6 | 72 | 6 | <.020 | .12 | < .040 | .36 | .01 | .011 | 1.2 | <4 | | 08 | | 19 | 8 | 4.3 | 48 | 10 | <.020 | .14 | <.040 | .81 | <.01 | .011 | 1.7 | <4 | | | Da
APR 2 | ate (| OPPER,
FOTAL
RECOV-
ERABLE
(µG/L
AS CU)
01042) (| IRON,
DIS-
SOLVED
(µG/L
AS FE) | RECOV-
ERABLE
(µG/L
AS FE) | LEAD,
DIS-
SOLVED
(µG/L
AS PB) | LEAD,
TOTAL
RECOV-
ERABLE
(µG/L
AS PB)
01051) | MANGA-
NESE,
DIS-
SOLVED
(µG/L
AS MN)
(01056) | RECOV-
ERABLE
(µG/L
AS MN) | IICKEL, T
DIS- I
SOLVED I
(µG/L
AS NI) I | RECOV-
ERABLE :
(µG/L
AS NI) : | ZINC, Σ DIS- Σ SOLVED Σ (μ G/L AS ZN) Σ | ZINC,
FOTAL
RECOV-
ERABLE
(µG/L
AS ZN)
D1092) | | | | 02.
JUN | | <4 | 80 | | | <1.0 | 30 | 40 | | | 20 | 20 | | | | 04.
AUG | | <4 | 100 | | <1.0 | <1.0 | 20 | 50 | | <4.0 | 8.3 | 10 | | | | 08. | | <4 | 160 | 300 | <1.0 | <1.0 | 20 | 50 | <4.0 | <4.0 | <5.0 | <5.0 | | # 01447720 TOBYHANNA CREEK NEAR BLAKESLEE, PA--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|---|--|--|--|--|--|--|---|--|--|---|--| | | | OCTOBER | | | NOVEMBER | | | DECEMBER | | | JANUARY | | | 1
2
3
4
5 | 14.5
16.0 | 11.0
10.5
11.5
12.5
12.5 | 12.5
12.5
14.0
14.5
14.5 | 9.5
11.5
11.5
9.5
8.5 | 6.5
8.5
9.5
7.5
6.0 | 8.0
10.0
10.5
8.5
7.0 | 10.5
8.0
7.0
7.5
9.0 | 8.0
7.0
5.5
5.5
7.0 | 9.5
7.5
6.5
6.5
8.0 | 0.0
0.0
0.5
0.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 6
7
8
9
10 | 15.0
12.5
10.5
10.5 | 12.5
9.5
8.0
6.5
8.0 | 14.0
10.5
9.5
8.5
10.0 | 6.5
8.0
8.0
8.0 | 5.5
5.0
6.0
5.5
4.0 | 6.0
6.5
7.0
6.5
5.0 | 9.5
9.0
6.5
6.5
4.5 | 8.0
6.5
4.0
4.5
3.0 | 8.5
8.5
5.5
5.0
4.0 | 1.0
1.0
2.0
2.5
3.0 | 0.0
0.0
0.5
1.0
2.0 | 0.5
0.5
1.0
1.5
2.5 | | 11
12
13
14
15 | 13.5
13.5
15.0
14.5
14.0 | 9.0
10.0
12.0
13.0
11.5 | | 5.5
4.5
4.5
5.5
8.0 | | | 5.5
5.0
6.5
7.5
7.5 | | | | | | | 16
17
18
19
20 | 11.5
10.5
9.0
9.5
11.0 | 8.5
8.5
7.0
6.5
8.5 | 10.5
10.0
8.0
8.0
9.5 | 8.5
7.5
6.0
6.5 | 6.5
5.5
4.0
4.0 | 7.5
6.0
5.0
5.5
6.0 | 5.5
5.5
6.5
6.0 | 3.0
4.0
4.0
4.0
3.0 | 4.0
4.5
5.5
4.5 | 2.5
2.5
2.0
0.5
1.5 | 1.5
1.5
0.5
0.0 | 2.0
2.0
1.0
0.0 | | | 11.5
12.0
13.0
15.0
14.0 | | | | | | 4.5
3.5
3.5
4.0
2.5 | | | | | 1.5
2.0
2.5
3.5
2.5 | | 26
27
28
29
30
31 | 11.0
7.5
7.5
7.5
8.0
7.0 | 7.5
6.5
5.5
4.0
6.0
6.0 | 9.0
7.0
6.5
6.0
7.0 | 8.5
8.0
8.5
8.5
10.5 | 7.0
5.5
7.0
8.0
8.5 | 8.0
6.5
8.0
8.0
9.5 | 1.0
0.5
1.5
1.5
0.0 | 0.5
0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5
0.0 | 3.0
3.5
4.0
5.0
5.0
4.0 | 1.5
1.5
2.0
2.5
3.5
3.0 | 2.0
2.5
3.0
3.5
4.5
3.0 | | MONTH | | | | | | | 10.5 | | | | | 1.7 | | DAY | MAX | MIN
FEBRUAR | | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | 1
2
3
4
5 | 4.5
3.0
3.5
3.0
2.5 | 3.0
1.0
1.0
0.5 | 3.5
2.0
1.5
1.5 | 4.0
4.0
5.5
3.5
2.5 | 0.5
1.0
3.5
1.5 | 2.0
2.5
4.5
2.5
1.5 | 8.5
8.5
9.5
8.5
9.0 | 6.5
6.0
6.5
5.5 | 7.5
7.0
8.0
7.0
6.5 | 12.5
11.5
11.5
13.0
14.5 | 8.5
10.0
9.5
8.5
9.5 | 10.0
10.5
10.5
10.5
11.5 | | 6
7
8
9
10 | 2.5
4.0
4.0
4.5
5.0 | 1.0
2.0
2.0
2.5
3.0 | 1.5
2.5
3.0
3.0
4.0 | 4.5
5.5
7.0
7.5
8.0 | 1.0
2.5
3.0
5.0
2.5 | 2.5
4.0
4.5
6.5
4.5 | 7.0
8.5
9.0
10.5
12.0 | 4.5
3.5
6.0
8.0
8.5 | 5.5
5.5
7.0
9.0
10.0 | 15.0
15.0
15.5
14.0
16.0 | 10.5
12.0
12.0
12.0
12.0 | 12.5
13.5
13.5
13.0
13.5 | | 11
12
13
14
15 | 5.0
3.0
3.0
2.5
3.5 | 1.5
1.5
1.0
0.0 | 3.0
2.0
2.5
1.0
2.5 | 3.5
4.5
4.5
7.5
9.0 | 1.5
2.5
3.0
4.5
5.5 | 2.5
3.5
4.0
5.5
7.0 | 12.5

 | 7.5

 | 9.5

 | 15.5
13.0
13.5
13.5
13.0 | 11.5
12.0
12.0
12.0
11.0 | 13.0
12.0
13.0
12.5
12.0 | | 16
17
18
19 | 5.0 | 3.0 | | | | | | | | | | | | 20 | 4.0
3.0
4.0
5.5 | 2.0
1.0
0.5
3.5 | 3.5
3.0
2.0
2.5
4.5 | 8.0
5.0
4.0
5.0
4.5 | 4.5
3.5
3.5
4.0
2.5 | 7.0
4.5
4.0
4.5
3.5 | 18.5
19.0
19.5
16.0 | 14.5
15.0
15.0
14.0 | 16.0
16.5
17.0
15.0 | 14.5
15.5
13.5
13.5
12.5 | 11.0
13.0
11.0
11.0 | 13.0
14.0
12.0
12.0
11.5 | | | 3.0
4.0 | 2.0
1.0
0.5 | 3.0
2.0
2.5 | 5.0
4.0
5.0 | 3.5
3.5
4.0 | 4.5
4.0
4.5 | 18.5
19.0
19.5 | 14.5
15.0
15.0 | 16.0
16.5
17.0 | 15.5
13.5
13.5 | 13.0
11.0
11.0 | 14.0
12.0
12.0 | | 20
21
22
23
24 | 3.0
4.0
5.5
6.5
5.0
4.5
5.0 | 2.0
1.0
0.5
3.5
5.0
4.0
2.5
1.5 | 3.0
2.0
2.5
4.5
5.5
4.5
3.5
3.0 | 5.0
4.0
5.0
4.5
7.0
3.5
5.0
5.5 | 3.5
3.5
4.0
2.5
3.0
1.5
1.5
2.5 | 4.5
4.0
4.5
3.5
4.5
2.5
3.0
4.0 | 18.5
19.0
19.5
16.0
14.0
11.5
12.5
14.0 | 14.5
15.0
15.0
14.0
11.5
9.5
8.5
8.0 | 16.0
16.5
17.0
15.0
12.0
11.0
10.0 | 15.5
13.5
13.5
12.5
12.5
14.5
15.5
16.0 | 13.0
11.0
11.0
11.0
10.0
9.5
10.5
11.5 | 14.0
12.0
12.0
11.5
11.5
13.0
13.5 | # 01447720 TOBYHANNA CREEK NEAR BLAKESLEE, PA--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5 | 20.0
19.5
19.0
17.5
20.5 | 16.0
16.0
15.0
15.0 | 17.5
17.5
16.5
16.5
18.0 | 22.5
24.0
25.5
25.5
23.5 | 18.0
18.5
19.5
20.0
19.0 | 20.0
21.0
22.0
22.5
21.0 | 25.5
26.0
26.0
26.0
24.0 | 20.0
20.0
20.5
21.0
20.5 | 23.0
23.0
23.0
23.5
22.5 | 19.0
19.0
21.5
22.5
20.0 | 17.0
16.5
16.5
18.5
17.0 | 17.0
17.5
19.0
20.5
18.5 | | 6
7
8
9
10 | 18.5
19.0
19.5
19.5
20.0 | 15.0
15.5
17.5
17.0
17.0 | 17.0
17.5
18.5
18.0
18.5 | 21.0
22.0
23.0
22.0
23.5 | 17.5
16.0
16.5
18.5
19.5 | 19.0
19.0
19.5
20.0
21.0 | 22.5
21.0
22.0
22.5
23.5 | 19.0
17.0
16.5
16.0
17.0 | 21.0
19.0
19.0
19.5
20.0 | 19.5
20.0
20.0
20.5
21.5 | 15.0
15.0
15.0
15.5
17.0 | 17.5
17.5
18.0
18.0 | | 11
12
13
14
15 | 21.5
20.0
18.0
17.0
16.5 | 17.5
17.5
17.0
15.0
16.0 | 19.0
18.5
17.5
16.0
16.0 | 21.5
22.0
21.0
20.0
23.0 | 16.0
15.0
16.0
18.0
17.5 | 19.0
18.5
19.0
19.0
20.0 | 24.0
23.5
24.5
24.5
25.0 | 18.0
18.5
19.0
19.5
20.0 | 21.0
21.0
22.0
22.0
22.5 | 19.5
17.5
17.5
19.0
18.5 | 16.0
13.5
12.0
14.0
18.0 | 18.0
15.5
15.0
16.5
18.0 | | 16
17
18
19
20 | 17.5
18.0
18.0
17.5
19.5 | 15.5
15.0
14.5
15.0
15.5 |
16.5
16.5
16.0
16.0
17.0 | 23.0
23.5
23.0
22.5
23.5 | 18.0
17.0
19.5
19.0
19.5 | 20.5
20.5
21.5
21.0
21.5 | 25.0
25.5
25.0
23.5
22.5 | 21.0
20.5
21.0
20.0
20.0 | 23.0
23.0
22.5
22.0
21.0 | 19.5
20.0
19.0
19.0
20.0 | 16.5
17.5
16.5
16.5
17.5 | 18.5
18.5
18.0
18.0 | | 21
22
23
24
25 | 20.0
21.0
22.0
22.0
22.5 | 16.0
16.5
17.5
18.0
18.5 | 18.0
18.5
19.5
20.0
20.5 | 23.0
25.0
24.0
22.5
23.5 | 19.0
19.5
18.5
19.5
20.5 | 21.0
22.0
21.0
21.0
21.5 | 22.5
22.0
22.5
21.0
22.0 | 17.0
18.0
19.5
19.0
18.0 | 19.5
20.0
21.0
19.5
20.0 | 20.0
19.5

17.5
17.0 | 18.5
18.5

13.0
13.5 | 19.0
19.0

15.5
15.5 | | 26
27
28
29
30
31 | 21.5
21.0
21.0
21.5
22.0 | 17.0
19.0
19.5
18.5
18.5 | 19.0
20.0
20.0
20.0
20.0 | 21.0
21.5
22.5
25.0
25.0
25.0 | 19.5
19.0
19.5
20.5
21.0 | 20.0
20.0
20.5
22.5
23.0
22.0 | 20.5
21.0
20.5
18.0
20.0
20.5 | 17.0
17.0
18.0
16.0
17.5
16.5 | 19.0
19.5
19.0
17.0
18.5
18.5 | 16.5
16.0

 | 15.0
13.5

 | 15.5
14.5

 | | MONTH | 22.5 | 14.5 | 18.0 | 25.5 | 15.0 | 20.6 | 26.0 | 16.0 | 20.8 | 22.5 | 12.0 | 17.6 | | YEAR | 26.0 | 0.0 | 10.8 | | | | | | | | | | ### 01447800 LEHIGH RIVER BELOW FRANCIS E. WALTER RESERVOIR NEAR WHITE HAVEN, PA LOCATION.--Lat 41°06'17", long 75°43'57", Luzerne County, Hydrologic Unit 02040106, on right bank 0.7 mi downstream from Francis E. Walter Reservoir, 2.0 mi upstream from Fawn Run, and 4.0 mi northeast of White Haven. **DRAINAGE AREA**.--290 mi². ### WATER-DISCHARGE RECORDS **PERIOD OF RECORD.**—October 1957 to current year. Prior to October 1962 published as "below Bear Creek Reservoir", October 1962 to September 1971 published as "below Francis E. Walter Reservoir." GAGE.--Water-stage recorder. Datum of gage is 1,212.95 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). **REMARKS.**--No estimated daily discharges. Records good. Flow regulated since February 1961 by Francis E. Walter Reservoir (station 01447780) 0.7 mi upstream. Satellite and landline telemetry at station. **EXTREMES OUTSIDE PERIOD OF RECORD.**—Flood of August 1955 reached a discharge of 54,200 ft³/s based on slope-area measurement at site 4.9 mi downstream. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002
DAILY MEAN VALUES | | | | | | | | | | | | | | |----------------|--|----------------|-------------------|-------------------|-------------------|------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 1 2 | 146 | 78 | 468 | 173 | 575 | 170 | 288 | 1500 | 810 | 539 | 239 | 185 | | | | | 122 | 78 | 597 | 215 | 191 | 170 | 173 | 1290 | 810 | 406 | 336 | 144 | | | | 3 | 109 | 78 | 542 | 241 | 200 | 171 | 175 | 1110 | 645 | 368 | 503 | 144 | | | | 4 | 109 | 78 | 370 | 215 | 194 | 173 | 176 | 1000 | 541 | 368 | 503 | 119 | | | | 5 | 264 | 94 | 297 | 196 | 246 | 173 | 416 | 1000 | 541 | 275 | 336 | 102 | | | | 6 | 280 | 106 | 266 | 196 | 274 | 175 | 616 | 661 | 505 | 221 | 239 | 146 | | | | 7 | 72 | 106 | 235 | 196 | 167 | 176 | 616 | 450 | 1470 | 221 | 239 | 193 | | | | 8 | 72 | 106 | 225 | 196 | 175 | 176 | 461 | 452 | 787 | 185 | 239 | 193 | | | | 9 | 72 | 89 | 224 | 196 | 176 | 176 | 378 | 535 | 793 | 142 | 326 | 206 | | | | 10 | 91 | 78 | 224 | 225 | 177 | 180 | 528 | 623 | 1840 | 152 | 497 | 224 | | | | 11 | 104 | 78 | 213 | 251 | 181 | 340 | 510 | 623 | 2080 | 150 | 494 | 224 | | | | 12 | 104 | 78 | 206 | 251 | 183 | 535 | 449 | 623 | 1080 | 189 | 323 | 224 | | | | 13 | 104 | 78 | 206 | 251 | 185 | 561 | 450 | 1280 | 708 | 247 | 282 | 224 | | | | 14 | 119 | 78 | 233 | 251 | 186 | 503 | 449 | 3160 | 692 | 247 | 329 | 224 | | | | 15 | 142 | 78 | 251 | 251 | 187 | 434 | 980 | 3270 | 611 | 223 | 308 | 225 | | | | 16 | 150 | 78 | 254 | 215 | 189 | 410 | 1410 | 1740 | 981 | 210 | 352 | 193 | | | | 17 | 150 | 78 | 322 | 196 | 191 | 410 | 999 | 1070 | 981 | 210 | 485 | 170 | | | | 18 | 150 | 78 | 402 | 180 | 193 | 510 | 768 | 1000 | 933 | 226 | 484 | 170 | | | | 19 | 126 | 78 | 595 | 148 | 193 | 507 | 667 | 2290 | 745 | 348 | 245 | 170 | | | | 20 | 206 | 78 | 588 | 128 | 193 | 467 | 455 | 2650 | 593 | 516 | 100 | 384 | | | | 21 | 102 | 78 | 435 | 130 | 188 | 473
479 | 455 | 1370 | 641 | 516 | 100 | 464 | | | | 22
23
24 | 102
102
102 | 78
78
78 | 353
350
348 | 170
219
274 | 183
183
183 | 479
479 | 603
689
541 | 1000
757
585 | 793
793
541 | 343
247
247 | 100
100
100 | 173
173
130 | | | | 25 | 103 | 79 | 348 | 333 | 171 | 288 | 449 | 557 | 315 | 247 | 100 | 100 | | | | 26 | 103 | 204 | 269 | 353 | 168 | 190 | 623 | 559 | 255 | 339 | 100 | 100 | | | | 27 | 103 | 303 | 193 | 350 | 170 | 195 | 720 | 561 | 678 | 516 | 100 | 142 | | | | 28 | 102 | 332 | 171 | 313 | 170 | 196 | 722 | 1500 | 742 | 516 | 100 | 170 | | | | 29 | 102 | 278 | 173 | 293 | | 295 | 1730 | 7830 | 645 | 338 | 100 | 170 | | | | 30
31 | 102
102
87 | 223 | 173
173 | 400
664 | | 501
503 | 1870 | 4430
1130 | 645 | 241
239 | 147
243 | 226 | | | | TOTAL | 3802 | 3402 | 9704 | 7670 | 5672 | 10495 | 19366 | 46606 | 24194 | 9232 | 8149 | 5712 | | | | MEAN | 123 | 113 | 313 | 247 | 203 | 339 | 646 | 1503 | 806 | 298 | 263 | 190 | | | | MAX | 280 | 332 | 597 | 664 | 575 | 561 | 1870 | 7830 | 2080 | 539 | 503 | 464 | | | | MIN | 72 | 78 | 171 | 128 | 167 | 170 | 173 | 450 | 255 | 142 | 100 | 100 | | | ### 01447800 LEHIGH RIVER BELOW FRANCIS E. WALTER RESERVOIR NEAR WHITE HAVEN, PA--Continued | STATIS | STICS OF | MONTHLY | MEAN DATA | FOR WATER | YEARS 196 | 1 - 2002, | BY WATER | R YEAR (WY | (SINCE | E REGULATI | <u>ON</u>) | | |------------------------------------|-------------------------------------|-------------------------------------|---------------------|------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------| | | OCT | NOV | 7 DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN
MAX
(WY)
MIN
(WY) | 434
1435
1978
68.5
1964 | 626
1488
1986
68.1
1965 | 2079
1997
142 | 639
2596
1996
131
1981 | 647
1542
1981
197
1980 | 1006
2018
1977
326
1981 | 1116
3198
1993
341
1966 | 775
1968
1989
311
2001 | 525
1359
1972
135
1962 | 342
1165
1973
66.1
1999 | 256
1153
1969
55.9
1999 | 322
1784
1987
43.2
1964 | | SUMMARY STATISTICS | FOR 2001 CALENDAR | YEAR | FOR 2002 WAT | ER Y | EAR | WATER YEARS | 1961 - | 2002 | |--------------------------|-------------------|--------------|--------------|------|-------------|--------------|--------|---------------| | ANNUAL TOTAL | 128477 | | 154004 | | | | | | | ANNUAL MEAN | 352 | | 422 | | | 614 | | | | HIGHEST ANNUAL MEAN | | | | | | 954 | | 1996 | | LOWEST ANNUAL MEAN | | | | | | 289 | | 1965 | | HIGHEST DAILY MEAN | 2300 Ap | r 11 | 7830 | May | 29 | 11000 | Jan 29 | 1996 | | LOWEST DAILY MEAN | 72 Au | g 7 a | 72 | Oct | 7-9 | 22 | Jul 20 | 1965 c | | ANNUAL SEVEN-DAY MINIMUM | 72 Au | g 28 | 78 | Nov | 10 b | 33 | Jul 19 | 1965 | | MAXIMUM PEAK FLOW | | | 8240 | May | 29 | 11700 | Apr 13 | 1993 | | MAXIMUM PEAK STAGE | | | 7.82 | May | 29 | 8.86 | Apr 13 | 1993 | | INSTANTANEOUS LOW FLOW | | | | | | d 1.3 | Nov 14 | 1961 | | 10 PERCENT EXCEEDS | 723 | | 789 | | | 1310 | | | | 50 PERCENT EXCEEDS | 237 | | 241 | | | 405 | | | | 90 PERCENT EXCEEDS | 78 | | 100 | | | 107 | | | | STATISTI | CS OF | MONTHLY | MEAN DATA | FOR WATER | YEARS 19 | 958 - 1960, | BY WATER | R YEAR (WY) | (PRIOR | TO REGULA | TION) | | |----------|-------|---------|-----------|-----------|----------|-------------|----------|-------------|--------|-----------|-------|------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 378 | 571 | 1002 | 692 | 678 | 790 | 1886 | 909 | 425 | 245 | 190 | 371 | | MAX | 502 | 854 | 1504 | 778 | 1039 | 926 | 2536 | 1134 | 521 | 339 | 270 | 744 | | (WY) | 1960 | 1960 | 1958 | 1960 | 1960 | 1958 | 1958 | 1958 | 1960 | 1960 | 1960 | 1960 | | MIN | 173 | 347 | 371 | 549 | 467 | 610 | 1262 | 520 | 310 | 195 | 129 | 135 | | (WY) | 1958 | 1958 | 1959 | 1959 | 1959 | 1960 | 1959 | 1959 | 1959 | 1959 | 1959 | 1959 | | SUMMARY STATISTICS | WATER YEARS | 1958 | - | 1960 | |---|---|------------|--------------|--| | ANNUAL TOTAL ANNUAL MEAN | WATER YEARS 676 807 478 10700 50 63 £13800 | Dec
Oct | 21
4
1 | 1960
1959
1957
1957
1957
1957 | | MAXIMUM PEAK STAGE ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 9.85
2.33
31.69
1390
440
141 | | | 1957 | - a Also Aug. 8, 28-31, Sept. 1-3, Oct. 7-9. b First occurrence. c Also July 22, 23, 1965. d Result of shutoff at reservoir. f From rating curve extended above 6,100 ft³/s. ## 01447800 LEHIGH RIVER BELOW FRANCIS E. WALTER RESERVOIR NEAR
WHITE HAVEN, PA--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1964 to 1982. PERIOD OF DAILY RECORD.--WATER TEMPERATURE: Water years 1988 to current year. **INSTRUMENTATION**.--Temperature probe interfaced with a data collection platform. **REMARKS**.--Water temperature records rated good. # EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: Maximum, 31.5°C, July 21, 1988; minimum, 0.0°C, many days during winters. # EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum, 26.0°C, Aug. 19; minimum, 0.0°C, many days during winter. WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|---|--------------------------------------|--------------------------------------|-----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------|--| | | | OCTOBER | | | NOVEMBER | | 1 | DECEMBER | | | JANUARY | • | | 1
2
3
4
5 | 14.5
15.0
15.0
15.0 | 13.0
13.0
13.0
13.0
13.5 | 13.5
13.5
13.5
14.0
14.5 | 9.5
9.0
10.0
10.0
9.5 | 7.5
7.5
8.0
8.0
8.5 | 8.0
8.5
8.5
8.5
9.0 | 9.5
9.5
8.5
7.5
7.0 | 8.0
8.5
7.0
6.0
6.5 | 8.5
9.0
8.0
7.0
7.0 | 1.0
1.0
1.0
0.5 | 0.5
0.5
0.5
0.5 | 0.5
0.5
0.5
0.5 | | 6
7
8
9
10 | 16.5
14.5
13.5
12.5
12.0 | 13.5
12.5
10.5
10.0 | 15.0
13.5
12.0
11.0
10.5 | 10.0
9.0
9.0
9.0
9.0 | 8.0
8.0
7.5
7.5 | 9.0
8.5
8.0
8.0 | 7.5
8.0
7.5
7.0
6.0 | 7.0
7.5
7.0
6.0
4.5 | 7.0
7.5
7.5
6.5
5.5 | 1.0
0.5
1.0
0.5
1.0 | 0.0
0.5
0.5
0.5 | 0.5
0.5
0.5
0.5 | | 11
12
13
14
15 | 12.5
12.5
13.5
13.0
14.0 | 10.5
11.0
11.5
12.0
12.5 | 11.0
11.5
12.0
12.5
13.0 | 8.5
7.5
7.0
6.5
6.5 | 7.0
6.0
5.5
5.0 | 7.5
6.5
6.0
5.5
5.5 | 6.0
5.5
4.5
5.0
5.0 | 5.0
4.5
4.5
4.5
4.5 | 5.5
5.0
4.5
4.5
5.0 | 0.5
1.0
0.5
0.5 | 0.5
0.5
0.5
0.5 | 0.5
0.5
0.5
0.5 | | 16
17
18
19
20 | 14.0
13.0
12.0
11.5
12.0 | 12.5
12.0
10.5
9.5
9.5 | 13.0
12.5
11.5
10.5 | 7.0
7.0
7.0
7.0
7.0 | 5.5
5.5
5.0
6.0 | 6.0
6.0
6.0
6.5 | 5.5
5.0
4.5
4.5 | 5.0
4.5
4.5
4.0
4.0 | 5.0
4.5
4.5
4.5
4.0 | 0.5
1.0
1.0
0.5 | 0.5
0.5
0.0
0.0 | 0.5
0.5
0.5
0.5 | | 21
22
23
24
25 | 11.5
11.5
11.5
12.5
12.5 | 9.5
10.0
10.5
11.0
11.5 | 10.5
10.5
11.0
11.5
11.5 | 7.0
6.5
6.5
6.0 | 5.5
5.0
5.0
5.5
5.5 | 6.0
5.5
5.5
5.5
6.0 | 4.0
3.5
2.5
2.5
2.5 | 3.5
2.5
2.5
2.5
2.0 | 4.0
3.0
2.5
2.5
2.5 | 0.5
1.0
1.0
0.5 | 0.5
0.0
0.5
0.5 | 0.5
0.5
0.5
0.5 | | 26
27
28
29
30
31 | 12.0
11.5
10.0
9.5
9.5
8.5 | 11.0
9.5
8.5
7.5
7.5 | 11.5
10.5
9.5
8.5
8.5 | 6.5
7.0
8.0
7.5
8.0 | 6.0
6.5
7.0
7.5
7.5 | 6.5
6.5
7.5
7.5
8.0 | 2.5
2.5
2.5
2.0
1.5 | 2.0
2.0
1.5
1.5
1.0 | 2.0
2.0
2.0
1.5
1.0 | 1.5
1.5
2.0
2.0
2.5
3.0 | 1.0
1.0
1.0
1.5
1.5 | 1.0
1.0
1.5
1.5
2.0
2.5 | | MONTH | 16.5 | 7.5 | 11.6 | 10.0 | 5.0 | 7.0 | 9.5 | 0.5 | 4.7 | 3.0 | 0.0 | 0.7 | # 01447800 LEHIGH RIVER BELOW FRANCIS E. WALTER RESERVOIR NEAR WHITE HAVEN, PA--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|--|--|--|--|--|--|--|--|--|--|--|--| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 3.0
3.5
3.5
3.0
3.5 | 2.5
2.5
2.5
2.5
2.0 | 2.5
3.0
3.0
2.5
2.5 | 4.5
4.0
4.5
4.5 | 3.5
3.5
3.5
3.0
3.0 | | 6.0
6.0
5.5
6.5 | | 5.0
5.0
5.5
5.0 | 10.0
10.0
10.0
10.5
10.5 | 9.5
10.0
10.0
10.0 | 10.0
10.0
10.0
10.5
10.5 | | 6
7
8
9
10 | 2.5
3.0
3.5
3.5
3.0 | 2.5
2.5
2.5
2.0
2.5 | 2.5
2.5
2.5
2.5
2.5 | 5.0
5.0
5.0
4.5
4.5 | 3.5
3.5
3.5
4.0
3.5 | 4.0
4.0
4.0
4.0
4.0 | 5.5
5.5
5.5
6.5 | 5.0
5.0
5.0
5.5 | 5.0
5.5
5.5
5.5
6.0 | 11.0
11.0
11.0
10.5
11.0 | 10.0
10.0
10.5
10.5 | 10.5
10.5
10.5
10.5
11.0 | | 11
12
13
14
15 | 3.5
4.0
4.0
3.5
3.5 | 2.5
2.5
2.5
2.5
2.5 | 2.5
3.0
3.0
3.0
3.0 | 4.5
4.0
4.5
4.5 | 3.5
3.5
4.0
4.0 | 3.5
4.0
4.0
4.0
4.0 | 6.5
6.0
6.5
6.5 | 5.5
5.5
5.5
5.6 | 5.5
5.5
5.5
6.0
6.0 | 11.0
11.0
11.0
12.0
12.0 |
10.5
11.0
11.0
11.0 | 11.0
11.0
11.0
11.5
12.0 | | 16
17
18
19
20 | 3.5
3.5
3.5
4.0
3.5 | 3.0
2.5
2.5
2.5
3.0 | 3.0
3.0
3.0
3.0
3.0 | 4.5
4.5
4.5
4.5 | 4.0
4.0
4.0
4.5
4.5 | 4.0
4.0
4.5
4.5 | 6.5
6.5
6.5
7.0
6.5 | 6.0
6.0
6.0
6.0 | 6.0
6.5
6.5
6.5 | 12.0
12.5
12.0
12.5
12.5 | 12.0
12.0
12.0
12.0
12.0 | 12.0
12.0
12.0
12.5
12.5 | | 21
22
23
24
25 | 3.5
3.0
4.0
4.5
4.5 | 3.0
3.0
3.0
3.0
3.5 | 3.0
3.0
3.5
3.5 | 5.0
4.5
5.0
5.0
4.5 | 4.5
4.0
4.5
4.5 | 4.5
4.5
4.5
4.5
4.5 | 6.5
6.5
7.5
7.0 | 6.0
6.5
6.5
7.0 | 6.5
6.5
7.0
7.0 | 12.0
12.0
12.0
12.0
12.0 | 11.5
11.5
11.5
11.5 | 12.0
12.0
11.5
11.5 | | 26
27
28
29
30
31 | 4.5
4.5
4.0
 | 3.5
3.0
3.0
 | 4.0
3.5
3.5
 | 4.5
5.0
6.0
6.0
5.0 | 4.5
4.5
4.0
4.5
4.5 | 4.5
4.5
4.5
4.5
4.5
4.5 | 7.5
8.0
8.0
9.0
9.5 | 7.0
7.0
7.5
8.0
9.0 | 7.5
7.5
8.0
8.5
9.5 | 12.0
12.5
12.5
13.5
14.0
14.0 | 11.5
11.5
12.0
12.5
13.5
13.5 | 12.0
12.0
12.0
13.0
13.5
13.5 | | MONTH | 4.5 | 2.0 | | 6.0 | | | 9.5 | | 6.3 | | 9.5 | 11.5 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | TIME | | | JULY | | | AUGUST | | | MIN
SEPTEMBE | | | DAY 1 2 3 4 5 | 14.0
14.5
14.5 | 13.5
14.0
14.0
14.0 | 14.0
14.0
14.5
14.5 | 18.5
18.5
18.5
19.0
19.0 | JULY
18.0
18.0
18.0
18.0 | 18.0
18.0
18.0
18.5
18.5 | 20.5
20.5
20.0
20.5 | 19.5
19.5
19.5
20.0 | 19.5
20.0
20.0
20.0 | 20.5
21.0
22.0
23.0
22.0 | 20.0
20.0 | | | 1
2
3
4 | 14.0
14.5
14.5
14.5
15.0
17.0
15.0 | 13.5
14.0
14.0
14.0 | 14.0
14.0
14.5
14.5 | 18 5 | JULY 18.0 18.0 18.0 18.0 18.0 17.5 17.5 18.0 18.0 17.5 | 18.0
18.0
18.5
18.5
18.5
18.0
18.0
18.5
18.5 | 20.5
20.5
20.0
20.5 | 19.5
19.5
19.5
20.0 | 19.5
20.0
20.0
20.0 | 20.5
21.0
22.0
23.0
22.0 | 20.0
20.0
20.0
20.0
20.0
19.5 | 20.5
20.5
20.5
20.5
21.0 | | 1
2
3
4
5
6
7
8 | 14.0
14.5
14.5
14.5
15.0
17.0
15.5
15.5 | JUNE 13.5 14.0 14.0 14.5 14.5 15.0 15.0 | 14.0
14.5
14.5
14.5
14.5
15.0
15.0
15.0 | 18.5
18.5
18.5
19.0
19.0 | JULY 18.0 18.0 18.0 18.0 18.0 17.5 17.5 18.0 18.0 17.5 | 18.0
18.0
18.0
18.5
18.5 | 20.5
20.5
20.0
20.5
20.5 | 19.5
19.5
19.5
20.0
20.0
19.5
19.5
19.5
19.5 | 19.5
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20 | 20.5
21.0
22.0
23.0
22.0
21.5
21.5
21.5
22.0
21.5 | 20.0
20.0
20.0
20.0
19.5
19.0
20.0
20.0
20.0
20.0 | 20.5
20.5
20.5
21.0
20.5
20.5
20.5
20.5
20.5
21.0
21.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 14.0
14.5
14.5
14.5
15.0
17.0
15.5
16.0 | JUNE 13.5 14.0 14.0 14.0 14.5 14.5 15.0 15.0 16.0 16.0 16.5 16.5 | 14.0
14.0
14.5
14.5
14.5
15.0
15.0
15.0
15.5 | 18.5
18.5
18.5
19.0
19.0
19.0
19.5
22.0
19.5
19.5
19.5
19.5 | 18.0
18.0
18.0
18.0
18.0
17.5
17.5
17.5
18.0
17.5
17.5 | 18.0
18.0
18.5
18.5
18.5
18.0
18.0
18.5
18.5
18.5 | 20.5
20.5
20.0
20.5
20.5
21.0
21.5
21.0
21.5
21.0
21.5
22.0
21.5 | 19.5
19.5
19.5
20.0
20.0
19.5
19.5
19.5
19.5
20.0
20.0 | 19.5
20.0
20.0
20.0
20.0
20.0
20.0
20.5
20.5 | 20.5
21.0
22.0
23.0
22.0
21.5
21.5
21.5
22.0
21.5
21.5
21.5 | 20.0
20.0
20.0
20.0
19.5
19.0
20.0
20.0
20.0
20.5
20.5
20.5 | 20.5
20.5
20.5
20.5
21.0
20.5
20.5
20.5
21.0
21.0
21.0
21.0
20.5
20.5
20.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 14.0
14.5
14.5
14.5
15.0
17.0
15.5
16.5
16.5
16.5
17.0
17.5
17.5
17.5 | JUNE 13.5 14.0 14.0 14.0 14.5 14.5 15.0 15.0 16.0 16.5 16.5 16.5 17.0 17.0 17.0 | 14.0
14.0
14.5
14.5
14.5
15.0
15.0
15.0
15.5
16.5
16.5
17.0
17.0
17.0 | 18.5
18.5
18.5
19.0
19.0
19.0
19.5
22.0
19.5
19.5
19.5
19.5
19.5 | 18.0
18.0
18.0
18.0
18.0
17.5
17.5
18.0
17.5
18.0
17.5
18.0
18.0
18.0
18.0 | 18.0
18.0
18.5
18.5
18.5
18.0
18.5
18.5
18.5
18.5
18.5
18.5
18.5 | 20.5
20.5
20.0
20.5
20.5
21.0
21.5
21.0
21.5
21.5
22.0
21.5
21.5
21.5 | 19.5
19.5
19.5
20.0
20.0
19.5
19.5
19.5
19.5
20.0
20.5
20.5
20.5
20.5
20.5 | 19.5
20.0
20.0
20.0
20.0
20.0
20.0
20.5
20.5 | 20.5
21.0
22.0
23.0
22.0
21.5
21.5
21.5
22.0
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5 | 20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0 | 20.5
20.5
20.5
21.0
20.5
21.0
20.5
20.5
21.0
21.0
20.5
20.5
21.0
20.5
20.5
21.0
20.5
21.0
20.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 14.0
14.5
14.5
14.5
15.0
17.0
15.5
16.5
16.5
17.0
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5 | JUNE 13.5 14.0 14.0 14.0 14.5 14.5 15.0 15.0 16.0 16.5 16.5 17.0 17.0 17.0 17.0 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 | 14.0
14.0
14.5
14.5
14.5
15.0
15.0
15.0
15.5
16.5
16.5
17.0
17.0
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5 | 18.5
18.5
18.5
19.0
19.0
19.0
19.5
22.0
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5 | JULY 18.0 18.0 18.0 18.0 17.5 17.5 18.0 18.0 17.5 17.5 18.0 18.0 18.0 18.0 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 | 18.0
18.0
18.0
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5 | 20.5
20.5
20.0
20.5
20.5
21.0
21.5
21.0
21.5
21.5
22.0
21.5
22.0
21.5
22.5
22.0
21.5
22.5
22.5
22.5
22.5
22.5
22.5
22.5 | 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 | 19.5
20.0
20.0
20.0
20.0
20.0
20.5
20.5
21.0
21.0
21.5
21.5
21.5
21.5
21.5
21.5
21.0
21.5
21.5
21.0
21.5
21.0
21.5 | 20.5
21.0
22.0
23.0
22.0
21.5
21.5
21.5
22.0
21.5
21.5
21.5
21.5
20.5
21.5
20.5
21.5
20.5 | 20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0 |
20.5
20.5
20.5
20.5
21.0
20.5
20.5
21.0
21.0
21.0
20.5
21.0
21.0
20.5
21.0
21.0
21.0
20.5
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 14.0
14.5
14.5
14.5
15.0
17.0
15.5
16.0
16.5
16.5
17.0
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5 | JUNE 13.5 14.0 14.0 14.0 14.5 14.5 15.0 15.0 16.0 16.5 16.5 17.0 17.0 17.0 17.0 17.5 17.5 17.5 17.5 17.5 | 14.0
14.0
14.5
14.5
14.5
15.0
15.0
15.0
15.0
17.0
17.0
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5 | 18.5
18.5
18.5
19.0
19.0
19.0
19.5
22.0
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5 | 18.0
18.0
18.0
18.0
17.5
17.5
18.0
17.5
17.5
18.0
18.0
18.0
18.0
18.0
18.5
18.5
18.5
18.5
18.5
18.5
18.5 | 18.0
18.0
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5 | 20.5
20.5
20.5
20.5
20.5
21.0
21.5
21.0
21.5
21.5
22.0
21.5
21.5
22.0
21.5
21.5
22.0
21.5
21.5
21.5
21.5
22.0
21.5
21.5
21.0 | 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 | 19.5
20.0
20.0
20.0
20.0
20.0
20.5
20.5
20 | 20.5
21.0
22.0
23.0
22.0
21.5
21.5
21.5
22.0
21.5
21.5
21.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5 | 20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0 | 20.5
20.5
20.5
21.0
20.5
21.0
20.5
21.0
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20 | ### 01449000 LEHIGH RIVER AT LEHIGHTON, PA LOCATION.--Lat 40°49'45", long 75°42'20", Carbon County, Hydrologic Unit 02040106, on left bank 190 ft downstream from highway bridge at Lehighton, and 0.3 mi upstream from Mahoning Creek. **DRAINAGE AREA**.--591 mi². PERIOD OF RECORD.--October 1945 to September 1948 (monthly discharge only, published in WSP 1302). October 1982 to current year. Gage height records beginning 1935 are contained in reports of the U.S. Weather Bureau. Miscellaneous measurements, water years 1977-78, 1980-81, and annual maximum, 1982. REVISED RECORDS.--WDR PA-99-1: 1985(M). **GAGE**.--Water-stage recorder. Datum of gage is 444.26 ft above National Geodetic Vertical Datum of 1929. Prior to August 1970, at same site at datum 2.0 ft higher. Prior to December 1982, nonrecording gage at highway bridge 190 ft upstream at same datum. **REMARKS.**--Records good except those for estimated daily discharges, which are poor. Flow regulated by Francis E. Walter Reservoir (station 01447780) since February 1961. Several measurements of water temperature were made during the year. Satellite and landline telemetry at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | DISCH | AKOE, CUDIC | FEET PEK S | | EAN VALUE | | IOI IO SEPI | ENIDER 200 | 2 | | |--|--|---|---|---|---------------------------------------|--|--|---|--|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 465 | 260 | 975 | e440 | 1290 | 469 | 1490 | 2780 | 1660 | 991 | 394 | 406 | | 2 | 443 | 251 | 1120 | e470 | 849 | 463 | 1040 | 2780 | 1540 | 802 | 390 | 356 | | 3 | 393 | 250 | 1030 | e500 | 676 | 869 | 970 | 2570 | 1410 | 686 | 609 | 280 | | 4 | 377 | 247 | 903 | e480 | 671 | 771 | 931 | 2180 | 1150 | 666 | 670 | 263 | | 5 | 362 | 254 | 706 | e460 | e620 | 649 | 908 | 2080 | 1120 | 642 | 672 | 228 | | 6 | 676 | 273 | 683 | e460 | e620 | 620 | 1280 | 1860 | 1260 | 482 | 438 | 212 | | 7 | 386 | 279 | 632 | e460 | 620 | 615 | 1260 | 1360 | 2950 | 468 | 386 | 257 | | 8 | 307 | 284 | 604 | e460 | 595 | 604 | 1180 | 1290 | 1880 | 462 | 378 | 288 | | 9 | 293 | 275 | 700 | e460 | 580 | 599 | 966 | 1350 | 1670 | 405 | 372 | 287 | | 10 | 290 | 251 | 681 | e480 | 578 | 931 | 1060 | 1540 | 2130 | 378 | 576 | 324 | | 11 | 311 | 237 | 632 | 580 | 795 | 804 | 1160 | 1400 | 2740 | 371 | 646 | 344 | | 12 | 316 | 236 | 596 | 589 | 703 | 1080 | 979 | 1430 | 2260 | 359 | 624 | 342 | | 13 | 314 | 237 | 598 | 564 | 650 | 1140 | 985 | 2070 | 1330 | 426 | 370 | 341 | | 14 | 314 | 235 | 622 | 549 | 616 | 1120 | 1150 | 4230 | 1630 | 459 | 445 | 341 | | 15 | 456 | 235 | 714 | 537 | 610 | 989 | 1980 | 4720 | 1370 | 459 | 458 | 413 | | 16 | 426 | 242 | 669 | 529 | 610 | 928 | 2580 | 3300 | 1740 | 412 | 424 | 1010 | | 17 | 436 | 242 | 671 | 467 | 607 | 903 | 2240 | 2220 | 1670 | 400 | 573 | 504 | | 18 | 410 | 232 | 960 | 458 | 591 | 971 | 1690 | 3190 | 1570 | 399 | 624 | 367 | | 19 | 381 | 232 | 1150 | e400 | 574 | 1110 | 1630 | 3380 | 1420 | 425 | 611 | 338 | | 20 | 388 | 242 | 1150 | e380 | 570 | 1130 | 1290 | 4530 | 1340 | 672 | 263 | 327 | | 21 | 363 | 243 | 1070 | e380 | 594 | 1360 | 1200 | 3060 | 1110 | 720 | 216 | 790 | | 22 | 304 | 233 | 832 | 390 | 576 | 1330 | 1230 | 2230 | 1280 | 694 | 212 | 397 | | 23 | 303 | 230 | 810 | 434 | 551 | 1260 | 1390 | 1990 | 1260 | 464 | 222 | 351 | | 24 | 304 | 231 | 839 | 509 | 524 | 1230 | 1280 | 1600 | 1150 | 581 | 238 | 331 | | 25 | 300 | 292 | 809 | 653 | 515 | 1140 | 1070 | 1450 | 821 | 461 | 275 | 270 | | 26
27
28
29
30
31 | 299
294
286
282
284
278 | 659
637
602
621
556 | 765
630
e550
e520
e480
e440 | 688
674
678
648
762
1060 | 494
506
490
 | 883
1960
1510
1340
1520
1470 | 1160
1310
1780
2790
3290 | 1370
1320
1340
7280
6140
2430 | 650
1000
1400
1110
1040 | 433
650
718
690
420
404 | 232
221
214
231
246
292 | 255
539
976
558
438 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 11041
356.2
676
278
0.60
0.69 | 9298
309.9
659
230
0.52
0.59 | 23541
759.4
1150
440
1.28
1.48 | 16599
535.5
1060
380
0.91
1.04 | 17675
631.2
1290
490
1.07 | 31768
1025
1960
463
1.73
2.00 | 43269
1442
3290
908
2.44
2.72 | 80470
2596
7280
1290
4.39
5.07 | 44661
1489
2950
650
2.52
2.81 | 16599
535.5
991
359
0.91
1.04 | 12522
403.9
672
212
0.68
0.79 | 12133
404.4
1010
212
0.68
0.76 | | STATIS | rics of N | MONTHLY M | EAN DATA | FOR WATER | YEARS 198 | 33 - 2002, | BY WATER | YEAR (WY |) | | | | | MEAN | 775.4 | 1221 | 1530 | 1269 | 1317 | 1881 | 2349 | 1735 | 1108 | 729.8 | 511.9 | 677.8 | | MAX | 2017 | 2366 | 4120 | 4151 | 2470 | 3164 | 6010 | 4038 | 1965 | 1955 | 1073 | 3767 | | (WY) | 1991 | 1986 | 1997 | 1996 | 1984 | 1986 | 1993 | 1989 | 1989 | 1984 | 1990 | 1987 | | MIN | 238 | 286 | 267 | 532 | 566 | 926 | 895 | 657 | 325 | 152 | 154 | 181 | | (WY) | 1983 | 1999 | 1999 | 1989 | 1987 | 1989 | 1995 | 1999 | 1999 | 1999 | 1999 | 1995 | e Estimated. # 01449000 LEHIGH RIVER AT LEHIGHTON, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1983 - 2002 | |--------------------------|------------------------|---------------------|----------------------------| | ANNUAL TOTAL | 288852 | 319576 | | | ANNUAL MEAN | 791 | 876 | 1257 | | HIGHEST ANNUAL MEAN | | | 1743 1996 | | LOWEST ANNUAL MEAN | | | 758 1985 | | HIGHEST DAILY MEAN | 3260 Apr 11 | 7280 May 29 | 15100 Apr 16 1983 | | LOWEST DAILY MEAN | 230 Nov 23 | 212 Aug 22,Sep 6 | 104 Aug 30 1999 | | ANNUAL SEVEN-DAY MINIMUM | 235 Nov 18 | 231 Aug 22 | 120 Aug 6 1999 | | MAXIMUM PEAK FLOW | | 8280 May 29 | a 22900 Jan 27 1996 | | MAXIMUM PEAK STAGE | | 7.13 May 29 | 12.55 Jan 27 1996 | | ANNUAL RUNOFF (CFSM) | 1.34 | 1.48 | 2.13 | | ANNUAL RUNOFF (INCHES) | 18.18 | 20.12 | 28.91 | | 10 PERCENT EXCEEDS | 1540 | 1660 | 2580 | | 50 PERCENT EXCEEDS | 621 | 615 | 861 | | 90 PERCENT EXCEEDS | 282 | 272 | 281 | a From rating curve extended above $16,000 \text{ ft}^3/\text{s}$. ## 01449360 POHOPOCO CREEK AT KRESGEVILLE, PA LOCATION.--Lat 40°53'51", long 75°30'10", Monroe County, Hydrologic Unit 02040106, on right bank 20 ft downstream from bridge on U.S. Highway 209 at Kresgeville, 0.2 mi downstream from Middle Creek, and 13 mi upstream from mouth. **DRAINAGE AREA**.--49.9 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1966 to current year. GAGE.--Water-stage recorder. Datum of gage is 659.72 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records fair except those for estimated daily discharges, which are poor. Satellite and landline telemetry at station. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 500 ft³/s and maximum (*): | Date
June | | Time
0215 | Discharge
ft ³ /s
*356 | Gage Heig
(ft)
*4.84 | ht | | Date (1 | | Γime
above | Discharge
ft ³ /s
base disc | Gage H
(ft) | _ | |--|--|---------------------------------------
---|--|--|---|--|---|---|--|---|---| | | | | DISCH | ARGE, CUBIC | FEET PER S | | ΓER YEAR O
EAN VALUES | | 01 TO SEP | TEMBER 2002 | 2 | | | DAY | OCT | NO | V DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 48
45
42
40
39 | 3:
3:
3:
3: | 0 40
0 35
0 33 | e36
36
35
35
35 | 56
56
51
50
49 | 41
41
102
71
64 | 121
102
99
93
86 | 204
249
249
216
194 | 105
95
89
86
84 | 52
50
48
47
46 | 25
25
24
24
24 | 24
28
23
21
19 | | 6
7
8
9
10 | 40
38
36
34
35 | 3:
3:
3:
2: | 0 32
0 32
9 54 | 35
40
35
35
35 | 49
49
48
47
48 | 63
63
62
61
74 | 84
79
77
76
88 | 172
158
144
148
136 | 120
273
141
122
112 | 44
44
43
42
42 | 25
23
23
22
21 | 19
18
18
17
16 | | 11
12
13
14
15 | 34
33
33
32
48 | 2;
2;
2;
2;
2; | 8 37
8 39
8 43 | 40
41
39
36
36 | 65
52
50
46
47 | 64
62
61
60
58 | 77
74
74
79
263 | 117
133
163
200
157 | 105
102
99
126
120 | 39
38
36
36
36 | 21
20
20
19
19 | 16
17
17
17
26 | | 16
17
18
19
20 | 37
36
34
32
32 | 2:
2:
2:
2: | 6 42
5 63
5 54 | | 48
48
46
45
46 | 59
56
69
70
96 | 189
160
142
132
124 | 147
139
284
255
221 | 102
92
87
84
78 | 34
33
32
32
33 | 19
20
19
18
24 | 67
30
24
23
22 | | 21
22
23
24
25 | 32
32
32
32
32 | 2)
2)
2)
2)
3) | 5 48
5 48
5 57 | 33
32
32
37
46 | 52
47
45
44
44 | 116
101
98
96
90 | 114
109
102
94
98 | 199
176
159
146
133 | 74
71
69
66
65 | 31
30
32
41
33 | 21
e20
e20
26
31 | 21
21
24
21
20 | | 26
27
28
29
30
31 | 32
32
31
30
31
31 | 4
3.
2
2.
4. | 1 45
7 43
5 43
2 39 | 43
42
42
43
45
47 | 44
46
43
 | 98
176
128
124
118
111 | 95
85
206
273
218 | 125
117
135
189
121
109 | 62
61
64
57
53 | 32
31
32
31
28
26 | 21
19
18
43
31
23 | 21
63
78
43
35 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 1095
35.3
48
30
0.71
0.82 | 88.
29.
4
21
0.55
0.66 | 4 43.6
7 63
5 31
9 0.87 | 1162
37.5
47
32
0.75
0.87 | 1361
48.6
65
43
0.97
1.01 | 2553
82.4
176
41
1.65
1.90 | 3613
120
273
74
2.41
2.69 | 5295
171
284
109
3.42
3.95 | 2864
95.5
273
53
1.91
2.14 | 1154
37.2
52
26
0.75
0.86 | 708
22.8
43
18
0.46
0.53 | 809
27.0
78
16
0.54
0.60 | | STATIST | ICS OF | MONTHLY | MEAN DATA | FOR WATER | YEARS 196 | 57 - 2002, | BY WATER | YEAR (WY |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 62.6
181
1977
18.9
1981 | 90.
20
197
24.
198 | 3 354
3 1997
7 18.1 | 113
323
1979
13.9
1981 | 116
191
1998
45.0
1980 | 157
330
1977
60.2
1985 | 158
369
1983
47.9
1985 | 126
270
1989
56.9
1995 | 94.0
248
1972
35.9
1999 | 64.2
165
1969
18.2
1999 | 49.8
193
1969
14.0
1999 | 52.4
264
1987
15.5
1980 | e Estimated. #### 01449360 POHOPOCO CREEK AT KRESGEVILLE, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1967 - 2002 | |--------------------------|------------------------|---------------------|---------------------------| | ANNUAL TOTAL | 22904 | 22848 | | | ANNUAL MEAN | 62.8 | 62.6 | 100 | | HIGHEST ANNUAL MEAN | | | 149 1978 | | LOWEST ANNUAL MEAN | | | 46.5 1985 | | HIGHEST DAILY MEAN | 282 Mar 30 | 284 May 18 | 1550 Apr 16 1983 | | LOWEST DAILY MEAN | 17 Sep 8 a | 16 Sep 10,11 | 9.9 Aug 7 1999 | | ANNUAL SEVEN-DAY MINIMUM | 18 Sep 7 | 17 Sep 8 | 11 Aug 2 1999 | | MAXIMUM PEAK FLOW | | 356 Jun 7 | b 2080 Jul 29 1969 | | MAXIMUM PEAK STAGE | | 4.84 Jun 7 | 9.21 Jul 29 1969 | | ANNUAL RUNOFF (CFSM) | 1.26 | 1.25 | 2.01 | | ANNUAL RUNOFF (INCHES) | 17.07 | 17.03 | 27.35 | | 10 PERCENT EXCEEDS | 129 | 132 | 198 | | 50 PERCENT EXCEEDS | 48 | 43 | 72 | | 90 PERCENT EXCEEDS | 25 | 23 | 27 | ^{a Also, Sept. 9, 13, 18, 19. b From rating curve extended above 800 ft³/s.} #### 01449360 POHOPOCO CREEK AT KRESGEVILLE, PA--Continued #### WATER-QUALITY RECORDS #### PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: Water years 1969 to current year. INSTRUMENTATION.--Temperature probe interfaced with a data collection platform since water year 1986. **REMARKS**.--Water temperature records rated good. **EXTREMES FOR PERIOD OF DAILY RECORD.**-- WATER TEMPERATURE: Maximum, 31.5°C, July 25, 1970; minimum, 0.0°C, many days during winters. #### EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum, 24.0°C, July 23, Aug. 4; minimum, 0.0°C, many days during winter. #### WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--|---|-------------------------------------|----------------------------------|------------------------------------|----------------------------------|---------------------------------|----------------------------------|--|--|---------------------------------| | | | OCTOBER | ! | 1 | NOVEMBER | 1 | I | DECEMBER | | | JANUARY | | | 1
2
3
4
5 | 12.5
13.5
14.5
15.0
14.5 | 11.0
11.5
12.5
13.5
13.0 | 12.0
12.5
13.5
14.5
14.0 | 9.0
11.5
13.0
11.0
9.5 | 6.5
8.5
11.0
9.0
7.0 | 8.0
10.0
12.0
10.0
8.0 | 11.5
9.5
7.0
7.0
9.5 | 9.5
7.0
5.5
5.0
7.0 | 11.0
8.0
6.0
6.0
8.0 | 0.5
0.5
0.5
1.0 | 0.0
0.0
0.0
0.5
0.5 | 0.0
0.5
0.5
0.5 | | 6
7
8
9
10 | 14.5
12.5
9.5
9.0
10.0 | 12.5
9.5
8.0
7.0
7.5 | 14.0
11.0
9.0
8.0
9.0 | 8.0
9.0
9.0
8.5
7.5 | 6.5
6.5
7.0
7.0
6.0 | 7.0
7.5
8.0
8.0
6.5 | 9.5
9.5
8.0
5.5
5.0 | 8.0
8.0
4.5
4.5
3.5 | 9.0
9.0
6.0
5.0
4.0 | 1.5
1.5
1.5
2.0
3.0 | 0.0
0.0
0.5
1.0 | 1.0
0.5
1.0
1.5
2.5 | | 11
12
13
14
15 | 11.5
13.0
14.5
15.0
14.5 | 9.0
11.0
12.5
14.0
12.5 | 10.5
12.0
13.5
14.5
14.0 | 6.5
5.5
5.0
5.5
8.0 | 5.0
4.0
3.0
3.5
5.0 | 6.0
4.5
4.0
4.5
6.5 | 6.0
5.0
7.0
8.0 | 4.5
3.5
5.0
7.0
5.0 | 5.0
4.5
6.0
7.5
7.0 | 3.5
4.0
3.5
3.5
4.0 | 3.0
3.0
3.0
2.0
3.0 | 3.0
3.5
3.0
3.0
3.5 | | 16
17
18
19
20 | 12.5
11.5
10.0
9.5
11.0 | 10.5
10.0
8.0
7.5
8.5 | 11.5
11.0
9.0
8.5
9.5 | 9.5
8.5
7.0
7.0 | 7.0
6.5
5.0
6.0
5.5 | 8.0
7.5
6.0
6.5 | 5.0
6.0
7.0
6.5
5.5 | 3.5
5.0
6.0
5.5
4.5 | 4.5
5.5
6.5
6.0
5.0 | 4.0
3.5
3.0
1.5 | 3.0
2.5
1.5
0.0 | 3.5
3.0
2.0
0.5
0.5 | | 21
22
23
24
25 | 11.5
12.5
13.0
15.5
14.5 | 9.0
11.0
11.5
13.0
12.5 | 10.5
12.0
12.5
14.0
13.5 | 5.5
5.0
5.5
8.5
11.0 | 3.5
3.5
4.0
5.0
8.5 | 4.5
4.0
4.5
6.5
10.0 | 4.5
3.5
4.0
5.0
3.5 | 3.5
2.5
2.0
3.5
2.0 | 4.0
3.0
3.0
4.5
2.5 | 1.5
3.0
3.5
4.5
4.5 | 0.5
1.5
1.5
3.5
3.0 | 1.0
2.0
2.5
4.0
4.0 | | 26
27
28
29
30
31 | 12.5
9.0
8.0
8.0
9.0 | 9.0
8.0
6.5
5.5
7.0
7.0 | 11.0
8.5
7.5
6.5
8.0
7.5 | 10.0
8.5
10.0
10.0
11.5 | 8.5
7.0
8.0
9.5
9.5 | 9.5
8.0
9.0
9.5
10.0 | 2.5
1.0
1.5
1.5
1.0 | 1.0
0.5
0.5
0.5
0.0 | 2.0
1.0
1.0
1.0
0.5 | 4.0
4.5
4.5
6.0
7.0
6.5 | 2.0
2.0
2.5
3.5
5.5
4.5 | 3.0
3.5
4.5
6.5
5.0 | | MONTH | 15.5 | 5.5 | 11.1 | 13.0 | 3.0 | 7.3 | 11.5 | 0.0 | 4.9 | 7.0 | 0.0 | 2.4 | # 01449360 POHOPOCO CREEK AT KRESGEVILLE, PA--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|--
--|--|--|--|--|--|---|--|--|--|--| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 5.0
4.5
3.0
3.0 | 4.5
2.5
1.0
1.5
0.0 | 4.5
3.0
2.0
2.5
0.5 | 4.0
4.5
7.5
6.0
3.0 | 1.5
2.0
4.5
3.0
1.0 | | | 8.5
6.0
7.5
5.5
5.0 | 9.5
8.0
9.0
7.5
5.5 | 12.5
11.5
12.0
13.0
14.0 | 7.5
9.5
9.5
7.5
9.0 | 10.0
10.5
10.5
10.5
12.0 | | 6
7
8
9
10 | 2.5
4.0
4.5
5.0
6.0 | 0.5
2.5
2.5
3.0
4.0 | 1.5
3.0
3.5
4.0
5.0 | 4.5
6.0
7.5
9.5
9.5 | 1.5
3.0
4.5
7.0
4.0 | 3.0
4.5
6.0
8.0
7.0 | 6.5
7.5
8.5
11.5
12.5 | 3.5
3.5
6.0
8.0
9.5 | 5.5
5.5
7.5
9.5
11.0 | 15.5 | 10.0
12.0
12.5
11.0
11.0 | 12.5
14.0
14.0
12.0
13.0 | | 11
12
13
14
15 | 6.0
2.5
3.5
2.0
3.0 | 2.5
1.0
1.5
0.5 | 4.5
2.0
2.5
1.0
2.0 | 4.5
5.0
5.5
9.0
9.0 | 2.0
3.0
4.5
4.5 | 3.5
4.0
4.5
7.0
8.0 | 12.0
11.0
11.5
14.5
16.0 | 8.0
7.5
9.5
10.5
12.0 | 10.0
9.0
10.5
12.5
14.0 | 14.5
13.5
11.5
12.0
12.5 | 10.5
11.5
11.0
10.5
9.0 | 13.0
12.0
11.5
11.0
11.0 | | 16
17
18
19
20 | 5.5
4.5
3.5
4.0
6.0 | 3.0
3.0
1.5
1.0
3.5 | 4.0
4.0
2.5
2.5
4.5 | 9.5
7.0
4.5
6.0
5.5 | 7.0
4.0
3.5
4.5
4.0 | 8.5
5.0
4.0
5.0
4.5 | 17.0
18.0
17.5
17.5
16.5 | | 14.5
15.5
16.0
16.0
14.0 | 14.0
15.5
14.0
11.5
10.5 | 9.5
13.0
10.0
8.5
8.5 | 12.0
14.0
11.5
10.0
9.5 | | 21
22
23
24
25 | | | | | 4.0
3.0
1.5
3.0
5.0 | 6.0
4.0
3.5
5.0
5.5 | 12.5
10.0
11.0
12.0
11.0 | 10.0
9.0
7.0
7.0
8.0 | 10.5
9.5
9.0
9.5
8.5 | 10.5
12.5
13.5
15.0
14.5 | 7.5
7.5
9.0
10.5
12.5 | 9.0
10.0
11.5
13.0
13.5 | | 26
27
28
29
30
31 | 7.0
6.5
4.0
 | 4.0
3.5
1.5
 | 5.5
5.0
3.0
 | 5.0
6.5
8.0
9.5
11.0 | 4.5
5.0
4.5
5.5
8.0
8.0 | 4.5
5.5
6.0
7.5
9.5
9.5 | 11.0
12.0
11.5
10.5
10.0 | 6.5
7.0
9.5
9.0
7.5 | 9.0
10.0
10.0
10.0
9.0 | 15.5
15.5
16.0
16.5 | 12.5
13.0
14.0
14.0
14.0 | 13.5
14.5
15.0
15.0
15.5
16.0 | | MONTH | 8.0 | 0.0 | | 11.0 | | | 18.0 | 3.5 | 10.2 | 17.0 | 7.5 | 12.3 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | JUNE | | | MIN
JULY | | | AUGUST | | | MIN
SEPTEMBE | | | DAY 1 2 3 4 5 | 17.5
17.0
15.5 | JUNE 15.0 14.5 13.0 13.5 14.0 | 16.5
16.0
14.5
14.0 | 20.0
20.5
22.0
23.0
22.0 | JULY 18.0 18.5 19.5 20.5 19.5 | 19.0
19.5
20.5
21.5
21.0 | 23.5
23.5
23.5
24.0 | 20.5
21.0
21.0
21.0 | 22.0
22.5
22.0
22.5
22.0 | 17.5
17.5
19.0
20.5
19.0 | | | | 1
2
3
4 | 17.5
17.0
15.5
15.0 | JUNE 15.0 14.5 13.0 13.5 14.0 | 16.5
16.0
14.5
14.0 | | JULY 18.0 18.5 19.5 20.5 19.5 | | 23.5
23.5
23.5
24.0 | 20.5
21.0
21.0
21.0 | | 17.5
17.5
19.0
20.5
19.0 | 16.0
15.5
16.0 | 16.5
16.5
17.5
19.0 | | 1
2
3
4
5
6
7
8 | 17.5
17.0
15.5
15.0
16.5
17.0
15.5
15.5
16.5 | JUNE 15.0 14.5 13.0 13.5 14.0 14.5 14.0 13.5 13.5 | 16.5
16.0
14.5
14.0 | 20.0
20.5
22.0
23.0
22.0
19.5
19.5
20.5
21.0 | JULY 18.0 18.5 19.5 20.5 19.5 | 19.0
19.5
20.5
21.5
21.0 | 23.5
23.5
23.5
24.0
23.0 | 20.5
21.0
21.0
21.0 | 22.0
22.5
22.0
22.5
22.0
21.0
18.5
18.0
18.5 | 17.5
17.5
19.0
20.5
19.0
18.0
17.5
18.0
18.5 | 16.0
15.5
16.0
18.0
17.5
15.5
15.5
15.0
15.0
15.5
16.5 | 16.5
16.5
17.5
19.0
18.5
17.0
16.5
16.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 17.5
17.0
15.5
15.0
16.5
17.0
15.5
16.5
17.0
17.5
17.5
17.5 | JUNE 15.0 14.5 13.0 13.5 14.0 14.5 14.0 15.5 15.0 15.5 16.0 15.5 16.0 13.5 | 16.5
16.0
14.5
14.0
15.5
16.0
15.0
16.0
16.0
16.5
17.0
16.0 | 20.0
20.5
22.0
23.0
22.0
19.5
19.0
19.5
20.5
21.0 | JULY 18.0 18.5 19.5 20.5 19.5 18.0 16.5 17.0 18.5 19.0 16.5 15.5 16.0 17.5 | 19.0
19.5
20.5
21.5
21.0
18.5
18.0
18.5
19.5
20.0 | 23.5
23.5
24.0
23.0
22.0
19.5
19.5
20.5
21.0
22.0
23.0
23.0 | 20.5
21.0
21.0
21.5
19.5
17.5
16.5
16.5
17.5
19.0
20.0 | 22.0
22.5
22.0
22.5
22.0
21.0
18.5
18.0
18.5
19.5
20.5
21.5
22.0 | 17.5
17.5
19.0
20.5
19.0
18.0
17.5
18.0
18.5
19.0
17.0
16.0 | \$EPTEMBE 16.0 15.5 16.0 17.5 15.5 15.0 15.0 15.5 16.5 17.0 13.0 14.5 | 16.5
16.5
17.5
19.0
18.5
17.0
16.5
16.5
17.0
18.0
16.0 | |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 17.5
17.0
15.5
15.0
16.5
17.0
15.5
17.0
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5 | JUNE 15.0 14.5 13.0 13.5 14.0 14.5 14.0 15.5 16.0 15.0 14.0 13.5 13.5 14.0 15.0 17.0 | 16.5
16.0
14.5
14.0
15.5
16.0
15.0
16.0
16.0
14.5
17.0
14.5
13.5 | 20.0
20.5
22.0
23.0
22.0
19.5
19.0
19.5
20.5
21.0
19.0
18.5
18.0
18.5
20.0 | 18.0
18.5
19.5
20.5
19.5
19.5
18.0
16.5
17.0
18.5
19.0
16.5
17.5
17.5
17.5
17.5 | 19.0
19.5
20.5
21.5
21.0
18.5
18.0
18.5
19.5
20.0
17.0
18.0
17.0
18.0
17.0
18.0
19.5
20.5
20.5 | 23.5
23.5
23.5
24.0
23.0
22.0
19.5
19.5
20.5
21.0
22.0
23.5
23.5
23.5
23.5 | 20.5
21.0
21.0
21.5
19.5
17.5
16.5
16.5
19.0
20.0
20.5
21.0 | 22.0
22.5
22.0
22.5
22.0
21.0
18.5
18.0
18.5
20.5
21.5
22.0
22.5 | 17.5
17.5
19.0
20.5
19.0
18.0
17.5
18.0
18.5
19.0
17.0
16.0
18.5
19.5
18.5 | \$\text{SEPTEMBE}\$ 16.0 15.5 16.0 18.0 17.5 15.5 15.0 15.0 15.5 16.5 17.0 15.0 13.0 14.5 17.5 18.0 16.5 18.0 16.5 17.5 | 16.5
16.5
17.5
19.0
18.5
17.0
16.5
16.0
18.0
16.0
18.0
16.0
18.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 17.5
17.0
15.5
15.0
16.5
17.0
15.5
17.0
17.5
17.5
17.5
17.0
14.0
15.5
15.0
14.0
17.5
15.0
14.0
17.5
19.0
19.0
20.0
19.5 | JUNE 15.0 14.5 13.0 13.5 14.0 14.5 14.0 13.5 15.0 15.5 16.0 15.0 14.0 13.5 13.0 13. | 16.5
16.0
14.5
14.0
15.5
16.0
15.0
16.0
16.5
17.0
14.5
13.5
14.0
14.5
14.5
14.5
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0 | 20.0
20.5
22.0
23.0
22.0
19.5
19.0
19.5
20.5
21.0
21.0
21.0
21.5
22.5
24.0
22.5
24.0
21.5
22.5
24.0
21.5 | JULY 18.0 18.5 19.5 20.5 19.5 18.0 16.5 17.0 18.5 19.0 16.5 17.5 17.5 17.5 17.5 19.5 20.0 19.5 19.5 21.0 20.5 19.5 | 19.0
19.5
20.5
21.5
21.0
18.5
18.0
17.0
17.0
18.0
17.0
18.0
20.5
20.5
21.0
22.0
21.0
22.0
21.0
22.5 | 23.5
23.5
24.0
23.0
22.0
19.5
19.5
20.5
21.0
22.3
23.5
23.5
23.5
23.5
23.5
23.5
23.5 | 20.5 21.0 21.0 21.5 19.5 17.5 16.5 16.0 20.0 20.5 21.0 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 | 22.0
22.5
22.0
22.5
22.0
21.0
18.5
18.0
18.5
20.5
21.5
22.5
22.5
22.5
22.5
22.5
22.5
22 | 17.5
17.5
19.0
20.5
19.0
18.0
17.5
18.0
18.5
19.0
17.0
18.5
19.5
18.5
17.0
18.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19 | \$\textit{SEPTEMBE}\$ 16.0 15.5 16.0 18.0 17.5 15.5 15.0 15.5 16.5 17.0 15.5 16.5 17.0 16.5 17.5 18.0 16.5 17.5 18.0 16.5 17.5 18.0 16.5 17.0 16.5 17.0 16.5 17.0 18.5 17.0 18.5 17.0 18.5 17.0 18.5 17.0 18.5 17.0 18.5 17.0 18.5 17.0 18.5 17.0 18.5 17.0 18.5 17.0 18.5 17.0 18.5 17.0 18.5 17.0 18.5 17.0 18.5 17.0 18.5 17.0 18.5 17.0 18.5 18.0 18.5 17.0 18.5 18.0 18.5 17.0 18.5 18.5 18.0 18.5 18.5 18.0 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 | 16.5
16.5
17.5
19.0
18.5
17.0
16.5
17.0
18.0
16.0
18.0
16.0
17.5
16.0
18.0
18.0
16.0
18.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 17.5
17.0
15.5
15.0
16.5
17.0
15.5
17.0
17.5
17.5
17.0
14.0
15.5
17.0
14.0
15.5
17.0
14.0 | JUNE 15.0 14.5 13.0 13.5 14.0 14.5 14.0 13.5 15.0 15.5 16.0 15.0 14.0 13.5 13.0 13.5 14.0 13.5 13.0 13.5 14.0 | 16.5
16.0
14.5
14.0
15.5
16.0
15.0
16.0
14.5
17.0
16.0
14.5
13.5
14.0
14.5
15.0
16.0
14.5
17.5
18.0
16.0 | 20.0
20.5
22.0
23.0
22.0
19.5
19.0
19.5
20.5
21.0
21.0
21.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5 | 18.0
18.5
19.5
20.5
19.5
18.0
16.5
17.0
18.5
19.0
16.5
17.5
17.5
17.5
17.5
17.5
19.5
20.0
19.5
20.0
19.5 | 19.0
19.5
20.5
21.5
21.0
18.5
19.5
20.0
17.0
18.0
17.0
18.0
20.5
20.5
21.0
20.5
21.0
20.5 | 23.5
23.5
23.5
24.0
23.0
22.0
19.5
19.5
20.5
21.0
22.3
23.5
23.5
23.5
23.5
23.5
23.5
23.5 | 20.5 21.0 21.0 21.5 19.5 17.5 16.0 16.5 17.5 19.0 20.0 20.5 21.0 21.5 21.0 21.5 21.7 21.5 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 | 22.0
22.5
22.0
22.5
22.0
21.0
18.5
18.0
18.5
20.5
21.5
22.0
22.5
22.0
22.5
22.5
22.0
20.0
19.5 | 17.5
17.5
19.0
20.5
19.0
18.0
17.5
18.0
19.0
17.0
18.5
19.5
18.5
17.0
17.0
17.0
18.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19 | \$\textit{SEPTEMBE}\$ 16.0 15.5 16.0 18.0 17.5 15.5 15.0 15.5 16.5 17.0 13.0 14.5 17.5 18.0 16.5 17.5 18.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 17.0 16.5 18.0 16.5 17.0 18.5 17.0 18.5 18.0 18.5 17.0 18.5 18.0 18.5 17.0 18.5 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 | 16.5
16.5
17.5
19.0
18.5
17.0
16.5
17.0
18.0
16.0
15.0
16.0
15.0
16.0
17.5
16.0
17.5
16.0
17.5 | #### 01449800 POHOPOCO CREEK BELOW BELTZVILLE LAKE NEAR PARRYVILLE, PA LOCATION.--Lat 40°50'44", long 75°38'46", Carbon County, Hydrologic Unit 02040106, on right bank 0.1 mi upstream from Sawmill Run, 0.4 mi downstream from Beltzville Dam, 1.3 mi upstream from Bull Run, and 2.3 mi northeast of Parryville. **DRAINAGE AREA**.--96.4 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1967 to current year. GAGE.--Water-stage recorder and concrete control. Datum of gage is 492.05 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records good except those for estimated daily discharges, which are fair. Flow regulated entire period of record by Wild Creek Reservoir (station 01449700) and Penn Forest Reservoir (station 01449400), 7.3 mi and 10.0 mi upstream
respectively, and Beltzville Lake (station 01449790), reservoir for city of Bethlehem. Diversion upstream from Tunkhannock Creek to Wild Creek Basin since October 1969. Satellite and landline telemetry at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | | | | | | | | | | | | |------------------------------------|---|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 64
43
37
38
38 | 28
22
22
22
22 | 22
22
22
22
22
22 | 61
61
61
61 | 89
81
81
88
92 | 61
61
64
139
160 | 211
245
164
120
120 | 446
480
473
428
428 | 170
170
169
125
98 | 72
55
51
51
51 | 38
38
38
38
38 | 38
38
38
38
38 | | 6
7
8
9
10 | 38
38
38
38
38 | 22
22
22
22
22
22 | 22
22
22
22
22
22 | 61
61
61
61 | 92
92
80
73
73 | 140
90
61
61
61 | 120
120
120
120
154 | 354
311
311
311
251 | 127
407
510
507
246 | 51
51
51
51
51 | 38
38
38
38
38 | 38
38
38
38
38 | | 11
12
13
14
15 | 38
38
38
38
64 | 22
22
48
94
120 | 22
22
22
22
22
22 | 61
61
61
50
43 | 73
73
73
73
73 | 80
122
140
114
88 | 146
113
104
104
405 | 218
219
278
387
375 | 98
98
98
98 | 42
36
36
36
36 | 38
38
38
38
38 | 38
38
38
38
38 | | 16
17
18
19
20 | 82
83
54
38
38 | 120
120
120
89
53 | 22
22
23
23
47 | 43
43
43
43 | 73
73
73
73
73 | 81
81
107
120
122 | 435
247
187
187
187 | 262
219
219
219
509 | 98
181
228
180
153 | 36
36
36
38
38 | 38
38
38
38
38 | 38
38
36
36
36 | | 21
22
23
24
25 | 38
38
38
38
38 | 44
70
70
70
70 | 61
61
61
61 | 43
43
43
43
54 | 73
73
73
73
65 | 138
150
150
150
178 | 187
187
134
100
100 | 596
433
433
312
219 | 120
89
89
90
92 | 38
38
38
38
38 | 38
38
38
e38
e38 | 36
36
36
36
36 | | 26
27
28
29
30
31 | 38
38
38
38
38 | 47
22
22
22
22
 | 61
61
61
61
61 | 61
61
61
61
82 | 61
61
 | 196
270
236
164
146
147 | 160
195
199
358
448 | 219
219
219
277
311
226 | 92
92
92
92
92 | 38
38
38
38
38 | e38
38
38
38
38
38 | 36
36
36
36
36 | | TOTAL
MEAN
MAX
MIN | 1339
43.19
83
37 | 1493
49.77
120
22 | 1138
36.71
61
22 | 1714
55.29
82
43 | 2111
75.39
92
61 | 3878
125.1
270
61 | 5677
189.2
448
100 | 10162
327.8
596
218 | 4799
160.0
510
89 | 1323
42.68
72
36 | 1178
38.00
38
38 | 1114
37.13
38
36 | | STATIST | TICS OF N | MONTHLY ME | AN DATA E | OR WATER | YEARS 196 | 8 - 2002, | BY WATER | YEAR (WY |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 105.5
405
1983
12.7
1996 | 127.6
302
1971
19.2
1992 | 193.8
675
1997
14.4
1992 | 175.4
527
1979
33.3
1981 | 188.7
459
1976
17.0
1981 | 256.4
576
1977
16.2
1981 | 267.9
754
1993
32.5
1981 | 212.4
538
1990
25.2
1971 | 146.0
358
1972
46.7
1999 | 108.6
321
1975
32.4
1985 | 84.03
491
1969
18.0
1985 | 88.50
529
1987
29.2
1970 | e Estimated. # 01449800 POHOPOCO CREEK BELOW BELTZVILLE LAKE NEAR PARRYVILLE, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALEN | DAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1968 - 2002 | |--------------------------|----------------|-------------------|----------------------|-------------------------| | ANNUAL TOTAL | 35184 | | 35926 | | | ANNUAL MEAN | 96.4 | | 98.4 | 163 | | HIGHEST ANNUAL MEAN | | | | 251 1978 | | LOWEST ANNUAL MEAN | | | | 60.2 1985 | | HIGHEST DAILY MEAN | 523 | Apr 3 | 596 May 21 | 1470 Apr 15 1993 | | LOWEST DAILY MEAN | 22 | Nov 2-12 a | 22 Nov 2-12 a | 9.5 Oct 12 1993 | | ANNUAL SEVEN-DAY MINIMUM | 22 | Nov 2 b | 22 Nov 2 b | 11 Oct 7 1993 | | MAXIMUM PEAK FLOW | | | 754 Jun 7 | 1740 May 8 1973 | | MAXIMUM PEAK STAGE | | | 4.28 Jun 7 | 5.64 Jan 25 1999 | | 10 PERCENT EXCEEDS | 232 | | 219 | 360 | | 50 PERCENT EXCEEDS | 64 | | 61 | 102 | | 90 PERCENT EXCEEDS | 34 | | 36 | 36 | a Also Nov. 27-Dec. 17.b First occurrence. #### 01449800 POHOPOCO CREEK BELOW BELTZVILLE LAKE NEAR PARRYVILLE, PA--Continued #### WATER-QUALITY RECORDS #### PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: Water years 1969 to current year. INSTRUMENTATION.--Temperature probe interfaced with a data collection platform since water year 1986. REMARKS.--Water temperature records rated good. Interruptions in the record were due to equipment failure. EXTREMES FOR PERIOD OF DAILY RECORD.—WATER TEMPERATURE: Maximum, 26.5°C, several days during July and August 1970; minimum, 0.0°C, Dec. 9, 1969, Jan. 15, 1999. #### EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum, 18.0°C, Aug. 31; minimum, 2.5°C, Jan. 19. #### WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|---------------------------------|----------------------------------|--|---------------------------------|--| | | | OCTOBER | | | NOVEMBER | ! | 1 | DECEMBER | | | JANUARY | • | | 1
2
3
4
5 | 14.5
14.5
14.5
14.5
14.5 | 13.0
13.0
13.0
13.0 | 13.5
13.5
13.5
13.5
13.5 | 13.0
13.5
13.5
13.0
12.0 | 11.5
11.5
11.5
11.0
10.5 | 12.0
12.0
12.0
11.5
11.0 | 10.5
10.0
10.0
10.5
10.5 | 9.0
9.0
9.0
9.0
9.5 | 9.5
9.5
9.5
9.5
10.0 | 5.5
5.0
5.0
5.0 | 5.0
5.0
4.5
4.5
4.5 | 5.0
5.0
5.0
4.5
4.5 | | 6
7
8
9
10 | 13.5
13.5
13.5
13.5
13.5 | 12.5
12.0
12.0
12.0
12.0 | 13.0
12.5
12.5
12.5
12.5 | 12.5
13.0
12.5
12.0
12.0 | 10.5
10.5
11.0
10.5
10.5 | 11.5
11.5
11.5
11.0
11.0 | 10.5
10.0
9.5
9.5
9.5 | 9.0
9.0
8.5
8.5 | 9.5
9.5
9.0
9.0
8.5 | 5.0
4.5
4.5
4.5
4.5 | 3.0
4.0
4.0
4.0
4.0 | 4.5
4.5
4.0
4.0 | | 11
12
13
14
15 | 13.5
14.0
14.0
13.5
13.5 | 12.0
12.5
12.5
12.5
12.0 | 12.5
13.0
13.0
13.0 | 12.0
11.5
11.5
11.0
11.0 | 10.0
10.0
10.0
10.5
10.5 | 11.0
10.5
10.5
11.0
11.0 | 9.5
9.0
9.0
9.5
9.0 | 8.5
8.5
8.5
9.0
8.0 | 9.0
8.5
9.0
9.0
8.5 | 4.5
4.5
4.0
4.5
4.5 | 4.0
4.0
4.0
3.5
3.5 | 4.0
4.0
4.0
4.0 | | 16
17
18
19
20 | 13.5
13.0
13.0
13.0 | 12.5
12.0
11.5
11.5 | 13.0
12.5
12.5
12.0
12.5 | 11.0
11.0
10.5
11.0
10.5 | 10.5
10.5
10.5
10.5
9.0 | 10.5
10.5
10.5
10.5
10.5 | 9.0
8.5
8.5
8.5 | 7.5
8.0
8.0
7.5
7.5 | 8.0
8.5
8.5
8.0 | 4.0
4.5
4.0
3.5
4.0 | 3.5
3.5
3.5
2.5
3.0 | 4.0
4.0
3.5
3.0
3.0 | | 21
22
23
24
25 | 13.0
13.0
13.0
13.5
13.0 | 12.0
12.0
12.0
12.0
11.5 | 12.0
12.5
12.5
12.5
12.5 | 10.5
10.5
10.5
10.5
10.5 | 9.0
9.5
9.5
10.0
10.0 | 9.5
10.0
10.0
10.0
10.0 | 8.0
8.0
7.5
7.5 | 7.5
7.5
7.5
7.0
7.0 | 8.0
7.5
7.5
7.5
7.0 | 3.5
4.0
3.5
3.5
3.5 | 3.0
3.0
3.0
3.5
3.0 | 3.5
3.5
3.5
3.5
3.5 | | 26
27
28
29
30
31 | 12.0
12.5
13.0
12.5
13.0 | 11.5
11.5
11.5
11.5
11.5 | 12.0
12.0
12.0
12.0
12.0 | 10.5
10.5
11.0
10.0
10.5 | 9.5
9.5
9.5
10.0 | 10.0
10.0
10.0
10.0
10.5 | 7.0
7.0
7.0
6.5
6.0
5.5 | 6.5
6.0
6.0
5.5 | 7.0
6.5
6.5
6.0
5.5 | 4.0
4.0
4.0
4.0
4.0
3.5 | 3.0
3.0
3.5
3.5
3.5 | 3.5
3.5
3.5
3.5
3.5
3.5 | | MONTH | 14.5 | 11.5 | 12.6 | 13.5 | 9.0 | 10.7 | 10.5 | 5.0 | 8.2 | 5.5 | 2.5 | 3.9 | # 01449800 POHOPOCO CREEK BELOW BELTZVILLE LAKE NEAR PARRYVILLE, PA--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---
--|---|---|--|--|--|--|--|--|--|---|--| | | | FEBRUARY | • | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 3.5
3.5
3.5
3.5
3.5 | 3.5
3.0
3.0
3.0
3.0 | 3.5
3.5
3.0 | 4.0 | 3.5
3.5
4.0
3.5
4.0 | 4.0
4.0
4.0
4.0
4.0 | 5.5
6.0
6.0
6.5 | 5.0
5.5
5.5
5.5
5.5 | 5.5
5.5
5.5
6.0
6.0 | 7.5
9.5
9.5
9.5
9.5 | 7.0
7.5
7.5
9.0
9.0 | 7.5
8.0
8.0
9.0
9.0 | | 6
7
8
9
10 | 3.5
3.5
4.0
4.0
3.5 | 3.0
3.0
3.0
3.0
3.5 | 3.0
3.5
3.5
3.5
3.5 | 4.5
5.0
5.0
5.0 | 4.0
4.0
4.5
4.0 | 4.0
4.0
4.5
4.5 | 7.0
7.0
6.5
6.5
7.5 | 6.0
6.0
6.0
6.0 | 6.0
6.0
6.0
6.5 | 9.5
10.0
10.0
10.0
10.5 | 9.0
9.0
9.0
9.5
8.5 | 9.0
9.5
9.5
9.5
9.5 | | | | 3.0
3.0
3.0
3.0
3.0 | 3.5
3.5
3.5
3.0
3.5 | 4.5
4.5
4.5
5.0 | 4.0
4.0
4.5
4.5 | 4.0
4.5
4.5
4.5 | 7.5
7.5
7.0
8.0
7.0 | 6.5
7.0
6.5
6.5 | 7.0
7.0
7.0
7.0
6.5 | 10.5
11.0 | 10.0
10.0
10.0
9.0
10.0 | 10.0
10.0
10.5
9.5
10.5 | | 16
17
18
19
20 | 4.0
4.0
4.0
4.0 | 3.5
3.0
3.0
3.0
3.5 | 3.5
3.5
3.5
3.5
3.5 | 5.5
5.0
5.0
5.0 | 4.5
4.5
4.5
4.5 | 5.0
5.0
4.5
5.0
5.0 | 7.5
8.0
8.0
8.0
7.5 | 6.0
7.0
7.0
7.0
7.0 | 7.0
7.0
7.5
7.5 | 11.5
12.0
11.5 | 10.0
10.5
11.0
11.0
9.5 | 10.5
11.0
11.5
11.0 | | 22 | 4.0
4.0
4.5
4.5 | 3.5
3.5
3.5
3.5
3.5 | 3.5
3.5
3.5
3.5
4.0 | 5.5
5.0
5.0
5.0 | 4.5
4.5
4.5
4.5 | 5.0
4.5
4.5
5.0 | 7.5
7.5
8.5
8.5
8.0 | 7.0
7.0
7.0
7.0
7.0 | 7.5
7.5
7.5
7.5
7.5 | 11.5
12.0 | 9.5
11.0
11.0
11.0 | 10.5
11.5
11.5
11.5
11.5 | | 26
27
28
29
30
31 | 4.5
4.5
4.5
 | 3.5
3.5
3.5
 | 4.0
4.0
4.0
 | 5.0
5.5
5.5
5.5 | 4.5
5.0
4.5
5.0
5.0 | 5.0
5.0
5.0
5.0
5.0 | 7.5
8.5
9.5
7.5
7.5 | 7.0
7.5
7.5
7.0
7.0 | 7.5
8.0
8.5
7.0
7.0 | 11.5
12.0
12.0
12.0
12.0
12.0 | 11.5
11.5
11.5
11.5
11.5 | 11.5
11.5
11.5
11.5
12.0
12.0 | | MONTH | 4.5 | 3.0 | 3.5 | 5.5 | 3.5 | 4.6 | 9.5 | 5.0 | 6.8 | 12.5 | 7.0 | 10.3 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | MAX | MIN
AUGUST | MEAN | | MIN
SEPTEMBE | | | DAY 1 2 3 4 5 | MAX
12.5
12.5
12.5
13.0
13.0 | 12.0
12.0
12.0
12.0 | MEAN
12.0
12.5
12.0
12.0
12.5 | 15.5
15.5
16.0
16.0 | | | 17.0
17.0
17.0
17.0
17.0 | | 15.5
15.5
15.0
15.5 | | | | | 1
2
3
4 | 12.5
12.5
12.5
13.0
13.0 | 12.0
12.0
12.0
12.0
12.0
12.0 | 12.0
12.5
12.0
12.0 | 15.5
15.5
16.0
16.0 | JULY 14.0 14.0 14.0 14.0 13.5 | 14.5
14.5
14.5
14.5
14.5 | 17.0
17.0
17.0
17.0 | AUGUST 14.5 14.5 14.5 14.5 14.5 | 15.5
15.5
15.0
15.5 | 16.5
17.0
17.0
17.5 | 15.0
15.0
15.0
15.0 | 15.5
15.5
16.0
16.0 | | 1
2
3
4
5
6
7
8
9
10 | 12.5
12.5
12.5
13.0
13.0
13.0
9.5
10.0
13.5 | JUNE 12.0 12.0 12.0 12.0 12.0 12.0 12.0 13.0 13.0 13.0 | 12.0
12.5
12.0
12.0
12.5
10.0
9.5
10.0
12.0 | 15.5
15.5
16.0
16.0
15.5
15.5
15.5 | JULY 14.0 14.0 14.0 14.0 13.5 13.5 14.0 14.0 14.0 14.0 13.5 13.5 | 14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5 | 17.0
17.0
17.0
17.0
16.5
17.0
16.5
17.0
17.0
17.0 | AUGUST 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14. | 15.5
15.5
15.0
15.5
15.0
15.5
15.0
15.5 | 16.5
17.0
17.5
17.5
17.5
17.5
17.5
17.5
17.5 | 15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0 | 15.5
15.5
16.0
16.0
15.5
15.5
15.5
15.5
15.5
15.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 12.5
12.5
12.5
13.0
13.0
13.0
13.0
13.0
13.5
10.0
13.5
14.0
13.5
13.5 | JUNE 12.0 12.0 12.0 12.0 12.0 12.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 | 12.0
12.5
12.0
12.0
12.5
10.0
9.5
10.0
12.0
13.0
13.0
13.0 | 15.5
16.0
16.0
16.0
15.5
15.5
15.5
16.0 | JULY 14.0 14.0 14.0 13.5 13.5 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 | 14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5 | 17.0
17.0
17.0
17.0
16.5
17.0
16.5
17.0
17.0
17.0
17.0
16.5 | AUGUST 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14. | 15.5
15.5
15.0
15.5
15.0
15.5
15.0
15.5
15.5 | 16.5
17.0
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5 | 15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0 | 15.5
15.5
16.0
16.0
15.5
15.5
15.5
15.5
15.5
16.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 12.5
12.5
12.5
13.0
13.0
13.0
13.0
13.5
10.0
13.5
14.0
13.5
13.5
13.5
13.5
14.0 | 12.0
12.0
12.0
12.0
12.0
12.0
12.0
9.0
9.0
9.5
10.0
13.0
13.0
13.0
13.0
13.0
13.0 | 12.0
12.5
12.0
12.5
12.5
10.0
9.5
10.0
13.0
13.0
13.0
13.0
13.0 | 15.5
16.0
16.0
16.0
15.5
15.5
15.5
16.0
16.5
16.5
16.5
16.5
16.5 | JULY 14.0 14.0 14.0 13.5 13.5 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 | 14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5 | 17.0
17.0
17.0
17.0
16.5
17.0
16.5
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0 | 14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5 | 15.5
15.5
15.0
15.5
15.0
15.5
15.0
15.5
15.5 | 16.5
17.0
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.6
17.0
17.0
17.0
17.0
17.0 | 15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0 |
15.5
15.5
16.0
16.0
15.5
15.5
15.5
15.5
16.0
16.0
16.0
16.0
16.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 12.5
12.5
12.5
13.0
13.0
13.0
13.0
13.5
10.0
13.5
14.0
13.5
13.5
13.5
13.5
14.0
14.0
14.5
14.5 | JUNE 12.0 12.0 12.0 12.0 12.0 12.0 13.0 9.0 9.5 10.0 13.0 13.0 13.0 13.0 13.5 13.5 13.5 13.5 13.5 14.0 | 12.0
12.5
12.0
12.5
12.0
12.5
10.0
9.5
10.0
12.0
13.0
13.0
13.0
13.5
13.5
13.5
13.5
14.0
14.0
14.0 | 15.5
16.0
16.0
16.0
15.5
15.5
15.5
16.0
16.5
16.5
16.5
16.5
16.5
17.5
16.5
17.0
16.5
17.0
17.0 | JULY 14.0 14.0 14.0 14.0 13.5 13.5 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 | 14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5 | 17.0
17.0
17.0
16.5
17.0
16.5
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0 | AUGUST 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14. | 15.5
15.5
15.0
15.5
15.0
15.5
15.5
15.5 | 16.5
17.0
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0 | \$EPTEMBE 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15. | 15.5
15.5
16.0
16.0
15.5
15.5
15.5
15.5
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 12.5
12.5
12.5
13.0
13.0
13.0
13.0
13.5
10.0
13.5
13.5
13.5
13.5
14.0
13.5
14.0
14.5
14.5
14.5
14.5
14.5
14.5
14.5
15.0 | JUNE 12.0 12.0 12.0 12.0 12.0 12.0 12.0 13.0 13.0 13.0 13.0 13.0 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 | 12.0
12.5
12.0
12.0
12.5
10.0
9.5
10.0
13.0
13.0
13.0
13.5
13.5
13.5
14.0
14.0
14.0
14.0
14.0
14.0 | 15.5
16.0
16.0
16.0
15.5
15.5
15.5
16.0
16.5
16.5
16.5
17.0
16.5
16.5
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0 | JULY 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14. | 14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5 | 17.0
17.0
17.0
16.5
17.0
16.5
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0 | AUGUST 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14. | 15.5
15.5
15.0
15.5
15.0
15.5
15.5
15.5 | 16.5
17.0
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.0
17.0
17.0
17.0
17.0
17.0
16.5
16.5
16.5
16.5
17.0
17.0 | \$\frac{15.0}{15.0}\$ \$\frac{15.0}{15.0}\$ \$\frac{15.0}{15.0}\$ \$\frac{15.0}{15.0}\$ \$\frac{15.0}{15.0}\$ \$\frac{15.0}{15.0}\$ \$\frac{15.0}{15.5}\$ \$\frac{15.5}{15.5}\$ \$\frac{15.5}{15.5}\$ \$\frac{15.5}{15.5}\$ \$\frac{15.5}{15.5}\$ \$\frac{15.5}{15.5}\$ \$\frac{15.5}{15.0}\$ \$\frac | 15.5
15.5
16.0
16.0
15.5
15.5
15.5
15.5
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0 | #### 01450500 AQUASHICOLA CREEK AT PALMERTON, PA LOCATION.--Lat 40°48'22", long 75°35'54", Carbon County, Hydrologic Unit 02040106, on right bank 1,200 ft upstream from bridge on Sixth Street in Palmerton, and 1.2 mi upstream from mouth. **DRAINAGE AREA**.--76.7 mi². PERIOD OF RECORD.--October 1939 to current year. REVISED RECORDS.--WSP 1051: 1940-45 (monthly net diversion), Drainage area. GAGE.--Water-stage recorder. Datum of gage is 389.08 ft above National Geodetic Vertical Datum of 1929. **REMARKS**.--Records fair except those for estimated daily discharges, which are poor. Occasional diversion from Pohopoco Creek into Aquashicola Creek upstream of station. Several measurements of water temperature were made during the year. Satellite telemetry at station. **COOPERATION**.--Records of diversion provided by Palmer Water Company. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,000 ft³/s and maximum (*): | Date | | Time
415 | Discharge
ft ³ /s
*826 | Gage Heig
(ft)
*2.84 | ght | | Date
(No | | Di
ime
above ba | ischarge
ft ³ /s
ase disc | Gage Heig
(ft)
harge.) | ht | |------------------------------------|--------------------------------------|---------------------------------|---|------------------------------|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--------------------------------------| | | | | DISCH | IARGE, CUBIC | C FEET PER S | | ATER YEAR (
IEAN VALUE | | 2001 TO SEP | TEMBER 20 | 02 | | | DAY | OCT | NO | V DEC | D JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 72
65
59
55
51 | 2 2 | 9 42
9 41 | e43
2 e41
L 39 | 92
92
85
90
e80 | 44
49
118
102
94 | 161
138
131
121
111 | 361
414
423
361
307 | 157
129
117
110
107 | 57
55
52
50
48 | 24
26
31
26
27 | 31
40
31
27
25 | | 6
7
8
9
10 | 50
48
43
39
41 | 2 | 8 39
7 41
8 41
7 77
6 64 | L 52
L 43
7 41 | 79
78
78
74
70 | 96
96
90
87
100 | 104
97
94
93
96 | 267
245
219
213
193 | 130
371
266
216
184 | 45
44
43
42
42 | 27
24
24
23
23 | 23
23
22
22
22 | | 11
12
13
14
15 | 39
35
35
35
71 | e2
e2
e2
e2
e2 | 6 51
6 61
7 64 | 7 51
L 49
4 46 | 83
67
67
56
59 | 85
81
81
79
77 | 85
81
82
89
661 | 167
164
188
235
199 | 161
149
139
148
145 | 37
38
38
38
38 | 22
22
21
21
20 | 21
20
20
20
20
32 | | 16
17
18
19
20 | 50
45
40
38
37 | e2
e2
e3
e2
e3 | 7 60
0 82
9 78 | 0 48
2 45
3 40 | 63
61
55
54
57 | 77
71
91
95
143 | 540
371
285
250
225 | 185
175
347
371
308 | 131
116
104
98
90 | 37
35
32
34
36 | 21
21
25
21
20 | 55
34
27
26
25 | | 21
22
23
24
25 | 36
34
33
33
33 | | 3 65 | 5 47
5 46
7 57 | 68
60
57
53
51 | 256
237
202
174
153 | 192
175
158
140
137 | 264
234
207
188
169 | 84
80
75
72
68 | 34
33
29
34
32 | 21
20
22
28
38 | 24
24
24
23
22 | | 26
27
28
29
30
31 | 31
30
30
30
30
30 | | 6 52
3 51
2 50
6 e4 | 2 69
L 71
O 74
7 80 | 53
57
47
 | 148
226
193
188
174
158 | 136
122
247
578
463 | 155
143
150
218
159
145 | 67
67
79
64
60 | 30
30
30
31
28
27 | 27
24
22
43
40
29 | 24
92
121
67
51 | | TOTAL
MEAN
MAX
MIN
(†) | 1297
41.84
72
29
-1.1 | 88
29.4
5
2
-0. | 7 58.45
7 82
1 39 | 5 51.97
2 83
9 38 | 1886
67.36
92
47
-0.8 | 3865
124.7
256
44
-1.0 | 6163
205.4
661
81
-1.9 | 7374
237.9
423
143
-2.4 | 3784
126.1
371
60
-1.1 | 1179
38.03
57
27
-0.8 | 783
25.26
43
20
-0.6 | 1018
33.93
121
20
-0.6 | | STATIST | ICS OF | MONTHLY | MEAN DATA | A FOR WATER | YEARS 19 | 40 - 2002 | , BY WATER | YEAR (W | TY) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 94.73
331
1956
17.2
1964 | 141.
37
197
21.
196 | 9 583
3 1997
6 30.2 | 558
7 1996
2 19.4 | 171.7
325
1971
38.4
1940 | 244.4
534
1977
86.5
1985 | 235.1
625
1983
74.7
1985 | 178.2
480
1989
55.9
1941 | 114.2
412
1972
38.8
1955 | 98.37
638
1945
19.8
1955 | 83.57
468
1942
13.7
1964 | 86.20
417
1987
15.2
1964 | [†] Figures of net diversion, equivalent in cubic feet per second. Includes water diverted from Pohopoco Creek to Aquashicola Creek. e Estimated. # 01450500 AQUASHICOLA CREEK AT PALMERTON, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1940 - 2002 | |--------------------------|------------------------|---------------------|----------------------------| | ANNUAL TOTAL | 31807 | 31656 | | | ANNUAL MEAN | 87.1 | 86.7 | 150 | | HIGHEST ANNUAL MEAN | | | 242 1952 | | LOWEST ANNUAL MEAN | | | 69.2 1965 | | HIGHEST DAILY MEAN | 434 Mar 31 | 661 Apr 15 | 4680 Jul 10 1945 | | LOWEST DAILY MEAN | 19 Sep 18 | 20 Aug 15 a | 9.1 Sep 15 1964 | | ANNUAL SEVEN-DAY MINIMUM | 21 Sep 7 | 21 Sep 8 | 10 Sep 10 1964 | | MAXIMUM PEAK FLOW | | 826 Apr 15 | b 11700 Jul 10 1945 | | MAXIMUM PEAK STAGE | | 2.84 Apr 15 | 13.63 Jul 10 1945 | | INSTANTANEOUS LOW FLOW | | | 2.6 Sep 12 1957 | | 10 PERCENT EXCEEDS | 174 | 192 | 300 | | 50 PERCENT EXCEEDS | 64 | 54 | 98 | | 90 PERCENT EXCEEDS | 27 | 24 | 34 | ^{a Also Aug. 20, 22, Sept. 12-14. b From rating curve extended above 2,300 ft³/s on basis of contracted-opening measurement of peak flow.} #### 01451000 LEHIGH RIVER AT WALNUTPORT, PA LOCATION.--Lat 40°45′25", long 75°36′12", Northampton County, Hydrologic Unit 02040106, on left bank 0.3 mi upstream from bridge on SR 4022 at Walnutport, and 0.4 mi upstream from Trout Creek. **DRAINAGE AREA**.--889 mi². PERIOD OF RECORD.--October 1946 to current year. GAGE.--Water-stage recorder. Datum of gage is 350.27 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records good except those for estimated daily
discharges, which are poor. Flow regulated by Wild Creek Reservoir (station 01449700) since January 1941, Penn Forest Reservoir (station 01449400) since October 1958, Francis E. Walter Reservoir (station 01447780) since February 1961, and Beltzville Lake (station 01449790) since February 1971. Several measurements of water temperature were made during the year. Satellite and landline telemetry at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage known, 20.6 ft, May 23, 1942, from floodmarks, discharge not determined. | | | | | | | DAILY ME | EAN VALUE | S | | | | | |----------------------------------|--|---------------------------------|--|---|-------------------------------------|--|--------------------------------------|--|--------------------------------------|--|--|----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 676
629
570
548
528 | 381
358
360
356
358 | 1070
1220
1130
1020
830 | e680
e680
e680
e680 | 1580
1240
1000
999
e980 | 673
665
1310
1220
1100 | 2250
1630
1480
1370
1280 | 4090
4290
4130
3550
3330 | 2130
1860
1720
1420
1350 | 1160
982
860
828
800 | 490
483
646
743
755 | 532
552
418
383
343 | | 6 | 766 | 368 | 799 | e680 | e1000 | 1030 | 1580 | 3020 | 1560 | 651 | 569 | 310 | | 7 | 613 | 379 | 757 | e680 | 946 | 992 | 1570 | 2280 | 4030 | 620 | 478 | 336 | | 8 | 465 | 381 | 726 | e680 | 887 | 927 | 1520 | 2080 | 3050 | 611 | 467 | 389 | | 9 | 449 | 375 | 937 | e680 | 854 | 908 | 1320 | 2230 | 2630 | 567 | 461 | 388 | | 10 | 443 | 358 | 889 | e680 | 834 | 1260 | 1400 | 2350 | 2630 | 535 | 602 | 408 | | 11 | 455 | 335 | 830 | 775 | 1080 | 1130 | 1510 | 1950 | 3160 | 515 | 717 | 436 | | 12 | 463 | 334 | 776 | 815 | 992 | 1350 | 1300 | 1920 | 2840 | 492 | 710 | 433 | | 13 | 456 | 340 | 776 | 778 | 918 | 1470 | 1290 | 2700 | 1630 | 533 | 489 | 433 | | 14 | 449 | 383 | 805 | 738 | 866 | 1460 | 1450 | 4840 | 1970 | 580 | 506 | 433 | | 15 | 696 | 420 | 918 | 720 | 863 | 1290 | 3840 | 5430 | 1790 | 582 | 536 | 523 | | 16 | 648 | 426 | 858 | 720 | 868 | 1210 | 4240 | 4120 | 2080 | 540 | 516 | 1130 | | 17 | 635 | 427 | 845 | 671 | 866 | 1170 | 3500 | 2970 | 2050 | 520 | 612 | 691 | | 18 | 592 | 420 | 1190 | 648 | 838 | 1300 | 2660 | 4390 | 1990 | 517 | 698 | 493 | | 19 | 529 | 405 | 1360 | 593 | 810 | 1520 | 2480 | 4440 | 1810 | 539 | 690 | 449 | | 20 | 488 | 381 | 1380 | e610 | 807 | 1780 | 2020 | 5750 | 1620 | 730 | 431 | 436 | | 21 | 551 | 345 | 1340 | e580 | 852 | 2430 | 1760 | 4460 | 1370 | 815 | 313 | 783 | | 22 | 443 | 372 | 1070 | 586 | 825 | 2260 | 1710 | 3340 | 1430 | 810 | 301 | 582 | | 23 | 440 | 368 | 1030 | 608 | 787 | 1980 | 1830 | 3080 | 1430 | 572 | 307 | 458 | | 24 | 438 | 369 | 1090 | 719 | 753 | 1830 | 1650 | 2490 | 1370 | 694 | 353 | 444 | | 25 | 433 | 447 | 1040 | 957 | 735 | 1720 | 1440 | 2040 | 1050 | 575 | 424 | 392 | | 26
27
28
29
30
31 | 421
416
410
405
405
398 | 868
731
695
709
692 | 1000
e860
e800
e750
e730
e720 | 988
961
961
927
996
1280 | 711
725
700
 | 1450
3080
2520
2110
2180
2070 | 1520
1690
2550
4370
4750 | 1880
1770
1760
7080
6920
3170 | 908
1100
1630
1300
1210 | 540
695
807
806
543
498 | 348
321
311
355
379
373 | 363
812
1420
855
662 | | TOTAL | 15858 | 13141 | 29546 | 23431 | 25316 | 47395 | 62960 | 107850 | 56118 | 20517 | 15384 | 16287 | | MEAN | 511.5 | 438.0 | 953.1 | 755.8 | 904.1 | 1529 | 2099 | 3479 | 1871 | 661.8 | 496.3 | 542.9 | | MAX | 766 | 868 | 1380 | 1280 | 1580 | 3080 | 4750 | 7080 | 4030 | 1160 | 755 | 1420 | | MIN | 398 | 334 | 720 | 580 | 700 | 665 | 1280 | 1760 | 908 | 492 | 301 | 310 | | CFSM | 0.58 | 0.49 | 1.07 | 0.85 | 1.02 | 1.72 | 2.36 | 3.91 | 2.10 | 0.74 | 0.56 | 0.61 | | IN. | 0.66 | 0.55 | 1.24 | 0.98 | 1.06 | 1.98 | 2.63 | 4.51 | 2.35 | 0.86 | 0.64 | 0.68 | | STATIST | rics of | MONTHLY M | EAN DATA | FOR WATER | YEARS 194 | 47 - 2002, | BY WATER | YEAR (WY) | | | | | | MEAN | 1139 | 1771 | 2254 | 2012 | 2097 | 2956 | 3176 | 2351 | 1487 | 1066 | 860.3 | 916.0 | | MAX | 4857 | 3990 | 6352 | 6136 | 4464 | 6302 | 8455 | 6389 | 5413 | 4465 | 5264 | 5812 | | (WY) | 1956 | 1973 | 1997 | 1979 | 1951 | 1977 | 1993 | 1989 | 1972 | 1947 | 1955 | 1987 | | MIN | 194 | 251 | 370 | 223 | 790 | 1335 | 1156 | 908 | 477 | 241 | 226 | 179 | | (WY) | 1964 | 1965 | 1981 | 1981 | 1980 | 1981 | 1985 | 1995 | 1999 | 1965 | 1964 | 1964 | e Estimated. # 01451000 LEHIGH RIVER AT WALNUTPORT, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1947 - 2002 | |--------------------------|------------------------|---------------------|-------------------------| | ANNUAL TOTAL | 409051 | 433803 | | | ANNUAL MEAN | 1121 | 1189 | 1839 | | HIGHEST ANNUAL MEAN | | | 2892 1952 | | LOWEST ANNUAL MEAN | | | 859 1965 | | HIGHEST DAILY MEAN | 4650 Mar 31 | 7080 May 29 | 62400 Aug 19 1955 | | LOWEST DAILY MEAN | 329 Sep 13 | 301 Aug 22 | 134 Sep 18 1964 | | ANNUAL SEVEN-DAY MINIMUM | 357 Sep 8 | 338 Aug 22 | 143 Sep 16 1964 | | MAXIMUM PEAK FLOW | | 8500 May 29 | 77800 Aug 19 1955 | | MAXIMUM PEAK STAGE | | 5.74 May 29 | 17.68 Aug 19 1955 | | INSTANTANEOUS LOW FLOW | | | a 57 Jul 27 1965 | | ANNUAL RUNOFF (CFSM) | 1.26 | 1.34 | 2.07 | | ANNUAL RUNOFF (INCHES) | 17.12 | 18.15 | 28.10 | | 10 PERCENT EXCEEDS | 2470 | 2480 | 3810 | | 50 PERCENT EXCEEDS | 830 | 807 | 1270 | | 90 PERCENT EXCEEDS | 403 | 391 | 409 | a Result of upstream shutoff. #### 01451500 LITTLE LEHIGH CREEK NEAR ALLENTOWN, PA LOCATION.--Lat 40°34'56", long 75°29'00", Lehigh County, Hydrologic Unit 02040106, on right bank at downstream side of bridge on Lehigh Parkway in Allentown, 0.8 mi upstream from Cedar Creek, and 2.9 mi upstream from mouth. DRAINAGE AREA.--80.8 mi². PERIOD OF RECORD.--October 1945 to current year. Prior to October 1946, published as "at Allentown". **REVISED RECORDS**.--WDR PA 73-1: 1946(M), 1951(P), 1955(M), 1956(M), 1958(M), 1962(M), 1963(M), 1965(M), 1969(M), 1971(M). WDR PA-87-1: 1946 to 1986(P). GAGE.--Water-stage recorder, crest-stage gage, and masonry control. Datum of gage is 253.41 ft above National Geodetic Vertical Datum of 1929. **REMARKS.**--Records fair except those for estimated daily discharges, which are poor. Occasional regulation at low flow by fish hatchery upstream. Several measurements of water temperature were made during the year. Satellite telemetry at station. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 900 ft³/s and maximum (*): | Date
May 13 | | me | scharge
ft ³ /s
.,610 | Gage Heigh
(ft)
*4.77 | t | | Date
June | | Time
2300 | Discharge ft^3/s 1,280 | Gage Heig
(ft)
4 . 41 | ght | |----------------------------------|--|--|--|--|--|--|---|---|---|--|--|---| | | | | DISCHA | RGE, CUBIC I | FEET PER SE | | TER YEAR C
EAN VALUES | | 2001 TO SEP | TEMBER 2002 | 2 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 58
58
57
56
56 | 44
44
44
43
43 | 45
43
41
40
40 | 36
36
36
36
36 | 45
49
44
43
40 | 33
34
71
52
41 | 49
46
45
45
44 | 65
113
95
65
59 | 64
60
57
56
55 | 69
65
63
60
58 | 40
45
43
39
40 | 70
63
43
39
37 | | 6
7
8
9
10 | 57
56
54
53
52 | 43
43
43
43 | 39
40
43
59
47 | 36
37
38
37
37 | 39
40
39
38
37 | 37
35
34
34
37 | 43
42
42
42
45 | 55
54
53
63
61 | 93
192
82
67
63 | 55
54
54
55
55 | 49
39
37
36
36 | 36
35
34
33
33 | | 11
12
13
14
15 | 51
51
50
48
60 | 43
43
43
43
42 | 43
41
41
44
47 | 42
47
44
41
40 | 39
38
36
36
36 | 37
36
36
37
35 | 44
43
43
46
e98 | 53
60
365
324
122 | 60
112
140
91
87 | 53
52
51
51
50 | 35
34
34
33
33 | 31
31
31
31
35 | | 16
17
18
19
20 | 50
50
48
47
48 | 42
42
42
41
42 | 43
41
57
51
45 | 40
39
38
38
37 | 36
36
36
36
36 | 34
34
42
45
88 | 61
49
45
44
44 | 89
79
221
149
97 | 73
67
64
149
84 | 50
48
47
59
69 | 33
32
32
31
36 | 43
35
34
32
32 | | 21
22
23
24
25 | 46
44
44
44 | 42
41
41
41
61 | 42
40
40
46
42 | 37
37
37
50
59 | 36
36
34
34
34 | 85
53
46
43
41 | 42
45
44
42
42 | 87
82
78
75
71 | 68
63
60
59
58 | 50
48
54
56
47 | 33
32
32
33
35 | 32
31
30
29
29 | |
26
27
28
29
30
31 | 44
43
43
43
43
43 | 68
49
45
44
44 | 40
39
38
38
37
36 | 47
42
41
39
39
41 | 34
34
34
 | 43
e82
56
49
47
45 | 44
42
92
136
70 | 70
70
68
67
65
64 | 61
230
251
92
74 | 45
44
44
42
41 | 33
32
32
52
40
35 | 31
117
58
41
37 | | MEAN
MAX
MIN
CFSM | 1541
49.7
60
43
0.62
0.71 | 1332
44.4
68
41
0.55
0.61 | 1328
42.8
59
36
0.53
0.61 | 1240
40.0
59
36
0.50
0.57 | 1055
37.7
49
34
0.47
0.49 | 1422
45.9
88
33
0.57
0.65 | 1559
52.0
136
42
0.64
0.72 | 3039
98.0
365
53
1.21
1.40 | 2732
91.1
251
55
1.13
1.26 | 1633
52.7
69
41
0.65
0.75 | 1126
36.3
52
31
0.45
0.52 | 1193
39.8
117
29
0.49
0.55 | | | | | | FOR WATER | | _ | | | - | | | | | MAX
(WY)
MIN | 67.9
195
1997
27.3
1964 | 75.6
177
1976
28.1
1966 | 97.0
371
1997
25.7
1966 | 106
385
1979
26.6
1966 | 118
325
1979
37.7
2002 | 135
355
1994
43.1
1965 | 142
331
1983
37.1
1966 | 120
315
1984
35.8
1965 | 101
381
1972
29.2
1965 | 85.5
366
1984
26.5
1965 | 76.1
192
1971
26.5
1965 | 71.1
213
1987
28.9
1965 | e Estimated. #### 01451500 LITTLE LEHIGH CREEK NEAR ALLENTOWN, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENI | DAR YEAR | FOR 2002 WAT | ER YEAR | WATER YEARS | 1946 - 2002 | |--------------------------|-----------------|----------|---------------|-----------------|----------------|-------------| | ANNUAL TOTAL | 31569 | | 19200 | | | | | ANNUAL MEAN | 86.5 | | 52.6 | | 99.5 | | | HIGHEST ANNUAL MEAN | | | | | 203 | 1984 | | LOWEST ANNUAL MEAN | | | | | 33.8 | 1966 | | HIGHEST DAILY MEAN | 1010 | Jun 23 | 365 | May 13 | 4050 | Jul 7 1984 | | LOWEST DAILY MEAN | 36 | Dec 31 | 29 | Sep 24,25 | 23 | Dec 20 1965 | | ANNUAL SEVEN-DAY MINIMUM | 39 | Dec 25 | 31 | Sep 20 | 23 | Dec 18 1965 | | MAXIMUM PEAK FLOW | | | a 1610 | May 13 | a 11800 | Jun 22 1972 | | MAXIMUM PEAK STAGE | | | 4.77 | May 13 | 11.80 | Jun 22 1972 | | INSTANTANEOUS LOW FLOW | | | 29 | Sep 13 b | 17 | Feb 4 1965 | | ANNUAL RUNOFF (CFSM) | 1.07 | | 0.65 | | 1.23 | | | ANNUAL RUNOFF (INCHES) | 14.53 | | 8.84 | | 16.73 | | | 10 PERCENT EXCEEDS | 127 | | 71 | | 170 | | | 50 PERCENT EXCEEDS | 81 | | 43 | | 78 | | | 90 PERCENT EXCEEDS | 43 | | 34 | | 40 | | a From rating curve extended above 820 ft³/s on basis of slope-area measurements at 8.34 ft and at peak flow. b Also Sept. 14, 22-26. #### 01451650 LITTLE LEHIGH CREEK AT TENTH STREET BRIDGE AT ALLENTOWN, PA **LOCATION**.--Lat 40°35"47', long 75°28'28", Lehigh County, Hydrologic Unit 02040106, on left bank at bridge on Tenth Street, and 0.9 mi upstream from confluence with Jordan Creek in Allentown, Pa. **DRAINAGE AREA**.--98.2 mi². PERIOD OF RECORD.--October 1986 to current year. REVISED RECORDS.--WRD PA-98-1: 1997(M). GAGE.--Water-stage recorder. Crest-stage gage and concrete control. Datum of gage is 245.63 ft above National Geodetic Vertical Datum of 1929. **REMARKS.**--No estimated daily discharges. Records good. Diversion upstream for municipal water supply by city of Allentown. Several measurements of water temperature were made during the year. Satellite telemetry at station. **COOPERATION**.--Records of diversion provided by city of Allentown. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 900 ft³/s and maximum (*): | Date
May 13 | Time
2130 | ft | harge
³ /s
210 | Gage Height
(ft)
*4.50 | | | Date
June 28 | Time
3 0015 | | scharge
ft ³ /s
, 110 | Gage Height (ft)
4.37 | | |----------------------------------|-------------------------------------|-------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|--|-------------------------------------|------------------------------------| | | | | DISCHA | RGE, CUBIC F | EET PER SE | | TER YEAR OCT
EAN VALUES | OBER 2001 | TO SEPT | TEMBER 20 | 02 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 64
64
70
70
56 | 55
53
52
52
52 | 61
47
46
47
47 | 38
40
45
41
43 | 59
60
55
54
45 | 43
45
124
72
44 | 67
60
59
56
57 | 78
202
147
90
81 | 87
67
59
61
65 | 91
90
84
81
86 | 50
59
64
54
50 | 113
105
58
44
48 | | 6
7
8
9
10 | 65
63
57
59
67 | 61
61
48
50
52 | 47
48
56
95
66 | 43
49
44
45
45 | 45
45
50
45
43 | 44
44
45
45 | 59
48
48
50
62 | 79
77
72
95
88 | 119
312
117
81
78 | 85
76
74
74
77 | 65
53
49
57
49 | 57
58
44
42
43 | | 11
12
13
14
15 | 62
50
53
53
77 | 54
54
57
56
53 | 47
47
48
66
67 | 54
59
54
50
49 | 48
44
43
44
43 | 45
42
51
47
35 | 58
45
50
59
156 | 78
81
370
467
165 | 75
158
194
145
115 | 77
78
68
66
67 | 43
43
43
43 | 42
47
47
31
48 | | 16
17
18
19
20 | 60
67
64
52
54 | 60
62
49
49
53 | 48
49
79
65
63 | 49
48
49
46
49 | 44
44
41
41
42 | 38
41
66
62
157 | 79
56
48
52
53 | 109
97
348
212
137 | 86
80
81
211
122 | 69
68
57
87
104 | 43
41
50
48
39 | 62
52
49
34
36 | | 21
22
23
24
25 | 54
53
55
54
54 | 62
68
55
46
89 | 60
47
46
62
64 | 47
46
45
68
82 | 43
42
42
42
43 | 138
75
58
57
56 | 47
61
56
53
63 | 109
105
108
108 | 87
70
74
78
71 | 62
54
71
77
65 | 50
56
39
48
51 | 37
37
42
39
38 | | 26
27
28
29
30
31 | 58
58
50
52
52
53 | 93
52
51
51
61 | 58
46
44
53
56
44 | 61
51
51
48
47
49 | 43
45
43
 | 65
115
69
61
57
58 | 63
46
158
205
101 | 83
76
83
81
82
71 | 78
280
368
131
93 | 74
59
54
60
54
51 | 44
43
41
96
66
55 | 52
222
95
73
59 | | MEAN
MAX
MIN | 1820
58.7
77
50
10.3 | 1711
57.0
93
46
9.9 | 1719
55.5
95
44
9.5 | 1535
49.5
82
38
18.0 | 1278
45.6
60
41
16.7 | 1949
62.9
157
35
10.3 | 2075
69.2
205
45
9.9 | 4083
132
467
71
8.5 | 3643
121
368
59
10.4 | 2240
72.3
104
51
11.4 | 1575
50.8
96
39
12.1 | 1754
58.5
222
31
10.2 | | STATISTIC | s of mon | THLY MEA | N DATA | FOR WATER Y | EARS 1987 | - 2002, | BY WATER YE | EAR (WY) | | | | | | MIN | 85.0
210
1997
48.5
1993 | 96.1
192
1997
57.0
2002 | 123
435
1997
52.0
1999 | 127
292
1996
49.5
2002 | 124
219
1996
45.6
2002 | 170
415
1994
62.9
2002 | 168
355
1994
64.4
1992 | 146
236
1989
66.7
1992 | 117
184
1989
64.8
1999 | 102
174
1994
41.0
1999 | 85.4
147
1994
41.5
1999 | 101
368
1987
46.7
1995 | [†] Diversion for municipal supply of city of Allentown, equivalent in cubic feet per second. # 01451650 LITTLE LEHIGH CREEK AT TENTH STREET BRIDGE AT ALLENTOWN, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1987 - 2002 | |--------------------------|------------------------|---------------------|--------------------------| | ANNUAL TOTAL | 38847 | 25382 | | | ANNUAL MEAN | 106 | 69.5 | 120 | | HIGHEST ANNUAL MEAN | | | 192 1994 | | LOWEST ANNUAL MEAN | | | 64.6 1992 | | HIGHEST DAILY MEAN | 949 Jun 23 | 467 May 14 | 5200 Sep 9 1987 | | LOWEST DAILY MEAN | 44 Dec 28 | 31 Sep 14 | 23 Aug 1 1999 | | ANNUAL SEVEN-DAY MINIMUM | 48 Dec 2 | 38 Sep 19 | 30 Aug 1 1999 | | MAXIMUM PEAK FLOW | | 1210 May 13 | a 7370 Sep 9 1987 | | MAXIMUM PEAK STAGE | | 4.50 May 13 | 9.47 Sep 9 1987 | | 10 PERCENT EXCEEDS | 159 | 104 | 199 | | 50 PERCENT EXCEEDS | 95 | 56 | 94 | | 90 PERCENT EXCEEDS | 53 | 43 | 52 | ${\bf a}$ From rating curve extended above 1,870 ft³/s on the basis of slope-area measurement at gage height 8.06 ft. #### 01451800 JORDAN CREEK NEAR SCHNECKSVILLE, PA LOCATION.--Lat 40°39'42", long 75°37'38", Lehigh County, Hydrologic Unit 02040106, on left bank 54 ft downstream from wooden covered bridge at Trexler-Lehigh County Game Preserve, 1.0 mi downstream from Mill Creek, and 1.1 mi southwest of Schnecksville. **DRAINAGE AREA.**--53.0 mi². PERIOD OF RECORD.--February 1966 to current year. REVISED RECORDS.--WDR PA-90-1: 1989. GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 381.16 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 2, 1973, nonrecording gage at bridge 54 ft upstream at same datum. **REMARKS**.--Records good except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. Satellite telemetry at station. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 900 ft³/s and maximum (*): | Date
Apr. | | Time
0530 |
Discharge
ft ³ /s
*720 | Gage Height
(ft)
*4.68 | ht | | Date
(No | | | scharge
ft ³ /s
se disch | Gage Heigh
(ft)
narge.) | t | |--|---|---|--|---|--|---|--|--|---|--|---|--| | | | | DISCHA | ARGE, CUBIC | FEET PER S | | TER YEAR O
EAN VALUES | | 001 TO SEPT | EMBER 200 | 02 | | | DAY | OCT | NO | J DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 30
28
25
23
21 | 11
12
12
12
11 | 42
22
17
16
15 | e14
e13
e13
e11
e11 | 87
83
69
e66
e62 | 22
21
e95
61
e48 | 119
92
86
78
63 | 196
350
343
258
198 | 38
33
29
27
27 | 35
32
30
25
22 | 4.2
3.8
4.7
4.4
4.9 | 17
26
9.1
6.5
5.1 | | 6
7
8
9
10 | 21
21
17
16
16 | 10
10
10
10
9.8 | 15
16
18
57
3 | e10
e11
e12
e16
e19 | e61
53
50
45
42 | 49
48
44
42
61 | 58
53
50
49
59 | 156
130
109
142
110 | 52
155
61
52
47 | 20
19
18
17
17 | 4.2
3.3
2.9
2.7
2.6 | 4.3
3.7
3.4
3.2
2.9 | | 11
12
13
14
15 | 16
16
16
15
40 | 9 . !
9 . <i>!</i>
9 . <i>!</i>
9 . <i>!</i> | 1 26
1 26
1 32 | e23
e31
e37
e35
e31 | 48
39
37
e29
e28 | 44
41
42
41
37 | 45
41
42
50
404 | 80
78
112
177
128 | 42
66
69
80
81 | 14
12
12
12
14 | 2.4
2.2
2.0
1.9
1.7 | 2.5
e2.1
e1.9
1.8
6.8 | | 16
17
18
19
20 | 22
23
18
15
15 | 9.4
9.1
9.4
9.4 | 5 35
4 85 | e27
e24
e22
e20
e18 | 32
31
e26
e24
27 | 37
34
74
87
202 | 255
193
153
148
138 | 112
100
284
240
197 | 73
59
57
120
81 | 11
9.1
8.6
8.2
7.8 | 1.7
1.8
1.8
1.5
2.3 | 17
7.7
5.2
4.4
4.3 | | 21
22
23
24
25 | 14
14
14
14
13 | 11
9.7
9.4
9.3 | 1 44 | e19
e23
e27
e70
e123 | 44
31
27
25
24 | 337
255
189
149
121 | 106
106
87
71
75 | 158
129
108
94
78 | 65
56
50
45
41 | 7.3
7.1
6.9
13
8.4 | 2.2
1.8
1.7
4.1
9.4 | 4.1
5.1
4.7
4.0
3.5 | | 26
27
28
29
30
31 | 12
12
11
11
11 | 43
18
15
14
21 | e32
e27
e23
e20
e17
e15 | 102
92
82
75
71
66 | 24
27
23
 | 119
226
155
144
130
114 | 72
56
202
301
238 | 69
61
54
50
44
40 | 37
60
95
47
39 | 6.9
6.9
7.6
7.1
5.8
4.8 | 5.2
3.4
2.8
5.7
6.3
4.5 | 4.0
66
50
24
18 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 551
17.8
40
11
0.34
0.39 | 370.9
12.4
4.
9.2
0.23
0.26 | 4 34.6
85
2 15
3 0.65
5 0.75 | 1148
37.0
123
10
0.70
0.81 | 1164
41.6
87
23
0.78
0.82 | 3069
99.0
337
21
1.87
2.15 | 3490
116
404
41
2.19
2.45 | 4385
141
350
40
2.67
3.08 | 1784
59.5
155
27
1.12
1.25 | 425.5
13.7
35
4.8
0.26
0.30 | 104.1
3.36
9.4
1.5
0.06
0.07 | 318.3
10.6
66
1.8
0.20
0.22 | | STATIST
MEAN | 59.2 | MONTHLY
91.4 | | FOR WATER | YEARS 196 | 5 6 - 2002,
161 | BY WATER | YEAR (WY 96.4 | ()
66.1 | 39.3 | 32.0 | 45.5 | | MAX
(WY)
MIN
(WY) | 220
1997
8.37
1973 | 270
1973
12.4
2003 | 397
1 1997
4 12.0 | 404
1979
6.85
1981 | 295
1971
35.2
1980 | 479
1994
41.3
1985 | 391
1983
31.0
1985 | 353
1989
31.5
1995 | 346
1972
9.18
1966 | 126
1984
1.68
1966 | 110
1990
3.36
2002 | 343
1987
3.69
1980 | e Estimated. #### 01451800 JORDAN CREEK NEAR SCHNECKSVILLE, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1966 - 2002 | |--------------------------|------------------------|---------------------|----------------------------| | ANNUAL TOTAL | 22726.4 | 17882.8 | | | ANNUAL MEAN | 62.3 | 49.0 | 91.2 | | HIGHEST ANNUAL MEAN | | | 148 1978 | | LOWEST ANNUAL MEAN | | | 43.9 1985 | | HIGHEST DAILY MEAN | 703 Jun 23 | 404 Apr 15 | 2800 Sep 9 1987 | | LOWEST DAILY MEAN | 5.2 Sep 8,9 | 1.5 Aug 19 | 0.54 Aug 7 1999 | | ANNUAL SEVEN-DAY MINIMUM | 5.9 Sep 7 | 1.8 Aug 13 | 0.63 Aug 2 1999 | | MAXIMUM PEAK FLOW | | 720 Apr 15 | a 7100 Jun 22 1972 | | MAXIMUM PEAK STAGE | | 4.68 Apr 15 | b 12.32 Jun 22 1972 | | INSTANTANEOUS LOW FLOW | | 1.4 Aug 19,20 | 0.48 Aug 6 1999 | | ANNUAL RUNOFF (CFSM) | 1.17 | 0.92 | 1.72 | | ANNUAL RUNOFF (INCHES) | 15.95 | 12.55 | 23.38 | | 10 PERCENT EXCEEDS | 144 | 120 | 201 | | 50 PERCENT EXCEEDS | 34 | 27 | 47 | | 90 PERCENT EXCEEDS | 9.4 | 4.3 | 10 | $[\]begin{array}{ll} \textbf{a} & \text{From rating curve extended above 1,300 ft}^3\text{/s on basis of contracted-opening measurement of peak flow.} \\ \textbf{b} & \text{From floodmark.} \end{array}$ #### 01452000 JORDAN CREEK AT ALLENTOWN, PA LOCATION.--Lat 40°37'23", long 75°28'58", Lehigh County, Hydrologic Unit 02040106, on right bank 200 ft upstream from bridge on State Highway 145, 0.5 mi northwest of city limits of Allentown, and 2.5 mi upstream from mouth. **DRAINAGE AREA**.--75.8 mi². PERIOD OF RECORD.--October 1944 to current year. **REVISED RECORDS.--**WDR PA-76-1: 1970(M), 1971. GAGE.--Water-stage recorder, crest-stage gage and rubble masonry control. Crest raised 1 ft in August 1958 and further modified filling in square notches on sides and notching center of dam at 17:1 slope in August 1974. Datum of gage is 259.82 ft above National Geodetic Vertical Datum of 1929 (Pennsylvania Department of Transportation datum). REMARKS.--No estimated daily discharges. Records fair. Several measurements of water temperature were made during the year. Satellite telemetry at station. **EXTREMES OUTSIDE PERIOD OF RECORD.**—Flood of May 23, 1942, reached a stage of approximately 7.1 ft, from floodmarks 650 ft downstream. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,300 ft³/s and maximum (*): | Date | | Time
1000 | 1 | charge
ft ³ /s | Gage Height (ft)
*4.36 | | | Date
(No | Tin
peaks a | ne f | charge
t ³ /s
se disch | Gage Height (ft) | | |--|--|--------------|---|---|---|---|--|--|--|---|--|--|--| | | | | | DISCHA | RGE, CUBIC FE | EET PER SE | | ER YEAR O | | 01 TO SEPTE | EMBER 200 |)2 | | | DAY | OCT | Г | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 29
26
23
21
19 | | 8.7
8.3
8.3
7.7
8.0 | 29
22
15
13
12 | 17
16
16
17
16 | 83
103
79
78
62 | 20
21
86
77
52 | 138
108
96
93
76 | 228
368
425
308
229 | 46
39
36
33
32 | 41
36
33
27
22 | 8.6
11
8.8
8.0
8.0 | 9.5
6.0
6.1
7.3
7.3 | | 6
7
8
9
10 | 17
16
16
14
13 | | 8.2
8.5
8.5
8.9
8.5 | 11
11
15
38
38 | 16
16
20
22
21 | 66
70
60
53
46 | 55
51
47
42
58 | 70
62
58
56
67 | 185
156
131
146
139 | 54
184
81
62
56 | 19
17
17
17
15 | 8.4
8.0
8.5
8.3
8.2 | 7.2
6.5
6.0
6.8
7.4 | | 11
12
13
14
15 | 13
13
12
11
23 | | 8.5
8.9
8.4
8.2
8.0 | 26
23
22
26
43 | 24
36
36
32
32 | 52
45
43
30
30 | 51
43
41
44
38 | 53
46
44
53
349 | 96
87
123
212
160 | 49
53
99
76
103 | 15
12
11
9.8
9.6 | 7.6
7.1
8.7
7.8
8.0 | 7.3
7.3
7.7
6.8 | | 16
17
18
19
20 | 29
17
17
15
13 | | 8.1
8.1
7.8
7.9
8.6 | 34
31
64
72
60 | 34
35
33
20
21 | 42
32
28
26
29 | 35
33
53
98
151 | 264
201
163
139
156 | 138
122
308
293
242 | 81
70
63
114
99 | 12
11
11
11
10 | 8.9
8.6
7.6
7.9
9.7 | 7.2
6.9
7.0
6.8
6.9 | | 21
22
23
24
25 | 11
9.9
11
11
10 | | 7.9
7.8
7.6
7.8 | 54
45
40
49
44 | 33
30
27
40
136 | 38
38
28
24
23 | 432
315
225
178
144 | 111
108
99
79
76 | 196
163
136
117
98 | 75
63
55
50
46 | 9.3
9.4
13
11 | 8.1
6.7
7.0
9.6
7.0 | 6.9
6.0
5.9
6.8
7.2 | | 26
27
28
29
30
31 | 9.5
11
9.1
8.9
9.2
9.3 | L
9 | 29
21
13
11
11 | 34
21
26
30
21
17 |
110
96
87
79
75
72 | 23
26
24
 | 126
249
175
163
148
130 | 84
62
162
326
261 | 84
78
72
65
57
52 | 41
51
127
61
46 | 10
9.6
9.2
8.7
8.9 | 6.6
6.7
6.8
15
7.0
5.8 | 9.9
20
37
16
7.2 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 467.1
15.1
29
8.9
0.20
0.23 | L : | 95.2
9.84
29
7.6
0.13
0.14 | 986
31.8
72
11
0.42
0.48 | 1265
40.8
136
16
0.54
0.62 | 1281
45.8
103
23
0.60
0.63 | 3381
109
432
20
1.44
1.66 | 3660
122
349
44
1.61
1.80 | 5214
168
425
52
2.22
2.56 | 2045
68.2
184
32
0.90
1.00 | 465.1
15.0
41
8.6
0.20
0.23 | 254.0
8.19
15
5.8
0.11
0.12 | 266.9
8.90
37
5.9
0.12
0.13 | | STATIST | rics or | MONT | HLY ME | AN DATA | FOR WATER Y | EARS 194 | 5 - 2002, | BY WATER | YEAR (WY) |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 65.6
309
1997
3.93
1964 | 7
3 | 107
321
1971
8.62
1965 | 147
520
1997
14.0
1999 | 148
570
1996
8.45
1981 | 161
354
1951
34.3
1980 | 210
791
1994
55.0
1985 | 170
551
1983
38.0
1985 | 120
438
1989
22.3
1965 | 77.9
517
1972
5.89
1965 | 52.6
255
1945
1.21
1966 | 50.6
326
1955
1.81
1966 | 61.1
449
1987
2.83
1964 | #### 01452000 JORDAN CREEK AT ALLENTOWN, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1945 - 2002 | |--------------------------|------------------------|---------------------|----------------------------| | ANNUAL TOTAL | 28015.9 | 19580.3 | | | ANNUAL MEAN | 76.8 | 53.6 | 114 | | HIGHEST ANNUAL MEAN | | | 203 1984 | | LOWEST ANNUAL MEAN | | | 44.9 1965 | | HIGHEST DAILY MEAN | 1290 Jun 23 | 432 Mar 21 | 6650 Sep 9 1987 | | LOWEST DAILY MEAN | 7.6 Nov 23 | 5.8 Aug 31 | 0.00 Jul 7 1966 | | ANNUAL SEVEN-DAY MINIMUM | 7.9 Nov 18 | 6.6 Sep 18 | 0.06 Jul 9 1966 | | MAXIMUM PEAK FLOW | | 707 Apr 15 | a 16200 Jun 23 1972 | | MAXIMUM PEAK STAGE | | 4.36 Apr 15 | b 11.61 Jun 23 1972 | | ANNUAL RUNOFF (CFSM) | 1.01 | 0.71 | 1.50 | | ANNUAL RUNOFF (INCHES) | 13.75 | 9.61 | 20.43 | | 10 PERCENT EXCEEDS | 178 | 138 | 248 | | 50 PERCENT EXCEEDS | 41 | 27 | 60 | | 90 PERCENT EXCEEDS | 9.5 | 7.7 | 11 | - $\begin{array}{ll} \textbf{a} \ \ \text{From rating curve extended above 6,100 ft}^{3}\text{/s on basis of slope-area measurement of peak flow.} \\ \textbf{b} \ \ \text{From floodmark.} \end{array}$ #### 01452500 MONOCACY CREEK AT BETHLEHEM, PA LOCATION.--Lat 40°38'28", long 75°22'47", Northampton County, Hydrologic Unit 02040106, on right bank 40 ft downstream from highway bridge at entrance to Monocacy Park at Bethlehem, and 2.1 mi upstream from mouth. **DRAINAGE AREA**.--44.5 mi². PERIOD OF RECORD.--October 1948 to current year. GAGE.--Water-stage recorder and crest-stage gage. Concrete control since July 17, 1969. Datum of gage is 247.24 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Prior to May 15, 1962, nonrecording gage at site 40 ft upstream at same datum. REMARKS.--No estimated daily discharges. Records fair. Some regulation at low flow since April 1954 by mill upstream. Several measurements of water temperature were made during the year. Satellite telemetry at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 10, 1945, reached a stage of 9.74 ft, from floodmarks, discharge, about 5,200 ft³/s, by slope-area measurement. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 300 ft³/s and maximum (*): | Date
June 6 | Tim
231 | e f | charge
t ³ /s
226 | Gage Height (ft) *3.22 | | | Date
(No | Tim | ie f | t ³ /s | Gage Height (ft) | | |--|---|---|---|---|---|---|---|--|--|---|---|---| | | | | DISCHA | RGE, CUBIC FE | ET PER SE | , | ER YEAR O
AN VALUES | |)1 TO SEPTE | EMBER 200 | 2 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 23
23
23
22
22 | 20
20
20
20
20 | 17
16
16
16
16 | 15
15
14
14
14 | 16
18
16
16 | 12
12
26
17
16 | 25
20
20
20
21 | 41
75
65
55
48 | 25
22
21
20
19 | 33
30
28
27
26 | 18
18
17
17 | 24
18
17
16
16 | | 6
7
8
9 | 23
24
24
23
24 | 21
20
20
20
20 | 16
17
18
21
17 | 15
15
14
14
14 | 15
15
14
14 | 16
15
15
15
16 | 20
20
19
18
19 | 40
34
32
39
37 | 42
97
46
40
35 | 25
24
24
23
23 | 17
17
17
17
17 | 16
16
15
15 | | 11
12
13
14 | 24
23
23
23
27 | 19
19
20
20
20 | 17
17
17
18
18 | 16
16
15
15 | 13
13
13
13 | 15
15
16
16
16 | 18
18
18
18 | 29
31
47
63
49 | 31
63
45
46
45 | 21
19
19
19 | 16
16
16
16 | 15
14
14
14
23 | | 16
17
18
19
20 | 24
23
22
22
21 | 20
20
20
19 | 17
17
21
19
18 | 14
14
14
14 | 13
13
13
13 | 15
15
20
19
29 | 24
22
21
21
21 | 43
39
95
69 | 39
34
34
37
32 | 18
18
18
21
20 | 16
16
15
15 | 23
16
16
15
15 | | 21
22
23
24
25 | 20
20
20
20
20 | 18
18
18
18
22 | 17
17
17
19
18 | 14
13
14
16
17 | 13
13
13
13 | 33
26
25
23
21 | 20
20
19
18
20 | 52
46
40
36
32 | 29
28
27
26
25 | 18
18
19
19 | 16
15
15
17 | 15
14
14
14
14 | | 26
27
28
29
30
31 | 20
20
20
19
20
20 | 19
17
17
17
17 | 17
16
15
15
15 | 16
16
15
15
15 | 12
12
12
 | 22
34
23
24
24
23 | 20
18
42
56
44 | 29
27
30
36
26
24 | 26
35
76
44
37 | 18
18
18
18
18 | 15
15
15
26
17
16 | 15
31
18
17
16 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 682
22.0
27
19
0.49
0.57 | 578
19.3
22
17
0.43
0.48 | 530
17.1
21
15
0.38
0.44 | 457
14.7
17
13
0.33
0.38 | 382
13.6
18
12
0.31
0.32 | 614
19.8
34
12
0.45
0.51 | 702
23.4
56
18
0.53
0.59 | 1370
44.2
95
24
0.99
1.15 | 1126
37.5
97
19
0.84
0.94 | 655
21.1
33
18
0.47
0.55 | 514
16.6
26
15
0.37
0.43 | 501
16.7
31
14
0.38
0.42 | | MEAN | 38.5 | NTHLY MEA | N DATA 1 | FOR WATER YE | 63.8 | 9 - 2002,
74.1 | 73.5 | YEAR (WY)
58.5 | 50.6 | 43.7 | 39.8 | 38.5 | | MAX
(WY)
MIN
(WY) | 101
1997
8.90
1966 | 110
1973
10.0
1966 | 191
1997
6.88
1966 | 201
1979
7.14
1966 | 163
1979
13.6
2002 | 216
1994
19.8
2002 | 181
1994
18.6
1966 | 129
1984
16.2
1965 | 142
1972
15.0
1965 | 141
1984
11.6
1966 | 88.2
1984
10.6
1965 | 106
1987
9.51
1965 | #### 01452500 MONOCACY CREEK AT BETHLEHEM, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1949 - 2002 | |--------------------------|------------------------|---------------------|---------------------------| | ANNUAL TOTAL | 14047 | 8111 | | | ANNUAL MEAN | 38.5 | 22.2 | 53.0 | | HIGHEST ANNUAL MEAN | | | 89.7 1984 | | LOWEST ANNUAL MEAN | | | 15.5 1966 | | HIGHEST DAILY MEAN | 132 Mar 30 | 97 Jun 7 | 1200 Jan 26 1978 | | LOWEST DAILY MEAN | 15 Dec 28-31 | 12 Feb 25 a | 5.2 Jan 1 1966 | | ANNUAL SEVEN-DAY MINIMUM | 16 Dec 25 | 12 Feb 24 | 5.9 Dec 27 1965 | | MAXIMUM PEAK FLOW | | 226 Jun 6 | b 3490 Jan 25 1979 | | MAXIMUM PEAK STAGE | | 3.22 Jun 6 | 8.19 Jan 25 1979 | | INSTANTANEOUS LOW FLOW | | 11 Feb 28 | 3.0 Jan 9 1966 | | ANNUAL RUNOFF (CFSM) | 0.86 | 0.50 | 1.19 | | ANNUAL RUNOFF (INCHES) | 11.74 | 6.78 | 16.19 | | 10 PERCENT EXCEEDS | 67 | 36 | 96 | | 50 PERCENT EXCEEDS | 32 | 18 | 41 | | 90 PERCENT EXCEEDS | 19 | 14 | 20 | ^{a Also Feb. 26-28, Mar. 1, 2. b From rating curve extended above 440 ft³/s on basis of slope-area measurement at gage height 5.47 and at peak flow.} #### 01453000 LEHIGH RIVER AT BETHLEHEM, PA LOCATION.--Lat 40°36′55", long 75°22′45", Lehigh County, Hydrologic Unit 02040106, on left bank 110 ft upstream from bridge on New Street at Bethlehem, and 1,800 ft upstream from Monocacy Creek. Records include flow of Monocacy Creek. **DRAINAGE AREA**.--1,279 mi² (includes that of Monocacy Creek). At site used prior to Oct. 1, 1928, 1,229 mi². **PERIOD OF RECORD.**—October 1902 to January 1905, May 1909 to current year. Monthly discharge only for some periods, published in WSP 1302. Published as "at South Bethlehem" prior to October 1913. **REVISED RECORDS.**--WSP 261: 1903-5. WSP 321: 1910-11. WSP 1051: Drainage area. WSP 1141: 1929-34(M). WSP 1302: 1914(M), 1916(M), 1918, 1921, 1927-28. WSP 1432: 1903, 1919(M), 1920-21, 1929, 1933. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 210.94 ft above National Geodetic Vertical Datum of 1929.
Prior to October 1928, nonrecording gage at New Street bridge 120 ft downstream at same datum. Oct. 1, 1928, to Sept. 30, 1962, water-stage recorder at site 4,250 ft downstream at datum 2.49 ft lower. Oct. 1, 1963, to Dec. 14, 1975, water-stage recorder at site 40 ft downstream at same datum. **REMARKS.**--No estimated daily discharges. Records fair. Flow regulated by Wild Creek Reservoir (station 01449700) since January 1941, Penn Forest Reservoir (station 01449400) since October 1958, Francis E. Walter Reservoir (station 01447780) since February 1961, and Beltzville Lake (station 01449790) since February 1971. Several measurements of water temperature were made during the year. Satellite and landline telemetry at station. **EXTREMES OUTSIDE PERIOD OF RECORD.**--Flood of Feb. 28, 1902 reached a stage of 24.9 ft, from floodmark, present site and datum, discharge, about 88,000 ft³/s. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002
DAILY MEAN VALUES | | | | | | | | | | | | |----------------------------------|--|-----------------------------------|--|--|-----------------------|--|--------------------------------------|--|--------------------------------------|--|--|------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1140 | 643 | 1270 | 860 | 1930 | 912 | 2660 | 4670 | 2570 | 1610 | 737 | 808 | | 2 | 1050 | 604 | 1450 | 873 | 1840 | 905 | 2250 | 5350 | 2300 | 1440 | 761 | 937 | | 3 | 976 | 599 | 1400 | 895 | 1380 | 1660 | 2020 | 5230 | 2170 | 1280 | 809 | 702 | | 4 | 912 | 591 | 1290 | 943 | 1340 | 1730 | 1850 | 4210 | 1890 | 1190 | 985 | 612 | | 5 | 858 | 587 | 1120 | 958 | 1270 | 1470 | 1710 | 3800 | 1740 | 1150 | 986 | 576 | | 6 | 973 | 593 | 1030 | 925 | 1310 | 1350 | 1910 | 3510 | 2060 | 1050 | 929 | 526 | | 7 | 1140 | 616 | 1020 | 916 | 1340 | 1320 | 1970 | 2840 | 4260 | 945 | 736 | 507 | | 8 | 784 | 605 | 1010 | 955 | 1200 | 1230 | 1920 | 2620 | 3850 | 932 | 702 | 563 | | 9 | 740 | 603 | 1270 | 944 | 1150 | 1200 | 1730 | 2800 | 2900 | 907 | 695 | 583 | | 10 | 732 | 593 | 1240 | 948 | 1110 | 1460 | 1780 | 2890 | 2680 | 857 | 716 | 584 | | 11 | 731 | 564 | 1100 | 1010 | 1290 | 1540 | 1890 | 2510 | 3350 | 826 | 928 | 630 | | 12 | 741 | 555 | 1040 | 1110 | 1340 | 1540 | 1680 | 2420 | 3400 | 798 | 932 | 630 | | 13 | 733 | 550 | 1020 | 1070 | 1210 | 1760 | 1600 | 3220 | 2420 | 778 | 817 | 636 | | 14 | 725 | 583 | 1090 | 1020 | 1130 | 1780 | 1780 | 5460 | 2450 | 867 | 685 | 623 | | 15 | 1010 | 639 | 1210 | 983 | 1100 | 1600 | 4590 | 6060 | 2520 | 872 | 752 | 730 | | 16 | 1080 | 662 | 1150 | 981 | 1130 | 1510 | 4930 | 4770 | 2420 | 847 | 751 | 1250 | | 17 | 994 | 677 | 1110 | 953 | 1120 | 1470 | 4070 | 3310 | 2460 | 798 | 742 | 1140 | | 18 | 970 | 655 | 1470 | 910 | 1080 | 1640 | 3100 | 5410 | 2460 | 785 | 910 | 767 | | 19 | 847 | 651 | 1720 | 864 | 1050 | 1950 | 2900 | 5300 | 2630 | 831 | 911 | 671 | | 20 | 805 | 630 | 1710 | 805 | 1050 | 2330 | 2680 | 6450 | 2280 | 957 | 835 | 646 | | 21 | 851 | 594 | 1680 | 871 | 1110 | 3380 | 2330 | 5170 | 1940 | 1090 | 539 | 766 | | 22 | 729 | 589 | 1440 | 843 | 1100 | 2970 | 2250 | 3730 | 1860 | 1070 | 511 | 992 | | 23 | 719 | 593 | 1330 | 836 | 1040 | 2640 | 2340 | 3450 | 1890 | 1010 | 488 | 668 | | 24 | 704 | 579 | 1420 | 986 | 998 | 2440 | 2150 | 2960 | 1850 | 962 | 582 | 662 | | 25 | 699 | 732 | 1370 | 1370 | 975 | 2280 | 1950 | 2570 | 1550 | 888 | 671 | 622 | | 26
27
28
29
30
31 | 681
686
665
653
650
648 | 1120
1010
950
938
928 | 1290
1140
1030
1020
921
877 | 1400
1330
1310
1280
1290
1530 | 962
978
953
 | 2040
3450
3050
2670
2590
2530 | 1980
2090
3000
5230
5560 | 2400
2310
2230
6220
8230
3640 | 1390
1800
2600
1910
1680 | 818
850
1060
1070
914
757 | 597
530
506
758
631
579 | 586
1250
1780
1290
954 | | TOTAL | 25626 | 20233 | 38238 | 31969 | 33486 | 60397 | 77900 | 125740 | 71280 | 30209 | 22711 | 23691 | | MEAN | 827 | 674 | 1233 | 1031 | 1196 | 1948 | 2597 | 4056 | 2376 | 974 | 733 | 790 | | MAX | 1140 | 1120 | 1720 | 1530 | 1930 | 3450 | 5560 | 8230 | 4260 | 1610 | 986 | 1780 | | MIN | 648 | 550 | 877 | 805 | 953 | 905 | 1600 | 2230 | 1390 | 757 | 488 | 507 | | CFSM | 0.65 | 0.53 | 0.96 | 0.81 | 0.94 | 1.52 | 2.03 | 3.17 | 1.86 | 0.76 | 0.57 | 0.62 | | IN. | 0.75 | 0.59 | 1.11 | 0.93 | 0.97 | 1.76 | 2.27 | 3.66 | 2.07 | 0.88 | 0.66 | 0.69 | #### 01453000 LEHIGH RIVER AT BETHLEHEM, PA--Continued | STATISTI | CS OF | MONTHLY MEAN | DATA FOR | R WATER | YEARS 194 | 1 - 2002 | , BY WATER | YEAR (WY) | (SINCE | REGULATION) | | | |------------------------------------|-------------------------------------|---------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN
MAX
(WY)
MIN
(WY) | 1566
5778
1956
406
1964 | 5294
1952
474 | 2869
9067
1997
514
1981 | 2662
7898
1979
286
1981 | 2764
5820
1951
1132
1980 | 3835
7708
1977
1632
1981 | 3896
10180
1993
1428
1985 | 3063
7041
1989
1053
1941 | 2077
7272
1972
681
1965 | 1601
6362
1945
366
1965 | 1313
6192
1955
405
1964 | 1355
6907
1987
334
1964 | | SUMMARY | STATIS | TICS | FOR 20 | 001 CALI | ENDAR YEAR | . 1 | FOR 2002 W | ATER YEAR | | WATER YEAR | s 1941 | - 2002 | | ANNUAL
ANNUAL
<u>HIGHEST</u> | MEAN
'ANNUA | | | 656580
1799 | | | 561480
1538 | | | 2438
3973 | | 1952 | | LOWEST
HIGHEST | | | | 6720 | Mar 3 | 1 | 8230 | May 30 | | 1165
70400 | Aug 19 | 1965
1955 | | HIGHEST ANNUAL MEAN | | | <u>3973 1952</u> | |--------------------------|-------------|-------------|----------------------------| | LOWEST ANNUAL MEAN | | | 1165 1965 | | HIGHEST DAILY MEAN | 6720 Mar 31 | 8230 May 30 | 70400 Aug 19 1955 | | LOWEST DAILY MEAN | 550 Nov 13 | 488 Aug 23 | 210 Jan 31 1981 | | ANNUAL SEVEN-DAY MINIMUM | 579 Nov 8 | 555 Aug 22 | 216 Jan 26 1981 | | MAXIMUM PEAK FLOW | | 9170 May 29 | a 92000 May 23 1942 | | MAXIMUM PEAK STAGE | | 5.31 May 29 | b 25.90 May 23 1942 | | ANNUAL RUNOFF (CFSM) | 1.41 | 1.20 | 1.91 | | ANNUAL RUNOFF (INCHES) | 19.10 | 16.33 | 25.90 | | 10 PERCENT EXCEEDS | 3680 | 2920 | 4820 | | 50 PERCENT EXCEEDS | 1380 | 1090 | 1760 | | 90 PERCENT EXCEEDS | 684 | 630 | 685 | | | | | | | STATIS | TICS OF M | ONTHLY MEAN | DATA F | OR WATER | YEARS 19 | 903-1904, | 1909-1940, BY WATER YEAR (WY) | | | (PRIOR TO REGULATION) | | | | |-------------|--------------|--------------|--------------|--------------|--------------|---------------|-------------------------------|--------------|--------------|-----------------------|--------------|--------------|--| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | MEAN
MAX | 1532
4808 | 1827
5660 | 2184
5287 | 2346
5287 | 2430
5913 | 4134
11920 | 3815
7547 | 2280
3681 | 1753
4255 | 1530
5182 | 1239
4599 | 1214
6407 | | | (WY) | 1903 | 1927 | 1939 | 1915 | 1915 | 1936 | 1940 | 1924 | 1928 | 1935 | 1933 | 1933 | | | MIN | 308 | 370 | 470 | 677 | 668 | 1887 | 1499 | 1020 | 832 | 572 | 428 | 374 | | | (WY) | 1911 | 1910 | 1931 | 1925 | 1934 | 1911 | 1915 | 1926 | 1921 | 1912 | 1910 | 1932 | | | SUMMARY STATISTICS | WATER YEARS | 1903 - 1904 | |--------------------------|-------------|-------------| | | | 1909 - 1940 | | | | | | ANNUAL MEAN | 2189 | | | HIGHEST ANNUAL MEAN | 3600 | 1928 | | LOWEST ANNUAL MEAN | 1262 | 1931 | | HIGHEST DAILY MEAN | 47900 | Aug 24 1933 | | LOWEST DAILY MEAN | 160 | Oct 15 1910 | | ANNUAL SEVEN-DAY MINIMUM | 260 | Oct 13 1910 | | MAXIMUM PEAK FLOW | 64800 | Aug 24 1933 | | MAXIMUM PEAK STAGE | 18.70 | Aug 24 1933 | | INSTANTANEOUS LOW FLOW | 160 | Oct 15 1910 | | ANNUAL RUNOFF (CFSM) | 1.71 | | | ANNUAL RUNOFF (INCHES) | 23.25 | | | 10 PERCENT EXCEEDS | 4420 | | | 50 PERCENT EXCEEDS | 1500 | | | 90 PERCENT EXCEEDS | 548 | | - $a \ \ \text{From rating curve extended above 58,000 ft}^{3/s} \text{ on basis of slope-area measurement at gage height, 20.02 ft at present site and datum.}$ #### 01454700 LEHIGH RIVER AT GLENDON, PA (Pennsylvania Water-Quality Network Station) LOCATION.--Lat 40°40′09", long 75°°14′12", Northampton County, Hydrologic Unit 02040106, on right bank 140 ft upstream from highway bridge in Hugh Moore Parkway at Glendon, 2.3 mi upstream from mouth, and 2.0 mi southwest of Easton. **DRAINAGE AREA**.--1,359 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1966 to current year. REVISED RECORDS.--WDR PA-72-1: 1971(M). GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 164.30 ft above National Geodetic Vertical Datum of 1929. **REMARKS.**--Records good except those for estimated daily discharges, which are fair. Flow regulated by Francis E. Walter Reservoir (station 01447780), Penn Forest Reservoir (station 01449400), Wild Creek Reservoir (station 01449700), and since February 1971, by Beltzville Lake (station 01449790) about 60 mi upstream. Flows above 10,000 ft³/s may be affected by backwater from the Delaware River. Several
measurements of water temperature were made during the year. Satellite telemetry at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002
DAILY MEAN VALUES | | | | | | | | | | | | | |----------------------------------|--|--------------------------------------|---|--|--------------------------|--|--------------------------------------|--|--------------------------------------|--|--|------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1 | 1160 | 662 | 1330 | 969 | 2030 | 1010 | 2880 | 5000 | 2780 | 1680 | 711 | 772 | | | 2 | 1070 | 622 | 1580 | 982 | 2070 | 998 | 2500 | 5650 | 2420 | 1520 | 723 | 987 | | | 3 | 1050 | 598 | 1550 | 1000 | 1530 | 1760 | 2210 | 5670 | 2260 | 1340 | 787 | 704 | | | 4 | 961 | 595 | 1450 | 1050 | 1470 | 1940 | 2020 | 4590 | 2000 | 1220 | 950 | 591 | | | 5 | 912 | 590 | 1290 | 1080 | 1400 | 1610 | 1840 | 4120 | 1830 | 1180 | 957 | 548 | | | 6 | 968 | 599 | 1160 | 1050 | 1410 | 1470 | 2020 | 3790 | 2060 | 1090 | 943 | 500 | | | 7 | 1240 | 620 | 1140 | 1030 | 1490 | 1440 | 2090 | 3080 | 4690 | 962 | 721 | 477 | | | 8 | 883 | 609 | 1130 | 1070 | 1310 | 1340 | 1990 | 2770 | 4270 | 944 | 669 | 508 | | | 9 | 830 | 611 | 1420 | 1060 | 1260 | 1300 | 1810 | 2920 | 3110 | 923 | 657 | 542 | | | 10 | 805 | 599 | 1400 | 1060 | 1210 | 1480 | 1830 | 3120 | 2860 | 874 | 655 | 535 | | | 11 | 772 | 582 | 1230 | 1130 | 1360 | 1700 | 1920 | 2660 | 3500 | 829 | 876 | 567 | | | 12 | 765 | 568 | 1170 | 1230 | 1480 | 1620 | 1790 | 2530 | 3690 | 803 | 893 | 572 | | | 13 | 774 | 559 | 1140 | 1200 | 1320 | 1870 | 1720 | 3710 | 2800 | 758 | 819 | 584 | | | 14 | 767 | 581 | 1210 | 1140 | 1240 | 1910 | 1870 | 6280 | 2570 | 813 | 637 | 574 | | | 15 | 1010 | 640 | 1320 | 1110 | 1200 | 1740 | 4650 | 6480 | 2750 | 831 | 703 | 671 | | | 16 | 1120 | 660 | 1290 | 1100 | 1220 | 1630 | 5230 | 5230 | 2520 | 813 | 709 | 1150 | | | 17 | 998 | 683 | 1220 | 1080 | 1210 | 1570 | 4390 | 3670 | 2590 | 754 | 680 | 1210 | | | 18 | 974 | 660 | 1580 | 1020 | 1190 | 1760 | 3310 | 5810 | 2590 | 740 | 852 | 742 | | | 19 | 847 | 655 | 1880 | 996 | 1150 | 2100 | 2990 | 5880 | 2880 | 809 | 869 | 631 | | | 20 | 801 | 647 | 1880 | 913 | 1140 | 2530 | 2800 | 6680 | 2440 | 930 | 848 | 604 | | | 21 | 829 | 613 | 1840 | 991 | 1190 | 3790 | 2370 | 5600 | 2060 | 1080 | e589 | 646 | | | 22 | 721 | 597 | 1620 | 956 | 1200 | 3310 | 2280 | 4150 | 1910 | 1050 | e551 | 1000 | | | 23 | 683 | 619 | 1470 | 942 | 1140 | 2900 | 2360 | 3770 | 1960 | 1010 | e533 | 667 | | | 24 | 715 | 602 | 1580 | 1100 | 1100 | 2670 | 2180 | 3270 | 1910 | 955 | e615 | 613 | | | 25 | 704 | 751 | 1520 | 1480 | 1070 | 2490 | 2000 | 2770 | 1640 | 893 | 658 | 566 | | | 26
27
28
29
30
31 | 685
689
673
662
659
658 | 1240
1160
1080
1060
1050 | 1420
1290
1150
1140
1030
984 | 1540
1470
1440
1410
1400
1630 | 1060
1070
1050
 | 2220
3700
3420
2940
2800
2760 | 2010
2100
3060
5510
5770 | 2560
2440
2370
5750
8670
4090 | 1450
2080
3400
2100
1780 | 802
800
1030
1050
938
739 | e619
e562
472
809
623
568 | 525
1340
1780
1370
949 | | | TOTAL | 26385 | 21112 | 42414 | 35629 | 36570 | 65778 | 81500 | 135080 | 76900 | 30160 | 22258 | 22925 | | | MEAN | 851.1 | 703.7 | 1368 | 1149 | 1306 | 2122 | 2717 | 4357 | 2563 | 972.9 | 718.0 | 764.2 | | | MAX | 1240 | 1240 | 1880 | 1630 | 2070 | 3790 | 5770 | 8670 | 4690 | 1680 | 957 | 1780 | | | MIN | 658 | 559 | 984 | 913 | 1050 | 998 | 1720 | 2370 | 1450 | 739 | 472 | 477 | | | CFSM | 0.63 | 0.52 | 1.01 | 0.85 | 0.96 | 1.56 | 2.00 | 3.21 | 1.89 | 0.72 | 0.53 | 0.56 | | | IN. | 0.72 | 0.58 | 1.16 | 0.98 | 1.00 | 1.80 | 2.23 | 3.70 | 2.10 | 0.83 | 0.61 | 0.63 | | | STATIS | TICS OF | MONTHLY MEA | N DATA | FOR WATER | YEARS 1967 | - 2002, | BY WATER | YEAR (WY) | | | | | | | MEAN | 1920 | 2605 | 3354 | 3036 | 3200 | 4258 | 4407 | 3418 | 2532 | 1811 | 1458 | 1633 | | | MAX | 5272 | 5438 | 9593 | 8414 | 5385 | 8344 | 10810 | 8542 | 7607 | 4641 | 4179 | 7920 | | | (WY) | 1977 | 1971 | 1997 | 1996 | 1976 | 1977 | 1993 | 1989 | 1972 | 1984 | 1969 | 1987 | | | MIN | 771 | 704 | 633 | 405 | 1278 | 1805 | 1639 | 1502 | 906 | 630 | 607 | 660 | | | (WY) | 1981 | 2002 | 1981 | 1981 | 1980 | 1981 | 1985 | 1995 | 1999 | 1999 | 1999 | 1983 | | e Estimated. #### 01454700 LEHIGH RIVER AT GLENDON, PA--Continued | SUMMARY STATISTICS | FOR 2002 WATER YEAR | WATER YEARS 1967 - 2002 | |--------------------------|---------------------|----------------------------| | ANNUAL TOTAL | 596711 | | | ANNUAL MEAN | 1635 | 2800 | | HIGHEST ANNUAL MEAN | | <u>3997</u> <u>1984</u> | | LOWEST ANNUAL MEAN | | 1594 1985 | | HIGHEST DAILY MEAN | 8670 May 30 | 44300 Jun 23 1972 | | LOWEST DAILY MEAN | 472 Aug 28 | 330 Jan 31 1981 a | | ANNUAL SEVEN-DAY MINIMUM | 525 Sep 5 | 349 Jan 26 1981 | | MAXIMUM PEAK FLOW | 9200 May 30 | b 60600 Jun 23 1972 | | MAXIMUM PEAK STAGE | 11.98 May 30 | 24.86 Jun 23 1972 | | ANNUAL RUNOFF (CFSM) | 1.20 | 2.06 | | ANNUAL RUNOFF (INCHES) | 16.33 | 27.99 | | 10 PERCENT EXCEEDS | 3180 | 5500 | | 50 PERCENT EXCEEDS | 1170 | 2040 | | 90 PERCENT EXCEEDS | 617 | 852 | ^{a Also Feb. 1, 1981. b From rating curve extended above 36,000 ft³/s.} # 01454700 LEHIGH RIVER AT GLENDON, PA--Continued (Pennsylvania Water-Quality Network Station) #### WATER-QUALITY RECORDS **PERIOD OF RECORD.**--April 2002 to current year. **REMARKS**.--Other data for the Water-Quality Network can be found on pages 410-425. COOPERATION.--Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
TOTAL
RECOV-
ERABLE
(MG/L
AS CA)
(00916) | MAGNE-
SIUM,
TOTAL
RECOV-
ERABLE
(MG/L
AS MG)
(00927) | ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417) | FLUO-
RIDE,
TOTAL
(MG/L
AS F)
(00951) | |-----------------------|--|---|--|--|--|--|--|---|--|--|--|--|--| | APR 2002
25
JUN | 1020 | 9813 | 1870 | 40 | 11.4 | 7.6 | 190 | 11.0 | 58 | 14.3 | 5.4 | 34 | <.2 | | 20 | 1000 | 9813 | 2320 | 40 | 10.0 | 7.7 | 199 | 18.5 | 73 | 19.2 | 6.1 | 40 | <.2 | | AUG
19 | 0850 | 9813 | 852 | 40 | 8.1 | 7.9 | 279 | 26.5 | 99 | 23.3 | 9.9 | 60 | <.2 | | Date | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RESIDUE
AT 105
DEG. C,
DIS-
SOLVED
(MG/L)
(00515) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N)
(00620) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N)
(00615) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | PHOS-PHORUSORTHOTOTAL(MG/LASP)(70507) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | COPPER,
TOTAL
RECOV-
ERABLE
(µG/L
AS CU)
(01042) | CYANIDE
AMEN-
ABLE TO
CHLOR-
INATION
UNFLTRD
(MG/L)
(00722) | IRON,
TOTAL
RECOV-
ERABLE
(µG/L
AS FE)
(01045) | | APR 2002
25
JUN | 19.2 | 130 | 24 | .120 | 1.36 | <.040 | 1.7 | .08 | .100 | 2.5 | <10 | <1.00 | 180 | | 20
AUG | 19.7 | 150 | 16 | .050 | 1.55 | <.040 | 1.8 | .08 | .120 | 3.8 | <10 | <1.00 | 590 | | 19 | 26.4 | 128 | 14 | .040 | 1.70 | <.040 | 2.0 | .19 | .240 | 3.6 | <10 | <1.00 | 220 | | | | | Date | LEAD,
TOTAL
RECOV-
ERABLE
(µG/L
AS PB)
(01051) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(µG/L
AS MN)
(01055) | NICKEL,
TOTAL
RECOV-
ERABLE
(µG/L
AS NI)
(01067) | ZINC,
TOTAL
RECOV-
ERABLE
(µG/L
AS ZN)
(01092) | TOTAL (µG/L) | | | | | | | | | | APR 2002
25
JUN | <1.0 | 70 | <50 | 50 | <5 | | | | | | | | | | 20 | 1.7 | 60 | <50 | 40 | <5 | | | | | | | | | | AUG
19 | <1.0 | 60 | <50 | 30 | <5 | | | | | | #### 01454720 LEHIGH RIVER AT EASTON, PA LOCATION.--Lat 40°41'12", long 75°12'32", Northampton County, Hydrologic Unit 02040106, on left bank, near bridge on U.S.
Highway 611 in Easton. **DRAINAGE AREA**.--1,364 mi². PERIOD OF RECORD.--October 1961 to current year. #### PERIOD OF DAILY RECORD.-- SPECIFIC CONDUCTANCE: October 1963 to current year. pH: November 1972 to current year. WATER TEMPERATURE: October 1961 to current year. DISSOLVED OXYGEN: June 1966 to current year. INSTRUMENTATION.--Water-quality monitor since October 1961. Probes interfaced with a data collection platform since the 1986 water year. **REMARKS.**--Specific conductance record rated good, except for period, Aug. 6 to Aug. 13, which is poor. pH and water temperature records rated good. Dissolved oxygen record rated fair, except for periods, May 28 to June 9, and Sept. 24 to Sept. 30, which are poor. Beginning with the 1978 water year, no data were recorded during the months of October through March. Other interruptions in the record were due to malfunctions of the pump or recording instrument. #### EXTREMES FOR PERIOD OF DAILY RECORD.-- SPECIFIC CONDUCTANCE: Maximum, 581 microsiemens, Aug. 19, 1963; minimum, 70 microsiemens, Nov. 14, 1970. pH: Maximum, 8.7, July 18, 19, 1991; minimum, 6.0, Mar. 16, 1978. WATER TEMPERATURE: Maximum, 30.5°C, July 29, 1970, July 21, 1980; minimum, 0.0°C, many days during winters. DISSOLVED OXYGEN: Maximum, 15.7 mg/L, Apr. 14, 1986; minimum, 0.0 mg/L, Aug. 4, 1966. SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25° CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |-------|-----|---------|------|-----|-------|------|-----|-------|------|-----|-----|------| | | | FEBRUAR | Y | | MARCH | | | APRIL | | | MAY | | | 1 | | | | | | | 178 | 171 | 175 | 151 | 143 | 147 | | 2 | | | | | | | 180 | 174 | 176 | 161 | 146 | 153 | | 3 | | | | | | | 199 | 180 | 194 | 161 | 148 | 154 | | 4 | | | | | | | 209 | 197 | 205 | 163 | 157 | 160 | | 5 | | | | | | | 213 | 207 | 211 | 165 | 160 | 162 | | | | | | | | | | | | | | | | 6 | | | | | | | 220 | 210 | 216 | 164 | 160 | 162 | | 7 | | | | | | | 210 | 187 | 198 | 182 | 163 | 172 | | 8 | | | | | | | 191 | 184 | 188 | 191 | 182 | 188 | | 9 | | | | | | | 195 | 184 | 190 | 193 | 187 | 191 | | 10 | | | | | | | 212 | 193 | 204 | 193 | 180 | 187 | | 10 | | | | | | | 212 | 175 | 201 | 175 | 100 | 107 | | 11 | | | | | | | 211 | 201 | 207 | 186 | 181 | 183 | | 12 | | | | | | | 201 | 196 | 198 | 190 | 184 | 187 | | 13 | | | | | | | 214 | 198 | 207 | 190 | 166 | 183 | | 14 | | | | | | | 215 | 204 | 209 | 171 | 152 | 162 | | 15 | | | | | | | 204 | 158 | 184 | 152 | 135 | 141 | | 13 | | | | | | | 204 | 130 | 104 | 132 | 133 | 141 | | 16 | | | | | | | 158 | 142 | 147 | 149 | 139 | 143 | | 17 | | | | | | | 154 | 146 | 150 | 168 | 149 | 159 | | 18 | | | | | | | 169 | 152 | 160 | 171 | 161 | 166 | | 19 | | | | | | | 175 | 169 | 171 | 161 | 140 | 146 | | 20 | | | | | | | 192 | 171 | 176 | 155 | 132 | 143 | | 20 | | | | | | | 192 | 1/1 | 1/0 | 133 | 132 | 143 | | 21 | | | | | | | 188 | 178 | 184 | 142 | 133 | 138 | | 22 | | | | | | | 189 | 181 | 186 | 163 | 142 | 154 | | 23 | | | | | | | 193 | 181 | 188 | 166 | 163 | 164 | | | | | | | | | | | | | | | | 24 | | | | | | | 191 | 181 | 186 | 178 | 166 | 171 | | 25 | | | | | | | 196 | 187 | 193 | 192 | 178 | 185 | | 26 | | | | | | | 011 | 100 | 207 | 100 | 100 | 100 | | | | | | | | | 211 | 196 | 207 | 196 | 188 | 192 | | 27 | | | | | | 170 | 208 | 191 | 202 | 194 | 188 | 191 | | 28 | | | | 180 | 164 | 170 | 191 | 177 | 184 | 195 | 182 | 191 | | 29 | | | | 185 | 180 | 183 | 180 | 151 | 163 | 203 | 116 | 172 | | 30 | | | | 186 | 179 | 183 | 154 | 138 | 145 | 116 | 110 | 114 | | 31 | | | | 185 | 171 | 178 | | | | 148 | 115 | 132 | | MONTH | | | | | | | 220 | 138 | 187 | 203 | 110 | 164 | #### 01454720 LEHIGH RIVER AT EASTON, PA--Continued SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25° CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | , | | | | | , | | | | | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|--|---------------------------------|---------------------------------|---------------------------------| | DAY | MAX | MIN | MEAN | | | | JUNE | | | JULY | | | AUGUST | | 2 | SEPTEMBE | R | | 1
2
3
4
5 | 173
186
187
191
209 | 148
173
179
179
191 | 162
183
183
185
201 | 240
245
261
283
283 | 231
231
242
261
273 | 236
237
248
269
279 | 328
345
355
 | 280
319
309
 | 306
333
340
 | 376
379
332
306
350 | 359
332
284
282
306 | 365
360
309
291
325 | | 6
7
8
9
10 | 217
202
165
169
172 | 189
165
137
152
166 | 212
184
147
164
170 | 284
294
307
312
323 | 276
283
294
304
312 | 280
285
302
308
318 | 226
199
237
279
307 | 161
175
199
237
279 | 182
191
217
259
294 | 376
382
395
406
403 | 350
376
382
395
380 | 362
380
389
403
389 | | 11
12
13
14
15 | 177
157
191
202
200 | 152
150
157
191
189 | 165
154
175
198
195 | 336
341
351
351
351 | 319
328
337
347
324 | 328
335
345
350
341 | 324
316
279
280
325 | 307
276
267
269
280 | 315
299
273
276
300 | 381
383
382
364
366 | 373
379
364
358
343 | 376
381
372
362
357 | | 16
17
18
19
20 | 205
199
192
199
201 | 190
184
184
185
196 | 198
191
187
191
199 | 332
339
346
352
351 | 324
326
332
328
332 | 327
333
341
344
344 | 326
332
330
314
279 | 319
316
313
275
264 | 323
322
324
296
272 | 350
312
243
290 | 312
235
229
243 | 335
268
233
269 | | 21
22
23
24
25 | 212
225
223
213
224 | 200
211
209
208
208 | 206
220
218
211
216 | 356
315
278
284
309 | 315
277
261
271
284 | 334
291
270
274
300 | 282
313
363
401
408 | 268
282
312
363
400 | 277
295
336
387
405 |

334 |

303 |

315 | | 26
27
28
29
30
31 | 248
253
246
218
234 | 222
210
200
212
217 | 235
247
211
215
227 | 302
319
330
316
279
280 | 290
302
316
275
262
267 | 295
313
324
290
268
275 | 406
374
366
402
398
362 | 368
355
355
366
362
350 | 378
361
357
385
375
355 | 342
357
328
254
255 | 334
328
254
231
234 | 337
342
288
237
239 | | MONTH | 253 | 137 | 195 | 356 | 231 | 303 | 408 | 161 | 311 | 406 | 229 | 331 | #### PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEDIAN | |-----|-----|---------|--------|-----|-------|--------|------------|------------|------------|------------|------------|------------| | | | FEBRUAR | RY | | MARCH | | | APRIL | | | MAY | | | 1 2 | | | | | | | 7.6
7.6 | 7.5
7.5 | 7.5
7.6 | 7.3
7.3 | 7.2
7.2 | 7.2
7.2 | | 3 | | | | | | | 7.6 | 7.5 | 7.6 | 7.2 | 7.2 | 7.2 | | 4 | | | | | | | 7.6 | 7.5 | 7.6 | 7.3 | 7.2 | 7.2 | | 5 | | | | | | | 7.7 | 7.6 | 7.6 | 7.3 | 7.2 | 7.2 | | 6 | | | | | | | 7.8 | 7.7 | 7.7 | 7.2 | 7.2 | 7.2 | | 7 | | | | | | | 7.8 | 7.7 | 7.7 | 7.4 | 7.2 | 7.3 | | 8 | | | | | | | 7.7 | 7.6 | 7.7 | 7.4 | 7.3 | 7.4 | | 9 | | | | | | | 7.8 | 7.6 | 7.7 | 7.4 | 7.3 | 7.3 | | 10 | | | | | | | 7.8 | 7.6 | 7.6 | 7.3 | 7.3 | 7.3 | | 11 | | | | | | | 7.8 | 7.6 | 7.7 | 7.4 | 7.3 | 7.3 | | 12 | | | | | | | 7.8 | 7.6 | 7.7 | 7.4 | 7.3 | 7.3 | | 13 | | | | | | | 7.6 | 7.5 | 7.6 | 7.3 | 7.2 | 7.3 | | 14 | | | | | | | 7.7 | 7.6 | 7.6 | 7.3 | 7.2 | 7.2 | | 15 | | | | | | | 7.6 | 7.2 | 7.4 | 7.2 | 7.1 | 7.2 | | 16 | | | | | | | 7.2 | 7.1 | 7.2 | 7.2 | 7.1 | 7.2 | | 17 | | | | | | | 7.2 | 7.2 | 7.2 | 7.2 | 7.1 | 7.2 | | 18 | | | | | | | 7.3 | 7.2 | 7.2 | 7.3 | 7.2 | 7.2 | | 19 | | | | | | | 7.3 | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | | 20 | | | | | | | 7.3 | 7.2 | 7.2 | 7.3 | 7.2 | 7.2 | | 21 | | | | | | | 7.3 | 7.3 | 7.3 | 7.2 | 7.1 | 7.2 | | 22 | | | | | | | 7.4 | 7.3 | 7.4 | 7.3 | 7.2 | 7.3 | | 23 | | | | | | | 7.5 | 7.4 | 7.4 | 7.4 | 7.3 | 7.3 | | 24 | | | | | | | 7.6 | 7.4 | 7.5 | 7.4 | 7.3 | 7.3 | | 25 | | | | | | | 7.6 | 7.4 | 7.5 | 7.4 | 7.3 | 7.4 | | 26 | | | | | | | 7.6 | 7.4 | 7.5 | 7.4 | 7.3 | 7.3 | | 27 | | | | | | | 7.7 | 7.6 | 7.6 | 7.3 | 7.3 | 7.3 | | 28 | | | | 7.5 | 7.4 | 7.4 | 7.6 | 7.4 | 7.4 | 7.3 | 7.2 | 7.3 | | 29 | | | | 7.6 | 7.5 | 7.5 | 7.5 | 7.4 | 7.4 | 7.3 | 6.9 | 7.2 | | 30 | | | | 7.6 | 7.5 | 7.6 | 7.4 | 7.2 | 7.3 | 7.0 | 6.9 | 6.9 | | 31 | | | | 7.6 | 7.5 | 7.5 | | | | 7.1 | 6.9 | 7.0 | | MAX | | | | | | | 7.8 | 7.7 | 7.7 | 7.4 | 7.3 | 7.4 | | MIN | | | | | | | 7.2 | 7.1 | 7.2 | 7.0 | 6.9 | 6.9 | #### 01454720 LEHIGH RIVER AT EASTON, PA--Continued PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEDIAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMB | ER | | 1
2
3
4
5 | 7.1
7.3
7.3
7.3
7.4 |
7.0
7.1
7.2
7.3
7.3 | 7.1
7.2
7.3
7.3
7.3 | 7.4
7.4
7.3
7.3 | 7.2
7.3
7.3
7.3
7.3 | 7.3
7.3
7.3
7.3
7.3 | 7.5
7.5
7.6
 | 7.3
7.3
7.3 | 7.4
7.4
7.4
 | 7.7
7.6
7.6
7.6
7.6 | 7.3
7.4
7.5
7.4
7.4 | 7.5
7.5
7.5
7.5
7.5 | | 6
7
8
9 | 7.4
7.3
7.3
7.3
7.2 | 7.2
7.1
7.2
7.2
7.1 | 7.3
7.3
7.2
7.2
7.1 | 7.5
7.5
7.6
7.6
7.6 | 7.4
7.4
7.4
7.4
7.4 | 7.4
7.4
7.5
7.6
7.5 | 7.5
7.5
7.5
7.5
7.5 | 7.3
7.3
7.3
7.4
7.4 | 7.4
7.3
7.4
7.4
7.4 | 7.6
7.7
7.8
7.8
7.9 | 7.4
7.5
7.5
7.6
7.6 | 7.5
7.6
7.6
7.6
7.7 | | 11
12
13
14
15 | 7.2
7.1
7.2
7.4
7.4 | 7.0
7.1
7.0
7.2
7.4 | 7.1
7.1
7.1
7.4
7.4 | 7.6
7.6
7.6
7.7
7.6 | 7.4
7.4
7.4
7.5
7.4 | 7.5
7.5
7.5
7.6
7.6 | 7.5
7.5
7.6
7.5
7.6 | 7.4
7.4
7.3
7.3
7.3 | 7.4
7.4
7.5
7.4
7.4 | 7.8
7.9
8.0
8.0
7.9 | 7.6
7.6
7.5
7.6
7.3 | 7.7
7.7
7.7
7.7
7.5 | | 16
17
18
19
20 | 7.5
7.3
7.5
7.4
7.4 | 7.2
7.2
7.2
7.3
7.3 | 7.4
7.2
7.3
7.3
7.4 | 7.8
7.8
7.7
7.7 | 7.4
7.5
7.5
7.4
7.3 | 7.6
7.6
7.6
7.5
7.4 | 7.6
7.6
7.6
7.6
7.5 | 7.4
7.4
7.4
7.4 | 7.5
7.4
7.4
7.5
7.4 | 7.4
7.3
7.4
7.5 | 7.3
7.3
7.2
7.2 | 7.4
7.3
7.2
7.3 | | 21
22
23
24
25 | 7.4
7.4
7.4
7.4
7.3 | 7.3
7.3
7.3
7.3
7.2 | 7.4
7.4
7.4
7.3
7.3 | 7.5
7.5
7.5
7.4
7.5 | 7.3
7.3
7.3
7.3
7.2 | 7.4
7.4
7.4
7.3
7.3 | 7.4
7.5
7.5
7.5
7.5 | 7.2
7.3
7.3
7.3
7.4 | 7.3
7.3
7.3
7.4
7.5 |

7.7 |

7.4 |

7.5 | | 26
27
28
29
30
31 | 7.3
7.3
7.3
7.2
7.2 | 7.2
7.2
7.1
7.1
7.2 | 7.3
7.3
7.1
7.2
7.2 | 7.5
7.5
7.5
7.4
7.5
7.5 | 7.3
7.4
7.4
7.3
7.2
7.3 | 7.4
7.4
7.4
7.4
7.4
7.4 | 7.6
7.6
7.7
7.7
7.6
7.7 | 7.4
7.5
7.5
7.3
7.5 | 7.4
7.5
7.6
7.6
7.6
7.6 | 7.7
7.6
7.4
7.3
7.4 | 7.4
7.3
7.3
7.3
7.3 | 7.5
7.4
7.4
7.3
7.3 | | MAX
MIN | 7.5
7.1 | 7.4
7.0 | 7.4
7.1 | 7.8
7.3 | 7.5
7.2 | 7.6
7.3 | 7.7
7.4 | 7.5
7.2 | 7.6
7.3 | 8.0
7.3 | 7.6
7.2 | 7.7
7.2 | # WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MEAN MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN | DAY | MAX | MIN | MEAN | |-------|-----|---------|------|------|-------|------|------|-------|------|------|------|------| | | | FEBRUAR | Y | | MARCH | | | APRIL | | | MAY | | | 1 | | | | | | | 12.0 | 11.0 | 11.5 | 12.0 | 10.5 | 11.0 | | 2 | | | | | | | 11.5 | 10.5 | 11.0 | 12.5 | 12.0 | 12.5 | | 3 | | | | | | | 11.5 | 11.0 | 11.0 | 12.5 | 11.5 | 12.0 | | 4 | | | | | | | 11.0 | 10.0 | 10.5 | 13.0 | 12.0 | 12.5 | | 5 | | | | | | | 10.0 | 9.0 | 9.5 | 14.5 | 12.5 | 13.5 | | 6 | | | | | | | 9.0 | 8.5 | 9.0 | 15.5 | 14.0 | 14.5 | | 7 | | | | | | | 8.5 | 7.5 | 8.0 | 16.5 | 14.5 | 15.5 | | 8 | | | | | | | 9.0 | 8.0 | 8.5 | 17.5 | 16.0 | 16.5 | | 9 | | | | | | | 11.0 | 9.0 | 10.5 | 17.5 | 15.0 | 16.0 | | 10 | | | | | | | 13.0 | 11.0 | 12.0 | 15.5 | 14.0 | 15.0 | | 11 | | | | | | | 14.0 | 13.0 | 13.5 | 16.5 | 14.5 | 15.5 | | 12 | | | | | | | 13.5 | 12.5 | 13.0 | 16.5 | 15.5 | 16.0 | | 13 | | | | | | | 13.0 | 12.5 | 12.5 | 15.5 | 13.5 | 14.5 | | 14 | | | | | | | 14.0 | 12.5 | 13.5 | 13.5 | 13.0 | 13.5 | | 15 | | | | | | | 16.0 | 14.0 | 15.5 | 13.5 | 12.5 | 13.0 | | 16 | | | | | | | 16.5 | 15.5 | 16.0 | 15.0 | 13.5 | 14.0 | | 17 | | | | | | | 17.0 | 15.0 | 16.0 | 16.5 | 15.0 | 15.5 | | 18 | | | | | | | 17.5 | 16.0 | 17.0 | 16.0 | 13.5 | 15.0 | | 19 | | | | | | | 18.5 | 17.0 | 18.0 | 13.5 | 12.5 | 13.0 | | 20 | | | | | | | 18.0 | 16.5 | 17.5 | 13.0 | 12.5 | 12.5 | | 21 | | | | | | | 16.5 | 13.5 | 15.0 | 12.5 | 12.0 | 12.5 | | 22 | | | | | | | 13.5 | 11.5 | 12.5 | 13.5 | 12.0 | 12.5 | | 23 | | | | | | | 12.0 | 11.0 | 11.5 | 15.0 | 13.0 | 14.0 | | 24 | | | | | | | 12.5 | 11.0 | 11.5 | 16.5 | 14.5 | 15.5 | | 25 | | | | | | | 12.5 | 11.5 | 12.0 | 17.5 | 16.0 | 17.0 | | 26 | | | | | | | 12.0 | 11.0 | 11.5 | 17.5 | 16.5 | 17.0 | | 27 | | | | | | | 13.0 | 11.5 | 12.0 | 18.0 | 17.0 | 17.5 | | 28 | | | | 8.0 | 6.5 | 7.0 | 13.0 | 12.5 | 12.5 | 19.0 | 18.0 | 18.5 | | 29 | | | | 9.5 | 7.5 | 8.5 | 12.5 | 11.5 | 12.0 | 19.0 | 17.0 | 18.5 | | 30 | | | | 11.5 | 9.5 | 10.5 | 11.5 | 10.5 | 11.0 | 17.0 | 16.0 | 16.5 | | 31 | | | | 11.5 | 11.0 | 11.5 | | | | 19.0 | 17.0 | 18.0 | | MONTH | | | | | | | 18.5 | 7.5 | 12.5 | 19.0 | 10.5 | 14.8 | #### 01454720 LEHIGH RIVER AT EASTON, PA--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY MAX MIN MEAN MIN MEAN MAX MIN MEAN MAX MIN MEAN JUNE JULY AUGUST 1 20.0 18.5 19.5 24.0 23.5 23.5 28.0 26.0 27.0 2 20.5 19.5 20.0 25.0 24.0 24.5 28.0 26.5 27.0 3 20.5 19.5 20.0 26.5 24.5 25.5 28.5 26.5 27.5 | MAX
21.0
20.0
21.5
22.5
23.0
23.0
23.5 | MIN
EEPTEMBER
20.0
19.0
19.0
20.5
22.0 | MEAN 20.0 19.5 20.0 21.5 22.5 | |---|---|--|--------------------------------------| | 1 20.0 18.5 19.5 24.0 23.5 23.5 28.0 26.0 27.0 2 20.5 19.5 20.0 25.0 24.0 24.5 28.0 26.5 27.0 3 20.5 19.5 20.0 26.5 24.5 25.5 28.5 26.5 27.5 | 21.0
20.0
21.5
22.5
23.0 | 20.0
19.0
19.0
20.5
22.0 | 20.0
19.5
20.0
21.5 | | 2 20.5 19.5 20.0 25.0 24.0 24.5 28.0 26.5 27.0 3 20.5 19.5 20.0 26.5 24.5 25.5 28.5 26.5 27.5 | 20.0
21.5
22.5
23.0 | 19.0
19.0
20.5
22.0 | 19.5
20.0
21.5 | | 4 20.0 19.0 19.0 27.5 26.0 26.5 5 19.5 18.5 19.0 27.5 26.5 27.0 | | | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 23.5
23.5
23.5
24.5 | 22.0
22.0
22.0
22.0
22.5 | 22.5
22.5
22.5
22.5
23.0 | | 11 21.5 19.5 20.5 25.5 23.5 24.5 25.5 23.5 24.5 12 21.0 20.5 21.0 25.0 23.0 24.0 26.5 24.0 25.5 13 21.0 20.0 20.5 24.5 23.0 23.5 27.5 25.0 26.0 14 20.0 18.0 19.0 24.0 23.0 23.5 27.5 25.5 26.5 15 18.0 17.0 17.0 24.5 22.5 23.5 27.5 26.5 27.0 | 24.0
23.0
22.5
22.0
22.0 | 23.0
22.0
21.0
21.0
21.5 | 23.5
22.5
21.5
21.5
22.0 | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 23.0
23.0
22.5
24.0 | 22.0
22.0
21.5
21.0 | 22.5
22.5
22.0
22.0 | | 21 21.5 20.0 21.0 26.5 25.5 26.0 27.0 25.5 26.0 22 22.5 21.5 22.0 27.0 25.0 26.0 27.0 25.5 26.0 23 23.5 22.5 23.0 27.5 25.5 26.5 26.0 25.5 25.5 24 24.0 23.0 23.5 27.0 26.0 26.0 26.0 24.5 25.0 25 24.5 23.5 24.0 26.5 25.0 25.5 24.5 24.0 24.0 |

21.5 |

20.0 |

20.5 | | 26 25.0 24.0 24.5 26.0 24.0 24.5 23.5 24.0 27 25.5 24.5 25.0 24.5 23.0 23.5 24.5 23.5 24.0 28 24.5 23.5 23.5 24.0 22.5 23.0 24.5 23.0 23.5 29 23.5 23.0 23.5 25.5 23.0 24.5 23.0 21.0 22.0 30 24.0 23.0 23.5 27.0 25.0 26.0 21.0 20.5 20.5 31 27.5 25.5 26.5 21.0 20.0 20.5 | 20.5
19.0
18.0
18.5 | 19.0
17.5
17.0
17.5
17.5 | 19.5
18.0
17.5
17.5 | | MONTH 25.5 16.5 20.6 27.5 22.5 25.0 28.5 20.0 25.2 | 24.5 | 17.0 | 21.1 | #### OXYGEN, DISSOLVED (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|-----|----------|----------|----------------------------------|----------------------------------|------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--| | | I | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4 | | | |

 |

 |

 | 10.5
10.7
10.6
11.1 | 10.1
10.4
10.4
10.4 | 10.4
10.6
10.5
10.8 | 11.2
10.8
10.7
10.9 | 10.8
10.1
10.4
10.6 | 11.1
10.5
10.6
10.8 | | 5
6 | | | | | | | 11.4 | 10.8 | 11.2 | 10.8 | 10.2 | 10.5 | | 7
8
9
10 | | | | | | | 12.4
12.0
11.5
10.9 | 11.7
11.5
10.6
10.3 | 12.0
11.8
11.2
10.6 | 10.3
9.8
9.8
10.5 | 9.7
9.4
9.2
9.8 | 10
9.7
9.5
10.2 | | 11
12 | | | | | | | 10.8 | 10.3 | 10.4 | 10.3 | 9.9
9.6 | 10.2 | | 13
14
15 | | | | | | | 10.9
10.8
10.0 | 10.1
10.0
8.7 | 10.4
10.4
9.2 | 10.2
10.3
10.4 | 9.5
9.7
10.0 | 9.8
10.0
10.2 | | 16
17
18
19
20 | | |

 |

 |

 |

 | 9.2
9.3
9.0
8.7
8.6 | 8.7
8.6
8.3
8.2
8.0 | 8.9
9.1
8.7
8.5
8.3 | 10.1
9.3
10.1
11.1
11.4 | 9.3
8.0
8.5
9.9
10.8 | 9.8
8.8
9.3
10.7
11.2 | | 21
22
23
24
25 | | |

 |

 | | | 9.5
10.6
11.2
11.0
10.4 | 8.6
9.5
10.0
10.4
10.0 | 9.0
10.0
10.7
10.8
10.2 | 11.0
11.1
10.7
10.3
9.7 | 10.6
10.5
10.3
9.7
8.9 | 10.9
10.9
10.5
10.0
9.5 | |
26
27
28
29
30
31 | | |

 |
11.9
11.7
11.1
10.6 |
11.6
11.0
10.6
10.3 | 11.8
11.4
10.9
10.4 | 11.1
11.3
10.7
10.8
11.2 | 10.2
10.7
10.0
10.2
10.8 | 10.7
11.0
10.2
10.5
11.0 | 9.6
9.4
9.5
9.5
9.8
8.4 | 8.8
8.7
8.4
7.1
6.9
7.4 | 9.2
9.0
8.8
8.3
8.7
7.8 | | MONTH | | | | | | | 12.4 | 8.0 | 10.3 | 11.4 | 6.9 | 9.9 | # 01454720 LEHIGH RIVER AT EASTON, PA--Continued OXYGEN, DISSOLVED (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------|--|--|---------------------------------|--|---------------------------------|-------------------------------------|---------------------------------|---------------------------------| | | | JUNE | | | JULY | | | AUGUST | | 5 | EPTEMBE | R | | 1
2
3
4
5 | 8.5
8.5
9.0
9.4
9.5 | 6.9
7.8
8.1
8.6
8.8 | 7.9
8.2
8.7
9.1
9.3 | 8.5
8.2
8.2
7.9
8.1 | 8.1
7.5
7.2
6.9 | 8.3
7.9
7.7
7.4
7.4 | 8.3
8.2
8.6
 | 6.7
6.6
6.2
 | 7.4
7.2
7.1
 | 9.4
9.3
9.2
8.9
8.8 | 7.6
8.2
8.2
7.5
7.2 | 8.4
8.7
8.6
8.2
7.9 | | 6
7
8
9
10 | 9.2
8.9
8.9
9.0 | 8.0
7.2
8.0
7.8 | 8.8
8.5
8.5
8.5 | 8.8
9.7
10.0
9.7
9.3 | 7.0
7.6
8.3
8.2
7.8 | 8.0
8.6
9.1
8.9
8.5 | 8.7
8.8
9.0
9.1
9.0 | 6.7
7.3
7.4
7.6
7.2 | 7.6
7.9
8.1
8.3
8.2 | 8.9
9.1
9.1
9.4
9.1 | 7.2
7.3
7.6
7.6
7.6 | 7.8
8.0
8.2
8.3
8.3 | | 11
12
13
14
15 |

 |

 |

 | 9.7
9.9
10.1
9.9
9.9 | 7.2
7.6
7.9
8.2
8.2 | 8.5
8.7
8.9
8.9
9.0 | 8.9
9.1
9.3
8.8
8.8 | 6.4
7.5
7.7
7.3
6.8 | 8.1
8.2
8.4
7.9
7.8 | 9.0
9.5
9.7
9.7 | 7.2
7.3
7.7
7.9
7.2 | 8.1
8.6
8.7
8.2 | | 16
17
18
19
20 |

9.4
9.7 |

9.0
9.1 | 9.2
9.3 | 9.5
9.4
9.4
9.2
8.4 | 7.9
7.7
7.1
7.2
6.7 | 8.7
8.4
8.2
7.9
7.4 | 8.8
8.4
8.4
8.5
8.0 | 6.9
6.8
6.7
6.7 | 7.8
7.5
7.5
7.5
7.4 | 8.6
8.8
9.2
9.0 | 7.6
7.7
7.7
7.7 | 8.1
8.2
8.3
8.3 | | 21
22
23
24
25 | 9.5
9.1
9.0
8.8
8.6 | 8.9
8.7
8.4
8.2
7.8 | 9.2
8.9
8.7
8.4
8.2 | 8.0
8.5
8.3
7.9
8.9 | 6.7
6.7
6.9
6.5
5.8 | 7.3
7.7
7.4
7.0
7.4 | 8.0
8.5
8.2
8.3
8.7 | 6.4
6.6
6.4
6.2
6.9 | 7.0
7.3
7.2
7.1
7.6 |

10.4 |

8.8 |

9.5 | | 26
27
28
29
30
31 | 8.3
8.6
8.6
8.4
8.8 | 7.3
7.6
7.6
7.9
7.9 | 7.7
8.0
7.8
8.1
8.3 | 8.8
9.0
8.8
8.9
8.3 | 6.9
7.5
7.9
7.5
7.4
6.8 | 7.8
8.2
8.3
8.2
7.8
7.5 | 9.0
9.3
9.5
9.5
9.3 | 7.1
7.9
7.8
7.7
8.1
8.2 | 7.8
8.3
8.6
8.5
8.5 | 10.4
9.9
10.0
10.0
10.2 | 8.6
9.0
9.1
8.9
8.8 | 9.2
9.4
9.4
9.6
9.4 | | MONTH | 11.3 | 5.4 | 8.6 | 10.1 | 5.8 | 8.1 | 9.5 | 6.2 | 7.8 | 10.4 | 7.2 | 8.5 | #### CROSS-SECTION ANALYSES, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | SAM-
PLING
DEPTH
(FEET)
(00003) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | |----------|--------------|---|--|--|------------|---|------------| | SEP | | | | | | | | | 04 | 1243 | 0 | | | | | 0 | | 04 | 1244 | 6 | 8.7 | 7.8 | 278 | 20.1 | 20 | | 04 | 1245 | 1 | 8.6 | 7.8 | 278 | 20.7 | 20 | | 04 | 1252 | 6 | 8.6 | 7.8 | 278 | 20.1 | 45 | | 04 | 1253 | 1 | 8.7 | 7.7 | 279 | 20.3 | 45 | | 04 | 1257 | 6 | 8.6 | 7.7 | 281 | 20.2 | 70 | | 04 | 1258 | 1 | 8.6 | 7.7 | 282 | 20.6 | 70 | | 04 | 1301 | 6 | 8.6 | 7.7 | 281 | 20.2 | 90 | | 04 | 1302
1306 | 1
15 | 8.6
8.6 | 7.7
7.7 | 282
282 | 20.4 | 90
115 | | 04 | 1307 | 11 | 8.7 | 7.7 | 284 | 20.2 | 115 | | 04 | 1307 | 6 | 8.7 | 7.7 | 285 | 20.5 | 115 | | 04 | 1309 | 1 | 8.7 | 7.7 | 286 | 21.1 | 115 | | 04 | 1310 | 15 | 8.6 | 7.7 | 282 | 20.1 | 140 | | 04 | 1311 | 11 | 8.6 | 7.7 | 282 | 20.1 | 140 | | 04 | 1312 | 6 | 8.6 | 7.7 | 284 | 20.4 | 140 | | 04 | 1313 | 1 | 8.7 | 7.7 | 287 | 21.4 | 140 | | 04 | 1316 | 6 | 8.6 | 7.7 | 284 | 20.4 | 165 | | 04 | 1317 | 1 | 8.7 | 7.7 | 288 | 21.2 | 165 | | 04 | 1324 | 6 | 8.7 | 7.8 | 285 | 20.6 | 190 | | 04
04 | 1325 | 1
11 | 8.8 | 7.7
7.7 | 288 | 21.2
20.2 | 190 | | 04 | 1334
1335 | 6 | 8.6
8.8 | 7.7 | 283
288 | 20.2 | 220
220 | | 04 | 1335 | 1 | 8.8 | 7.7 | 288
288 | 21.1 | 220 | | 04 | 1342 | 6 | 8.8 | 7.7 | 286 | 20.7 | 245 | | 04 | 1343 | í | 8.9 | 7.7 | 289 | 21.3 | 245 | | 04 | 1347 | 6 | 8.9 | 7.8 | 289 | 21.2 | 270 | | 04 | 1348 | 1 | 8.9 | 7.8 | 290 | 21.5 | 270 | #### LAKES AND RESERVOIRS IN LEHIGH RIVER BASIN 01447780 FRANCIS E. WALTER RESERVOIR (formerly published as Bear Creek Reservoir).--Lat 41°06'45", long 75°43'15", Luzerne County. Hydrologic Unit 02040106, at dam on Lehigh River, 2,200 ft downstream from Bear Creek, and 5.0 mi northeast of White Haven. DRAINAGE AREA, 289 mi². PERIOD OF RECORD, February 1961 to current year. GAGE, water-stage recorder (U.S. Army Corps of Engineers datum). REMARKS.--Reservoir formed by an earthfill embankment covered with a rock shell, with concrete spillway at elevation 1,450.0 ft. Storage began Feb. 17, 1961; reservoir first reached conservation pool in June 1961. Total capacity (elevation 1,450.0 ft) is 110,700 acre-ft of which 108,700 acre-ft is controlled storage above elevation 1,300.0 ft, (conservation pool). Dead storage is 2,000 acre-ft. Flow regulated by three gates and low-flow by-pass system. Reservoir is used for flood control and recreation. Satellite telemetry at station. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 62,100 acre-ft, Sept. 28, 1985, elevation, 1,417.08 ft; minimum contents (after establishment of conservation pool), 980 acre-ft, July 6, 1982, elevation, 1,287.70 ft. EXTREMES FOR CURRENT YEAR.—Maximum contents, 42,750 acre-ft, May 29, elevation, 1,399.27 ft; minimum contents, 1,660 acre-ft, Dec. 26, Jan. 19, elevation, 1,298.22 ft. **01449400 PENN FOREST RESERVOIR.**--Lat 40°55'45", long 75°33'45", Carbon County, Hydrologic Unit 02040106, at dam on Wild Creek, 0.7 mi upstream from hatchery, 2.6 mi upstream from Wild Creek Dam, 4.4 mi upstream from mouth, and 10.0 mi northeast of Palmerton. DRAINAGE AREA, 16.5 mi². PERIOD OF RECORD, October 1958 to current year. GAGE, water-stage recorder. Datum of gage is sea level (levels by city of Bethlehem). REMARKS.--Reservoir formed by a roller-compacted concrete dam with ungated concrete spillway at elevation 1,000.60 ft (capacity, 18,510 acre-ft). Storage began October 1958. Reservoir is used for municipal water supply. Regulation by valves on pipe through dam. Figures given herein represent total contents and include diversion since October 1969 from Tunkhannock Creek Basin to Wild Creek Basin. COOPERATION .-- Records provided by city of Bethlehem. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 20,800 acre-ft, Apr. 16, 1983, elevation, 1,001.69 ft; minimum contents, 0 acre-ft, many days during 1996, 1997, 1998, and 1999 water years, elevation, 890.60 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 18,730 acre-ft, Apr. 29, elevation, 1,001.03 ft; minimum contents, 15,420 acre-ft, Mar. 2, elevation, 993.21 ft. 01449700 WILD CREEK RESERVOIR.--Lat 40°53'50", long 75°33'50", Carbon County, Hydrologic Unit 02040106, at dam on Wild Creek, 1.6 mi upstream from mouth, 2.4 mi south of hatchery, and 7.5 mi northeast of Palmerton. DRAINAGE AREA, 22.2 mi². PERIOD OF RECORD, January 1941 to current year. GAGE, nonrecording gage. Datum of gage is sea level (levels by city of Bethlehem). REMARKS.--Reservoir formed by earthfill dam with concrete ungated spillway at elevation 820.00 ft. Storage began January 27, 1941; reservoir first reached minimum contents pool elevation in February 1941. Total capacity at elevation 820.00 ft is 12,500 acre-ft of which 12,000 acre-ft is controlled storage. Reservoir is used for municipal water supply. Regulation by valves on pipe through dam. Figures given herein represent usable contents and include diversion since October 1969 from Tunkhannock Creek Basin to Wild Creek Basin. COOPERATION.--Records provided by city of Bethlehem. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 12,880 acre-ft, May 23, 1942, elevation, 822.93 ft; minimum contents (after first filling), 2,680 acre-ft, Nov. 15, 1966, elevation, 774.10 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 12,160 acre-ft, May 14, elevation, 820.52 ft; minimum contents, 11,330 acre-ft, Oct. 8, elevation 817.30 ft. 01449790 BELTZVILLE LAKE.--Lat 40°50'56", long 75°38'19", Carbon County, Hydrologic Unit 02040106, at dam on Pohopoco Creek, 0.4 mi upstream from gaging station on Pohopoco Creek, 0.6 mi upstream from Sawmill Run, and 2.3 mi northeast of Parryville. DRAINAGE AREA, 96.3 mi². PERIOD OF RECORD, February 1971 to current year. GAGE, water-stage recorder (U.S. Army Corps of Engineers datum). REMARKS.--Lake formed by an earth and rockfill dam with ungated, partially lined spillway at an elevation of 651.00 ft. Storage began
Feb. 8, 1971. Capacity at elevation 651.00 ft is 68,300 acre-ft. Ordinary minimum contents (conservation) pool elevation is 628.00 ft, capacity, 41,250 acre-ft. Dead storage is 1,390 acre-ft. Lake is used for recreation, flood control, low-flow augmentation, and water supply. Figures given herein represent total contents. Regulation is accomplished by a multi-level water-quality outlet system, and two flood-control gates. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 49,730 acre-ft, Jan. 29, 1976, elevation, 636.30 ft; minimum contents, 15,110 acre-ft, Mar. 31, 1983, elevation, 588.79 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 42,570 acre-ft, May 20, elevation, 629.37 ft; minimum contents, 39,660 acre-ft, Nov. 25, elevation, 626.33 ft. # Lakes and Reservoirs in Lehigh River Basin--Continued | | | | Change in | | | Change in | |------------|--------------|-----------------|------------------------|-----------|--------------|------------------------| | | | Contents | contents | | Contents | contents | | | Elevation | (acre- | (equivalent | Elevation | (acre- | (equivalent | | Date | (feet) | feet) | in ft ³ /s) | (feet) | feet) | in ft ³ /s) | | | 01447780 Fra | ancis E. Walter | Reservoir | 01449400 |) Penn Fores | t Reservoir | | pt. 30 | 1,304.81 | 2,230 | | 998.30 | 17,530 | | | et. 31 | 1,300.18 | 1,810 | -6.8 | 995.23 | 16,240 | -21.0 | | ov. 30 | 1,303.10 | 2,070 | +4.4 | 993.47 | 15,520 | -12.1 | | ec. 31 | 1,301.92 | 1,970 | -1.6 | 993.86 | 15,680 | +2.6 | | AL YR 2001 | | | -0.7 | | | -3.9 | | n. 31 | 1,304.53 | 2,200 | +3.7 | 993.30 | 15,450 | -3.7 | | eb. 29 | 1,356.80 | 14,210 | +216 | 993.25 | 15,430 | -0.4 | | [ar. 31 | 1,386.45 | 32,050 | +290 | 995.65 | 16,410 | +15.9 | | pr. 30 | 1,392.08 | 36,520 | +75.1 | 1,000.99 | 18,710 | +38.7 | | lay 31 | 1,390.21 | 34,970 | -25.2 | 1,000.78 | 18,600 | -1.8 | | ne 30 | 1,392.52 | 36,890 | +32.3 | 1,000.68 | 18,550 | -0.8 | | ly 31 | 1,385.79 | 31,530 | -87.2 | 1,000.36 | 18,410 | -2.3 | | ag. 31 | 1,371.14 | 21,540 | -162 | 997.38 | 17,150 | -20.5 | | ept. 30 | 1,371.63 | 21,840 | +5.0 | 995.45 | 16,330 | -13.8 | | ΓR YR 2002 | | | +27.1 | | | -1.7 | | | 01449700 | Wild Creek R | eservoir | 01449 | 790 Beltzvil | le Lake | | ept. 30 | 817.80 | 11,470 | | 627.96 | 41,210 | | | et. 31 | 818.83 | 11,750 | +4.6 | 627.71 | 40,970 | -3.9 | | ov. 30 | 818.35 | 11,620 | -2.2 | 626.60 | 39,920 | -17.7 | | ec. 31 | 818.24 | 11,590 | -0.5 | 628.09 | 41,340 | +23.1 | | AL YR 2001 | | | +1.5 | | | +1.0 | | n. 31 | 818.02 | 11,540 | -0.8 | 628.14 | 41,380 | +0.7 | | eb. 29 | 818.35 | 11,620 | +1.4 | 627.97 | 41,220 | -2.9 | | ar. 31 | 818.96 | 11,790 | +2.8 | 628.25 | 41,490 | +4.4 | | or. 30 | 819.91 | 11,980 | +3.2 | 628.20 | 41,440 | -0.8 | | ay 31 | 820.24 | 12,070 | +1.5 | 628.13 | 41,370 | -1.1 | | ne 30 | 820.08 | 12,020 | -0.8 | 627.97 | 41,220 | -2.5 | | ly 31 | 817.70 | 11,450 | -9.3 | 627.96 | 41,210 | -0.2 | | ug. 31 | 818.37 | 11,630 | +2.9 | 627.14 | 40,430 | -12.7 | | ept. 30 | 818.72 | 11,720 | +1.5 | 626.99 | 40,290 | -2.4 | | TR YR 2002 | | | +0.3 | | | -1.3 | #### DELAWARE RIVER BASIN #### 01457500 DELAWARE RIVER AT RIEGELSVILLE, NJ **LOCATION.**--Lat 40°35'36", long 75°11'17", Warren County, N.J., Hydrologic Unit 02040105, just upstream of suspension bridge at Riegelsville, NJ, 600 ft upstream from Musconetcong River (flow of which is included in the records for this station since Oct. 1, 1931). Water-quality samples are collected from the bridge and do not include flow of the Musconetcong River. DRAINAGE AREA.--6,328 mi². **PERIOD OF RECORD.**--Water years 1934, 1943, 1950, 1960-79, 1991 to current year. **REMARKS.**—Total nitrogen (00600) equals the sum of dissolved ammonia plus organic nitrogen (00623), dissolved nitrite plus nitrate nitrogen (00631), and total particulate nitrogen (49570). COOPERATION.---Field data and samples for laboratory analyses were provided by the New Jersey Department of Environmental Protection. Determination of dissolved ammonia, total ammonia, dissolved nitrite, dissolved orthophosphate, biochemical oxygen demand, total suspended solids, fecal coliform, *E. coli*, and enterococcus bacteria was performed by the New Jersey Department of Health and Senior Services, Public Health and Environmental Laboratories, Environmental and Chemical Laboratory Services. Determination of chlorophyll a was performed by the New Jersey Department of Environmental Protection, Bureau of Freshwater and Biological Monitoring Laboratory. COOPERATIVE NETWORK SITE DESCRIPTOR.--Delaware River Main Stem, New Jersey Department of Environmental Protection Watershed Management Area 1. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TUR-BID-ITY FIELD WATER UNFLTRD (NTU) (61028) | UV
ABSORB-
ANCE
254 NM,
WTR FLT
(UNITS
/CM)
(50624) | UV ABSORB- ANCE 280 NM, WTR FLT (UNITS /CM) (61726) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | |------------------|---|--|--|--|---|---|---|--|--|---|--|--|--| | DEC
05
FEB | 1030 | 4100 | 1.8 | == | | 767 | 90 | 10.5 | 7.7 | 187 | 15.0 | 9.0 | 60 | | 26
MAY | 1045 | 4470 | 1.1 | .046 | .035 | 755 | 91 | 11.0 | 7.8 | 176 | 10.0 | 7.0 | 52 | | 21
SEP | 0945 | 23900 | 6.8 | .123 | .093 | 766 | 94 | 10.4 | 7.4 | 114 | 11.0 | 11.0 | 33 | | 05 | 1000 | E3000 | 1.9 | .059 | .045 | 760 | 81 | 7.0 | 8.0 | 210 | 23.0 | 22.5 | 69 | | DATE | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | | DEC
05 | 15.4 | 5.18 | 1.36 | 11.4 | 39 | 17.0 | .1 | 3.1 | 17.2 | 106 | 99 | .030 | .38 | | FEB
26
MAY | 13.5 | 4.55 | 1.15 | 11.2 | 35 | 16.5 | <.1 | 2.6 | 16.6 | 86 | 91 | <.030 | .15 | | 21
SEP | 8.69 | 2.70 | .75 | 7.63 | 21 | 11.3 | E.1 | 3.3 | 10.4 | 76 | 63 | <.030 | .21 | | 05 | 17.8 | 6.06 | 1.63 | 10.2 | 49 | 19.5 | E.1 | 3.1 | 17.1 | 110 | 109 | <.030 | .22 | | DATE | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN
DIS-
SOLVED
(MG/L
AS N)
(00602) | NITRO-
GEN,PAR
TICULTE
WAT FLT
SUSSP
(MG/L
AS N)
(49570) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | CARBON,
INORG +
ORGANIC
PARTIC.
TOTAL
(MG/L
AS C)
(00694) | CARBON,
INOR-
GANIC,
PARTIC.
TOTAL
(MG/L
AS C)
(00688) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) | | DEC
05
FEB | .030 | .96 | .009 | 1.3 | .07 | .074 | | .089 | .7 | <.1 | 2.5 | . 7 | <1.0 | | 26
MAY | <.030 | .86 | .006 | 1.0 | .04 | .056 | .030 | .066 | . 4 | <.1 | 1.9 | . 4 | E1.8 | | 21
SEP | <.030 | 1.37 | <.003 | 1.6 | .18 | .021 | .023 | .049 | 1.6 | <.1 | 3.4 | 1.6 | <1.0 | | 05 | <.030 | .92 | .006 | 1.1 | <.02 | .094 | .074 | .103 | .3 | <.1 | 2.5 | .3 | <1.0 | # DELAWARE RIVER BASIN #### 01457500 DELAWARE RIVER AT RIEGELSVILLE, NJ--Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DATE | CHLORO-
PHYLL A
FLUORO-
METRIC
METHOD
CORR.
(µG/L)
(32209) | | | |------------------|---|-----|----| | DEC
05
FEB | | 20 | 4 | | 26 | | E10 | 18 | | MAY
21
SEP | 4.00 | <10 | 11 | | 05 | .600 | 20 | 6 | # WATER-COLUMN BACTERIA ANALYSES Samples collected synoptically during the summer months | DATE | TIME |
COLI-
FORM,
FECAL,
EC
BROTH
(MPN)
(31615) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | ENTERO-
COCCI,
ME MF,
WATER
(COL/
100 ML)
(31649) | DATE | TIME | COLI-
FORM,
FECAL,
EC
BROTH
(MPN)
(31615) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | ENTERO-
COCCI,
ME MF,
WATER
(COL/
100 ML)
(31649) | |------|------|---|--|---|------|------|---|--|---| | JUL | | | | | AUG | | | | | | 10 | 0900 | 80 | <100 | 10 | 07 | 0920 | 80 | <100 | 100 | | 17 | 0910 | 20 | <100 | 30 | | | | | | | 24 | 0910 | 170 | <100 | 80 | | | | | | | 31 | 0900 | 70 | 100 | 60 | | | | | | #### TOHICKON CREEK BASIN #### 01459500 TOHICKON CREEK NEAR PIPERSVILLE, PA LOCATION.--Lat 40°26'01", long 75°07'01", Bucks County, Hydrologic Unit 02040105, on right bank at site of Traugers bridge, 1.5 mi northeast of Pipersville, and 4.5 mi upstream from mouth. **DRAINAGE AREA**.--97.4 mi². PERIOD OF RECORD.--July 1935 to current year. REVISED RECORDS.--WDR PA-75-1: 1974. GAGE.--Water-stage recorder. Datum of gage is 258.96 ft above National Geodetic Vertical Datum of 1929. **REMARKS.**—Records good except those for estimated daily discharges, which are poor. Flow regulated since December 1973 by Nockamixon Reservoir about 6.2 mi upstream. Several measurements of water temperature were made during the year. Satellite telemetry at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 22 273 11 1 4.6 4.9 e19 109 18 108 30 53 3.4 18 174 2 18 4.7 e17 143 89 348 28 37 3.7 13 6.2 4.3 6.5 3.9 3 17 4 9 4.8 e15 113 85 568 24 30 4.8 233 99 20 15 e14 87 303 26 5 14 5.0 4.8 e13 73 138 83 171 18 22 3.9 3.4 6 13 4.6 e12 53 88 72 112 24 18 5.5 3.2 13 5.1 5.0 e19 48 57 84 243 15 3.7 3.1 8 11 3.9 5.7 e21 47 52 50 66 218 12 3.6 46 10 7.2 4.3 12 e18 40 54 50 76 70 9.6 3.4 2.8 11 5.9 4.1 12 e28 52 40 44 63 48 3.4 2.8 12 13 4.9 12 12 50 55 69 847 116 297 2.4 4.4 42 34 40 6.0 3.4 39 38 3.3 4.6 41 5.1 14 4.2 14 44 45 3870 273 15 4.3 4.8 19 54 28 41 54 1220 332 4.2 3.2 4.0 16 5.0 4.7 19 53 28 41 76 416 214 3.6 3.1 6.2 3.8 3.5 3.7 17 5.1 4.4 4.5 18 29 48 28 39 127 70 223 515 124 76 3.4 3.1 18 46 27 56 4.5 19 4.6 31 43 22 232 48 571 92 3.2 757 20 4.1 5.5 29 69 2.2 45 302 103 5.4 5.5 3.5 3.7 71 21 4.6 29 39 26 1020 40 176 4.5 3.6 3.3 3.7 2.2 3.8 25 34 32 41 53 3.0 3.4 4.5 2.6 441 116 50 4.5 23 22 223 25 37 85 24 2.5 35 171 23 136 41 69 31 3.6 3.8 3 1 25 1.8 37 2.2 3.3 5.8 300 97 43 55 28 3.6 5.4 26 1.5 9.0 34 200 21 78 64 44 25 3.6 3.2 4.0 294 51 2.7 3.8 6.2 31 122 2.1 57 41 35 3.6 2.9 28 4.5 28 85 21 300 152 3.6 2.9 46 5.6 256 38 29 4.5 5.6 2.6 65 175 701 35 165 3.6 8.6 27 30 4.6 e24 ---398 90 24 5.1 56 121 32 3.6 5.6 4.4 73 3.4 3.9 30 TOTAL 224.3 153.7 570.3 1844 1263 5212 2998 10880 3153 321.3 121.6 257.5 7.24 5.12 18.4 59.5 99.9 105 10.4 3.92 8.58 MEAN 9 5 37 MAX 2.2 300 143 1020 701 3870 332 53 8.6 51 18 40 30 2.9 3.4 18 2.4 MIN 1.5 3.9 4.6 12 21 e Estimated. ## TOHICKON CREEK BASIN #### 01459500 TOHICKON CREEK NEAR PIPERSVILLE, PA--Continued | STATIST | CICS OF | MONTHLY MEAN | DATA I | FOR WATER | YEARS 1974 | - 2002, | BY WATER | YEAR (WY) | (SINC | E REGULATION | .) | | |------------------------------------|-------------------------------------|---------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN
MAX
(WY)
MIN
(WY) | 83.5
528
1997
5.87
1983 | 553
1976
5.12 | 223
813
1997
3.61
1999 | 238
916
1979
16.4
1977 | 205
436
1984
28.3
1974 | 307
867
1994
43.1
1976 | 232
707
1983
36.9
1985 | 196
579
1984
29.1
1999 | 78.6
314
1989
5.73
1999 | 66.5
602
1984
2.11
1999 | 47.1
232
1978
3.92
2002 | 81.5
452
1999
4.03
1980 | | SUMMARY | STATI | STICS | FOR | 2001 CAL | ENDAR YEAR | F | OR 2002 WA | TER YEAR | | WATER YEARS | 1974 - | 2002 | | ANNUAL
ANNUAL
HIGHEST | MEAN | L MEAN | | 45286.1
124 | L | | 26998.7
74.0 | | | 160
300 | | 1984 | | LOWEST
HIGHEST
LOWEST | ANNUAL | MEAN
MEAN | | 1700
1.5 | May 27
5 Oct 26 | | 3870
1.5 | May 14
Oct 26 | | 74.0
6810
1.5 | Dec 5
Oct 26 | 2002
1993 | | | SEVEN- | DAY MINIMUM
FLOW | | 2.9 | | | 2.8
4660
7.02 | Sep 7
May 14 | | 1.7
a 18600
11.90 | Sep 12
Sep 16
Sep 16 | 1991
1999 | | 10 PERC
50 PERC
90 PERC | ENT EX | CEEDS
CEEDS | | 344
34
4.6 | 5 | | 167
22
3.4 | | | 390
46
5.8 | | | | STATISTICS OF MONTHLY M | EAN DATA FOR WATER | YEARS 1936 - | 1973, BY WATER | YEAR (WY) | (PRIOR S | TO REGULAT | ION) | | |--|---|--|--|------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------| | OCT NOV | DEC JAN | FEB | MAR APR | MAY | JUN | JUL | AUG | SEP | | MEAN 43.4 138
MAX 367 601
(WY) 1956 1973
MIN 1.46 3.51
(WY) 1965 1965 | 183 190
464 501
1973 1949
11.5 37.8
1966 1966 | 572
1971 1
42.5 | 300 217
795 612
.936 1952
133 35.2
.949 1946 | 121
430
1948
15.9
1955 | 79.0
413
1972
4.64
1965 | 54.0
288
1938
1.68
1957 | 66.8
515
1955
1.12
1957 | 54.3
513
1960
1.21
1957 | | SUMMARY STATISTICS | WATER YEARS | 1936 - 1973 | | | | | | | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 140
240
45.8
6820
.10
.47
a16000
11.26
.05
1.43
19.48
325
37
3.8 | 1973
Sep 12 1960
Sep 24 1941
Jul 24 1955
Aug 18 1955
Aug 18 1955
Sep 24 1941 | b | | | | | | $[\]begin{array}{l} \textbf{a} \ \ \text{From rating curve extended above 13,600 ft}^3/\text{s on basis of slope-area measurement at gage height 10.48 ft.} \\ \textbf{b} \ \ \text{Also Sept. 29, Oct. 6, 1941.} \end{array}$ #### 01460200 DELAWARE RIVER BELOW TOHICKON CREEK AT POINT PLEASANT, PA LOCATION.--Lat 40°25'06", long 75°03'42", Bucks County, Hydrologic Unit 02040105, on right bank at Forest Park Water Company pump station, 0.2 mi downstream from Tohickon Creek and 0.4 mi southeast of Point Pleasant. DRAINAGE AREA.--6,570 mi². **PERIOD OF RECORD.**--May 2000 to current year. #### PERIOD OF DAILY RECORD.-- SPECIFIC CONDUCTANCE: May 2000 to current year. pH: May 2000 to current year. WATER TEMPERATURE: May 2000 to current year. DISSOLVED OXYGEN: May 2000 to current year. INSTRUMENTATION.--Probes interfaced with a data collection platform with 30-minute recording interval. Satellite and landline telemetry at station. **REMARKS.**--Specific conductance, water temperature, and pH records rated good. Dissolved oxygen record rated fair except for period Nov. 28 to Dec. 6, which is poor. Data collection discontinued Dec. 6 to Jan. 15. Other interruptions in the record due to intermittent pumping. (See Distributary from Bradshaw Reservoir, station 01472618). #### EXTREMES FOR PERIOD OF DAILY RECORD.-- SPECIFIC CONDUCTANCE: Maximum, 295 microsiemens, Jan. 23, 2002; minimum, 89 microsiemens, June 8, 9, 2000. pH: Maximum, 9.8, Apr. 30, May 1-3, 2001; minimum, 6.8, June 8, 9, 2002. WATER TEMPERATURE: Maximum, 32.5°C, Aug. 9, 2001; minimum, 2.0°C, Jan. 19-21, 2002. DISSOLVED OXYGEN: Maximum, 15.5 mg/L, Nov. 25, 2000; minimum, 6.1 mg/L, Aug. 11, 2001. SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25° CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |-------|-----|---------|------|-----|---------|------|-----|----------|------|-----|---------|------| | | | OCTOBER | | N | OVEMBER | ı | I | DECEMBER | | | JANUARY | : | | 1 | 217 | 205 | 210 | 226 | 215 | 222 | 212 | 206 | 210 | | | | | 2 | 224 | 217 | 221 | 226 | 213 | 220 | 213 | 206 | 210 | | | | | 3 | 224 | 219 | 221 | 229 | 218 | 225 | 212 | 193 | 199 | | | | | 4 | 228 | 222 | 225 | 228 | 217 | 223 | 196 | 173 | 182 | | | | | 5 | 229 | 227 | 228 | 226 | 217 | 222 | 179 | 167 | 172 | | | | | 6 | | | | 228 | 217 | 224 | | | | | | | | 7 | | | | 230 | 221 | 226 | | | | | | | | 8 | | | | 227 | 216 | 222 | | | | | | | | 9 | | | | 231 | 220 | 227 | | | | | | | | 10 | | | | 235 | 219 | 227 | | | | | | | | 11 | | | | 230 | 218 | 225 | | | | | | | | 12 | 229 | 220 | 224 | 232 | 216 | 224 | | | | | | | | 13 | 228 | 222 | 226 | 228 | 215 | 223 | | | | | | | | 14 | 226 | 222 | 224 | 230 | 217 | 224 | | | | | | | | 15 | 226 | 220 | 222 | 231 | 218 |
225 | | | | | | | | 16 | 230 | 222 | 225 | 236 | 224 | 229 | | | | | | | | 17 | 232 | 221 | 227 | 240 | 226 | 234 | | | | | | | | 18 | | | | 238 | 224 | 231 | | | | | | | | 19 | | | | 230 | 216 | 223 | | | | 239 | 235 | 237 | | 20 | 218 | 207 | 212 | 226 | 215 | 221 | | | | 245 | 235 | 241 | | 21 | 215 | 210 | 213 | 225 | 215 | 221 | | | | 265 | 245 | 252 | | 22 | 225 | 213 | 217 | 223 | 211 | 218 | | | | 266 | 256 | 261 | | 23 | 225 | 216 | 221 | 222 | 212 | 218 | | | | 295 | 266 | 281 | | 24 | 220 | 211 | 216 | 224 | 213 | 219 | | | | | | | | 25 | 224 | 214 | 219 | 223 | 212 | 218 | | | | | | | | 26 | 229 | 220 | 223 | 234 | 208 | 217 | | | | | | | | 27 | 231 | 223 | 227 | 238 | 220 | 228 | | | | | | | | 28 | 229 | 219 | 224 | 225 | 201 | 213 | | | | | | | | 29 | 225 | 215 | 221 | 216 | 210 | 214 | | | | | | | | 30 | 226 | 216 | 221 | 212 | 203 | 207 | | | | | | | | 31 | 225 | 211 | 219 | | | | | | | | | | | MONTH | 232 | 205 | 221 | 240 | 201 | 222 | 213 | 167 | 195 | 295 | 235 | 254 | ## 01460200 DELAWARE RIVER BELOW TOHICKON CREEK AT POINT PLEASANT, PA SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25° CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | | | | | | | | | | a TEMBER 20 | |----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------| | DAY | MAX | MIN | MEAN | | | 1 | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2 | | | | 187
185 | 176
179 | 181
182 | | | | | | | | 3 | | | | | | | | | | | | | | 4
5 | | | | | | | | | | | | | | 6 | | | | | | | | | | | | | | 7 | | | | | | | | | | | | | | 8
9 | | | | | | | | | |
152 | 145 |
147 | | 10 | | | | | | | | | | 154 | 148 | 152 | | 11 | | | | | | | 153 | 148 | 151 | 151 | 144 | 148 | | 12
13 | | | | | | | 157
155 | 151
149 | 153
152 | | | | | 14 | | | | | | | 161 | 154 | 157 | | | | | 15 | | | | | | | 176 | 158 | 165 | | | | | 16 | | | | | | | 169 | 144 | 152 | | | | | 17
18 | | | | | | | 144
139 | 136
137 | 140
138 | | | | | 19 | | | | | | | 143 | 137 | 140 | | | | | 20 | | | | | | | 152 | 139 | 145 | | | | | 21 | 171 | 164 | 167 | | | | 156 | 149 | 151 | | | | | 22 | 178 | 170 | 173 | | | | 161 | 156 | 158 | | | | | 23
24 | 179
179 | 171
167 | 176
173 | | | | 161
162 | 157
155 | 159
158 | | | | | 25 | 169 | 161 | 166 | | | | | | | 141 | 134 | 137 | | 26 | 171 | 162 | 167 | | | | | | | 144 | 136 | 139 | | 27 | 178 | 170 | 173 | | | | | | | 153 | 144 | 148 | | 28
29 | 182 | 175 | 179 | | | | | | | 154
154 | 150
144 | 152
151 | | 30 | | | | | | | | | | 144 | 102 | 109 | | 31 | | | | | | | | | | 112 | 101 | 106 | | MONTH | 182 | 161 | 172 | 187 | 176 | 182 | 176 | 136 | 151 | 154 | 101 | 139 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | | | JUNE | | | JULY | | | AUGUST | | S | EPTEMBE | R | | 1 | 125 | 112 | 118 | 178 | 170 | 175 | 217 | 212 | 215 | 216 | 195 | 206 | | 2 | 127
127 | 123 | 125
124 | 190
191 | 178
186 | 185
189 | 221
233 | 217
220 | 219
225 | 234
248 | 207
234 | 214
244 | | 3
4 | 131 | 121
126 | 124 | 187 | 183 | 185 | 235 | 220 | 225 | 248 | 218 | 228 | | 5 | 135 | 130 | 131 | 194 | 183 | 188 | 234 | 224 | 230 | 219 | 210 | 214 | | 6 | 143 | 134 | 138 | 201 | 192 | 195 | 231 | 218 | 225 | 217 | 212 | 214 | | 7 | | | | 201 | 197 | 199 | 221 | 215 | 219 | 225 | 216 | 221 | | 8
9 | 137
109 | 98
98 | 112
103 | 207
212 | 197
205 | 199
208 | 216
212 | 209
208 | 213
210 | 227
222 | 218
218 | 223
220 | | 10 | 113 | 108 | 110 | 221 | 212 | 215 | 218 | 212 | 217 | 231 | 222 | 226 | | 11 | 122 | 110 | 117 | 222 | 217 | 220 | 224 | 218 | 222 | 232 | 224 | 228 | | 12 | 121 | 113 | 116 | 223 | 219 | 220 | 231 | 221 | 227 | 226 | 218 | 224 | | 13
14 | 135
142 | 120
131 | 128
137 | 224
230 | 215
220 | 218
224 | 231
222 | 222
216 | 228
218 | 229 | 221 | 225 | | 15 | 147 | 140 | 145 | 234 | 226 | 231 | 216 | 213 | 214 | | | | | 16 | 145 | 125 | 136 | 243 | 234 | 240 | 220 | 212 | 214 | 218 | 210 | 215 | | 17 | 136 | 114 | 127 | 238 | 234 | 236 | 226 | 220 | 223 | 225 | 210 | 217 | | 18
19 | 133
134 | 121
125 | 125
129 | 238
235 | 228
226 | 232
231 | 226
221 | 218
216 | 223
219 | | | | | 20 | 142 | 134 | 138 | 232 | 227 | 229 | 221 | 209 | 214 | | | | | 21 | 146 | 141 | 142 | 230 | 223 | 226 | 209 | 205 | 208 | | | | | 22 | 152 | 146 | 148 | 236 | 223 | 229 | 205 | 195 | 199 | | | | | 23 | 158 | 152 | 156 | 228 | 213
209 | 220 | 201 | 196 | 198 | | | | | 24
25 | 165
168 | 157
163 | 160
166 | 217
215 | 199 | 213
206 | 204
217 | 198
201 | 202
208 | | | | | 26 | 168 | 161 | 164 | 214 | 205 | 210 | 230 | 217 | 226 | 229 | 209 | 221 | | 27 | 168 | 161 | 166 | 214 | 205 | 209 | 227 | 218 | 222 | 212 | 196 | 204 | | 28 | 184 | 159 | 171 | 215 | 201 | 208 | 220 | 213 | 217 | 245
233 | 212 | 235
215 | | 20 | | 160 | 172 | 220 | | | 212 | | | | | | | 29
30 | 175
173 | 169
166 | 173
170 | 229
228 | 215
219 | 224
223 | 213
245 | 204
212 | 210
232 | 198 | 198
172 | 181 | | | 175 | | | | | | | | | | | | | 30 | 175
173 | 166 | 170 | 228 | 219 | 223 | 245 | 212 | 232 | 198 | 172 | 181 | ## 01460200 DELAWARE RIVER BELOW TOHICKON CREEK AT POINT PLEASANT, PA PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN I | MEDIAN | MAX | MIN I | MEDIAN | MAX | MIN I | MEDIAN | MAX | MIN | MEDIAN | |---|---|----------------------|--|--------------------|---|--------------------|--|---|--|---|---|---| | | | OCTOBER | | : | NOVEMBER | | 1 | DECEMBER | | | JANUAR | Y | | 1 2 | 8.4
8.5 | 7.6
7.7 | 7.8
7.9 | 9.2
9.3 | 7.6
7.6 | 8.4
8.6 | 8.6
8.2 | 7.4
7.4 | 7.7
7.6 | | | | | 3 | 8.7 | 7.7 | 8.0 | 9.2 | 7.6 | 8.4 | 8.3 | 7.5 | 7.6 | | | | | 4
5 | 8.7
8.7 | 7.7
7.7 | 8.0
8.0 | 9.3
9.2 | 7.6
7.6 | 8.5
8.5 | 8.2
8.1 | 7.4
7.4 | 7.6
7.5 | | | | | 6 | | | | 9.2 | 7.6 | 8.5 | | | | | | | | 7 | | | | 9.2 | 7.8 | 8.5 | | | | | | | | 8
9 | | | | 9.3 | 7.7 | 8.6 | | | | | | | | 10 | | | | 9.2
9.2 | 7.7
7.8 | 8.6
8.6 | | | | | | | | 11 | | | | 9.2 | 7.7 | 8.5 | | | | | | | | 12 | 8.8 | 7.8 | 8.2 | 9.2 | 7.7 | 8.5 | | | | | | | | 13
14 | 9.0
8.9 | 7.8
7.7 | 8.2
8.2 | 9.2
9.2 | 7.8
7.8 | 8.6
8.6 | | | | | | | | 15 | 9.0 | 7.6 | 8.2 | 9.2 | 7.8 | 8.6 | | | | | | | | 16 | 8.9 | 7.6 | 8.2 | 9.3 | 7.8 | 8.6 | | | | | | | | 17 | 8.9 | 7.6 | 8.1 | 9.2 | 7.8 | 8.6 | | | | | | | | 18
19 | | | | 9.2
9.2 | 7.8
7.8 | 8.6
8.5 | | | | 7.8 | 7.6 |
7.7 | | 20 | 9.2 | 7.8 | 8.5 | 9.1 | 7.6 | 8.4 | | | | 7.9 | 7.6 | 7.7 | | 21 | 9.2 | 7.8 | 8.5 | 9.1 | 7.6 | 8.5 | | | | 7.9 | 7.6 | 7.8 | | 22 | 9.3 | 7.8 | 8.5 | 9.1 | 7.8 | 8.5 | | | | 8.0 | 7.6 | 7.8 | | 23
24 | 9.3
9.3 | 7.8
7.7 | 8.5
8.5 | 9.1
8.9 | 7.7
7.7 | 8.5
8.3 | | | | 8.0 | 7.7
 | 7.8 | | 25 | 9.3 | 7.7 | 8.5 | 9.0 | 7.6 | 8.1 | | | | | | | | 26 | 9.2 | 7.7 | 8.4 | 8.9 | 7.5 | 8.0 | | | | | | | | 27
28 | 9.1
9.2 | 7.7
7.7 | 8.3
8.4 | 8.7
8.8 | 7.5
7.3 | 7.8
7.7 | | | | | | | | 29 | 9.2 | 7.7 | 8.5 | 7.8 | 7.5 | 7.7 | | | | | | | | 30 | 9.3 | 7.7
7.7 | 8.5 | 7.9 | 7.4 | 7.5 | | | | | | | | 31 | 8.7 | 7.7 | 8.1 | | | | | | | | | | | MAX
MIN | 9.3
8.4 | 7.8
7.6 | 8.5
7.8 | 9.3
7.8 | 7.8
7.3 | 8.6
7.5 | 8.6
8.1 | 7.5
7.4 | 7.7
7.5 | 8.0
7.8 | 7.7
7.6 | 7.8
7.7 | | | | | | | | | | | | | | | | DAY | MAX | MIN I | MEDIAN | MAX | MIN I | MEDIAN | MAX | MIN I | MEDIAN | MAX | MIN | MEDIAN | | DAY | MAX | MIN I | MEDIAN | MAX | MIN I | MEDIAN | MAX | MIN I | MEDIAN | MAX | MIN
MAY | MEDIAN | | | 1 | FEBRUARY | | | MARCH | | MAX | APRIL | | | MAY | | | 1
2 |
 | FEBRUARY | | 9.0
8.9 | MARCH 7.5 7.5 | 8.2
8.2 | | APRIL | | | MAY | | | 1
2
3 | | FEBRUARY | | 9.0 | MARCH 7.5 | 8.2 | | APRIL | | | MAY | | | 1
2 |
 | FEBRUARY |
 | 9.0
8.9 | MARCH 7.5 7.5 | 8.2
8.2
 |
 | APRIL

 |
 |
 | MAY

 |
 | | 1
2
3
4 |

 | FEBRUARY

 | | 9.0
8.9
 | MARCH
7.5
7.5
 | 8.2
8.2
 |

 | APRIL |

 | | MAY

 |

 | | 1
2
3
4
5 |

 | FEBRUARY | ===
===
===
=== | 9.0
8.9

 | 7.5
7.5
7.5
 | 8.2
8.2

 |

 | APRIL | ===
====
==== |

 | MAY | | | 1
2
3
4
5 |

 | FEBRUARY | | 9.0
8.9

 | 7.5
7.5
 | 8.2
8.2
 | | APRIL | |

 | MAY |

 | | 1
2
3
4
5
6
7
8 | | FEBRUARY | ====
====
==== | 9.0
8.9
 | 7.5
7.5

 | 8.2
8.2

 | ===
===
===
=== | APRIL | ====
====
==== |

 | MAY | | | 1
2
3
4
5
6
7
8
9 | | FEBRUARY |

 | 9.0
8.9
 | 7.5
7.5
 | 8.2
8.2

 | | APRIL 7.3 |

7.7 |

7.4 | MAY 7.2 |

7.3 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | 9.0 | 7.5
7.5
7.5
 | 8.2 |

8.5 | APRIL 7.3 7.3 |

7.7 |

7.4
7.7 | MAY 7.2 7.3 |

7.3
7.4 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | 9.0
8.9

 | 7.5
7.5
 | 8.2
8.2

 | | APRIL 7.3 7.3 7.3 7.3 |

7.7 |

7.4
7.7 | MAY 7.2 7.3 |

7.3
7.4 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | 9.0 | 7.5
7.5
7.5
 | 8.2 |

8.5
8.1
8.5 | APRIL 7.3 7.3 7.3 |

7.7
7.6 |

7.4
7.7 | MAY 7.2 7.3 |

7.3
7.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | 9.0 | 7.5
7.5
7.5
 | 8.2 | 8.5
8.1
8.5
8.4
7.3 | APRIL 7.3 7.3 7.3 7.3 7.3 |

7.7
7.6
7.6
7.8
7.6 | 7.4 | MAY 7.2 7.3 | 7.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | 9.0 | 7.5
7.5
7.5
 | 8.2 |

8.5
8.1
8.5
8.4
7.3 | APRIL 7.3 7.3 7.3 7.3 7.3 7.3 7.3 |

7.7
7.6
7.6
7.6
7.6
7.2 |

7.4
7.7 | MAY 7.2 7.3 |

7.3
7.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | 9.0 | 7.5 7.5 7.5 | 8.2
8.2
 | 8.5
8.1
8.5
8.6
8.4
7.3
7.1
7.2 | APRIL 7.3 7.3 7.3 7.3 7.3 7.0 7.0 7.0 |

7.7
7.6
7.6
7.6
7.6
7.0
7.0 | 7.4 | MAY 7.2 7.3 | 7.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | | FEBRUARY | | 9.0 | 7.5
7.5
7.5
 | 8.2 | 8.5
8.1
8.5
8.6
8.4
7.3
7.1 | APRIL 7.3 7.3 7.3 7.3 7.3 7.0 7.0 |

7.7
7.6
7.6
7.6
7.8
7.6 | 7.4
7.7 | MAY 7.2 7.3 |

7.3
7.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | | FEBRUARY |

 | 9.0 | 7.5 7.5 7.5 | 8.2 | 8.5
8.1
8.5
8.6
8.4
7.3
7.1
7.1 | APRIL 7.3 7.3 7.3 7.3 7.3 7.0 7.0 7.0 7.0 | 7.7
7.6
7.6
7.6
7.6
7.0
7.0 | 7.4 | MAY 7.2 7.3 | 7.5
 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | | FEBRUARY | | 9.0 | 7.5 7.5 | 8.2 | 8.5
8.1
8.5
8.6
8.4
7.3
7.1
7.2
7.3 | APRIL 7.3 7.3 7.3 7.3 7.3 7.0 7.0 7.0 7.0 |

7.7
7.6
7.6
7.6
7.8
7.6
7.2
7.0
7.0 |

7.4
7.7
7.9 | MAY 7.2 7.3 |

7.3
7.4
7.5
 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 1

 | FEBRUARY |

7.7
7.7 | 9.0 | 7.5 7.5 7.5 | 8.2 8.2 | 8.5
8.1
8.5
8.6
8.4
7.3
7.1
7.2
7.3
7.1 | APRIL 7.3 7.3 7.3 7.3 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 7.7
7.6
7.6
7.6
7.6
7.0
7.1
7.0 | 7.4 | MAY 7.2 7.3 | 7.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 8.5
8.6
8.7
8.7
8.8 | FEBRUARY |

 | 9.0 | 7.5 7.5 7.5 | 8.2 | 8.5
8.1
8.5
8.1
8.7
11
7.2
7.3
7.1 | APRIL 7.3 7.3 7.3 7.3 7.3 7.0 7.0 7.0 7.0 7.0 7.0 7.0 |

7.7
7.6
7.6
7.6
7.7
7.0
7.0
7.1
7.0 | 7.4
7.7
7.9
 | MAY 7.2 7.3 |

7.3
7.4
7.5

7.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 8.5
8.6
8.7
8.8
8.8 | FEBRUARY |

7.7
7.7 | 9.0 | 7.5 7.5 7.5 | 8.2 8.2 | 8.5
8.1
8.5
8.6
8.4
7.3
7.1
7.2
7.3
7.1 | APRIL 7.3 7.3 7.3 7.3 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 7.7
7.6
7.6
7.6
7.6
7.0
7.1
7.0 | 7.4
7.7
7.9
 | MAY 7.2 7.3 7.2 7.3 7.2 7.3 | 7.5

7.3
7.4
7.5

7.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27
28
28
28
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 8.5
8.6
8.7
8.8
8.8
8.8
8.9 | FEBRUARY |

7.7
7.7 | 9.0 | 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 | 8.2 | 8.5
8.1
8.5
8.1
8.5
8.4
7.3
7.1
7.2
7.3
7.1
7.2
7.4
8.2 | APRIL 7.3 7.3 7.3 7.3 7.3 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 |

7.7
7.6
7.6
7.6
7.7
7.0
7.0
7.1
7.0
7.1
7.2
7.3 |

7.4
7.7
7.9

7.7
7.7
7.9
8.2 | MAY 7.2 7.3 7.2 7.3 7.2 7.3 | 7.4
7.5

7.3
7.4
7.5

7.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 8.5
8.6
8.7
8.8
8.8
8.8
8.9 | FEBRUARY | | 9.0 | 7.5 7.5 7.5 | 8.2 8.2 | 8.5
8.1
8.5
8.6
8.4
7.3
7.1
7.2
7.3
7.1
7.1
7.2
7.4
8.2 | APRIL 7.3 7.3 7.3 7.3 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 7.7
7.6
7.6
7.6
7.6
7.0
7.1
7.0 | 7.4
7.7
7.9

7.7
7.7
7.9
8.2 | MAY 7.2 7.3 7.2 7.3 7.2 7.3 7.2 7.3 7.2 | 7.5

7.3
7.4
7.5

7.4
7.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27
28
28
28
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 8.5
8.6
8.7
8.8
8.8
8.8
8.9 | FEBRUARY |

7.7
7.7 | 9.0 | 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 | 8.2 | 8.5
8.1
8.5
8.1
8.5
8.4
7.3
7.1
7.2
7.3
7.1
7.2
7.4
8.2 | APRIL 7.3 7.3 7.3 7.3 7.3 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 |

7.7
7.6
7.6
7.6
7.7
7.0
7.0
7.1
7.0
7.1
7.2
7.3 |

7.4
7.7
7.9

7.7
7.7
7.9
8.2 | MAY 7.2 7.3 7.2 7.3 7.2 7.3 | 7.4
7.5

7.3
7.4
7.5

7.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 8.5
8.6
8.7
8.8
8.8
8.8
8.9 | FEBRUARY |

7.7
7.7 | 9.0 | 7.5 7.5 7.5 | 8.2 | 8.5
8.1
8.5
8.1
8.6
8.4
7.3
7.1
7.2
7.3
7.1
7.2
7.4
8.2 | APRIL | 7.7
7.6
7.6
7.6
7.6
7.0
7.0
7.0
7.1
7.0 | 7.4 7.7 7.9 7.7 7.9 7.7 7.9 7.7 7.7 7.9 8.2 7.8 7.2 | MAY 7.2 7.3 7.2 7.3 7.2 7.3 7.2 7.3 7.2 7.3 7.2 7.3 7.2 7.3 | 7.5

7.3
7.4
7.5

7.4
7.4
7.5
7.6
7.6 | #### 01460200 DELAWARE RIVER BELOW TOHICKON CREEK AT POINT PLEASANT, PA PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEDIAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMB | ER | | 1
2
3
4
5 | 7.2
7.3
7.7
7.6
7.9 | 7.0
7.1
7.1
7.1
7.2 | 7.1
7.1
7.2
7.2
7.3 | 8.0
8.1
8.0
8.0
8.2 | 7.2
7.3
7.3
7.2
7.2 | 7.3
7.6
7.6
7.4
7.6 | 8.7
8.6
8.6
8.5
8.4 | 7.6
7.6
7.6
7.5
7.5 | 8.0
8.0
7.9
7.8
7.8 | 8.1
8.6
8.8
8.8 | 7.7
7.7
7.8
7.7
7.8 | 7.9
8.0
8.2
8.2 | | 6
7
8
9 | 7.9

7.1
6.9
7.0 | 7.2

6.8
6.8
6.9 | 7.3

6.9
6.9
7.0 | 8.2
8.3
8.4
8.4
8.4 | 7.3
7.3
7.3
7.4
7.4 | 7.6
7.7
7.8
7.7
7.8 | 8.5
8.4
8.6
8.6
8.6 | 7.6
7.6
7.7
7.7 | 7.9
8.0
8.0
8.0 | 8.9
8.9
8.9
8.9 | 7.8
7.8
7.8
7.8
7.8 | 8.3
8.3
8.3
8.3 | | 11
12
13
14
15 | 7.2
7.1
7.2
7.2
7.2 | 7.0
7.0
7.0
7.1
7.2 | 7.0
7.0
7.1
7.2
7.2 | 8.4
8.4
8.5
8.3
8.5 | 7.4
7.4
7.4
7.4
7.4 | 7.9
7.9
7.9
7.8
7.9 | 8.6
8.7
8.8
8.8 | 7.7
7.7
7.7
7.6
7.6 | 8.0
8.2
8.1
8.1 | 8.8
8.8
8.9
 | 7.8
7.9
7.8
 | 8.4
8.4
8.3
 | | 16
17
18
19
20 | 7.2
7.2
7.3
7.4
7.6 | 7.2
7.2
7.0
7.1
7.2 | 7.2
7.2
7.2
7.2
7.3 | 8.6
8.7
8.7
8.6
8.5 | 7.5
7.5
7.5
7.4
7.4 | 8.0
8.0
8.0
7.9 | 8.7
8.7
8.7
8.7
8.5 | 7.5
7.5
7.5
7.4
7.4 | 8.0
8.0
7.9
7.9 | 8.6
8.6
 | 7.6
7.6
 | 7.9
7.9
 | | 21
22
23
24
25 | 7.8
8.1
8.3
8.5
8.6 |
7.2
7.2
7.2
7.2
7.2 | 7.4
7.5
7.6
7.7
7.8 | 8.5
8.6
8.6
8.4
8.5 | 7.4
7.4
7.4
7.3
7.4 | 7.8
7.9
7.8
7.7 | 8.6
8.4
8.3
7.9
8.4 | 7.4
7.5
7.4
7.5
7.4 | 7.8
7.8
7.7
7.6
7.8 |

 |

 |

 | | 26
27
28
29
30
31 | 8.6
8.5
7.3
7.5
7.6 | 7.2
7.2
7.1
7.1
7.1 | 7.8
7.6
7.2
7.2
7.2 | 8.4
8.1
8.2
8.4
8.7 | 7.4
7.4
7.4
7.4
7.5 | 7.8
7.7
7.7
7.8
7.8
8.0 | 8.4
8.6
8.4
8.5
8.5 | 7.5
7.5
7.6
7.6
7.7 | 7.9
7.9
7.9
7.8
8.0
8.0 | 8.4
8.0
8.4
8.4
8.4 | 7.7
7.6
7.5
7.6
7.5 | 8.0
7.7
7.8
7.7
7.7 | | MAX
MIN | 8.6
6.9 | 7.2
6.8 | 7.8
6.9 | 8.7
8.0 | 7.5
7.2 | 8.0
7.3 | 8.8
7.9 | 7.7
7.4 | 8.2
7.6 | 8.9
8.0 | 7.9
7.5 | 8.4
7.7 | ## WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------|--------------------------------------|------------------------------|--------------------------------------|----------------------------------|---------------------------------|----------------------------------|----------------------|---------------------|----------------------|-------------------|-------------------|-------------------| | | | OCTOBER | | | NOVEMBER | ! | : | DECEMBER | | | JANUARY | | | 1
2
3 | 16.0
17.5
19.0 | 15.0
14.0
15.5 | 15.0
15.5
17.0 | 12.5
14.0
15.0 | 10.0
11.0
13.0 | 11.0
12.5
13.5 | 13.5
11.5
11.0 | 11.5
10.5
9.5 | 12.5
11.5
10.5 | | | | | 4
5 | 20.0 | 17.0
17.5 | 18.0
19.0 | 14.0
12.5 | 12.0
10.5 | 13.5
13.0
11.5 | 10.5
11.0 | 9.5
9.0
9.5 | 9.5
10.0 | | | | | 6
7
8 | | | | 12.0
12.0
12.0 | 9.5
9.5
10.0 | 10.5
11.0
11.0 | | | | | | | | 9
10 | | | | 11.5
11.5 | 10.0 | 11.0
11.0
10.5 | | | | | | | | 11
12
13
14 | 17.5
18.5
18.0 | 14.5
15.5
16.5 | 16.0
17.0
17.5 | 11.0
10.0
9.5
9.5 | 9.0
8.0
7.0
7.5 | 10.0
9.0
8.5
8.5 | | | | |

 | | | 15
16 | 18.5 | 16.5
15.5 | 17.5
16.5 | 10.5 | 8.0 | 9.0 | | | | | | | | 17
18
19
20 | 16.5

15.5 | 14.5

12.5 | 15.5

14.0 | 11.0
10.5
10.5
10.0 | 9.0
8.0
8.5
8.0 | 10.0
9.5
9.5
9.0 | | | | 3.5
4.0 | 2.0
2.0 | 3.0
2.5 | | 21
22
23
24
25 | 16.0
16.5
16.5
18.0
17.5 | 13.0
14.0
14.0
15.5 | 14.5
15.0
15.5
16.5
16.5 | 9.0
8.5
9.0
9.5
11.5 | 7.0
6.5
7.0
8.0
9.0 | 8.0
7.5
8.0
8.5
10.5 |

 |

 |

 | 3.0
4.5
4.5 | 2.0
2.5
3.0 | 2.5
3.0
3.5 | | 26
27
28
29 | 16.0
13.5
13.0
13.0 | 13.5
12.5
11.5
10.5 | 15.0
13.0
12.0
11.5 | 12.0
10.5
12.0
11.5 | 10.0
9.5
10.5
11.5 | 11.0
10.0
11.0
11.5 |
 |

 |

 |
 |

 | | | 30
31
MONTH | 13.0
11.5
20.5 | 11.0
10.5
10.5 | 12.0
11.0
15.3 | 12.5

15.0 | 6.5 | 12.0 | 13.5 | 9.0 | 10.8 | 4.5 | 2.0 | 2.9 | ## 01460200 DELAWARE RIVER BELOW TOHICKON CREEK AT POINT PLEASANT, PA WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|--|--|--|--|--|--|--|--|--|--|---|--| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 2 | | | | 8.0
7.5 | 5.0
5.5 | 6.5
6.5 | | | | | | | | 3 | | | | | | | | | | | | | | 4
5 | 6
7 | | | | | | | | | | | | | | 8 | | | | | | | | | | | | | | 9
10 | | | | | | | | | | 17.5
18.5 | 16.5
16.0 | 17.0
17.0 | | 10 | | | | | | | | | | 10.5 | 10.0 | 17.0 | | 11
12 | | | | | | | 15.0
13.5 | 11.5
12.5 | 13.0
13.0 | 18.5 | 16.0 | 17.0 | | 13 | | | | | | | 15.0 | 13.0 | 14.0 | | | | | 14 | | | | | | | 16.0 | 13.5 | 14.5 | | | | | 15 | | | | | | | 17.5 | 15.0 | 16.0 | | | | | 16 | | | | | | | 18.5 | 16.5 | 17.5 | | | | | 17
18 | | | | | | | 20.0
21.0 | 17.5
19.0 | 18.5
19.5 | | | | | 19 | | | | | | | 22.0 | 19.5 | 20.5 | | | | | 20 | | | | | | | 20.5 | 19.0 | 20.0 | | | | | 21 | 8.5 | 6.5 | 7.5 | | | | 19.0 | 16.5 | 18.0 | | | | | 22 | 8.0 | 7.0 | 7.5 | | | | 16.5 | 14.5 | 15.5 | | | | | 23
24 | 9.0
9.0 | 6.5
6.0 | 7.5
7.5 | | | | 15.5
16.0 | 13.0
12.5 | 14.0
14.0 | | | | | 25 | 8.5 | 6.0 | 7.5 | | | | | | | 18.5 | 16.0 | 17.0 | | 26 | 9.5 | 7.0 | 8.0 | | | | | | | 18.5 | 17.0 | 17.5 | | 27 | 8.5 | 6.5 | 8.0 | | | | | | | 19.5 | 17.5 | 18.5 | | 28
29 | 8.0 | 5.5 | 6.5
 | | | | | | | 20.5
21.5 | 18.5
19.5 | 19.5
20.5 | | 30 | | | | | | | | | | 20.0 | 18.5 | 19.5 | | 31 | | | | | | | | | | 20.5 | 18.5 | 19.5 | | MONTH | 9.5 | 5.5 | 7.5 | 8.0 | 5.0 | 6.5 | 22.0 | 11.5 | 16.3 | 21.5 | 16.0 | 18.3 | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | MAX | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMBE | | | 1 | 22.0 | JUNE 20.0 | 21.0 | 28.0 | JULY 25.0 | 26.5 | 31.5 | AUGUST | 29.5 | 22.5 | SEPTEMBE 21.0 | ER 21.5 | | 1
2 | 22.0
22.5 | JUNE 20.0 20.5 | 21.0
21.5 | 28.0
29.5 | JULY 25.0 25.5 | 26.5
27.5 | 31.5
32.0 | AUGUST 27.5 28.0 | 29.5
30.0 | 22.5
22.0 | 21.0
20.5 | 21.5
21.0 | | 1 | 22.0
22.5
22.5 | JUNE 20.0 20.5 20.5 | 21.0
21.5
21.0 | 28.0
29.5
30.5 | JULY 25.0 | 26.5
27.5
28.5 | 31.5
32.0
31.5 | 27.5
28.0
28.0 | 29.5
30.0
30.0 | 22.5 | 21.0
20.5
20.5 | 21.5
21.0
22.0 | | 1
2
3 | 22.0
22.5 | JUNE 20.0 20.5 | 21.0
21.5 | 28.0
29.5 | JULY
25.0
25.5
27.0 | 26.5
27.5 | 31.5
32.0 | AUGUST 27.5 28.0 | 29.5
30.0 | 22.5
22.0
24.5 | 21.0
20.5 | 21.5
21.0 | | 1
2
3
4
5 | 22.0
22.5
22.5
21.5 | 20.0
20.5
20.5
20.0
20.0 | 21.0
21.5
21.0
21.0
21.0 | 28.0
29.5
30.5
31.5
30.5 | JULY 25.0 25.5 27.0 28.0 28.0 | 26.5
27.5
28.5
29.5
29.5 | 31.5
32.0
31.5
32.0
30.5 | 27.5
28.0
28.0
28.0
29.0 | 29.5
30.0
30.0
30.0
29.5 | 22.5
22.0
24.5
26.0 | 21.0
20.5
20.5
22.0
22.5 | 21.5
21.0
22.0
24.0
24.0 | | 1
2
3
4
5 | 22.0
22.5
22.5
21.5
22.5
22.5 | 20.0
20.5
20.5
20.0
20.0
21.0 | 21.0
21.5
21.0
21.0
21.0 | 28.0
29.5
30.5
31.5
30.5 | JULY 25.0 25.5 27.0 28.0 28.0 26.5 25.0 | 26.5
27.5
28.5
29.5
29.5
27.5
26.5 | 31.5
32.0
31.5
32.0
30.5 | 27.5
28.0
28.0
28.0
29.0
26.5
25.0 | 29.5
30.0
30.0
30.0
29.5 | 22.5
22.0
24.5
26.0
26.0 | 21.0
20.5
20.5
20.5
22.0
22.5 | 21.5
21.0
22.0
24.0
24.0
24.0 | | 1
2
3
4
5 | 22.0
22.5
22.5
21.5
22.5
22.5 | JUNE 20.0 20.5 20.5 20.0 20.0 21.0 18.5 | 21.0
21.5
21.0
21.0
21.0
21.0 | 28.0
29.5
30.5
31.5
30.5 | 25.0
25.5
27.0
28.0
28.0
28.0
26.5
25.0
25.0 | 26.5
27.5
28.5
29.5
29.5
27.5
26.5 |
31.5
32.0
31.5
32.0
30.5
29.0
27.5
28.0 | 27.5
28.0
28.0
28.0
29.0
26.5
25.0
24.5 | 29.5
30.0
30.0
30.0
29.5
28.0
26.0
26.0 | 22.5
22.0
24.5
26.0
26.0
26.0
26.0 | 21.0
20.5
20.5
22.0
22.5
22.0
22.5 | 21.5
21.0
22.0
24.0
24.0
24.0
24.0
24.5 | | 1
2
3
4
5 | 22.0
22.5
22.5
21.5
22.5
22.5 | 20.0
20.5
20.5
20.0
20.0
21.0 | 21.0
21.5
21.0
21.0
21.0 | 28.0
29.5
30.5
31.5
30.5 | JULY 25.0 25.5 27.0 28.0 28.0 26.5 25.0 | 26.5
27.5
28.5
29.5
29.5
27.5
26.5 | 31.5
32.0
31.5
32.0
30.5 | 27.5
28.0
28.0
28.0
29.0
26.5
25.0 | 29.5
30.0
30.0
30.0
29.5 | 22.5
22.0
24.5
26.0
26.0 | 21.0
20.5
20.5
20.5
22.0
22.5 | 21.5
21.0
22.0
24.0
24.0
24.0 | | 1
2
3
4
5
6
7
8
9 | 22.0
22.5
22.5
21.5
22.5
22.5
22.5
20.0
21.5 | JUNE 20.0 20.5 20.5 20.0 20.0 21.0 18.5 18.0 19.5 | 21.0
21.5
21.0
21.0
21.0
21.0
21.5

19.0
19.0
20.5 | 28.0
29.5
30.5
31.5
30.5
29.0
28.0
28.5
28.5
29.0 | JULY 25.0 25.5 27.0 28.0 28.0 26.5 25.0 25.0 25.0 | 26.5
27.5
28.5
29.5
29.5
27.5
26.5
27.0
27.5 | 31.5
32.0
31.5
32.0
30.5
29.0
27.5
28.0
28.5 | 27.5
28.0
28.0
29.0
26.5
25.0
24.5
23.5
24.0 | 29.5
30.0
30.0
30.0
29.5
28.0
26.0
26.0
26.0 | 22.5
22.0
24.5
26.0
26.0
26.0
26.5
27.0 | 21.0
20.5
20.5
22.0
22.5
22.0
22.5
22.0
22.5
22.5 | 21.5
21.0
22.0
24.0
24.0
24.0
24.5
25.0
25.5 | | 1
2
3
4
5
6
7
8
9 | 22.0
22.5
22.5
21.5
22.5
22.5

19.5
20.0 | JUNE 20.0 20.5 20.5 20.0 20.0 21.0 18.5 18.0 | 21.0
21.5
21.0
21.0
21.0
21.0 | 28.0
29.5
30.5
31.5
30.5
29.0
28.0
28.5
28.5 | 25.0
25.5
27.0
28.0
28.0
28.0
26.5
25.0
25.0
25.5 | 26.5
27.5
28.5
29.5
29.5
27.5
26.5
26.5
27.0 | 31.5
32.0
31.5
32.0
30.5
29.0
27.5
28.0
28.5 | 27.5
28.0
28.0
29.0
26.5
25.0
24.5
23.5 | 29.5
30.0
30.0
30.0
29.5
28.0
26.0
26.0 | 22.5
22.0
24.5
26.0
26.0
26.0
26.5
27.0 | 21.0
20.5
20.5
22.0
22.5
22.0
22.5
22.0
22.5 | 21.5
21.0
22.0
24.0
24.0
24.0
24.5
25.0 | | 1
2
3
4
5
6
7
8
9
10 | 22.0
22.5
22.5
21.5
22.5
22.5
22.5
20.0
21.5
23.0
23.5
22.5 | JUNE 20.0 20.5 20.5 20.0 20.0 21.0 18.5 18.0 19.5 20.5 22.0 21.5 | 21.0
21.5
21.0
21.0
21.0
21.0
21.5

19.0
20.5
21.5
22.5
22.0 | 28.0
29.5
30.5
31.5
30.5
29.0
28.0
28.5
29.0
28.5
29.0 | JULY 25.0 25.5 27.0 28.0 28.0 26.5 25.0 25.0 25.5 26.0 24.5 24.0 24.0 | 26.5
27.5
28.5
29.5
29.5
27.5
26.5
27.0
27.5
26.0
25.5 | 31.5
32.0
31.5
32.0
30.5
29.0
27.5
28.0
28.5
28.5
29.0 | 27.5
28.0
28.0
29.0
26.5
25.0
24.5
23.5
24.0
24.5
25.5
26.5 | 29.5
30.0
30.0
29.5
28.0
26.0
26.0
26.0
26.5
27.5
28.5 | 22.5
22.0
24.5
26.0
26.0
26.0
26.5
27.0
27.5 | 21.0
20.5
20.5
22.5
22.0
22.5
22.0
22.5
22.0
22.5
22.5 | 21.5
21.0
22.0
24.0
24.0
24.0
24.5
25.5
25.0
23.0
23.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 22.0
22.5
22.5
22.5
22.5
22.5
22.5
22.5 | JUNE 20.0 20.5 20.5 20.0 20.0 21.0 18.5 18.0 19.5 20.5 22.0 21.5 19.5 | 21.0
21.5
21.0
21.0
21.0
21.0
21.5

19.0
20.5 | 28.0
29.5
30.5
31.5
30.5
29.0
28.0
28.5
29.0
28.0
28.0
27.0
26.5 | JULY 25.0 25.5 28.0 28.0 28.0 26.5 25.0 25.0 25.5 26.0 24.5 24.0 24.5 | 26.5
27.5
28.5
29.5
29.5
27.5
26.5
27.0
27.5 | 31.5
32.0
31.5
32.0
30.5
29.0
27.5
28.5
28.5
29.0
29.5
30.5 | 27.5
28.0
28.0
29.0
29.0
26.5
25.0
24.5
23.5
24.0
24.5
25.5
26.5
27.0 | 29.5
30.0
30.0
30.0
29.5
28.0
26.0
26.0
26.0
26.5
27.5
28.5 | 22.5
22.0
24.5
26.0
26.0
26.0
26.5
27.0
27.5
26.0
24.5
25.0 | 21.0
20.5
20.5
22.0
22.5
22.0
22.5
22.0
22.5
22.5 | 21.5
21.0
22.0
24.0
24.0
24.0
24.0
24.5
25.0
25.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 22.0
22.5
22.5
21.5
22.5
22.5
22.5
20.0
21.5
23.0
23.5
22.5
21.5
21.5 | JUNE 20.0 20.5 20.5 20.0 20.0 21.0 18.5 18.0 19.5 20.5 22.0 21.5 19.5 18.5 | 21.0
21.5
21.0
21.0
21.0
21.0
21.5

19.0
20.5
21.5
22.5
22.0
20.5 | 28.0
29.5
30.5
31.5
30.5
29.0
28.0
28.5
29.0
28.0
28.0
28.0
28.0
28.0
28.0
28.0 | JULY 25.0 25.5 27.0 28.0 28.0 25.5 25.0 25.0 25.5 26.0 24.5 24.0 24.5 24.0 | 26.5
27.5
28.5
29.5
29.5
26.5
26.5
27.0
27.5
26.0
25.5
25.5
26.0 | 31.5
32.0
31.5
32.0
30.5
29.0
27.5
28.0
28.5
28.5
29.5
30.5
30.5 | 27.5
28.0
28.0
29.0
26.5
25.0
24.5
23.5
24.0
24.5
27.0
27.5 | 29.5
30.0
30.0
29.5
28.0
26.0
26.0
26.0
26.5
27.5
28.5
28.5 | 22.5
22.0
24.5
26.0
26.0
26.0
26.5
27.0
27.5
26.0
24.5
25.0 | 21.0
20.5
20.5
20.5
22.0
22.5
22.0
22.5
22.0
22.5
22.0
22.5
22.1
23.5 | 21.5
21.0
22.0
24.0
24.0
24.0
24.5
25.5
25.0
23.0
23.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 22.0
22.5
22.5
22.5
22.5
22.5
22.5
22.5 | JUNE 20.0 20.5 20.5 20.0 20.0 21.0 18.5 18.0 19.5 20.5 22.0 21.5 19.5 18.5 | 21.0
21.5
21.0
21.0
21.0
21.0
21.5

19.0
20.5
21.5
22.5
22.5
22.5
22.0
20.5 | 28.0
29.5
30.5
31.5
30.5
29.0
28.0
28.5
29.0
28.0
27.0
26.5
28.5 | JULY 25.0 25.5 28.0 28.0 28.0 26.5 25.0 25.5 26.0 24.5 24.0 24.5 24.0 25.0 | 26.5
27.5
28.5
29.5
29.5
27.5
26.5
27.0
27.5
26.0
25.5
26.0
25.5
26.0 | 31.5
32.0
31.5
32.0
30.5
29.0
27.5
28.0
28.5
28.5
29.0
29.5
30.5
30.5 | 27.5
28.0
28.0
29.0
26.5
25.0
24.5
23.5
24.0
24.5
25.5
26.5
27.0
27.5 | 29.5
30.0
30.0
30.0
29.5
28.0
26.0
26.0
26.0
26.0
26.5
27.5
28.5
28.5
29.0 | 22.5
22.0
24.5
26.0
26.0
26.0
26.5
27.0
27.5
26.0
24.5
25.0 | 21.0
20.5
20.5
22.0
22.5
22.0
22.5
22.0
22.5
22.5 | 21.5
21.0
22.0
24.0
24.0
24.0
24.0
24.5
25.0
25.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 22.0
22.5
22.5
21.5
22.5
22.5
22.5
20.0
21.5
23.0
23.5
22.5
21.5
21.5 | JUNE 20.0 20.5 20.5 20.0 20.0 21.0 18.5 18.0 19.5 20.5 22.0 21.5 19.5 18.5 | 21.0
21.5
21.0
21.0
21.0
21.0
21.5

19.0
20.5
21.5
22.5
22.0
20.5 | 28.0
29.5
30.5
31.5
30.5
29.0
28.0
28.5
29.0
28.0
28.0
28.0
28.0
28.0
28.0
28.0 | JULY 25.0 25.5 27.0 28.0 28.0 25.5 25.0 25.0 25.5 26.0 24.5 24.0 24.5 24.0 | 26.5
27.5
28.5
29.5
29.5
26.5
26.5
27.0
27.5
26.0
25.5
25.5
26.0 | 31.5
32.0
31.5
32.0
30.5
29.0
27.5
28.0
28.5
28.5
29.5
30.5
30.5 | 27.5
28.0
28.0
29.0
26.5
25.0
24.5
23.5
24.0
24.5
27.0
27.5 | 29.5
30.0
30.0
29.5
28.0
26.0
26.0
26.0
26.5
27.5
28.5
28.5 | 22.5
22.0
24.5
26.0
26.0
26.0
26.5
27.0
27.5
26.0
24.5
25.0 | 21.0
20.5
20.5
20.5
22.0
22.5
22.0
22.5
22.0
22.5
22.0
22.5
22.1
23.5 | 21.5
21.0
22.0
24.0
24.0
24.0
24.5
25.5
25.0
23.0
23.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 22.0
22.5
22.5
22.5
22.5
22.5
22.5
22.5 | JUNE 20.0 20.5 20.5 20.0 21.0 18.5 18.0 19.5 22.0 21.5 19.5 18.0 19.5 | 21.0
21.5
21.0
21.0
21.0
21.0
21.5

19.0
20.5
21.5
22.5
22.5
22.5
22.0
20.5
19.0
20.5 | 28.0
29.5
30.5
31.5
30.5
29.0
28.0
28.5
29.0
28.0
27.0
26.5
28.5
28.5 | JULY 25.0 25.5 28.0 28.0 26.5 25.0 25.5 26.0 24.5 24.0 24.5 24.0 24.5 24.0 | 26.5
27.5
28.5
29.5
29.5
27.5
26.5
27.0
27.5
26.0
25.5
26.0
25.5
26.0
26.0
26.5
26.5
26.5 | 31.5
32.0
31.5
32.0
30.5
29.0
27.5
28.5
28.5
29.5
30.5
30.5
30.5
31.5
31.5 | 27.5
28.0
28.0
29.0
26.5
25.0
24.5
24.5
24.5
25.5
24.0
24.5
25.5
26.5
27.0
27.5 | 29.5
30.0
30.0
30.0
29.5
28.0
26.0
26.0
26.0
26.0
26.5
27.5
28.5
28.5
29.0
29.5 | 22.5
22.0
24.5
26.0
26.0
26.0
26.5
27.0
27.5
26.0
24.5
25.0
 | 21.0
20.5
20.5
22.0
22.5
22.0
22.5
22.0
22.5
22.5 | 21.5
21.0
22.0
24.0
24.0
24.0
24.5
25.0
25.5
25.0
23.0
23.0
24.0
24.0 | |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 22.0
22.5
22.5
21.5
22.5
22.5
22.5
20.0
21.5
23.0
23.5
22.5
21.5
21.5
23.0 | JUNE 20.0 20.5 20.5 20.0 20.0 21.0 18.5 18.0 19.5 20.5 22.0 21.5 19.5 18.5 18.0 19.0 | 21.0
21.5
21.0
21.0
21.0
21.0
21.5

19.0
20.5
21.5
22.5
22.0
20.5
19.0
20.5 | 28.0
29.5
30.5
31.5
30.5
29.0
28.0
28.5
29.0
28.0
27.0
26.5
28.5
28.5 | JULY 25.0 25.5 27.0 28.0 28.0 26.5 25.0 25.5 26.0 24.5 24.0 24.5 24.0 25.0 25.0 25.5 26.0 | 26.5
27.5
28.5
29.5
29.5
26.5
26.5
27.0
27.5
26.0
25.5
26.0
25.5
26.0 | 31.5
32.0
31.5
32.0
30.5
29.0
27.5
28.0
28.5
29.5
30.5
30.5
30.5
30.5 | 27.5
28.0
28.0
29.0
26.5
25.0
24.5
23.5
24.0
24.5
27.5
26.5
27.0
27.5 | 29.5
30.0
30.0
29.5
28.0
26.0
26.0
26.0
26.5
27.5
28.5
29.0
29.5
30.0 | 22.5
22.0
24.5
26.0
26.0
26.0
26.5
27.0
27.5
26.0
24.5
25.0
 | 21.0
20.5
20.5
22.5
22.0
22.5
22.0
22.5
22.0
22.5
22.1
22.5
23.5
23.0
21.5
21.0
 | 21.5
21.0
22.0
22.0
24.0
24.0
24.5
25.5
25.0
23.0
23.0
23.0
24.0
24.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 22.0
22.5
22.5
22.5
22.5
22.5
22.5
22.5 | JUNE 20.0 20.5 20.5 20.0 21.0 18.5 18.0 19.5 22.0 21.5 19.5 18.5 18.0 19.5 20.0 21.0 | 21.0
21.5
21.0
21.0
21.0
21.0
21.5

19.0
19.0
20.5
21.5
22.5
22.0
20.5
19.0
20.0
20.0
21.0 | 28.0
29.5
30.5
31.5
30.5
29.0
28.0
28.5
29.0
28.0
27.0
26.5
28.5
29.5
30.0
30.5 | JULY 25.0 25.5 27.0 28.0 28.0 26.5 25.0 25.5 26.0 24.5 24.0 24.5 24.0 25.0 26.5 27.5 | 26.5
27.5
28.5
29.5
29.5
27.5
26.5
27.0
27.5
26.0
25.5
26.0
25.5
26.0
26.0
25.5
26.5
28.5
28.5 | 31.5
32.0
31.5
32.0
30.5
29.0
27.5
28.0
28.5
28.5
29.0
29.5
30.5
30.5
30.5
31.5
31.5
31.5 | 27.5
28.0
28.0
29.0
26.5
25.0
24.5
23.5
24.0
24.5
25.5
26.5
27.0
27.5
28.0
28.0
28.0 | 29.5
30.0
30.0
30.0
29.5
28.0
26.0
26.0
26.0
26.5
27.5
28.5
28.5
29.0
29.5
30.0
29.5 | 22.5
22.0
24.5
26.0
26.0
26.0
26.5
27.0
27.5
26.0
24.5
25.5
25.5 | 21.0
20.5
20.5
22.0
22.5
22.0
22.5
22.5
22 | 21.5
21.0
22.0
24.0
24.0
24.0
24.0
24.5
25.0
25.5
25.0
23.0
23.0
24.0
24.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 22.0
22.5
22.5
22.5
22.5
22.5
22.5
20.0
21.5
23.0
23.5
22.5
21.5
21.5
21.5
21.5
21.5
21.5 | JUNE 20.0 20.5 20.0 20.0 21.0 18.5 18.0 19.5 22.0 21.5 19.5 18.5 18.0 19.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 | 21.0
21.5
21.0
21.0
21.0
21.0
21.5

19.0
20.5
21.5
22.5
22.0
20.5
19.0
20.0
20.0
21.0 | 28.0
29.5
30.5
31.5
30.5
29.0
28.0
28.5
29.0
28.0
27.0
26.5
28.5
29.5
30.5 | JULY 25.0 25.5 27.0 28.0 28.0 26.5 25.0 25.5 26.0 24.5 24.0 24.5 24.0 24.5 24.0 25.0 26.5 27.5 26.5 | 26.5
27.5
28.5
29.5
29.5
26.5
26.5
27.0
27.5
26.0
25.5
26.0
25.5
26.0
25.5
28.0
28.5
28.5 | 31.5
32.0
31.5
32.0
30.5
29.0
27.5
28.5
28.5
29.0
29.5
30.5
30.5
30.5
31.5
31.5
31.5
31.5 | 27.5
28.0
28.0
29.0
26.5
25.0
24.5
23.5
24.0
24.5
25.5
26.5
26.5
27.0
27.5
28.0
28.5
28.0
28.0 | 29.5
30.0
30.0
29.5
28.0
26.0
26.0
26.0
26.5
27.5
28.5
29.0
29.5
30.0
29.5
30.0
29.5 | 22.5 22.0 24.5 26.0 26.0 26.0 26.5 27.5 26.0 24.5 25.5 25.5 | 21.0
20.5
20.5
22.0
22.5
22.0
22.5
22.5
22 | 21.5
21.0
22.0
22.0
24.0
24.0
24.0
24.5
25.5
25.5
25.0
23.0
23.0
24.0
24.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 22.0
22.5
22.5
22.5
22.5
22.5
22.5
22.5 | JUNE 20.0 20.5 20.5 20.0 21.0 18.5 18.0 19.5 22.0 21.5 19.5 18.0 19.5 18.0 19.5 20.0 21.0 22.0 23.0 24.0 | 21.0
21.5
21.0
21.0
21.0
21.0
21.5

19.0
19.0
20.5
21.5
22.5
22.0
20.5
19.0
20.0
21.0
21.0 | 28.0
29.5
30.5
31.5
30.5
29.0
28.0
28.5
29.0
28.0
27.0
26.5
28.5
29.5
30.0
30.5 | JULY 25.0 25.5 28.0 28.0 26.5 25.0 25.5 26.0 24.5 24.0 24.5 24.0 25.0 24.5 26.5 27.0 26.5 27.0 | 26.5
27.5
28.5
29.5
29.5
27.5
26.5
27.0
27.5
26.0
27.5
26.0
25.5
26.0
26.5
28.5
28.5
28.5
28.5 | 31.5
32.0
31.5
32.0
30.5
29.0
27.5
28.5
28.5
29.0
29.5
30.5
30.5
30.5
31.5
31.5
31.5
31.0
30.0 | 27.5
28.0
28.0
29.0
26.5
25.0
24.5
23.5
24.0
24.5
25.5
26.5
27.0
27.5
28.0
28.0
28.0
27.0
28.0
27.0
28.0
28.0
27.0
28.0
27.0
28.0
28.0
27.0
28.0
27.0
28.0
27.0
27.0
28.0
27.0
28.0
27.0
27.0
28.0
28.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29 | 29.5
30.0
30.0
30.0
29.5
28.0
26.0
26.0
26.0
26.0
26.5
27.5
28.5
29.0
29.5
30.0
29.5
29.5
29.5
30.0
29.5 | 22.5
22.0
24.5
26.0
26.0
26.0
26.5
27.0
27.5
26.0
24.5
25.5
25.5 | 21.0
20.5
20.5
22.0
22.5
22.0
22.5
22.5
23.5
23.5
23.0
21.5
21.0
 | 21.5
21.0
22.0
24.0
24.0
24.0
24.0
24.5
25.0
25.5
25.0
23.0
24.0
24.0
24.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 22.0
22.5
22.5
22.5
22.5
22.5
22.5
20.0
21.5
23.5
22.5
21.5
21.5
21.5
21.5
22.5
21.5
22.5
21.5 | JUNE 20.0 20.5 20.5 20.0 20.0 21.0 18.5 18.0 19.5 20.5 22.0 21.5 19.5 18.0 19.5 20.0 21.0 21.0 22.0 23.0 | 21.0
21.5
21.0
21.0
21.0
21.0
21.5

19.0
20.5
21.5
22.5
22.0
20.5
19.0
20.0
20.0
21.0
21.0 | 28.0
29.5
30.5
31.5
30.5
29.0
28.0
28.5
28.5
29.0
28.0
27.0
26.5
28.5
29.5
30.0
30.5 | JULY 25.0 25.5 27.0 28.0 28.0 26.5 25.0 25.5 26.0 24.5 24.0 24.5 24.0 24.5 24.0 25.0 26.5 27.5 26.5 | 26.5
27.5
28.5
29.5
29.5
29.5
26.5
26.5
27.5
26.0
25.5
26.0
25.5
26.0
26.0
25.5
26.0
28.5
28.5
28.5
28.5
28.5 | 31.5
32.0
31.5
32.0
30.5
29.0
27.5
28.0
28.5
29.5
30.5
30.5
31.5
31.5
31.0
30.0 | 27.5
28.0
28.0
29.0
26.5
25.0
24.5
23.5
24.0
24.5
25.5
26.5
27.0
27.5
28.0
28.0
28.0
28.0 | 29.5
30.0
30.0
29.5
28.0
26.0
26.0
26.0
26.0
26.0
26.0
29.5
28.5
28.5
29.0
29.5
30.0
29.5
29.5 | 22.5 22.0 24.5 26.0 26.0 26.5 27.0 27.5 26.0 24.5 25.0 | 21.0
20.5
20.5
22.0
22.5
22.0
22.5
22.5
22 | 21.5
21.0
22.0
22.0
24.0
24.0
24.0
24.5
25.5
25.5
25.0
23.0
23.0
23.0
24.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 22.0
22.5
22.5
22.5
22.5
22.5
22.5
22.5 | JUNE 20.0 20.5 20.5 20.0 21.0 18.5 18.0 19.5 22.0 21.5 19.5 18.0 19.5 18.0 19.5 20.0 21.0 22.0 23.0 24.0 | 21.0
21.5
21.0
21.0
21.0
21.0
21.5

19.0
19.0
20.5
21.5
22.5
22.0
20.5
19.0
20.0
21.0
21.0 | 28.0
29.5
30.5
31.5
30.5
29.0
28.0
28.5
29.0
28.0
27.0
26.5
28.5
29.5
30.0
30.5 | JULY 25.0 25.5 28.0 28.0 26.5 25.0 25.5 26.0 24.5 24.0 24.5 24.0 25.0 24.5 26.5 27.0 26.5 27.0 | 26.5
27.5
28.5
29.5
29.5
27.5
26.5
27.0
27.5
26.0
27.5
26.0
25.5
26.0
26.5
28.5
28.5
28.5
28.5 | 31.5
32.0
31.5
32.0
30.5
29.0
27.5
28.5
28.5
29.0
29.5
30.5
30.5
30.5
31.5
31.5
31.5
31.0
30.0 | 27.5
28.0
28.0
29.0
26.5
25.0
24.5
23.5
24.0
24.5
25.5
26.5
27.0
27.5
28.0
28.0
28.0
27.0
28.0
27.0
28.0
28.0
27.0
28.0
27.0
28.0
28.0
27.0
28.0
27.0
28.0
27.0
27.0
28.0
27.0
28.0
27.0
27.0
28.0
28.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29 | 29.5
30.0
30.0
30.0
29.5
28.0
26.0
26.0
26.0
26.0
26.5
27.5
28.5
29.0
29.5
30.0
29.5
29.5
29.5
30.0
29.5 | 22.5
22.0
24.5
26.0
26.0
26.0
26.5
27.0
27.5
26.0
24.5
25.5
25.5 | 21.0
20.5
20.5
22.0
22.5
22.0
22.5
22.5
23.5
23.5
23.0
21.5
21.0
 | 21.5
21.0
22.0
24.0
24.0
24.0
24.0
24.5
25.0
25.5
25.0
23.0
24.0
24.0
24.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 |
22.0
22.5
22.5
22.5
22.5
22.5
22.5
20.0
21.5
23.0
23.5
22.5
21.5
19.5
21.0
22.5
21.0
22.5 | JUNE 20.0 20.5 20.5 20.0 20.0 21.0 18.5 18.0 19.5 22.0 21.5 18.5 18.0 19.5 22.0 21.5 18.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 23.0 24.0 25.0 | 21.0
21.5
21.0
21.0
21.0
21.0
21.5

19.0
20.5
21.5
22.5
22.0
20.5
19.0
20.0
21.0
22.0
23.5
24.5
24.5
25.5
26.5 | 28.0
29.5
30.5
31.5
30.5
29.0
28.0
28.5
29.0
28.0
27.0
26.5
28.5
29.5
30.5
30.5
30.5 | JULY 25.0 25.5 27.0 28.0 28.0 26.5 25.0 25.5 26.0 24.5 24.0 24.5 24.0 24.5 24.0 25.0 26.5 27.5 26.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27 | 26.5
27.5
28.5
29.5
29.5
27.5
26.5
27.0
27.5
26.0
25.5
26.0
25.5
28.0
28.5
28.5
28.0
29.0
27.5 | 31.5
32.0
31.5
32.0
30.5
29.0
27.5
28.5
28.5
29.0
29.5
30.5
30.5
30.5
31.5
31.5
31.5
31.5
31.5
31.5 | 27.5 28.0 28.0 29.0 26.5 25.0 24.5 24.5 27.0 27.5 28.5 28.0 27.5 28.5 28.0 28.5 28.0 28.5 28.0 28.5 28.0 24.5 25.5 28.0 24.5 28.0 24.5 25.5 28.0 28.5 28.0 28.5 28.0 | 29.5
30.0
30.0
29.5
28.0
26.0
26.0
26.0
26.5
27.5
28.5
29.0
29.5
30.0
29.5
29.5
30.0
29.5
29.5
29.5 | 22.5 22.0 24.5 26.0 26.0 26.0 27.5 26.0 27.5 25.5 25.5 25.5 25.5 25.6 27.0 21.0 | 21.0
20.5
22.0
22.5
22.0
22.5
22.0
22.5
22.5 | 21.5
21.0
22.0
22.0
24.0
24.0
24.0
24.5
25.5
25.0
23.0
23.0
24.5
24.0
24.5
25.5 | | 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | 22.0
22.5
22.5
22.5
22.5
22.5
22.5
20.0
21.5
23.0
23.5
22.5
21.5
21.5
21.5
21.5
22.5
21.5
22.5
21.0
22.5
21.0
22.5 | JUNE 20.0 20.5 20.0 20.0 21.0 18.5 18.0 19.5 20.5 22.0 21.5 19.5 18.0 19.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 22.0 23.0 24.0 25.0 | 21.0
21.5
21.0
21.0
21.0
21.0
21.5

19.0
20.5
22.5
22.5
22.0
20.5
19.0
20.0
20.0
20.0
20.0
21.0
20.0
20.0
20 | 28.0
29.5
30.5
31.5
30.5
29.0
28.5
28.5
29.0
28.0
27.0
26.5
28.5
29.5
30.0
30.5
30.5
31.0
29.0
27.0
29.0 | JULY 25.0 25.5 27.0 28.0 28.0 26.5 25.0 25.5 26.0 24.5 24.0 24.5 24.0 24.5 27.5 26.5 27.5 27.0 26.0 25.5 | 26.5
27.5
28.5
29.5
29.5
29.5
26.5
26.5
27.0
27.5
26.0
25.5
26.0
26.5
28.0
28.5
28.5
28.0
29.0
28.0
27.5 | 31.5
32.0
31.5
32.0
30.5
29.0
27.5
28.0
28.5
28.5
30.5
30.5
30.5
31.5
31.5
31.0
30.0 | 27.5 28.0 28.0 29.0 26.5 25.0 24.5 24.5 26.5 27.0 27.5 28.5 28.0 28.5 28.0 28.5 28.0 28.5 28.0 28.5 28.0 28.5 28.0 28.5 28.0 28.5 28.0 | 29.5
30.0
30.0
29.5
28.0
26.0
26.0
26.0
26.5
28.5
28.5
29.0
29.5
30.0
29.5
30.0
29.5
29.5
30.0
29.5 | 22.5 22.0 24.5 26.0 26.0 26.0 27.5 27.5 26.0 24.5 25.0 25.5 25.5 22.0 21.0 22.0 | 21.0 20.5 22.0 22.5 22.0 22.5 22.0 22.5 22.5 | 21.5
21.0
22.0
22.0
24.0
24.0
24.0
24.5
25.5
25.5
25.0
23.0
23.0
23.0
24.0
24.0
24.0
24.0
25.5
25.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 22.0
22.5
22.5
22.5
22.5
22.5
22.5
20.0
21.5
23.0
23.5
22.5
21.5
19.5
21.0
22.5
24.0
22.5
24.0
22.5
24.0
22.5
24.0
22.5
27.0
28.0
27.0
28.0
29.0
29.0
29.0
20.0
20.0
20.0
20.0
20 | JUNE 20.0 20.5 20.5 20.0 20.0 21.0 18.5 18.0 19.5 22.0 21.5 18.5 18.0 19.5 22.0 21.5 18.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 23.0 24.0 25.0 | 21.0
21.5
21.0
21.0
21.0
21.0
21.5

19.0
20.5
22.5
22.5
22.0
20.5
19.0
20.0
21.0
22.0
23.5
24.5
24.5
25.5
26.0
26.0
26.0
26.0 | 28.0
29.5
30.5
31.5
30.5
29.0
28.0
28.5
29.0
28.0
27.0
26.5
28.5
29.5
29.5
30.5
30.5
30.5 | JULY 25.0 25.5 27.0 28.0 28.0 26.5 25.0 25.5 26.0 24.5 24.0 24.5 24.0 24.5 24.0 25.0 26.5 27.5 26.5 27.5 27.0 26.5 27.5 27.0 26.5 | 26.5
27.5
28.5
29.5
29.5
27.5
26.5
27.0
27.5
26.0
25.5
26.0
25.5
28.0
28.5
28.5
28.0
29.0
25.5
28.0
29.0
26.0
27.5 | 31.5
32.0
31.5
32.0
30.5
29.0
27.5
28.5
28.5
29.0
29.5
30.5
30.5
30.5
31.5
31.5
31.5
31.5
31.5
31.5
31.5
31 | 27.5 28.0 28.0 29.0 26.5 25.0 24.5 24.5 24.5 27.0 27.5 28.5 28.0 28.5 28.0 28.5 28.0 28.5 28.0 24.5 25.5 26.0 27.0 27.5 | 29.5
30.0
30.0
29.5
28.0
26.0
26.0
26.0
26.5
27.5
28.5
29.0
29.5
30.0
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5 | 22.5 22.0 24.5 26.0 26.0 26.0 26.5 27.0 27.5 26.0 24.5 25.5 25.5 25.5 22.0 21.0 22.0 21.5 21.5 | 21.0
20.5
22.0
22.5
22.0
22.5
22.0
22.5
22.5 | 21.5
21.0
22.0
22.0
24.0
24.0
24.0
24.5
25.0
25.5
25.0
23.0
24.5
24.0
24.5
25.0
23.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 22.0
22.5
22.5
22.5
22.5
22.5
22.5
22.5 | JUNE 20.0 20.5 20.5 20.0 21.0 18.5 18.0 19.5 22.0 21.5 19.5 18.0 19.5 22.0 21.0 22.0 23.0 24.0 25.0 26.0 24.5 | 21.0
21.5
21.0
21.0
21.0
21.0
21.5
21.5
22.5
22.5
22.5
22.5
22.5
22.5 | 28.0
29.5
30.5
31.5
30.5
29.0
28.0
28.5
29.0
28.0
27.0
26.5
28.5
29.5
30.5
30.5
30.5
29.5
30.0
30.5 | JULY 25.0 25.5 28.0 28.0 26.5 25.0 25.5 26.0 24.5 24.0 24.5 24.0 25.0 26.5 27.0 26.5 27.0 26.5 27.5 26.0 | 26.5
27.5
28.5
29.5
29.5
27.5
26.5
27.0
27.5
26.0
25.5
26.0
25.5
28.0
28.5
28.0
29.0
29.0
27.5 | 31.5
32.0
31.5
32.0
30.5
29.0
27.5
28.5
28.5
29.5
30.5
30.5
30.5
31.5
31.5
31.5
31.5
31.5
28.5
28.5 | 27.5 28.0 28.0 29.0 26.5 25.0 24.5 24.5 28.0 27.5 28.5 28.0 27.0 27.5 28.5 28.0 28.0 27.0 24.5 25.5 28.0 28.0 24.5 25.5 28.0 28.0 28.0 | 29.5
30.0
30.0
30.0
29.5
28.0
26.0
26.0
26.0
26.5
27.5
28.5
29.0
29.5
29.5
30.0
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5 | 22.5
22.0
24.5
26.0
26.0
26.0
26.5
27.0
27.5
26.0
24.5
25.5
25.0

25.5
25.5
25.5 | 21.0 20.5 22.0 22.5 22.0 22.5 22.0 22.5 23.5 23.0 21.5 21.0 23.0 22.5 23.0 22.5 23.0 22.5 23.0 22.5 23.0 22.5 23.0 22.5 23.0 22.5 23.0 22.5 | 21.5
21.0
22.0
24.0
24.0
24.0
24.5
25.5
25.0
23.0
23.0
24.5
25.5
25.0
23.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 22.0
22.5
22.5
22.5
22.5
22.5
22.5
20.0
21.5
23.0
23.5
22.5
21.5
19.5
21.0
22.5
24.0
22.5
24.0
22.5
24.0
22.5
24.0
22.5
27.0
28.0
27.0
28.0
29.0
29.0
29.0
20.0
20.0
20.0
20.0
20 | JUNE 20.0 20.5 20.5 20.0 20.0 21.0 18.5 18.0 19.5 22.0 21.5 18.5 18.0 19.5 22.0 21.5 18.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 23.0 24.0 25.0 | 21.0
21.5
21.0
21.0
21.0
21.0
21.5

19.0
20.5
22.5
22.5
22.0
20.5
19.0
20.0
21.0
22.0
23.5
24.5
24.5
25.5
26.0
26.0
26.0
26.0 | 28.0
29.5
30.5
31.5
30.5
29.0
28.0
28.5
29.0
28.0
27.0
26.5
28.5
29.5
29.5
30.5
30.5
30.5 | JULY 25.0 25.5 27.0 28.0 28.0 26.5 25.0 25.5 26.0 24.5 24.0 24.5 24.0 24.5 24.0 25.0 26.5 27.5 26.5 27.5 27.0 26.5 27.5 27.0 26.5 | 26.5
27.5
28.5
29.5
29.5
27.5
26.5
27.0
27.5
26.0
25.5
26.0
25.5
28.0
28.5
28.5
28.0
29.0
25.5
28.0
29.0
26.0
27.5 | 31.5
32.0
31.5
32.0
30.5
29.0
27.5
28.5
28.5
29.0
29.5
30.5
30.5
30.5
31.5
31.5
31.5
31.5
31.5
31.5
31.5
31 | 27.5 28.0 28.0 29.0 26.5 25.0 24.5 24.5 24.5 27.0 27.5 28.5 28.0 28.5 28.0 28.5 28.0 28.5 28.0 24.5 25.5 26.0 27.0 27.5 | 29.5
30.0
30.0
29.5
28.0
26.0
26.0
26.0
26.5
27.5
28.5
29.0
29.5
30.0
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5 | 22.5 22.0 24.5 26.0 26.0 26.0 26.5 27.0 27.5 26.0 24.5 25.5 25.5 25.5 22.0 21.0 22.0 21.5 21.5 | 21.0
20.5
22.0
22.5
22.0
22.5
22.0
22.5
22.5 | 21.5
21.0
22.0
22.0
24.0
24.0
24.0
24.5
25.0
25.5
25.0
23.0
24.5
24.0
24.5
25.0
23.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24 | ## 01460200 DELAWARE RIVER BELOW TOHICKON CREEK AT POINT PLEASANT, PA OXYGEN, DISSOLVED (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|--|---------------------
--|--------------------------------------|-----------------------|----------------------|---|--|--|---|---------------------------------|--| | | | OCTOBER | | | NOVEMBER | | | DECEMBER | | | JANUARY | | | 1 | 10.7 | 9.4 | 10 | 13.7 | 10.3 | 11.7 | 11.9 | 9.1 | 10.2 | | | | | 2 | 10.8
10.9 | 9.7
9.5 | 10.1
10.1 | 13.6
13.4 | 10.1
9.5 | 11.5
11.0 | 11.6
12.4 | 9.6
10.2 | 10.5
11.1 | | | | | 4 | 10.5 | 9.1 | 9.7 | 13.4 | 9.7 | 11.3 | 12.4 | 10.2 | 11.3 | | | | | 5 | 10.5 | 8.8 | 9.5 | 13.5 | 9.7 | 11.3 | 12.4 | 10.8 | 11.4 | | | | | 6 | | | | 14.0 | 9.9 | 11.7 | | | | | | | | 7
8 | | | | 14.1
14.2 | 10.2
10.1 | 11.8
11.8 | | | | | | | | 9 | | | | 14.3 | 10.0 | 11.8 | | | | | | | | 10 | | | | 14.1 | 10.2 | 11.9 | | | | | | | | 11 | | | | 14.3 | 10.3 | 12.0 | | | | | | | | 12
13 | $12.1 \\ 12.1$ | 9.8
9.6 | 10.8
10.6 | 14.6
14.9 | 10.7
11.2 | 12.3
12.8 | | | | | | | | 14 | 11.8 | 9.2 | 10.2 | 15.2 | 11.4 | 13.1 | | | | | | | | 15 | 12.0 | 8.9 | 10.2 | 14.9 | 11.2 | 12.8 | | | | | | | | 16 | 11.9 | 9.2 | 10.4 | 14.9 | 10.9 | 12.7 | | | | | | | | 17 | 12.1 | 9.0 | 10.4 | 15.0 | 10.8 | 12.6 | | | | | | | | 18
19 | | | | 14.8
14.5 | 11.0
11.0 | 12.7
12.4 | | | | 13.5 | 13.0 | 13.2 | | 20 | 12.6 | 9.8 | 11.0 | 14.4 | 10.7 | 12.3 | | | | 13.8 | 13.2 | 13.5 | | 21 | 12.6 | 9.9 | 11.0 | 14.9 | 11.2 | 12.8 | | | | 13.8 | 13.4 | 13.6 | | 22 | 12.6 | 9.6 | 10.8 | 15.1 | 11.4 | 13.0 | | | | 14.0 | 13.4 | 13.7 | | 23
24 | $12.4 \\ 12.2$ | 9.4
8.9 | 10.6
10.3 | 15.0
14.4 | 11.5
11.3 | 13.0
12.5 | | | | 13.8 | 13.3 | 13.6 | | 25 | 12.0 | 8.6 | 10.0 | 13.5 | 10.6 | 11.7 | | | | | | | | 26 | 12.3 | 8.9 | 10.3 | 13.6 | 10.0 | 11.4 | | | | | | | | 27 | 12.4 | 9.3 | 10.6 | 12.9 | 10.1 | 11.1 | | | | | | | | 28
29 | 13.1
13.4 | 9.8
10.4 | 11.2
11.6 | 13.0
10.8 | 9.6
9.5 | 10.8
10 | | | | | | | | 30 | 13.5 | 10.1 | 11.6 | 10.9 | 9.2 | 9.8 | | | | | | | | 31 | 12.4 | 10.2 | 11.1 | | | | | | | | | | | MONTH | 13.5 | 8.6 | 10.5 | 15.2 | 9.2 | 11.9 | 12.4 | 9.1 | 10.9 | 14.0 | 13.0 | 13.5 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | | MIN FEBRUARY | MEAN | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | DAY
1 | | | MEAN | | MARCH | | MAX | | MEAN | MAX | | MEAN | | 1
2 | | FEBRUARY | | MAX
14.5
14.5 | | 13.2
13.2 | | APRIL | | | MAY
 | | | 1
2
3 | | FEBRUARY | | 14.5
14.5
 | 12.1
12.1 | 13.2 | | APRIL

 | |
 | MAY

 | | | 1
2 | | FEBRUARY | | 14.5
14.5 | MARCH
12.1
12.1 | 13.2
13.2 | | APRIL | | | MAY
 | | | 1
2
3
4
5 | | FEBRUARY | | 14.5
14.5
 | MARCH 12.1 12.1 | 13.2
13.2
 |

 | APRIL | |

 | MAY | | | 1
2
3
4
5 | | FEBRUARY | | 14.5
14.5

 | 12.1
12.1
 | 13.2
13.2

 | | APRIL | |

 | MAY | | | 1
2
3
4
5 | | FEBRUARY | | 14.5
14.5
 | MARCH 12.1 12.1 | 13.2
13.2
 |

 | APRIL | |

 | MAY | | | 1
2
3
4
5
6
7
8
9 | | FEBRUARY | | 14.5
14.5

 | 12.1
12.1
 | 13.2 | ====
====
====
==== | APRIL | ====
====
====
==== |

9.5 | MAY 9.1 |

9.3 | | 1
2
3
4
5 |
 | FEBRUARY | | 14.5
14.5

 | 12.1
12.1
 | 13.2
13.2

 |

 | APRIL |

 |

 | MAY 9.1 9.1 |

9.3
9.6 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | 14.5
14.5

 | 12.1
12.1
 | 13.2 | | APRIL 10.6 |

11.2 |

9.5
10.1 | MAY 9.1 9.1 |

9.3
9.6
9.9 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | 14.5
14.5

 | MARCH 12.1 12.1 | 13.2 |

11.8 | APRIL 10.6 10.3 | 11.2 |

9.5
10.1 | MAY 9.1 9.1 | 9.3
9.9 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | 14.5
14.5

 | 12.1
12.1
 | 13.2 |

11.8
11.5
11.8 | APRIL 10.6 10.3 10.2 | 11.2 |

9.5
10.1 | MAY 9.1 9.1 |

9.3
9.6 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | 14.5
14.5

 | 12.1
12.1
 | 13.2 |

11.8 | APRIL 10.6 10.3 | 11.2 |

9.5
10.1 | MAY 9.1 9.4 |

9.3
9.6
9.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | 14.5
14.5

 | MARCH 12.1 12.1 | 13.2 | 11.8
11.5
11.8
11.3 | APRIL 10.6 10.3 10.2 10.1 9.2 8.9 | 11.2
10.9
10.9
10.4 | 9.5
10.1 | MAY 9.1 9.1 | 9.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | 14.5
14.5
 | MARCH 12.1 12.1 | 13.2 13.2 | 11.8
11.5
11.8
11.3
9.3
9.4 | APRIL 10.6 10.3 10.2 10.1 9.2 8.9 8.7 | 11.2
10.9
10.9
10.9
10.4
9.1 | 9.5
10.1 | MAY 9.1 9.1 9.4 |

9.3
9.6
9.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | | FEBRUARY | | 14.5
14.5
 | MARCH 12.1 12.1 | 13.2 13.2 | 11.8
11.5
11.8
11.3
9.3
9.4
9.4 | APRIL 10.6 10.3 10.2 10.1 9.2 8.9 8.7 8.5 | 11.2
10.9
10.9
10.9
10.9
10.9
10.9 |

9.5
10.1 | MAY 9.1 9.1 9.4 | 9.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | 14.5
14.5
 | MARCH 12.1 12.1 | 13.2 13.2 | 11.8
11.5
11.8
11.3
9.3
9.4 | APRIL 10.6 10.3 10.2 10.1 9.2 8.9 8.7 | 11.2
10.9
10.9
10.9
10.4
9.1 | 9.5
10.1 | MAY 9.1 9.1 9.4 |

9.3
9.6
9.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | | FEBRUARY | | 14.5 14.5 | MARCH 12.1 12.1 | 13.2 | 11.8
11.5
11.8
11.3
9.3
9.4
9.4 | APRIL 10.6 10.3 10.2 10.1 9.2 8.9 8.7 8.5 8.2 | 11.2
10.9
10.9
10.4
9.1
9.0
8.9
8.6 | 9.5
10.1 | MAY 9.1 9.1 9.4 | 9.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | | FEBRUARY |

12.4
12.4 | 14.5
14.5
 | MARCH 12.1 12.1 | 13.2 13.2 | 11.8
11.5
11.8
11.5
11.8
11.3
9.3
9.4
9.5
9.0 | APRIL 10.6 10.3 10.2 10.1 9.2 8.9 8.7 8.5 8.2 7.9 8.3 8.9 | 11.2
10.9
10.9
10.9
10.4
9.1
9.0
8.9
8.6
8.4
8.8
9.5 | 9.5
10.1
10.4 | MAY 9.1 9.1 9.4 |

9.3
9.6
9.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | | FEBRUARY |

12.4
12.4
12.5 | 14.5 14.5 | MARCH 12.1 12.1 | 13.2 13.2 | 11.8
11.5
11.8
11.3
9.3
9.4
9.4
9.5
9.0 | APRIL 10.6 10.3 10.2 10.1 9.2 8.9 8.7 8.5 8.2 7.9 8.3 8.9 9.7 | 11.2
10.9
10.9
10.9
10.4
9.1
9.0
8.9
8.6
8.4
8.8
9.5
10.3 | 9.5
10.1
10.4 | MAY 9.1 9.1 9.4 | 9.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | | FEBRUARY |

12.4
12.4 | 14.5
14.5
 | MARCH 12.1 12.1 | 13.2 13.2 | 11.8
11.5
11.8
11.5
11.8
11.3
9.3
9.4
9.5
9.0 | APRIL 10.6 10.3 10.2 10.1 9.2 8.9 8.7 8.5 8.2 7.9 8.3 8.9 | 11.2
10.9
10.9
10.9
10.4
9.1
9.0
8.9
8.6
8.4
8.8
9.5 | 9.5
10.1
10.4 | MAY 9.1 9.1 9.4 |

9.3
9.6
9.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | | FEBRUARY | 12.4
12.5
12.6
12.7 | 14.5 14.5 14.5 | MARCH 12.1 12.1 | 13.2 13.2 | 11.8
11.8
11.3
9.3
9.4
9.4
9.5
9.0 | APRIL 10.6 10.3 10.2 10.1 9.2 8.9 8.7 8.5 8.2 7.9 8.3 8.9 9.7 10.1 | 11.2
10.9
10.9
10.9
10.4
9.1
9.0
8.6
8.4
8.8
9.5
10.3
10.5 | 9.5
10.1
10.4 | MAY 9.1 9.1 9.4 | 9.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | | FEBRUARY | 12.4
12.4
12.5
12.6
12.7 | 14.5 14.5 | MARCH 12.1 12.1 | 13.2 13.2 | 11.8
11.5
11.8
11.5
11.8
11.3
9.3
9.4
9.4
9.5
9.0 | APRIL 10.6 10.3 10.2 10.1 9.2 8.9 8.7 8.5 8.2 7.9 8.3 8.9 9.7 10.1 | 11.2
10.9
10.9
10.9
10.4
9.1
9.0
8.9
8.6
8.4
8.8
9.5
10.3 | 9.5
10.1
10.4

10.0 | MAY 9.1 9.1 9.4 9.3 9.3 9.0 |

9.3
9.6
9.9

9.6
9.4
9.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | | FEBRUARY | 12.4
12.5
12.6
12.7
12.4
12.3
12.8 | 14.5 14.5 | MARCH 12.1 12.1 | 13.2 13.2 | 11.8
11.5
11.8
11.3
9.3
9.4
9.4
9.5
9.0
9.4 | APRIL 10.6 10.3 10.2 10.1 9.2 8.9 8.7 8.5 8.2 7.9 8.3 8.9 9.7 10.1 | 11.2
10.9
10.9
10.9
10.4
9.1
9.0
8.9
8.6
8.8
9.5
10.3
10.5 |

9.5
10.1
10.4

10.0
9.9
10.1
10.2 | MAY 9.1 9.1 9.4 9.3 9.0 9.0 8.9 |

9.3
9.6
9.9

9.6
9.4
9.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | | FEBRUARY | 12.4
12.4
12.5
12.6
12.7 | 14.5 14.5 | MARCH 12.1 12.1 | 13.2 13.2 | 11.8
11.5
11.8
11.5
11.8
11.3
9.3
9.4
9.4
9.5
9.0 | APRIL 10.6 10.3 10.2 10.1 9.2 8.9 8.7 8.5 8.2 7.9 8.3 8.9 9.7 10.1 | 11.2
10.9
10.9
10.9
10.4
9.1
9.0
8.9
8.6
8.4
8.8
9.5
10.3 |

9.5
10.1
10.4

10.0
9.9
10.1
10.2
9.5 | MAY 9.1 9.1 9.4 9.1 9.1 9.4 9.3 | 9.3
9.6
9.9

9.6
9.4
9.5
9.5
9.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 13.1
13.4
13.5
13.6
13.8
13.3
13.5
14.1 | FEBRUARY | 12.4
12.4
12.5
12.6
12.7 | 14.5 14.5 14.5 | MARCH 12.1 12.1 | 13.2
13.2
 | 11.8
11.5
11.8
11.3
9.3
9.4
9.5
9.0
9.4 | APRIL 10.6 10.3 10.2 10.1 9.2 8.9 8.7 8.5 8.2 7.9 8.3 8.9 9.7 10.1 | 11.2
10.9
10.9
10.9
10.4
9.1
9.0
8.6
8.4
8.8
9.5
10.3
10.5 |

9.5
10.1
10.4

10.0
9.9
10.1
10.2 | MAY 9.1 9.1 9.4 9.3 9.0 9.0 8.9 |

9.3
9.6
9.9

9.6
9.4
9.5 | ## 01460200 DELAWARE RIVER BELOW TOHICKON CREEK AT POINT PLEASANT, PA OXYGEN, DISSOLVED (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|---------------------------------|---------------------------------|---------------------------------| | | | JUNE | | | JULY | | | AUGUST | | S | EPTEMBE | R | | 1
2
3
4
5 | 8.5
8.8
9.3
9.4
9.7 | 8.2
8.3
8.3
8.3 | 8.4
8.5
8.7
8.8
8.9 | 8.3
8.2
7.8
7.7
7.8 | 6.9
6.9
6.6
6.4
6.2 | 7.5
7.5
7.2
7.0
7.0 | 8.3
8.2
8.3
8.1 | 6.7
6.6
6.5
6.2
6.2 | 7.5
7.4
7.4
7.2
7.1 | 9.2
9.8
9.7
9.5
9.3 | 8.0
8.2
8.4
7.9
7.9 | 8.5
8.9
9.0
8.7
8.5 | | 6
7
8
9
10 | 9.5

8.7
8.8
8.6 | 8.2

8.4
8.6
8.4 | 8.7

8.6
8.7
8.6 | 8.2
8.5
8.6
8.6 | 6.6
6.8
7.0
6.9
6.8 | 7.3
7.6
7.8
7.7
7.6 | 8.5
8.7
8.7
8.8 | 6.4
7.1
7.3
7.5
7.6 | 7.5
7.9
8.0
8.1
8.2 | 9.4
9.5
9.5
9.4
9.4 | 7.9
8.0
8.0
7.8
7.7 | 8.6
8.7
8.6
8.6
8.5 | | 11
12
13
14
15 | 8.5
8.2
8.1
8.4
8.7 | 8.1
7.8
7.7
7.9
8.2 | 8.3
8.0
7.9
8.1
8.5 | 8.7
8.9
9.1
8.8
9.0 | 7.0
7.1
7.2
7.1
7.2 | 7.8
8.0
8.1
7.9
8.1 | 8.7
8.8
8.4
8.3 | 7.4
7.2
7.0
6.6
6.6 | 8.0
8.0
7.7
7.5
7.4 | 9.4
9.8
9.6
 | 7.4
7.9
8.2
 | 8.4
8.8
8.8
 | | 16
17
18
19
20 | 8.9
8.9
8.9
8.7
8.9 | 8.7
8.7
8.4
8.4 | 8.8
8.8
8.7
8.5
8.6 | 9.1
9.0
8.9
8.7
8.6 | 7.1
7.2
6.8
6.6
6.4 | 8.1
8.1
7.8
7.7
7.5 | 8.3
8.2
8.1
8.2
8.3 | 6.4
6.4
6.3
6.3 | 7.3
7.2
7.2
7.2
7.3 | 9.4
9.5
 | 7.6
7.7
 | 8.4
8.5
 | | 21
22
23
24
25 | 8.9
8.9
9.0
9.1
9.2 | 8.1
7.9
7.6
7.4
7.1 | 8.5
8.4
8.3
8.2
8.1 | 8.6
8.7
8.5
8.5 | 6.4
6.6
6.5
6.3 | 7.5
7.6
7.4
7.3
7.6 | 8.4
8.4
8.4
8.0 | 6.6
6.8
6.8
6.9 | 7.4
7.6
7.6
7.3
7.7 |

 | | | | 26
27
28
29
30
31 | 9.1
9.0
6.9
7.7
7.9 | 6.9
6.7
6.4
6.5
6.9 | 7.9
7.6
6.6
7.1
7.4 | 8.8
8.6
8.8
8.7
8.5 | 6.8
7.0
7.0
7.0
6.7
6.8 | 7.7
7.7
7.9
7.8
7.6
7.6 | 8.8
8.9
8.8
9.0
9.3
9.5 | 7.1
7.3
7.3
7.7
7.7
8.1 | 7.9
8.1
8.1
8.3
8.5
8.6 |

 | | | | MONTH | 9.7 | 6.4 | 8.3 | 9.1 | 6.2 | 7.6 | 9.5 | 6.2 | 7.7 | 9.8 | 7.4 | 8.6 | #### 01461000 DELAWARE RIVER AT LUMBERVILLE, PA LOCATION.--Lat 40°24'27", long 75°02'16", Bucks County, Hydrologic Unit 02040105, at pedestrian bridge at Lumberville, 1.4 mi upstream from Lockatong Creek. **DRAINAGE AREA**.--6,598 mi². PERIOD OF RECORD.--Water years 1976 to current year. **REMARKS.**—Total nitrogen (00600) equals the sum of dissolved ammonia plus organic nitrogen (00623), dissolved nitrite plus nitrate nitrogen (00631), and total particulate nitrogen (49570). COOPERATION.--Field data and samples for laboratory analyses were provided by the New Jersey Department of Environmental Protection. Determination of dissolved ammonia, total ammonia, dissolved nitrite, dissolved orthophosphate, biochemical oxygen demand, total suspended solids, fecal coliform, *E. coli*, and enterococcus bacteria was performed by the New Jersey Department of Health and Senior Services, Public Health and Environmental Laboratories, Environmental and Chemical Laboratory Services. Determination of chlorophyll a was performed by the New Jersey Department of Environmental Protection, Bureau of Freshwater and Biological Monitoring Laboratory. COOPERATIVE NETWORK SITE DESCRIPTOR.--Delaware River Main Stem, New Jersey Department of Environmental Protection Watershed Management Area 11. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TUR-BID-ITY FIELD WATER UNFLTRD (NTU) (61028) | UV
ABSORB-
ANCE
254 NM,
WTR FLT
(UNITS
/CM)
(50624) | UV
ABSORB-
ANCE
280 NM,
WTR FLT
(UNITS
/CM)
(61726) | METRIC
PRES-
SURE
(MM | DXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | SPE-
CIFIC
CON-
DUCT-
NCE
(µS/CM)
(00095) | TEMPER-
ATURE
AIR V
(DEG C)
(00020) | TEMPER-
ATURE
NATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | |-----------|---|--|--|--|--|--|---|--|--|---|--|--|---| | NOV
08 | 1000 | 2700 | 1.1 | .046 | .035 | 764 | | | 8.1 | 232 | 9.0 | 11.0 | 77 | | FEB 21 | 1000 | 4660 | 1.3 | .056 | .042 | 754 | 95 | 11.5 | 7.8 | 164 | 13.5 | 6.5 | 52 | | MAY
14 | 1000 | 29000 | 73 | .141 | .110 | 758 | 87 | 9.1 | 7.7 | 146 | 14.0 | 13.0 | 46 | | AUG
13 | 0900 | 3050 | 1.5 | .061 | .045 | 762 | 92 | 7.4 | 8.1 | 213 | 23.5 | 26.5 | 78 | | | | | | | | | | | | | | | | | DATE | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC
UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
(90410) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | ORGANIC
DIS.
(MG/L
AS N) | | NOV
08 | 19.1 | 7.10 | 1.80 | 12.8 | 62 | 20.0 | E.1 | . 4 | 17.9 | 128 | 120 | .080 | . 25 | | FEB 21 | 13.1 | 4.55 | 1.18 | 11.3 | 35 | 16.9 | E.1 | 3.0 | 16.7 | 94 | 92 | .040 | .17 | | MAY
14 | 12.1 | 3.83 | 1.56 | 8.06 | 32 | 12.0 | E.1 | 4.4 | 13.6 | 96 | 79 | .030 | .32 | | AUG
13 | 19.0 | 7.40 | 1.70 | 14.0 | 55 | 20.1 | E.1 | 3.1 | 19.4 | 134 | | <.030 | <.10 | | DATE | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN
DIS-
SOLVED
(MG/L
AS N)
(00602) | NITRO-
GEN,PAR
TICULTE
WAT FLT
SUSP
(MG/L
AS N)
(49570) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-PHOS-PHATE, DIS-SOLVED (MG/LAS P) (00671) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | CARBON,
INORG +
ORGANIC
PARTIC.
TOTAL
(MG/L
AS C)
(00694) | CARBON,
INOR-
GANIC,
PARTIC.
TOTAL
(MG/L
AS C)
(00688) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS
C)
(00689) | OXYGEN
DEMAND,
BIO-
CHEM-
ICAL,
5 DAY
(MG/L)
(00310) | | NOV
08 | .030 | .93 | .003 | 1.2 | .05 | .068 | | .077 | . 3 | <.1 | 2.5 | .3 | E1.8 | | FEB 21 | .060 | .92 | .003 | 1.1 | .03 | .053 | .027 | .062 | . 4 | <.1 | 2.2 | .3 | E1.2 | | MAY
14 | .040 | .84 | .006 | 1.2 | .08 | .059 | .031 | .190 | .9 | <.1 | 3.9 | .9 | E1.5 | | AUG
13 | .040 | | .008 | | .07 | .092 | .094 | .120 | .2 | <.1 | 3.8 | . 2 | E1.1 | ## 01461000 DELAWARE RIVER AT LUMBERVILLE, PA--Continued ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DATE | CHLORO-
PHYLL A
FLUORO-
METRIC
METHOD
CORR.
(µG/L)
(32209) | BORON,
DIS-
SOLVED
(µG/L
AS B)
(01020) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | |-----------|---|---|--| | NOV | | | | | 08
FEB | | 20 | <1 | | 21 | | E10 | 9 | | MAY
14 | 4.30 | 10 | 79 | | AUG | 4.30 | 10 | 19 | | 13 | .500 | <10 | 7 | # WATER-COLUMN BACTERIA ANALYSES Samples collected synoptically during the summer months | DATE | TIME | COLI-
FORM,
FECAL,
EC
BROTH
(MPN)
(31615) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | ENTERO-
COCCI,
ME MF,
WATER
(COL/
100 ML)
(31649) | DATE | TIME | COLI-
FORM,
FECAL,
EC
BROTH
(MPN)
(31615) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | ENTERO-
COCCI,
ME MF,
WATER
(COL/
100 ML)
(31649) | |------|------|---|--|---|------|------|---|--|---| | JUL | | | | | AUG | | | | | | 09 | 1028 | 20 | <100 | 60 | 06 | 1040 | 90 | <100 | 50 | | 16 | 1010 | 40 | <100 | 210 | | | | | | | 25 | 1000 | 70 | <100 | 140 | | | | | | #### 01463500 DELAWARE RIVER AT TRENTON, NJ (National Water-Quality Assessment Station) (Pennsylvania Water-Quality Network Station LOCATION.--Lat 40°13'18", long 74°46'42", Mercer County, Hydrologic Unit 02040105, on left bank 450 ft upstream from Calhoun Street Bridge at Trenton, 0.5 mi upstream from Assunpink Creek, and at river mile 134.5. DRAINAGE AREA.--6,780 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.—February 1913 to current year. October 1912 to February 1913 monthly discharge only, published in WSP 1302. Gage-height records collected in this vicinity since 1904 are contained in reports of the National Weather Service. REVISED RECORDS.--WSP 951: Drainage area. WSP 1302: 1913-20. WSP 1382: 1924, 1928. Gage Height Discharge GAGE.--Water-stage recorder. Datum of gage is sea level. Prior to Sept. 30, 1965, at datum 7.77 ft higher. Feb. 24, 1913 to Oct. 2, 1928, nonrecording gage on downstream side of highway bridge at site 450 ft downstream. REMARKS.—Records good. Diurnal fluctuations at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lakes Wallenpaupack (station 01431700) and Hopatcong, and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, Neversink, Wild Creek, and Merrill Creek Reservoirs and smaller reservoirs. Diversion from Pepacton, Cannonsville, and Neversink Reservoirs. Diversion to Bradshaw and Merrill Creek Reservoirs and to Delaware and Raritan Canal. Water diverted just above station by borough of Morrisville, PA, and city of Trenton, NJ for municipal supply. Satellite gage height and water-quality parameter telemeter at station. Information on the above lakes and reservoirs can be found in the annual Water-Data Report NJ-02-1. **EXTREMES OUTSIDE PERIOD OF RECORD.**—Flood of Oct. 11, 1903, reached an elevation of about 28.5 ft above sea level, discharge estimated, 295,000 ft 3/s. Maximum elevation since 1692, 30.6 ft above sea level, Mar. 8, 1904, from floodmark, due to ice jam. Discharge Gage Height PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 50,000 ft 3/s and maximum (*): | _ | | Discharg | | Ticigin | | | _ | | | | Gage Heigh | ıı | |--------------|----------|--------------------|---------------|--------------|-----------|-------------|-------------|-------------------------------------|-----------|------------|------------|--------| | Date | Time | ft ³ /s | (| ft) | | | Date | Time | e fi | t^3/s | (ft) | | | (No peal | s above | base d | lischarge | e.) | | | | | | | | | | , - <u>-</u> | | | | , | | | | | | | | | | | | DIS | CHARGE C | UBIC FEET | PER SECO | ND WATE | ER YEAR OO | CTOBER 2001 | TO SEPTE | MBER 2003 |) | | | | | 210 | , criminos, c | obie i EE. | | | N VALUES | , r o <u>D D I</u> (<u>2</u> 0 0 1 | 10 521 11 | 3BEIT 200. | - | | | | | | | | Di | iil i willi | at the celo | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | DAI | 001 | INOV | DEC | UAIN | FED | MAIN | AFK | MAI | UUIN | 001 | AUG | SEP | | 1 | 3890 | 2970 | 3210 | 3100 | 6800 | 4170 | 15300 | 26800 | 15800 | 6880 | 3210 | 4120 | | 2 | 3390 | 3020 | 3810 | 3160 | 11500 | 4110 | 14800 | 24000 | 14800 | 5900 | 3080 | 4680 | | | 3460 | 2870 | 4150 | 2930 | 10600 | 5570 | | 26100 | 14500 | 5830 | 3420 | | | 3 | | | | | | | 13600 | | 14500 | | | 3550 | | 4 | 3400 | 2860 | 4650 | 2930 | 10400 | 6940 | 12300 | 23800 | 11700 | 5930 | 3330 | 3320 | | 5 | 3370 | 2930 | 4440 | 2930 | 8720 | 6720 | 11100 | 19000 | 10500 | 5500 | 3420 | 3210 | | _ | 2000 | 2060 | 2750 | 21.60 | 7540 | 6620 | 10000 | 16200 | 0000 | 4000 | 2200 | 2050 | | 6 | 3290 | 2860 | 3750 | 3160 | 7540 | 6630 | 10600 | 16300 | 9880 | 4920 | 3390 | 3050 | | 7 | 3330 | 2840 | 3380 | 3360 | 6940 | 6240 | 9640 | 14500 | 17000 | 4620 | 3290 | 2920 | | 8 | 3580 | 2970 | 3260 | 3150 | 6480 | 5610 | 8660 | 12900 | 34400 | 4260 | 3180 | 2990 | | 9 | 3100 | 2800 | 3430 | 2950 | 5950 | 5310 | 7940 | 11900 | 28400 | 3930 | 3110 | 2990 | | 10 | 3010 | 2740 | 3890 | 2950 | 5450 | 5140 | 8080 | 12000 | 20100 | 3790 | 3010 | 2910 | | | | | | | | | | | | | | | | 11 | 3090 | 2680 | 3720 | 2960 | 5230 | 5460 | 8090 | 11300 | 16800 | 3760 | 2980 | 2860 | | 12 | 2990 | 2710 | 3390 | 3410 | 5480 | 5580 | 7940 | 10600 | 16300 | 3790 | 3200 | 2890 | | 13 | 3070 | 2600 | 3220 | 3620 | 10700 | 5990 | 7540 | 10900 | 15300 | 3680 | 3190 | 2840 | | 14 | 3060 | 2550 | 3190 | 3490 | 9940 | 6130 | 7080 | 31300 | 13000 | 3420 | 3100 | 2900 | | 15 | 3190 | 2550 | 3560 | 3340 | 8300 | 5890 | 7580 | 41800 | 14500 | 3360 | 2950 | 3100 | | | | | | | | | | | | | | | | 16 | 3430 | 2600 | 3720 | 3230 | 6960 | 5560 | 14300 | 33300 | 16100 | 3000 | 3050 | 3630 | | 17 | 3510 | 2660 | 3950 | 3290 | 6380 | 5460 | 15200 | 25000 | 16800 | 3000 | 3070 | 4620 | | 18 | 3430 | 2640 | 4540 | 3110 | 6040 | 5810 | 13700 | 24700 | 15900 | 3210 | 3140 | 4850 | | 19 | 3430 | 2670 | 5340 | 2980 | 5610 | 7060 | 11900 | 30000 | 15000 | 3100 | 3470 | 3980 | | 20 | 3300 | 2630 | 7120 | 2810 | 5240 | 9030 | 11200 | 32100 | 13200 | 3660 | 3500 | 3380 | | 20 | 3300 | 2030 | 7120 | 2010 | 3240 | 9030 | 11200 | 32100 | 13200 | 3000 | 3300 | 3300 | | 21 | 3150 | 2600 | 8830 | 2480 | 4870 | 12400 | 10200 | 26600 | 11600 | 3660 | 3430 | 3240 | | 22 | 3130 | 2550 | 7560 | 2550 | 4820 | 11000 | 8980 | 20900 | 10100 | 3810 | 3050 | 3290 | | 23 | 3050 | 2520 | 6540 | 2500 | 4790 | 10100 | 8610 | 17500 | 9160 | 3730 | 3050 | 3410 | | 23
24 | 3080 | 2520 | | | | | 8640 | 15500 | 7990 | | | 3140 | | | | | 6080 | 2890 | 5050 | 9870 | | | | 3790 | 3070 | | | 25 | 3100 | 2640 | 5770 | 4480 | 5040 | 9040 | 8320 | 13900 | 7540 | 4070 | 3470 | 2600 | | 26 | 2010 | 2040 | F270 | 4550 | 4650 | 0440 | 01.50 | 12000 | 7060 | 2000 | 2400 | 0740 | | 26 | 3010 | 3040 | 5370 | 4550 | 4650 | 8440 | 8150 | 13200 | 7260 | 3880 | 3400 | 2740 | | 27 | 3030 | 3840 | 5060 | 4430 | 4400 | 9690 | 8590 | 10900 | 7090 | 3740 | 3280 | 4260 | | 28 | 3160 | 3630 | 4680 | 4510 | 4310 | 17800 | 10800 | 10200 | 12600 | 3530 | 3170 | 5200 | | 29 | 3120 | 3530 | 3860 | 4910 | | 22700 | 17000 | 11800 | 9980 | 3440 | 3450 | 5820 | | 30 | 2950 | 3430 | 3550 | 4960 | | 17900 | 26600 | 27200 | 8230 | 3490 | 3620 | 6580 | | 31 | 2960 | | 3520 | 5430 | | 15900 | | 21500 | | 3310 | 3760 | | | | | | | | | | | | | | | | | | 100060 | 85480 | 140540 | 106550 | 188190 | 263250 | 332440 | 627500 | 421530 | 125990 | 100840 | 109070 | | MEAN | 3228 | 2849 | 4534 | 3437 | 6721 | 8492 | 11080 | 20240 | 14050 | 4064 | 3253 | 3636 | | MAX | 3890 | 3840 | 8830 | 5430 | 11500 | 22700 | 26600 | 41800 | 34400 | 6880 | 3760 | 6580 | | MIN | 2950 | 2520 | 3190 | 2480 | 4310 | 4110 | 7080 | 10200 | 7090 | 3000 | 2950 | 2600 | | | | | | | | | | | | | | | | STATI | STICS OF | MONTHLY | MEAN DATA | A FOR WA | TER YEARS | 1913 - | 2002, BY | WATER YEA | R (WY) | | | | | MEAN | 6794 | 10310 | 12530 | 12350 | 12750 | 20480 | 22170 | 14180 | 9149 | 6980 | 5856 | 5727 | | MAX | 28710 | 27340 | 42860 | 34950 | 27550 | 60840 | 52680 | 31690 | 33460 | 25720 | 30290 | 22490 | | (WY) | 1956 | 1928 | 1997 | 1979 | 1951 | 1936 | 1940 | 1989 | 1972 | 1928 | 1955 | 1933 | | MIN | 1632 | 1868 | 2037 | 2539 | 3500 | 7715 | 6828 | 5074 | 2572 | 1548 | 1808 | 1762 | | | | 1915 | 1923 | 2539
1981 | 1920 | 1981 | 1985 | 1995 | 1965 | | | 1932 | | (WY) | 1942 | 1912 | 1923 | TART | 1920 | 1981 | 1985 | TAAD | 1905 | 1965 | 1965 | 1932 | #### 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR | YEAR | FOR 2002 WAT | ER YEAR | WATER YEARS | 1913 - 2002 | |--------------------------|-------------------|-------|--------------|---------|-----------------|-------------| | ANNUAL TOTAL | 2954910 |
 2601440 | | | | | ANNUAL MEAN | 8096 | | 7127 | | 11600 | | | HIGHEST ANNUAL MEAN | | | | | 19810 | 1928 | | LOWEST ANNUAL MEAN | | | | | 4708 | 1965 | | HIGHEST DAILY MEAN | 50200 A | pr 11 | 41800 | May 15 | 279000 | Aug 20 1955 | | LOWEST DAILY MEAN | 2520 N | ov 23 | 2480 | Jan 21 | 1240 | Oct 31 1914 | | ANNUAL SEVEN-DAY MINIMUM | 2590 N | ov 18 | 2590 | Nov 18 | 1310 | Oct 31 1914 | | MAXIMUM PEAK FLOW | | | 43400 | May 15 | a 329000 | Aug 20 1955 | | MAXIMUM PEAK STAGE | | | 13.52 | May 15 | b 28.60 | Aug 20 1955 | | INSTANTANEOUS LOW FLOW | | | 2220 | Sep 26 | 1180 | Oct 31 1963 | | 10 PERCENT EXCEEDS | 15500 | | 15300 | | 24400 | | | 50 PERCENT EXCEEDS | 5400 | | 4260 | | 7830 | | | 90 PERCENT EXCEEDS | 3020 | | 2930 | | 3000 | | $[\]begin{array}{l} \textbf{a} \;\; \text{From rating curve extended above 230,000 ft}^3/\text{s, maximun flow since 1692.} \\ \textbf{b} \;\; \text{From high-water mark in gage house, current datum.} \end{array}$ #### 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued (National Water-Quality Assessment Station) (Pennsylvania Water-Quality Network Station #### WATER-OUALITY RECORDS PERIOD OF RECORD.--October 1944 to current year. #### PERIOD OF DAILY RECORD.-- DISSOLVED OXYGEN: October 1962 to current year. Recorded as once daily during 1979. DISSOLVED OXYGEN PERCENT SATURATION: October 2001 to September 2002. pH: June 1968 to current year. Recorded as once daily during 1979. SPECIFIC CONDUCTANCE: October 1963 to current year. Recorded as once daily during years 1964 to 1968, 1979. SUSPENDED SEDIMENT DISCHARGE: September 1949 to September 1981. WATER TEMPERATURE: October 1944 to current year. Recorded as once daily during years 1945 to 1953, 1962, 1964, 1979. TURBIDITY: November 2000 to current year. #### INSTRUMENTATION.-- TEMPERATURE MONITOR (graphic recorder at gage house, in situ system): October 1953 to September 1961. TEMPERATURE / DISSOLVED-OXYGEN MONITOR: October 1962 to September 1965: graphic recorder; only dissolved-oxygen concentration recorded during water year 1964. October 1965 to May 1968: digital recorder. WATER-QUALITY MONITOR (continuous pumping system, measurements recorded hourly): June 1968 to August 1975: water withdrawn from rawwater intake within Trenton Water Filtration Plant, Trenton, NJ. November 1975 to November 1978: water withdrawn from river through PVC pipe to gage house outside Trenton Water Filtration Plant, Trenton, NJ. December 1979 to September 1986: water withdrawn from raw-water intake within Trenton Water Filtration Plant, Trenton, NJ. WATER-QUALITY MONITOR (in situ system, measurements recorded hourly): October 1986 to September 1995: probes located inside raw-water intake of Trenton Water Filtration Plant, Trenton, NJ. October 1995 to current year: monitor suspended within stilling well of Morrisville Water Filtration Plant, Morrisville, Pa., 1,600 ft upstream from the gage house. REMARKS.--Additional nutrient samples on Dec. 6 at 0911, Mar. 6 at 1041, June 17 at 1211, and Sep. 5 at 0931 were collected to fulfill the requirements of the Ambient Stream Monitoring Network. For definition of the type of quality-control data listed under SAMPLE TYPE refer to "Quality-Control Data" in the "Introduction." Unpublished records of suspended-sediment discharge for the period Oct. 1, 1981, to Mar. 31, 1982, are available at the U.S. Geological Survey Office in West Trenton, NJ. Beginning October, 1999, pH daily value tables reported maximum, minimum and median values. Continuous turbidity-record values less than 2 were below the instrument detection level. Missing continuous water-quality records are the result of instrument malfunction or interruption of flow through the filtration plant. The calibration of water-quality sensors is verified by regular inspections. Cleaning or recalibration is needed occasionally as a result of sensor fouling or drift. When a sensor is reclaibrated, the continuous-record waterquality data for the period between inspections are adjusted to account for the difference between the sensor's response and a known value. The adjustment may be constant over the period or may be prorated. Continuous-record water-quality data for periods for which the difference between the sensor's response and a known value does not exceed recalibration criteria are considered to be reliable and are not adjusted. Recalibration criteria are listed in the "Introduction" (see section "Explanation of the Records, On-Site Measurements and Sample Collection"). Data from the following periods were adjusted: DISSOLVED OXYGEN: Oct. 1-16, Feb. 15 to Mar. 26, May 16-22, June 19 to July 2, Aug. 1-14, Aug. 23 to Sep. 3. pH: July 2-22. TURBIDITY: Oct. 29 to Nov. 1, Feb. 15-28. COOPERATION .-- Samples were collected as part of the Delaware River Basin National Water-Quality Assessment Program (NAWQA) with cooperation from the Delaware River Basin Commission. Determination of dissolved ammonia, total ammonia, dissolved nitrite, dissolved orthophosphate, biochemical oxygen demand, and dissolved hexavalent chromium on Dec. 6 at 0912, Mar. 6 at 1042, June 17 at 1212, and Sep. 5 at 0932; and fecal coliform, E. coli, and enterococcus bacteria collected synoptically during the summer months was performed by the New Jersey Department of Health and Senior Services, Public Health and Environmental Laboratories, Environmental and Chemical Laboratory Services. Determination of chlorophyll a was performed by the New Jersey Department of Environmental Protection, Bureau of Freshwater and Biological Monitoring Laboratory. #### EXTREMES FOR PERIOD OF DAILY RECORD.-- SPECIFIC CONDUCTANCE: Maximum, 468 microsiemens, Jan. 11, 1999; minimum, 63 microsiemens, July 7, 1984. SPECIFIC CONDUCTANCE: Maximum, 408 microsteniens, Jan. 11, 1999; minimum, 03 microsteniens, July 7, 1704. pH: Maximum, 10.3, Aug. 9, 10, 1983; minimum, 5.3, June 22, 1972. WATER TEMPERATURE: Maximum, 34.0°C, June 18, 1957; minimum, 0.0°C, on many days during winters in water years 1954-57. DISSOLVED OXYGEN: Maximum, 20.0 mg/L, Feb. 11, 1989; minimum, 4.0 mg/L, Nov. 9, 1972, Sept. 9, 1995. DISSOLVED OXYGEN PERCENT SATURATION: Maximum, 151, Aug. 12, 2002; minimum, 62, July 14, 2002. TURBIDITY: Maximum, 460 ntu, May 19, 2000; minimum, <2.0 ntu, on many days in water years 2000-02 #### EXTREMES FOR CURRENT YEAR.-- SPECIFIC CONDUCTANCE: Maximum, 314 microsiemens, Jan. 24; minimum, 100 microsiemens, June 9. pH: Maximum, 9.3, July 19; minimum, 6.6, May 10. WATER TEMPERATURE: Maximum, 31.5°C, Aug. 4; minimum, 0.0°C, several days during winter. DISSOLVED OXYGEN: Maximum, 15.9 mg/L, Jan. 22, 23; minimum, 5.5 mg/L, July 13. DISSOLVED OXYGEN PERCENT SATURATION: Maximum, 151, Aug. 12; minimum, 67, July 13. TURBIDITY: Maximum, 120 ntu, June 29; minimum, <0.2 ntu, many days. ## 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued | DATE | TIME | SAMF
TYF | | | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TUR-BID-ITY FIELD WATER UNFLTRD (NTU) (61028) | TURBID-
ITY LAB
HACH
2100AN
(NTU)
(99872) | UV ABSORB- ANCE 254 NM, WTR FLT (UNITS /CM) (50624) | UV ABSORB- ANCE 280 NM, WTR FLT (UNITS /CM) (61726) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | |--|--|---|---|---|---|--|--|--|--|---|---|---|---| | NOV
01 | 0830 | ENVIRONM | IENTAL | | 2950 | | | | | 770 | 107 | 12.4 | 7.8 | | 06 | 0910 | ENVIRONM | IENTAL | | 3770 | | 4.8 | .070 | .054 | 762 | 98 | 11.2 | 7.6 | | 06 | 0911 | ENVIRONM | | | | | | | | | | | | | 06
JAN | 0912 | ENVIRONM | IENTAL | | | | | | | | | | | | 09
MAR | 1330 | ENVIRONM | IENTAL | | 2800 | == | == | == | == | 755 | 112 | 15.8 | 7.7 | | 06 | 1040 | ENVIRONM | IENTAL | | 6630 | 4.0 | 4.0 | .063 | .046 | 768 | 108 | 13.9 | 8.0 | | 06 | 1041 | ENVIRONM | IENTAL | | | | | | | | | | | | 06
APR | 1042 | ENVIRONM | IENTAL | | | | | | | | | | | | 04
MAY | 0850 | ENVIRONM | IENTAL | | 13000 | | | | | 767 | 100 | 11.4 | 7.1 | | 22 | 1000 | ENVIRONM | IENTAL | | 21300 | 11 | | | | 770 | 102 | 11.2 | 6.9 | | 22 | 1001 | SPLIT RE | EPLICATE | | | | | | | | | | 7.1 | | JUN
17 | 1015 | FIELD BL | ANTE | | | | | | | | | | | | 17 | 1210 | ENVIRONM | | | 17100 | | 10 | .117 | .089 | 760 | 102 | 9.5 | 7.5 | | 17 | 1211 | ENVIRONM | IENTAL | | | | | | | | | | | | 17 | 1212 | ENVIRONM | IENTAL | | | | | | | | | | | | JUL
10
SEP | 0930 | ENVIRONM | IENTAL | | 3900 | 2.7 | == | == | == | 756 | 108 | 8.6 | 8.0 |
| 05 | 0930 | ENVIRONM | IENTAL | | 3220 | 1.7 | 2.1 | .057 | .043 | 758 | 107 | 9.0 | 8.2 | | 05 | 0931 | ENVIRONM | IENTAL | | | | | | | | | | | | 05 | 0932 | ENVIRONM | IENTAL | DATE | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC
UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
(90410) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | | NOV | CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | ATURE
AIR
(DEG C)
(00020) | ATURE
WATER
(DEG C)
(00010) | NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | DIS-
SOLVED
(MG/L
AS CA)
(00915) | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | DIS-
SOLVED
(MG/L
AS NA)
(00930) | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | | | CIFIC
CON-
DUCT-
ANCE
(µS/CM) | ATURE
AIR
(DEG C) | ATURE
WATER
(DEG C) | NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | DIS-
SOLVED
(MG/L
AS CA) | SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SIUM,
DIS-
SOLVED
(MG/L
AS K) | DIS-
SOLVED
(MG/L
AS NA) | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
(90410) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | | NOV
01
DEC
06 | CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | ATURE
AIR
(DEG C)
(00020)
11.5
16.5 | ATURE
WATER
(DEG C)
(00010)
9.5 | NESS
TOTAL
(MG/L
AS
(ACO3)
(00900) | DIS-
SOLVED
(MG/L
AS CA)
(00915) | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925)
7.04 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | DIS-
SOLVED
(MG/L
AS NA)
(00930) | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
(90410) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | | NOV
01
DEC | CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | ATURE
AIR
(DEG C)
(00020) | ATURE
WATER
(DEG C)
(00010) | NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | DIS-
SOLVED
(MG/L
AS CA)
(00915) | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | DIS-
SOLVED
(MG/L
AS NA)
(00930) | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
(90410) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | | NOV
01
DEC
06
06
JAN
09 | CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | ATURE
AIR
(DEG C)
(00020)
11.5 | ATURE
WATER
(DEG C)
(00010)
9.5
9.5 | NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | DIS-
SOLVED
(MG/L
AS CA)
(00915) | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925)
7.04 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | DIS-
SOLVED
(MG/L
AS NA)
(00930) | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
(90410) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
E.1 | | NOV 01 DEC 06 06 06 JAN 09 | CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095)
229
183

228 | ATURE
AIR
(DEG C)
(00020)
11.5
16.5

5.5 | ATURE WATER (DEG C) (00010) 9.5 9.5 1.0 | NESS
TOTAL
(MG/L
AS
CACC3)
(00900)
76
59
 | DIS-
SOLVED
(MG/L
AS CA)
(00915)
18.7
15.0 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925)
7.04
5.22
 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
1.73
1.40 | DIS-
SOLVED
(MG/L
AS NA)
(00930)
13.1
11.1
 | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
(90410) | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 57 40 45 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 69 48 54 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
22.9
17.7

-22.4 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
E.1
<.1
 | | NOV
01
DEC
06
06
JAN
09
MAR
06 | CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095)
229
183 | ATURE AIR (DEG C) (00020) 11.5 16.5 | ATURE WATER (DEG C) (00010) 9.5 9.5 | NESS
TOTAL
(MG/L
AS
CACO3)
(00900)
76
59 | DIS-
SOLVED
(MG/L
AS CA)
(00915)
18.7
15.0 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925)
7.04
5.22 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
1.73
1.40 | DIS-
SOLVED (MG/L
AS NA) (00930) | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
(90410) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086)
57
40
 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 69 48 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
22.9
17.7 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
E.1 | | NOV 01 DEC 06 06 JAN 09 MAR 06 06 | CIFIC CON- DUCT- ANCE (#S/CM) (00095) 229 183 228 190 | ATURE
AIR
(DEG C)
(00020)
11.5
16.5

5.5 | ATURE WATER (DEG C) (00010) 9.5 9.5 1.0 5.0 | NESS
TOTAL
(MG/L
AS
CACO3)
(00900)
76
59

57 | DIS-
SOLVED
(MG/L
AS CA)
(00915)
18.7
15.0 | SIUM,
DIS-
SOLVED (MG/L
AS MG)
(00925)
7.04
5.22

4.81 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
1.73
1.40

 | DIS-
SOLVED
(MG/L
AS NA)
(00930)
13.1
11.1

11.9 | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
(90410) | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 57 40 45 35 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 69 48 54 43 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
22.9
17.7

22.4
19.6 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
E.1
<.1

E.1 | | NOV
01
DEC
06
06
JAN
09
MAR
06
06 | CIFIC CON- DUCT- ANCE (µS/CM) (00095) 229 183 228 190 | ATURE
AIR
(DEG C)
(00020)
11.5
16.5

5.5 | ATURE WATER (DEG C) (00010) 9.5 9.5 1.0 5.0 | NESS
TOTAL
(MG/L
AS
CACO3)
(00900)
76
59
 | DIS-
SOLVED
(MG/L
AS CA)
(00915)
18.7
15.0

14.7 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925)
7.04
5.22

4.81 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
1.73
1.40

1.23 | DIS-
SOLVED
(MG/L
AS NA)
(00930)
13.1
11.1

11.9 | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
(90410) | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 57 40 45 35 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 69 48 54 43 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
22.9
17.7

22.4 | RIDE,
DTS-
SOLVED
(MG/L
AS F)
(00950)
E.1
<.1

E.1 | | NOV 01 DEC 06 06 JAN 09 MAR 06 06 24 APR 04 | CIFIC CON- DUCT- ANCE (#S/CM) (00095) 229 183 228 190 128 | ATURE AIR (DEG C) (00020) 11.5 16.5 5.5 | ATURE WATER (DEG C) (00010) 9.5 9.5 1.0 5.0 10.0 | NESS
TOTAL
(MG/L
AS
CACO3)
(00900)
76
59
 | DIS-
SOLVED
(MG/L
AS CA)
(00915)
18.7
15.0

14.7 | SIUM,
DIS-
SOLVED (MG/L
AS MG) (00925)
7.04
5.22

4.81 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
1.73
1.40

1.23 | DIS-
SOLVED (MG/L
AS NA) (00930)
13.1
11.1
 | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
(90410) | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 57 40 45 35 21 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 69 48 54 43 25 | RIDE,
DIS-
SOLVED (MG/L
AS CL)
(00940)
22.9
17.7

22.4
19.6

15.3 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
E.1
<.1

E.1 | | NOV 01 DEC 06 06 JAN 09 MAR 06 06 06 4PR 04 MAY 22 | CIFIC CON- DUCT- ANCE (MS/CM)(00095) 229 183 228 190 | ATURE
AIR
(DEG C)
(00020)
11.5
16.5

5.5 | ATURE WATER (DEG C) (00010) 9.5 9.5 1.0 5.0 | NESS
TOTAL
(MG/L
AS
CACO3)
(00900)
76
59

57
 | DIS-
SOLVED
(MG/L
AS CA)
(00915)
18.7
15.0

14.7
 | SIUM,
DIS-
SOLVED (MG/L
AS MG) (00925)
7.04
5.22

4.81
 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
1.73
1.40

1.23
 | DIS-
SOLVED
(MG/L
AS NA)
(00930)
13.1
11.1

11.9
 | UNFLTRD
TIT
4.5
LAB
(MG/L
AS
CACO3)
(90410) | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 57 40 45 35 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 69 48 54 43 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
22.9
17.7

22.4
19.6 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
E.1
<.1

E.1
 | | NOV 01 DEC 06 06 JAN 09 MAR 06 06 4PR 04 MAY 22 JUN 01 | CIFIC CON- DUCT- ANCE (#S/CM) (00095) 229 183 228 190 128 120 123 | ATURE AIR (DEG C) (00020) 11.5 16.5 5.5 14.5 | ATURE WATER (DEG C) (00010) 9.5 9.5 1.0 5.0 10.0 11.5 | NESS
TOTAL
(MG/L
AS
CACO3)
(00900)
76
59

57

 | DIS-
SOLVED (MG/L
AS CA) (00915)
18.7
15.0

14.7

 | SIUM, DIS-
SOLVED (MG/L
AS MG) (00925)
7.04
5.22

4.81 | SIUM, DIS-
SOLVED (MG/L AS K) (00935) 1.73 1.40 1.23 | DIS-
SOLVED (MG/L
AS NA) (00930)
13.1
11.1

11.9

 | UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410) 41 37 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 57 40 45 35 21 22 21 | BONATE WATER WATER DIS IT FIELD MG/L AS HCO3 (00453) 69 48 54 43 25 26 25 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
22.9
17.7

22.4
19.6

15.3
11.6 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
E.1
<.1

E.1

 | | NOV 01 DEC 06 06 06 JAN 09 MAR 06 06 04 APR 04 MAY 22 JUN 17 | CIFIC CON- DUCT- ANCE (µS/CM) (00095) 229 183 228 190 128 120 123 | ATURE AIR (DEG C) (00020) 11.5 16.5 5.5 14.5 | ATURE WATER (DEG C) (00010) 9.5 9.5 1.0 5.0 10.0 11.5 | NESS
TOTAL
(MG/L
AS
CACO3)
(00900)
76
59

57

 | DIS-
SOLVED
(MG/L
AS CA)
(00915)
18.7
15.0

14.7

14.7

 | SIUM,
DIS-
SOLVED (MG/L
AS MG) (00925)
7.04
5.22

4.81

<.008 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
1.73
1.40

1.23

 | DIS-
SOLVED (MG/L
AS NA) (00930)
13.1
11.1

11.9

<.09 | UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410) 41 37 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 57 40 45 35 21 22 | BONATE WATER WATER DIS IT FIELD MG/L AS HCO3 (00453) 69 48 54 43 25 26 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
22.9
17.7

22.4
19.6

15.3
11.6
11.6 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
E.1
<.1

E.1

 | | NOV 01 DEC 06 06 JAN 09 MAR 06 06 4PR 04 MAY 22 JUN 17 | CIFIC CON- DUCT- ANCE (#S/CM) (00095) 229 183 228 190 128 120 123 | ATURE AIR (DEG C) (00020) 11.5 16.5 5.5 14.5 | ATURE WATER (DEG C) (00010) 9.5 9.5 1.0 5.0 10.0 11.5 | NESS
TOTAL
(MG/L
AS
CACO3)
(00900)
76
59

57

 | DIS-
SOLVED (MG/L
AS CA) (00915)
18.7
15.0

14.7

 | SIUM, DIS-
SOLVED (MG/L
AS MG) (00925)
7.04
5.22

4.81 | SIUM, DIS-
SOLVED (MG/L AS K) (00935) 1.73 1.40 1.23 | DIS-
SOLVED (MG/L
AS NA) (00930)
13.1
11.1

11.9

 | UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410) 41 37 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 57 40 45 35 21 22 21 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 69 48 54 43 25 26 25 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
22.9
17.7

22.4
19.6

15.3
11.6 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
E.1
<.1

E.1

 | | NOV 01 DEC 06 06 06 JAN 09 MAR 06 06 04 APR 04 MAY 22 JUN 17 17 | CIFIC CON- CON- DUCT- ANCE (µS/CM) (00095) 229 183 228 190 128 120 123 144 | ATURE AIR (DEG C) (00020) 11.5 16.5 5.5 14.5 | ATURE WATER (DEG C) (00010) 9.5 9.5 1.0 5.0 10.0 11.5 19.0 | NESS
TOTAL (MG/L AS CACO3) (00900) 76 59 57 | DIS-
SOLVED
(MG/L
AS CA)
(00915)
18.7
15.0

14.7

14.7

- | SIUM, DIS-
SOLVED (MG/L AS MG) (00925) 7.04 5.22 4.81 <.008 3.41 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
1.73
1.40

1.23

<.10
1.00 | DIS-
SOLVED (MG/L
AS NA) (00930)
13.1
11.1
 | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
(90410) | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 57 40 45 35 21 22 21 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 69 48 54 43 25 26 25 | RIDE,
DIS-
SOLVED (MG/L
AS CL)
(00940)
22.9
17.7

22.4
19.6

15.3
11.6
11.6 | RIDE,
DIS-
SOLVED (MG/L
AS F)
(00950)
E.1
<.1

E.1

<.10
E.08 | | NOV 01 DEC 06 06 JAN 09 MAR 06 06 4PR 04 MAY 222 JUN 17 17 17 | CIFIC CON- CON- DUCT- ANCE (#S/CM) (00095) 229 183 228 190 128 120 123 144 | ATURE AIR (DEG C) (00020) 11.5 16.5 5.5 14.5 | ATURE WATER (DEG C) (00010) 9.5 9.5 1.0 5.0 10.0 11.5 19.0 | NESS
TOTAL (MG/L AS CACO3) (00900) 76 59 57 | DIS-
SOLVED
(MG/L
AS CA)
(00915)
18.7
15.0

14.7

14.7

14.7

 | SIUM, DIS- SOLVED (MG/L AS MG) (00925) 7.04 5.22 4.81 < < < < < < < < | SIUM, DIS-
SOLVED (MG/L AS K) (00935)
1.73
1.40

1.23

<.10
1.00 | DIS-
SOLVED (MG/L
AS NA) (00930) 13.1 11.1 11.9 <.09 8.68 | UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410) 41 37 30 30 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 57 40 45 35 21 22 21 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 69 48 54 43 25 26 25 | RIDE,
DIS-
SOLVED (MG/L
AS CL)
(00940)
22.9
17.7

22.4
19.6

15.3
11.6
11.6
<.30
14.4 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950)
E.1
<.1

E.1

<.10
E.08 | | NOV 01 DEC 06 06 06 JAN 09 MAR 06 06 04 APR 04 MAY 22 JUN 17 17 | CIFIC CON- CON- DUCT- ANCE (#S/CM) (00095) 229 183 228 190 128 120 123 144 | ATURE AIR (DEG C) (00020) 11.5 16.5 5.5 14.5 | ATURE WATER (DEG C) (00010) 9.5 9.5 1.0 5.0 10.0 11.5 19.0 | NESS
TOTAL (MG/L AS CACO3) (00900) 76 59 57 | DIS-
SOLVED
(MG/L
AS CA)
(00915)
18.7
15.0

14.7

 | SIUM, DIS- SOLVED (MG/L AS MG) (00925) 7.04 5.22 4.81 <.008 3.41 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
1.73
1.40

1.23

<.10
1.00 | DIS-
SOLVED (MG/L
AS NA) (00930) 13.1 11.1 11.9 <.09 8.68 | UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410) 41 37 30 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 57 40 45 35 21 22 21 49 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 69 48 54 43 25 26 25 60 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
22.9
17.7

22.4
19.6

15.3
11.6
21.6 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950)
E.1
<.1

E.1

<.10
E.08 | | NOV 01 DEC 06 06 JAN 09 MAR 06 06 4PR 04 MAY 222 JUN 17 17 17 17 17 17 17 17 18EP 05 | CIFIC CON- CON- DUCT- ANCE (#S/CM) (00095) 229 183 228 190 128 120 123 144 215 | ATURE AIR (DEG C) (00020) 11.5 16.5 5.5 14.5 33.0 | ATURE WATER (DEG C) (00010) 9.5 9.5 1.0 5.0 10.0 11.5 19.0 | NESS
TOTAL (MG/L AS CACO3) (00900) 76 59 57 | DIS-
SOLVED
(MG/L
AS CA)
(00915)
18.7
15.0

14.7

14.7

14.7

 | SIUM, DIS- SOLVED (MG/L AS MG) (00925) 7.04 5.22 4.81 < < < < < < < < | SIUM, DIS- SOLVED (MG/L AS K) (00935) 1.73 1.40 1.23 <.10 1.00 1.64 | DIS-
SOLVED (MG/L
AS NA) (00930) 13.1 11.1 11.9 <.09 8.68 13.4 | UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410) 41 37 30 30 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 57 40 45 35 21 22 21 49 55 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 69 48 54 43 25 26 25 | RIDE,
DIS-
SOLVED (MG/L
AS CL)
(00940)
22.9
17.7

22.4
19.6

15.3
11.6
11.6
<.30
14.4 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950)
E.1
<.1

E.1

<.10
E.08

E.07 | | NOV 01 DEC 06 06 06 09 MAR 06 06 04 MAY 22 22 JUN 17 17 17 17 17 17 5EP 05 | CIFIC CONDUCT-ANCE (µS/CM) (00095) 229 183 228 190 128 120 123 144 215 | ATURE AIR (DEG C) (00020) 11.5 16.5 5.5 14.5 33.0 | ATURE WATER (DEG C) (00010) 9.5 9.5 1.0 5.0 10.0 11.5 19.0 26.5 | NESS
TOTAL
(MG/L
AS
CACO3)
(00900)
76
59

57

42

42 | DIS-
SOLVED
(MG/L
AS CA)
(00915)
18.7
15.0

14.7

 | SIUM, DIS- SOLVED (MG/L AS MG) (00925) 7.04 5.22 4.81 <.008 3.41 | SIUM, DIS-
SOLVED (MG/L AS K) (00935)
1.73
1.40
 | DIS-
SOLVED (MG/L
AS NA) (00930) 13.1 11.1 11.9 <.09 8.68 13.4 | UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410) 41 37 30 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 57 40 45 35 21 22 21 49 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 69 48 54 43 25 26 25 60 | RIDE,
DIS-
SOLVED (MG/L
AS CL)
(00940)
22.9
17.7

22.4
19.6

15.3
11.6
11.6
<.30
14.4 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950)
E.1
<.1

E.1

<.10
E.08 | | NOV 01 DEC 06 06 JAN 09 MAR 06 06 4PR 04 MAY 222 JUN 17 17 17 17 17 17 17 17 18EP 05 | CIFIC CON- CON- DUCT- ANCE (#S/CM) (00095) 229 183 228 190 128 120 123 144 215 242 | ATURE (DEG C) (00020) 11.5 16.5 5.5 14.5 33.0 | ATURE WATER (DEG C) (00010) 9.5 9.5 1.0 5.0 10.0 11.5 19.0 26.5 23.5 | NESS
TOTAL
(MG/L
AS
CACO3)
(00900)
76
59
 | DIS-
SOLVED (MG/L
AS CA) (00915) 18.7 15.0 14.7 20.3 | SIUM, DIS- SOLVED (MG/L AS MG) (00925) 7.04 5.22 4.81 < < < < < < < | SIUM, DIS- SOLVED (MG/L AS K) (00935) 1.73 1.40 1.23 1.00 1.00 1.64 | DIS-
SOLVED (MG/L
AS NA) (00930) 13.1 11.1 11.9 <.09 8.68 13.4 | UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410) 41 37 30 59 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 57 40 45 35 21 22 21 49 55 | BONATE WATER WATER DIS IT FIELD MG/L AS HCO3 (00453) 69 48 54 43 25 26 25 60 67 | RIDE,
DIS-
SOLVED
(MG/L
AS CL) (00940)
22.9
17.7

22.4
19.6

15.3
11.6
11.6
11.6
14.4

19.9
21.0 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
E.1
<.1

E.1

 | ## DELAWARE RIVER BASIN ## 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued | | | | | EK-QUALI | , | | | | | | | | | |--|--|---|--|--|---|--|--|---|---|--|--|--|---| | DATE | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN
DIS-
SOLVED
(MG/L
AS N)
(00602) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | NITRO-
GEN, PAR
TICULTE
WAT FLT
SUSP
(MG/L
AS N)
(49570) | | NOV
01 | .45 | 18.5 | 124 | 120 | <.04 | .21 | == | .23 | .74 | <.008 | .95 | .97 | | | DEC
06 | 2.26 | 15.8 | 102 | 96 | E.03 | .23 | | .36 | .87 | E.005 | 1.1 | 1.2 | .04 | | 06 | | | | | | .27 | | | .91 | | 1.2 | | | | 06
JAN | | | | == | <.030 | == | <.030 | | == | .004 | | | | | 09
MAR | == | 21.1 | == | | E.03 | | == | .29 | 1.36 | .008 | | 1.7 | == | | 06 | 2.4 | 16.3 | 100 | 96 | < .04 | | | .27 | .87 | .010 | | 1.1 | .05 | | 06
06 | | | | | .065 | .18 | <.030 | | .82 | .005 | 1.0 | | | | APR | | | | | | | | | | | | | | | 04
MAY
22 | | 12.5
11.6 | | | <.04 | | | .28 | .60
.50 | E.004 | | .88 | | | 22 | | 11.5 | | | <.04 | | | .27 | .50 | <.008 | | .77 | | | JUN
17 | <.2 | <.1 | <10 | | <.04 | | | <.10 | <.05 | <.008 | | | | | 17 | 3.9 | 11.7 | 71 | 75 | <.04 | | | .33 | .60 | E.004 | | .93 | .09 | | 17
17 | | | | == | .045 | .22 | <.030 | | .59 | .004 | .81 | | | | JUL | | | | | .045 | | <.030 | | | .004 | | | | | 10
SEP | | 17.4 | | | <.04 | | | .29 | .71 | E.007 | | 1.0 | | | 05
05 | 3.5 | 20.0 | 118 | 125 | < .04 | .22 | | .25 | 1.06
1.11 | .017 | 1.3 | 1.3 | .08 | | 05 | | | | | <.030 | | <.030 | | | .006 | DATE | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | CARBON,
INORG +
ORGANIC
PARTIC.
TOTAL
(MG/L
AS C)
(00694) | CARBON,
INOR-
GANIC,
PARTIC.
TOTAL
(MG/L
AS C)
(00688) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | OXYGEN
DEMAND,
BIO-
CHEM-
ICAL,
5 DAY
(MG/L)
(00310) | CHLORO-
PHYLL A
FLUORO-
METRIC
METHOD
CORR.
(µG/L)
(32209) | OXYGEN
DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | | | NOV
01 | PHORUS DIS- SOLVED (MG/L AS P) | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P) | PHORUS
TOTAL
(MG/L
AS P) | INORG +
ORGANIC
PARTIC.
TOTAL
(MG/L
AS C) | INOR-
GANIC,
PARTIC.
TOTAL
(MG/L
AS C) | ORGANIC
DIS-
SOLVED
(MG/L
AS C) | ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C) | DEMAND,
BIO-
CHEM-
ICAL,
5 DAY
(MG/L) | PHYLL A
FLUORO-
METRIC
METHOD
CORR.
(µG/L) | DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L) | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | MENT,
SUS-
PENDED
(MG/L) | | | NOV
01
DEC | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | INORG +
ORGANIC
PARTIC.
TOTAL
(MG/L
AS C)
(00694) | INOR-
GANIC,
PARTIC.
TOTAL
(MG/L
AS C)
(00688) | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | DEMAND,
BIO-
CHEM-
ICAL,
5 DAY
(MG/L)
(00310) | PHYLL A
FLUORO-
METRIC
METHOD
CORR.
(µG/L)
(32209) | DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | MENT,
SUS-
PENDED
(MG/L)
(80154) | | | NOV
01
DEC
06 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | INORG +
ORGANIC
PARTIC.
TOTAL
(MG/L
AS C)
(00694) | INOR-
GANIC,
PARTIC.
TOTAL
(MG/L
AS C)
(00688) | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | DEMAND,
BIO-
CHEM-
ICAL,
5 DAY
(MG/L)
(00310) | PHYLL A
FLUORO-
METRIC
METHOD
CORR.
(µG/L)
(32209) | DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155)
5.6
38.7 | MENT,
SUS-
PENDED
(MG/L)
(80154) | | | NOV
01
DEC
06
06 | PHORUS DIS- SOLVED (MG/L AS P) (00666) .061 | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | INORG +
ORGANIC
PARTIC.
TOTAL
(MG/L
AS C)
(00694) | INOR-
GANIC,
PARTIC.
TOTAL
(MG/L
AS C)
(00688) | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | DEMAND,
BIO-
CHEM-
ICAL,
5 DAY
(MG/L)
(00310) | PHYLL A
FLUORO-
METRIC
METHOD
CORR.
(µG/L)
(32209) | DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | MENT,
SUS-
PENDED
(MG/L)
(80154) | | | NOV
01
DEC
06 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | INORG +
ORGANIC
PARTIC.
TOTAL
(MG/L
AS C)
(00694) | INOR-
GANIC,
PARTIC.
TOTAL
(MG/L
AS C)
(00688) | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | DEMAND,
BIO-
CHEM-
ICAL,
5 DAY
(MG/L)
(00310) | PHYLL A FLUORO- METRIC METHOD CORR. (µG/L) (32209) | DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155)
5.6
38.7 | MENT,
SUS-
PENDED
(MG/L)
(80154) | | | NOV 01 DEC 06 06 13AN 09 MAR 06 | PHORUS DIS- SOLVED (MG/L AS P) (00666) .061 .067 .065 | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.04
.05

.07 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.065
.085

.087 | INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694) | INOR-
GANIC,
PARTIC.
TOTAL
(MG/L
AS C)
(00688) | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) 55 | DEMAND,
BIO-
CHEM-
ICAL,
5 DAY
(MG/L)
(00310) | PHYLL A FLUORO- METRIC METHOD CORR. (µG/L) (32209) | DEMAND,
CHEM-
1CAL
(HIGH
LEVEL)
(MG/L)
(00340) | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155)
5.6
38.7

13.6
66.2 | MENT,
SUS-
PENDED
(MG/L)
(80154)
.7
3.8

1.8
3.7 | | | NOV
01
DEC
06
06
JAN
09
MAR
06 | PHORUS DIS- SOLVED (MG/L AS P) (00666) .061 .067 .065 | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.04
.05

.07 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.065
.085

 | INORG +
ORGANIC
PARTIC.
TOTAL
(MG/L
AS C)
(00694) | INOR-
GANIC,
PARTIC.
TOTAL
(MG/L
AS C)
(00688) | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) 5 | DEMAND,
BIO-
CHEM-
ICAL,
5 DAY
(MG/L)
(00310) | PHYLL A
FLUORO- METRIC METHOD CORR. (µG/L) (32209) | DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155)
5.6
38.7

13.6 | MENT,
SUS-
PENDED
(MG/L)
(80154)
.7
3.8

1.8 | | | NOV
01
DEC
06
06
JAN
09
MAR
06
06
06 | PHORUS DIS- SOLVED (MG/L AS P) (00666) .061 .067 .065038 | PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671) .04 .0507 | PHORUS TOTAL (MG/L AS P) (00665) .065 .085087 | INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694) | INOR- GANIC, PARTIC. TOTAL (MG/L AS C) (00688) <.1 <.1 | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) | DEMAND,
BIO-
CHEM-
ICAL,
5 DAY
(MG/L)
(00310) | PHYLL A FLUORO- METRIC METHOD CORR. (µG/L) (32209) | DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155)
5.6
38.7

13.6
66.2 | MENT,
SUS-
PENDED
(MG/L)
(80154)
.7
3.8

1.8 | | | NOV 01 DEC 06 06 JAN 09 MAR 06 06 06 4PR 04 MAY | PHORUS DIS- SOLVED (MG/L AS P) (00666) .061 .067 .065038 | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.04
.05

.07 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.065
.085

.087
.060
 | INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694) | INOR- GANIC, PARTIC. TOTAL (MG/L AS C) (00688) <.1 <.1 | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) 55 | DEMAND,
BIO-
CHEM-
ICAL,
5 DAY
(MG/L)
(00310) | PHYLL A FLUORO- METRIC METHOD CORR. (µG/L) (32209) | DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155)
5.6
38.7

13.6
66.2

 | MENT,
SUS-
PENDED
(MG/L)
(80154)
.7
3.8

1.8
3.7

8.8 | | | NOV
01
DEC
06
06
JAN
09
MAR
06
06
06 | PHORUS DIS- SOLVED (MG/L AS P) (00666) .061 .067 .065038 | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.04
.05

.07 | PHORUS TOTAL (MG/L AS P) (00665) .065 .085087 .060 | INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694) | INOR- GANIC, PARTIC. TOTAL (MG/L AS C) (00688) <.1 <.1 | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) 55 | DEMAND,
BIO-
CHEM-
ICAL,
5 DAY
(MG/L)
(00310) | PHYLL A FLUORO- METRIC METHOD CORR. (µG/L) (32209) | DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155)
5.6
38.7

13.6
66.2 | MENT,
SUS-
PENDED
(MG/L)
(80154)
.7
3.8

1.8
3.7
 | | | NOV 01 DEC 06 06 06 JAN 09 MAR 06 06 06 4PR 04 MAY 22 JUN 17 | PHORUS DIS- SOLVED (MG/L AS P) (00666) .061 .067 .065038 | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.04
.05

.07
.03

.02
E.01
E.01 | PHORUS TOTAL (MG/L AS P) (00665) .065 .085087 .060058 .049 .049 | INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694) 5555 | INOR- GANIC, PARTIC. TOTAL (MG/L) AS C) (00688) <.1 <.1 | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681)

2.9

2.2

 | ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) 5555 | DEMAND,
BIO-
CHEM-
ICAL,
5 DAY
(MG/L)
(00310)

<1.0

<1.8 | PHYLL A FLUORO- METRIC METHOD CORR. (μG/L) (32209) | DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155)
5.6
38.7

13.6
66.2

309
633 | MENT,
SUS-
PENDED
(MG/L)
(80154)
.7
3.8

1.8
3.7

8.8 | | | NOV 01 DEC 06 06 06 JAN 09 MAR 06 06 04 APR 04 MAY 22 JUN 17 | PHORUS DIS- SOLVED (MG/L AS P) (00666) .061 .067 .065038038 | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.04
.05

.07
.03

.02
E.01 | PHORUS TOTAL (MG/L AS P) (00665) .065 .085087 .060058 .049 .049 <.004 | INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694) | INOR- GANIC, PARTIC. TOTAL (MG/L AS C) (00688) <.1 <.1 | ORGANIC DIS- SOLVED (MG/L AS C) (00681) 2.9 | ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) 555 | DEMAND,
BIO-
CHEM-
ICAL,
5 DAY
(MG/L)
(00310)

<1.0

<1.8 | PHYLL A FLUORO- METRIC METHOD CORR. (µG/L) (32209) | DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155)
5.6
38.7

13.6
66.2

309
633 | MENT,
SUS-
PENDED
(MG/L)
(80154)
.7
3.8

-1.8
3.7

8.8 | | | NOV 01 DEC 06 06 06 JAN 09 MAR 06 06 04 APR 04 MAY 22 JUN 17 17 | PHORUS DIS- SOLVED (MG/L AS P) (00666) .061 .067 .065038 | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.04
.05

.07
.03

.02
E.01
E.01
<.02
.03 | PHORUS TOTAL (MG/L AS P) (00665) .065 .085087 .060058 .049 .049 | INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694) 55 1.0 | INOR-
GANIC,
PARTIC.
TOTAL
(MG/L
AS C)
(00688) | ORGANIC DIS- SOLVED (MG/L AS C) (00681) 2.9 2.2 3.4 | ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) 551.0 | DEMAND,
BIO-
CHEM-
ICAL,
5 DAY
(MG/L)
(00310)

<1.0

<1.8
 | PHYLL A FLUORO- METRIC METHOD CORR. (µG/L) (32209) | DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155)
5.6
38.7

13.6
66.2

309
633

586 | MENT,
SUS-
PENDED
(MG/L)
(80154)
.7
3.8

1.8
3.7

8.8
11
12 | | | NOV 01 DEC 06 06 06 JAN 09 MAR 06 06 4PR 04 MAY 22 JUN 17 17 17 17 UL 10 | PHORUS DIS- SOLVED (MG/L AS P) (00666) .061 .067 .065038 | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.04
.05

.07
.03

.02
E.01
E.01
<.02
.03 | PHORUS TOTAL (MG/L AS P) (00665) .065 .085087 .060058 .049 .049 <.004 .068 | INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694) 551 1.0 | INOR- GANIC, PARTIC. TOTAL (MG/L AS C) (00688) <.1 <.1 <.1 <.1 <.1 <.1 | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681)

2.9

2.2

 | ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) 551 1.0 | DEMAND,
BIO-
CHEM-
ICAL,
5 DAY
(MG/L)
(00310)

<1.0

<1.8

<1.8 | PHYLL A FLUORO- METRIC METHOD CORR. (μG/L) (32209) | DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155)
5.6
38.7

13.6
66.2

309
633

586 | MENT,
SUS-
PENDED
(MG/L)
(80154)
.7
3.8

1.8
3.7

8.8
11
12 | | | NOV 01 DEC 06 06 06 1AN 09 MAR 06 06 06 4PR 04 MAY 22 JUN 17 17 17 17 17 17 17 10 SEP 05 | PHORUS DIS- SOLVED (MG/L AS P) (00666) .061 .067 .065038038040040 | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.04
.05

.07
.03

.02
E.01
E.01
<.02
.03

<.020 | PHORUS TOTAL (MG/L AS P) (00665) .065 .085087 .060058 .049 .049 <.004 .068 | INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694) 551 1.0 | INOR- GANIC, PARTIC. TOTAL (MG/L AS C) (00688) <.1 <.1 <.1 <.1 <.1 | ORGANIC DIS- SOLVED (MG/L AS C) (00681) 2.9 2.2 3.4 | ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) 551.0 | DEMAND,
BIO-
CHEM-
ICAL,
5 DAY
(MG/L)
(00310)

<1.0

<1.8

<1.8

<1.0 | PHYLL A FLUORO- METRIC METHOD CORR. (µG/L) (32209) | DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155)
5.6
38.7

13.6
66.2

309
633

586 | MENT,
SUS-
PENDED
(MG/L)
(80154)
.7
3.8

1.8
3.7

8.8
11
12 | | | NOV 01 DEC 06 06 06 JAN 09 MAR 06 06 06 22 JUN 17 17 17 17 JUL 10 SEEP | PHORUS DIS- SOLVED (MG/L AS P) (00666) .061 .067 .065038038040 | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.04
.05

.07
.03

.02
E.01
E.01
<.02
.03

<.020 | PHORUS TOTAL (MG/L AS P) (00665) .065 .085087 .060058 .049 .049 <.004 .068079 | INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694) 5 1.0 1.0 | INOR- GANIC, PARTIC. TOTAL (MG/L AS C) (00688) <.1 <.1 <.1 <.1 | ORGANIC DIS- SOLVED (MG/L AS C) (00681) 2.9 | ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) 55 1.0 | DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) <1.0 <1.8 <1.8 <1.8 | PHYLL A FLUORO- METRIC METRIC METHOD CORR. (μG/L) (32209) | DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) (00340) 10 <10 < <10 <10 <10 <10 <10 <10 | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155)
5.6
38.7

13.6
66.2

309
633

586

35.8 | MENT, SUS-
PENDED (MG/L) (80154) .7 3.8 1.8 3.7 8.8 11 12 13 3.4 | | ## 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued | DATE | TIME | ARSENIC
TOTAL
(µG/L
AS AS)
(01002) | BARIUM,
TOTAL
RECOV-
ERABLE
(µG/L
AS BA)
(01007) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(µG/L
AS BE)
(01012) | BORON,
DIS-
SOLVED
(µG/L
AS B)
(01020) | BORON,
TOTAL
RECOV-
ERABLE
(µG/L
AS B)
(01022) | CADMIUM
WATER
UNFLTRD
TOTAL
(µG/L
AS CD)
(01027) | CHRO-
MIUM,
DIS-
SOLVED
(µG/L
AS CR)
(01030) | CHRO-
MIUM,
HEXA-
VALENT,
DIS.
(µG/L
AS CR)
(01032) | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(µG/L
AS CR)
(01034) | COPPER,
DIS-
SOLVED
(µG/L
AS CU)
(01040) | COPPER,
TOTAL
RECOV-
ERABLE
(µG/L
AS CU)
(01042) | IRON,
DIS-
SOLVED
(µG/L
AS FE)
(01046) | |------------------
--|---|--|--|--|--|--|---|---|---|--|--|--| | NOV
01 | 0830 | | | | 20 | | | | | | | | 20 | | DEC
06
06 | 0910
0912 | E1 | 22.3 | E.03 | 20 | 18 | .04 | <.8 |
<5 | 1.0 | 1.8 | 2.0 | 22 | | MAR
06
06 | 1040
1042 | <2 | 21.5 | E.06 | 20 | 14 | .07 | <.8 |
<5 | E.5 | 2.6 | 1.5 | | | JUN
17
17 | 1210
1212 | <2 | 27.2 | E.04 | 10 | 11 | .08 | <.8 |
<5 | <.8 | 1.3 | 2.1 |
 | | SEP
05
05 | 0930
0932 | E1 | 26.4 | <.06 | 20 | 23 | .12 | <.8 |
<5 | <.8 | 1.7 | 2.0 | | | DATE | IRON,
TOTAL
RECOV-
ERABLE
(µG/L
AS FE)
(01045) | LEAD,
DIS-
SOLVED
(µG/L
AS PB)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µG/L
AS PB)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μG/L
AS MN)
(01056) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(µG/L
AS MN)
(01055) | MERCURY
DIS-
SOLVED
(μG/L
AS HG)
(71890) | MERCURY
TOTAL
RECOV-
ERABLE
(μG/L
AS HG)
(71900) | NICKEL,
DIS-
SOLVED
(µG/L
AS NI)
(01065) | NICKEL,
TOTAL
RECOV-
ERABLE
(µG/L
AS NI)
(01067) | SELE-
NIUM,
TOTAL
(µG/L
AS SE)
(01147) | SILVER,
TOTAL
RECOV-
ERABLE
(µG/L
AS AG)
(01077) | ZINC,
DIS-
SOLVED
(µG/L
AS ZN)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µG/L
AS ZN)
(01092) | | NOV
01 | | == | == | 5.9 | | == | == | == | == | == | | | == | | DEC
06
06 | 100 | .08 | <1 | 8.6 | 19.6 | <.01 | <.01 | .83 | 1 | E.2 | <.05 | 7 | 13 | | MAR
06
06 | 110 | .10 | <1 |
 | 23.7 | <.01 | <.01 | .94 | 1 | E.3 | <.05 | 5 | 9 | | JUN
17
17 | 340 | .21 | 1 |
 | 63.4 | <.01 | E.01 | .85 | 1 | < . 4 | <.05 | 6
 | 16 | | SEP
05
05 | 60
 | .12 | <1 |
 | 18.6 | <.01 | <.01 | .58 | 2 | .5
 | <.05 | 4
 | 6
 | | DATE | TIME | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(µG/L)
(34506) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(µG/L)
(34496) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(µG/L)
(34501) | 1,2-DI-
CHLORO-
ETHANE
TOTAL
(µG/L)
(32103) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(µG/L)
(34541) | TRANS-
1,2-DI-
CHLORO-
ETHENE
TOTAL
(µG/L)
(34546) | BENZENE
1,3-DI-
CHLORO-
WATER
UNFLTRD
REC
(µG/L)
(34566) | BENZENE
1,4-DI-
CHLORO-
WATER
UNFLTRD
REC
(µG/L)
(34571) | BENZENE
O-DI-
CHLORO-
WATER
UNFLTRD
REC
(µG/L)
(34536) | BENZENE
TOTAL
(µG/L)
(34030) | BROMO-
FORM
TOTAL
(µG/L)
(32104) | CARBON
TETRA-
CHLO-
RIDE
TOTAL
(µG/L)
(32102) | | DEC
06 | 0910 | <.1 | <.1 | <.1 | <.2 | <.1 | <.1 | <.1 | <.1 | <.1 | <.1 | <.2 | <.2 | | MAR
06
JUN | 1040 | <.1 | <.1 | <.1 | <.2 | <.1 | <.1 | <.1 | <.1 | <.1 | <.1 | <.2 | <.2 | | 17
SEP | 1210 | <.1 | <.1 | <.1 | <.2 | <.1 | <.1 | <.1 | <.1 | <.1 | <.1 | <.2 | <.2 | | 05 | 0930 | <.1 | <.1 | <.1 | <.2 | <.1 | <.1 | <.1 | <.1 | <.1 | <.1 | <.2 | <.2 | | DATE | TOTAL (µG/L) | CHLORO-DI-BROMO-METHANETOTAL(µG/L)(32105) | CHLORO-
FORM
TOTAL
(µG/L)
(32106) | WATER
TOTAL
(µG/L) | DI-
CHLORO-
METHANE
TOTAL
(µG/L) | TOTAL (µG/L) | ETHER,
WATER,
UNFLTRD | RECOVER (µG/L) | RECOVER
(µG/L) | RECOVER
(µG/L) | TOTAL (µG/L) | FREON-
113
WATER
UNFLTRD
REC
(µG/L)
(77652) | REC
(µG/L) | | DEC
06 | <.1 | <.2 | <.1 | <.1 | <.1 | <.2 | <.2 | <.2 | <.1 | <.2 | <.1 | <.1 | .3 | | MAR
06 | <.1 | <.2 | <.1 | <.1 | <.1 | <.2 | <.2 | <.2 | <.1 | <.2 | <.1 | <.1 | <.2 | | JUN
17 | <.1 | <.2 | <.1 | <.1 | <.1 | <.2 | <.2 | <.2 | <.1 | <.2 | <.1 | <.1 | .3 | | SEP
05 | <.1 | <.2 | <.1 | <.1 | <.1 | <.2 | <.2 | <.2 | <.1 | <.2 | <.1 | <.1 | . 4 | #### 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | META/ | | | | | | | | |------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | | METHYL | PARA- | 0- | | TETRA- | | TRI- | TRI- | | | | ENE | XYLENE | XYLENE | | CHLORO- | | CHLORO- | CHLORO- | VINYL | | | CHLO- | WATER | WATER | | ETHYL- | | ETHYL- | FLUORO- | CHLO- | | | RIDE | UNFLTRD | WHOLE | STYRENE | ENE | TOLUENE | ENE | METHANE | RIDE | | DATE | TOTAL | REC | TOTAL | | (µG/L) | | (34423) | (85795) | (77135) | (77128) | (34475) | (34010) | (39180) | (34488) | (39175) | | DEC | | | | | | | | | | | 06 | <.2 | <.2 | <.1 | <.1 | <.1 | <.1 | <.1 | < . 2 | <.2 | | MAR | | | | | | | | | | | 06 | <.2 | <.2 | <.1 | <.1 | < .1 | <.1 | <.1 | < . 2 | <.2 | | JUN | | | | | | | | | | | 17 | <.2 | <.2 | < .1 | <.1 | < .1 | <.1 | <.1 | <.2 | < . 2 | | SEP | | | | | | | | | | | 05 | <.2 | <.2 | < .1 | <.1 | < .1 | <.1 | <.1 | <.2 | < . 2 | ## FILTERED-WATER PESTICIDE ANALYSES **REMARKS**.--Selected samples were analyzed for pesticides with laboratory schedule 2001 (listed in its entirety, with laboratory reporting levels, on page 179). Only pesticides identified by the analyses in one or more surface-water samples are listed in the following table. | DATE | TIME | SAMF
TYF | | | ACETO-
CHLOR,
WATER
FLTRD
REC
(µG/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(µG/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(µG/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(39632) | BEN-
FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µG/L)
(82673) | CAR-
BARYL
WATER
FLIRD
0.7 µ
GF, REC
(µG/L)
(82680) | CHLOR-
PYRIFOS
DIS-
SOLVED
(µG/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(04041) | DCPA
WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82682) | |---|---|---|--|--|---|--|---|---|---|--|--|--|--| | NOV | | | | | | | | | | | | | | | 01
DEC | 0830 | ENVIRONM | MENTAL | | <.004 | <.002 | <.005 | .020 | <.010 | <.041 | <.005 | <.018 | <.003 | | 06
JAN | 0910 | ENVIRONM | MENTAL | | <.004 | <.002 | <.005 | .014 | <.010 | <.041 | <.005 | <.018 | <.003 | | 09 | 1230 | FIELD BL | | | <.006 | < .004 | <.005 | <.007 | <.010 | < .041 | <.005 | <.018 | <.003 | | 09
MAR | 1330 | ENVIRONM | MENTAL | | <.006 | <.004 | <.005 | .020 | <.010 | <.041 | <.005 | <.018 | <.003 | | 06
APR | 1040 | ENVIRONM | MENTAL | | <.006 | < .004 | <.005 | .027 | <.010 | <.041 | <.005 | <.018 | <.003 | | 04 | 0850 | ENVIRONM | MENTAL | | <.006 | < .004 | <.005 | .010 | <.010 | <.041 | <.005 | <.018 | <.003 | | MAY
22 | 1000 | ENVIRONM | MENTAL | | <.008 | < .004 | <.005 | .032 | <.010 | <.041 | <.005 | <.018 | <.003 | | JUN
17 | 1210 | ENVIRONM | MENTAL | | <.006 | <.004 | <.005 | E.065 | <.010 | <.041 | <.005 | <.018 | <.003 | | JUL
10 | 0930 | ENVIRONM | TENTAL. | | <.006 | <.004 | <.005 | .034 | <.010 | <.041 | <.005 | <.018 | <.003 | | SEP
05 | 0930 | ENVIRONM | | |
<.006 | <.004 | <.005 | .033 | <.010 | <.041 | <.005 | <.018 | <.003 | | 05 | 0930 | ENVIRONM | IENIAL | | <.006 | <.004 | <.005 | .033 | <.010 | <.041 | <.005 | <.010 | <.003 | | | | | | | | | | | | | | | | | DATE | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(µG/L)
(39572) | EPTC
WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82668) | LINDANE
DIS-
SOLVED
(µG/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(µG/L)
(39532) | METHYL
AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µG/L)
(82686) | METO-
LACHLOR
WATER
DISSOLV
(µG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630) | NAPROP-
AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82684) | PENDI-
METH-
ALIN
WAT FLT
0.7 µ
GF, REC
(µG/L)
(82683) | PRO-
METON,
WATER,
DISS,
REC
(µG/L)
(04037) | PRO-
PANIL
WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82679) | | NOV
01 | ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L) | AZINON,
DIS-
SOLVED
(µG/L) | WATER
FLTRD
0.7 µ
GF, REC
(µG/L) | DIS-
SOLVED
(µG/L) | URON WATER FLTRD 0.7 µ GF, REC (µG/L) | THION,
DIS-
SOLVED
(µG/L) | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µG/L) | LACHLOR
WATER
DISSOLV
(µG/L) | BUZIN
SENCOR
WATER
DISSOLV
(µG/L) | AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µG/L) | METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μG/L) | METON,
WATER,
DISS,
REC
(µG/L) | PANIL
WATER
FLTRD
0.7 µ
GF, REC
(µG/L) | | NOV | ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(04040) | AZINON,
DIS-
SOLVED
(µG/L)
(39572) | WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82668) | DIS-
SOLVED
(µG/L)
(39341) | URON WATER FLTRD 0.7 µ GF, REC (µG/L) (82666) | THION,
DIS-
SOLVED
(µG/L)
(39532) | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µG/L)
(82686) | LACHLOR
WATER
DISSOLV
(µG/L)
(39415) | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630) | AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82684) | METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μG/L)
(82683) | METON,
WATER,
DISS,
REC
(µG/L)
(04037) | PANIL
WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82679) | | NOV
01
DEC
06
JAN | ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(04040)
E.020 | AZINON,
DIS-
SOLVED
(µG/L)
(39572)
<.005 | WATER
FLTRD
0.7 μ
GF, REC
(μG/L)
(82668)
<.002 | DIS-
SOLVED
(µG/L)
(39341)
<.004 | URON WATER FLTRD 0.7 μ GF, REC (μG/L) (82666) <.035 | THION,
DIS-
SOLVED
(µG/L)
(39532)
<.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μG/L)
(82686)
<.050 | LACHLOR
WATER
DISSOLV
(µG/L)
(39415)
E.005 | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630)
<.006 | AMIDE
WATER
FLTRD
0.7 μ
GF, REC
(μG/L)
(82684)
<.007 | METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μG/L)
(82683)
<.010 | METON,
WATER,
DISS,
REC
(µG/L)
(04037)
<.01 | PANIL
WATER
FLIRD
0.7 µ
GF, REC
(µG/L)
(82679)
<.011 | | NOV
01
DEC
06
JAN
09 | ATRAZINE,
WATER,
DISS,
REC
(µG/L)
(04040) | AZINON,
DIS-
SOLVED
(µG/L)
(39572) | WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82668) | DIS-
SOLVED
(µG/L)
(39341) | URON WATER FLTRD 0.7 μ GF, REC (μG/L) (82666) <.035 | THION,
DIS-
SOLVED
(µG/L)
(39532) | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µG/L)
(82686) | LACHLOR
WATER
DISSOLV
(µG/L)
(39415) | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630) | AMIDE
WATER
FLTRD
0.7 μ
GF, REC
(μG/L)
(82684)
<.007 | METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μG/L)
(82683) | METON,
WATER,
DISS,
REC
(µG/L)
(04037) | PANIL
WATER
FLTRD
0.7 μ
GF, REC
(μG/L)
(82679) | | NOV
01
DEC
06
JAN
09
09 | ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(04040)
E.020
E.014
<.006 | AZINON,
DIS-
SOLVED
(µG/L)
(39572)
<.005
<.005 | WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82668)
<.002
<.002 | DIS-
SOLVED
(µG/L)
(39341)
<.004
<.004 | URON WATER FLTRD 0.7 µ GF, REC (µG/L) (82666) <.035 <.035 | THION,
DIS-
SOLVED
(µG/L)
(39532)
<.027
<.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μG/L)
(82686)
<.050 | LACHLOR WATER DISSOLV (µG/L) (39415) E.005 E.004 <.013 | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630)
<.006
<.006 | AMIDE
WATER
FLTRD
0.7 μ
GF, REC
(μG/L)
(82684)
<.007
<.007 | METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μG/L)
(82683)
<.010
<.010 | METON,
WATER,
DISS,
REC
(µG/L)
(04037)
<.01
<.01 | PANIL WATER FLTRD 0.7 μ GF, REC (μG/L) (82679) <.011 <.011 | | NOV
01
DEC
06
JAN
09
09
06
APR
04 | ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(04040)
E.020
E.014
<.006
E.018 | AZINON,
DIS-
SOLVED
(μG/L)
(39572)
<.005
<.005
<.005
E.004 | WATER
FLITRD
0.7 µ
GF, REC
(µG/L)
(82668)
<.002
<.002
<.002 | DIS-
SOLVED (µG/L) (39341)
<.004
<.004
<.004 | URON WATER FLITED 0.7 µ GF, REC (µG/L) (82666) <.035 <.035 <.035 <.035 | THION, DIS-
SOLVED (µG/L) (39532) <.027 <.027 <.027 <.027 | AZIN-
PHOS:
WAT FLT
0.7 µ
GF, REC
(µG/L)
(82686)
<.050
<.050
<.050 | LACHLOR WATER DISSOLV (µG/L) (39415) E.005 E.004 <.013 E.005 | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630)
<.006
<.006 | AMIDE WATER FLITRD 0.7 µ GF, REC (µG/L) (82684) <.007 <.007 <.007 | METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μG/L)
(82683)
<.010
<.010
<.022
<.022 | METON,
WATER,
DISS,
REC
(µG/L)
(04037)
<.01
<.01 | PANIL WATER FLITED 0.7 µ GF, REC (µG/L) (82679) <.011 <.011 <.011 <.011 | | NOV
01
DEC
06
JAN
09
09
MAR
06
APR
04
MAY
22 | ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(04040)
E.020
E.014
<.006
E.018 | AZINON,
DIS-
SOLVED
(μG/L)
(39572)
<.005
<.005
<.005
E.004 | WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82668)
<.002
<.002
<.002
<.002 | DIS-
SOLVED (µG/L) (39341)
<.004
<.004
<.004
<.004 | URON WATER FLITED 0.7 µ GF, REC (µG/L) (82666) <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µG/L) (39532) <.027 <.027 <.027 <.027 <.027 | AZIN-PHOS WAT FLT 0.7 µ GF, REC (µG/L) (82686) <.050 <.050 <.050 <.050 <.050 <.050 | LACHLOR WATER DISSOLV (µG/L) (39415) E.005 E.004 <.013 E.005 .014 | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630)
<.006
<.006
<.006
<.006 | AMIDE WATER FLTRD 0.7 μ GF, REC (μG/L) (82684) < .007 < .007 < .007 < .007 < .007 | METH- ALIN WAT FLT 0.7 μ GF, REC (μG/L) (82683) <.010 <.010 <.022 <.022 <.022 | METON,
WATER,
DISS,
REC
(μG/L)
(04037)
<.01
<.01
<.01
M | PANIL WATER FLIRD 0.7 µ GF, REC (µG/L) (82679) <.011 <.011 <.011 <.011 <.011 | | NOV
01
DEC
06
JAN
09
09
06
APR
04
MAY
22
JUN
17 | ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(04040)
E.020
E.014
<.006
E.018
E.016
E.005 | AZINON,
DIS-
SOLVED
(μG/L)
(39572)
<.005
<.005
<.005
E.004
<.005 | WATER FLITRD 0.7 µ GF, REC (µG/L) (82668) <.002 <.002 <.002 <.002 <.002 <.002 | DIS-
SOLVED (µG/L) (39341)
<.004
<.004
<.004
<.004
<.004 | URON WATER FLITRD 0.7 μ GF, REC (μG/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 | THION,
DIS-
SOLVED
(μG/L)
(39532)
<.027
<.027
<.027
<.027
<.027 | AZIN-PHOS WAT FLT 0.7 µ GF, REC (µG/L) (82686) < .050 < .050 < .050 < .050 < .050 < .050 | LACHLOR WATER DISSOLV (µG/L) (39415) E.005 E.004 <.013 E.005 .014 E.006 | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630)
<.006
<.006
<.006
<.006
<.006 | AMIDE WATER FLTRD 0.7 µ GF, REC (µG/L) (82684) < .007 < .007 < .007 < .007 < .007 < .007 | METH- ALIN WAT FLT 0.7 μ GF, REC (μG/L) (82683) <.010 <.010 <.022 <.022 <.022 <.022 | METON,
WATER,
DISS,
REC
(µG/L)
(04037)
<.01
<.01
<.01
M | PANIL WATER FLTRD 0.7 µ GF, REC (µG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 | | NOV
01
DEC
06
JAN
09
09
MAR
06
APR
04
MAY
22
JUN | ATRA-ZINE, WATER, DISS, REC (µG/L) (04040) E.020 E.014 <.006 E.018 E.016 E.005 | AZINON,
DIS-
SOLVVED
(μG/L)
(39572)
<.005
<.005
<.005
<.005
<.005
<.005 | WATER
FLITRD
0.7 µ
GF, REC
(µG/L)
(82668)
<.002
<.002
<.002
<.002
<.002
<.002 | DIS-
SOLVED (µG/L) (39341)
<.004
<.004
<.004
<.004
<.004
<.004 | URON WATER FLTRD 0.7 µ GF, REC (µG/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µG/L) (39532) <.027 <.027 <.027 <.027 <.027 <.027 <.027 | AZIN-PHOS WAT FLT 0.7 µ GF, REC (µG/L) (82686) <.050 <.050 <.050 <.050 <.050 <.050 | LACHLOR WATER DISSOLV (µG/L) (39415) E.005 E.004 <.013 E.005 .014 E.006 | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630)
<.006
<.006
<.006
<.006
<.006
<.006 | AMIDE WATER FLTRD 0.7 µ GF, REC (µG/L) (82684) < .007 < .007 < .007 < .007 < .007 < .007 < .007 < .007 | METH- ALIN WAT FLT 0.7 μ GF, REC (μG/L) (82683) <.010 <.010 <.022 <.022 <.022 <.022 <.022 | METON,
WATER,
DISS,
REC
(μG/L) (04037)
<.01
<.01
<.01
M
E.01
M | PANIL WATER FLTRD 0.7 µ GF, REC (µG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 <.011 | | NOV
01
DEC
06
JAN
09
09
MAR
06
APR
04
MAY
22
JUN
17 |
ATRA-ZINE, WATER, DISS, REC (µG/L) (04040) E.020 E.014 <.006 E.018 E.016 E.015 | AZINON, DIS- SOLVED (µG/L) (39572) <.005 <.005 <.005 E.004 <.005 <.005 <.005 <.005 | WATER FLITRD 0.7 µ GF, REC (µG/L) (82668) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.003 | DIS-
SOLVED (µG/L) (39341)
<.004
<.004
<.004
<.004
<.004
<.004
<.004 | URON WATER FLITRD 0.7 µ GF, REC (µG/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µG/L) (39532) <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 | AZIN- PHOS WAT FLT 0.7 µ GF, REC (µG/L) (82686) <.050 <.050 <.050 <.050 <.050 <.050 <.050 | LACHLOR WATER DISSOLV (µG/L) (39415) E.005 E.004 <.013 E.005 .014 E.006 .015 | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630)
<.006
<.006
<.006
<.006
<.006
<.006
<.006 | AMIDE WATER FLTRD 0.7 µ GF, REC (µG/L) (82684) <.007 <.007 <.007 <.007 <.007 <.007 <.007 | METH- ALIN WAT FLT 0.7 µ GF, REC (µG/L) (82683) <.010 <.010 <.022 <.022 <.022 <.022 <.022 <.022 <.022 | METON,
WATER,
DISS,
REC
(μG/L)
(04037)
<.01
<.01
M
E.01
M | PANIL WATER FLITED 0.7 µ GF, REC (µG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | ## 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DATE | REC
(µG/L) | TEBU-
THIURON
WATER
FLTRD
0.7 μ
GF, REC
(μ G/L)
(82670) | GF, REC
(µG/L) | |-----------|---------------|---|-------------------| | NOV | | | | | 01 | <.011 | <.02 | <.034 | | DEC
06 | <.011 | < . 02 | <.034 | | JAN | V.011 | <.02 | V.034 | | 09 | <.005 | <.02 | E.018 | | 09 | <.005 | <.02 | <.034 | | MAR
06 | <.005 | < . 02 | <.034 | | APR | <.005 | <.02 | <.034 | | 04 | <.005 | < .02 | <.034 | | MAY | | | | | 22 | .022 | <.02 | <.034 | | JUN
17 | .011 | < . 02 | <.034 | | JUL | .011 | 1.02 | 1.051 | | 10 | .011 | <.02 | <.034 | | SEP | 005 | | 024 | | 05 | .007 | <.02 | <.034 | #### WHOLE-WATER PESTICIDE ANALYSES | DATE | TIME | ALDRIN,
TOTAL
(µG/L)
(39330) | ALPHA
BHC
TOTAL
(µG/L)
(39337) | AROCLOR
1016/
1242
PCB
WATER
UNFLTRD
(µG/L)
(81648) | AROCLOR
1221
PCB
TOTAL
(µG/L)
(39488) | AROCLOR
1232
PCB
TOTAL
(µG/L)
(39492) | AROCLOR
1248
PCB
TOTAL
(µG/L)
(39500) | AROCLOR
1254
PCB
TOTAL
(µG/L)
(39504) | AROCLOR
1260
PCB
TOTAL
(µG/L)
(39508) | BETA BENZENE HEXA- CHLOR- IDE TOTAL (µG/L) (39338) | CHLOR-DANE CIS WATER WHOLE TOTAL (µG/L) (39062) | CHLOR-DANE,
TECH-NICAL
TOTAL
(µG/L) | CHLOR-DANE TRANS WATER WHOLE TOTAL (µG/L) (39065) | |------------------|--|---|---|--|--|---|--|--|--|--|---|--|---| | DEC | | | | | | | | | | | | | | | 06
MAR | 0910 | < .04 | <.03 | <.1 | <1 | <.1 | <.1 | <.1 | <.1 | <.03 | <.1 | <.1 | <.1 | | 06 | 1040 | < .04 | <.03 | <.1 | <1 | <.1 | <.1 | <.1 | <.1 | <.03 | <.1 | <.1 | <.1 | | JUN
17
SEP | 1210 | <.04 | <.03 | <.1 | <1 | <.1 | <.1 | <.1 | <.1 | <.03 | <.1 | <.1 | <.1 | | 05 | 0930 | < .04 | <.03 | <.1 | <1 | <.1 | <.1 | <.1 | <.1 | <.03 | <.1 | <.1 | <.1 | | DATE | DELTA
BENZENE
HEXA-
CHLOR-
IDE
TOTAL
(µG/L)
(34259) | DI-
ELDRIN
TOTAL
(µG/L)
(39380) | ENDO-
SULFAN-
I
WATER
WHOLE
REC
(µG/L)
(34361) | ENDO-
SULFAN
II
TOTAL
(µG/L)
(34356) | ENDO-
SULFAN
SULFATE
TOTAL
(µG/L)
(34351) | ENDRIN
ALDE-
HYDE
TOTAL
(µG/L)
(34366) | ENDRIN
WATER
UNFLTRD
REC
(µG/L)
(39390) | HEPTA-
CHLOR
EPOXIDE
TOTAL
(µG/L)
(39420) | HEPTA-
CHLOR,
TOTAL
(µG/L)
(39410) | LINDANE
TOTAL
(µG/L)
(39340) | P,P'
DDD,
TOTAL
(µG/L)
(39310) | P,P'
DDE,
TOTAL
(µG/L)
(39320) | P,P'
DDT,
TOTAL
(µG/L)
(39300) | | DEC
06
MAR | <.09 | <.02 | <.1 | <.04 | <.6 | <.2 | <.06 | <.8 | <.03 | <.03 | <.1 | <.04 | <.1 | | 06
JUN | <.09 | <.02 | <.1 | <.04 | <.6 | <.2 | <.06 | <.8 | <.03 | <.03 | <.1 | <.04 | <.1 | | 17
SEP | <.09 | <.02 | <.1 | < .04 | <.6 | <.2 | <.06 | <.8 | <.03 | <.03 | <.1 | < .04 | <.1 | | 05 | < .09 | <.02 | <.1 | <.04 | <.6 | <.2 | <.06 | <.8 | <.03 | <.03 | <.1 | < .04 | <.1 | | DATE | APHENE
TOTAL
(µG/L
(39400 | |-----------|------------------------------------| | DEC
06 | <2 | | MAR | | | 06
JUN | <2 | | 17
SEP | <2 | | 05 | <2 | #### 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 ## WATER-COLUMN BACTERIA ANALYSES Samples collected synoptically during the summer months | DATE | TIME | COLI-
FORM,
FECAL,
EC
BROTH
(MPN)
(31615) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | ENTERO-
COCCI,
ME MF,
WATER
(COL/
100 ML)
(31649) | DATE | TIME | COLI-
FORM,
FECAL,
EC
BROTH
(MPN)
(31615) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | ENTERO-
COCCI,
ME MF,
WATER
(COL/
100 ML)
(31649) | |------|------|---|--|---|------|------|---|--|---| | JUN | | | | | JUL | | | | | | 05 | 1045 | 20 | <100 | <10 | 02 | 1200 | <20 | <100 | 10 | | 12 | 1035 | 80 | <100 | <10 | | | | | | | 19 | 1120 | 20 | 100 | 10 | | | | | | | 25 | 1040 | 20 | <100 | <10 | | | | | | #### Analyses of pesticides in surface-water and ground-water samples (schedule 2001) Selected water samples from DELR-NAWQA study sites were analyzed for pesticides by use of NWQL schedule 2001. This table lists the pesticides on the schedule, the unit of measure (micrograms per liter, $\mu g/L$), the U.S. Geological Survey National Water Information System parameter code, and the reporting level. Only pesticides measured at or above the minimum reporting level for one or more samples are listed in the water-quality tables. SCHEDULE DESCRIPTION.--Pesticides in filtered water extracted on C-18 Solid Phase Extraction (SPE) cartridge and analyzed by Gas Chromatography/ Mass Spectrometry (GC/MS). SAMPLE REQUIREMENTS.--1 liter of water filtered through 0.7-micron glass-fiber depth filter, chilled at 4° C (packed in ice). CONTAINER REQUIREMENTS .-- 1 liter baked amber glass bottle (GCC) from NWQL. PCODE.--The USGS/EPA parameter code. COMMON NAME .-- Common or trade name(s) for constituent. LRL.--Laboratory reporting level. | PCode | Common Name | LRL
(µg/L) | PCode | Common Name | LRL
(µg/L) | |-------|--------------------|---------------|-------|------------------|---------------| | 82660 | 2,6-Diethylaniline | 0.006 | 82667 | Parathion-methyl | 0.006 | | 49260 | Acetochlor | 0.006 | 39415 | Metolachlor | 0.013 | | 46342 | Alachlor | 0.0045 | 82630 | Metribuzin | 0.006 | | 34253 | alpha-HCH | 0.0046 | 82671 | Molinate | 0.0016 | | 39632 | Atrazine | 0.007 | 82684 | Napropamide | 0.007 | | 82673 | Benfluralin | 0.010 | 34653 | p,p'-DDE | 0.0025 | | 04028 | Butylate | 0.002 | 39542 | Parathion | 0.010 | | 82680 | Carbaryl | 0.041 | 82669 | Pebulate | 0.0041 | | 82674 | Carbofuran | 0.020 | 82683 | Pendimethalin | 0.022 | | 38933 | Chlorpyrifos | 0.005 | 82687 | cis-Permethrin | 0.006 | | 04041 | Cyanazine | 0.018 | 82664 | Phorate | 0.011 | | 82682 | Dacthal | 0.0030 | 04037 | Prometon | 0.015 | | 04040 | Deethylatrazine | 0.006 | 82676 | Propyzamide | 0.0041 | | 39572 | Diazinon | 0.005 | 04024 | Propachlor | 0.010 | | 39381 | Dieldrin | 0.0048 | 82679 | Propanil | 0.011 | | 82677 | Disulfoton | 0.021 | 82685 | Propargite | 0.023 | | 82668 | EPTC | 0.0020 | 04035 | Simazine | 0.005 | | 82663 | Ethalfluralin | 0.009 | 82670 | Tebuthiuron | 0.016 | | 82672 | Ethoprophos | 0.005 | 82665 | Terbacil | 0.034 | | 04095 | Fonofos | 0.0027 | 82675 | Terbufos | 0.017 | | 39341 | Lindane | 0.0040 | 82681 | Thiobencarb | 0.0048 | | 82666 | Linuron | 0.035 | 82678 | Triallate | 0.0023 | | 39532 | Malathion | 0.027 | 82661 | Trifluralin | 0.009 | | 82686 | Azinphos-methyl | 0.05 | | | | ## 01463500 DELAWARE RIVER AT TRENTON, NJ.--Continued (Pennsylvania Water-Quality Network Station) PERIOD OF RECORD.--April 2002 to current year. **REMARKS**.--Other data for the Water-Quality Network can be found on pages
410-425. COOPERATION.—Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection. | (00028) (00061) (82398) (00300) (00400) (00095) (00010) (00900) (00916) (00927) (00417) (| | (00927) | (00916) | CACO3)
(00900) | WATER
(DEG C)
(00010) | DUCT-
ANCE
(µS/CM)
(00095) | FIELD
(STAND-
ARD
UNITS)
(00400) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | SAM-
PLING
METHOD,
CODES
(82398) | CUBIC
FEET
PER
SECOND
(00061) | LYZING
SAMPLE
(CODE
NUMBER)
(00028) | Time | Date | |---|--|--|------------------------------------|-----------------------------------|--|-------------------------------------|--|--|--|---|---|------------------------------------|------| | APR 2002
25 1820 9813 8400 40 10.8 7.7 161 12.5 52 13.9 4.3 34 | | 4.3 | 13.9 | 52 | 12.5 | 161 | 7.7 | 10.8 | 40 | 8400 | 9813 | 1820 | 25 | | JUN
20 1700 9813 12500 40 9.8 7.9 140 21.8 50 13.4 3.9 30 | 0 <.2 | 3.9 | 13.4 | 50 | 21.8 | 140 | 7.9 | 9.8 | 40 | 12500 | 9813 | 1700 | 20 | | AUG
19 1430 9813 3470 40 9.3 8.8 224 30.6 70 16.8 6.8 48 | 8 <.2 | 6.8 | 16.8 | 70 | 30.6 | 224 | 8.8 | 9.3 | 40 | 3470 | 9813 | 1430 | | | SULFATE AT 105 AT 105 GEN, GEN, GEN, NITRO- PHORUS PHOS- CARBON, TOTAL ABLE TO DIS- DEG. C, DEG. C, AMMONIA NITRATE NITRITE GEN, ORTHO PHORUS ORGANIC RECOV- CHLOR- SOLVED DIS- SUS- TOTAL ABLE TO | EN- IRON, E TO TOTAL OR- RECOV-TION ERABLE LTRD (μ_G/L) AS FE) | TOTAL
RECOV-
ERABLE
(µG/L
AS CU) | ORGANIC
TOTAL
(MG/L
AS C) | PHORUS
TOTAL
(MG/L
AS P) | PHORUS
ORTHO
TOTAL
(MG/L
AS P) | GEN,
TOTAL
(MG/L
AS N) | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) | AT 105
DEG. C,
DIS-
SOLVED
(MG/L) | DIS-
SOLVED
(MG/L
AS SO4) | Date | | APR 2002
25 14.6 92 <2 <.020 .71 <.040 .99 .03 .050 2.9 <10 <1.00
JUN | .00 190 | <10 | 2.9 | .050 | .03 | .99 | <.040 | .71 | <.020 | <2 | 92 | 14.6 | 25 | | 20 12.1 124 16 <.020 .64 <.040 .88 .04 .050 4.1 <10 <1.00 AUG | .00 420 | <10 | 4.1 | .050 | .04 | .88 | <.040 | .64 | <.020 | 16 | 124 | 12.1 | 20 | | 19 19.6 142 2 .030 .81 <.040 1.2 .07 .100 3.0 <10 <1.00 | .00 70 | <10 | 3.0 | .100 | .07 | 1.2 | <.040 | .81 | .030 | 2 | 142 | 19.6 | | | Date | LEAD,
TOTAL
RECOV-
ERABLE
(µG/L
AS PB)
(01051) | ERABLE
(µG/L | AS NI) | ERABLE
(µG/L
AS ZN) | PHENOLS
TOTAL
(μG/L)
(32730) | |-----------------------|--|-----------------|--------|---------------------------|---------------------------------------| | APR 2002
25
JUN | <1.0 | 40 | <50 | 20 | <5 | | 20 | 1.0 | 50 | <50 | 20 | <5 | | AUG
19 | <1.0 | 30 | <50 | <10 | <5 | ## 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25° CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|--|---|---|--|---|--|---|--|--|---|---|--| | | | OCTOBER | | N | OVEMBER | | Di | ECEMBER | | | JANUARY | | | 1
2
3
4
5 | 207
219
229
230
235 | 194
206
219
225
228 | 200
212
224
228
232 | 231
235
236
236
234 | 227
229
228
230
230 | 229
231
232
233
232 | 223
224
224
222
205 | 217
218
221
205
185 | 220
221
223
212
194 | 221
230
234
237
240 | 209
216
230
223
236 | 218
225
231
233
238 | | 6
7
8
9
10 | 237
243
235
239
236 | 232
231
230
234
220 | 235
234
232
237
227 | 234
235
237
237
238 | 229
231
233
230
231 | 231
233
235
233
235 | 189
199
207
215
223 | 184
189
199
206
215 | 186
194
203
210
220 | 245
239
232
234
246 | 239
232
227
228
233 | 242
236
230
231
237 | | 11
12
13
14
15 | 224
228
234
236
234 | 219
221
227
233
230 | 221
223
231
234
232 | 242
239
240
237
239 | 236
235
234
234
233 | 239
237
237
236
236 |
226
229
232 | 219
225
225 |
222
227
229 | 259
260
259
260
258 | 246
256
255
255
248 | 253
258
257
258
252 | | 16
17
18
19
20 | 235
237
240
232
229 | 229
229
231
224
225 | 231
233
236
227
227 | 237
243
248
247
243 | 234
234
243
241
234 | 236
239
245
244
239 | 236
230
226
210
209 | 227
226
210
201
198 | 232
229
217
204
205 | 249
246
246
246
247 | 244
243
244
244
245 | 246
244
245
245
246 | | 21
22
23
24
25 | 230
222
228
231
229 | 218
219
221
226
222 | 223
221
223
228
225 | 237
236
235
233
235 | 233
232
229
230
229 | 235
234
232
231
233 | 198
162
165
165
176 | 161
159
161
160
164 | 177
160
163
162
170 | 253
264
271
314
299 | 246
253
264
271
281 | 250
257
269
285
292 | | 26
27
28
29
30
31 | 229
234
236
238
232
233 | 224
228
233
230
228
230 | 226
230
235
232
230
231 | 234
242
244
241
227 | 230
227
238
224
222 | 232
232
241
232
225 | 180
183
186
188
202
215 | 173
180
182
185
188
202 | 178
181
183
186
193
210 | 281
277
274
250
228
217 | 273
273
250
228
217
212 | 276
276
262
239
224
215 | | MONTH | 243 | 194 | 228 | 248 | 222 | 235 | 236 | 159 | 200 | 314 | 209 | 247 | | | | | | | | | | | | | | | | D.W | | | MEAN | 242.17 | | MESSY | | | WEAR | | | WEI 227 | | DAY | MAX | MIN
FEBRUARY | | MAX | MIN
MARCH | MEAN | MAX | | MEAN | MAX | | MEAN | | DAY 1 2 3 4 5 | | FEBRUARY | | | MARCH | | | APRIL | | MAX
133
126
139
138
136 | MAY | MEAN 124 123 134 133 133 | | 1
2
3
4 | 215
212
172
160 | 211
172
160
145
146 | 213
192
167
150
148 | | 188
190
189
197
194 | 190
192
192
201
203 | | 128
129
129
129
136 | 130
131
130
132
141 | | 121
121
125
130
131 | 124
123
134
133 | | 1
2
3
4
5
6
7
8 | 215
212
172
160
154
165
172
180
181 |
211
172
160
145
146 | 213
192
167
150
148 | 193
195
198
209
211 | 188
190
189
197
194 | 190
192
192
201
203
188
181
181
187
188 | 132
131
132
136
145 | 128
129
129
129
136 | 130
131
130
132
141 | 133
126
139
138
136 | 121
121
125
130
131 | 124
123
134
133
133
137
137
139
144
150 | | 1
2
3
4
5
6
7
8
9
10 | 215
212
172
160
154
165
172
180
181
181
181 | 211
172
160
145
146
154
165
172
175
176
180
185
147
135 | 213
192
167
150
148
161
168
176
177
179
183
188
180
139 | 193
195
198
209
211
194
184
189
200
190 | 188
190
189
197
194
183
177
179
184
186 | 190
192
192
201
203
188
181
187
188
191
194
184
179 | 132
131
132
136
145
147
155
156
161
160
164
164 | 128
129
129
136
142
142
154
154
156
156
158
160 | 130
131
130
132
141
145
148
155
155
158
160
162
163 | 133
126
139
138
136
138
141
147
151
159 | 121
121
125
130
131
136
138
140
146
150 | 124
123
134
133
133
137
139
144
150
155 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 215
212
172
160
154
165
172
180
181
181
186
190
195
147
146 | 211
172
160
145
146
154
165
172
175
176
180
185
147
135
139 | 213
192
167
150
148
161
168
176
177
179
183
188
180
139
143 | 193
195
198
209
211
194
184
189
200
190
193
196
192
181
181
179
180
181
188 | 188
190
189
197
194
183
177
179
184
186
190
192
177
176 | 190
192
192
201
203
188
181
187
188
191
194
179
178
178
178
178
179
185 | 132
131
132
136
145
147
155
156
161
160
164
167
173
182
164
148
150 | 128
129
129
136
142
142
154
156
156
156
156
161
166 | 130
131
130
132
141
145
148
155
158
160
162
163
168
171
155
146
148 | 133
126
139
138
136
138
141
147
151
159
159
156

115
125 | 121
121
125
130
131
136
138
140
146
150 | 124
123
134
133
133
137
139
144
150
155 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 215
212
172
160
154
165
172
180
181
181
181
186
190
195
147
146
156
164
167
169
172
176
183
189
189
188 | 211
172
160
145
146
154
165
172
175
176
180
185
147
135
139
146
165
167
170
176
183
184
177 | 213
192
167
150
148
161
168
177
179
183
188
180
139
143
151
160
165
167
169
173
179
185
187
183 | 193
195
198
209
211
194
184
189
200
190
193
196
192
181
181
181
189
203
203
203
203
203
195
180 | 188
190
189
197
194
183
177
179
184
186
190
192
177
176
177
177
177
177
177
177
177
177 | 190
192
192
201
203
188
181
187
188
191
194
178
178
178
178
179
178
179
185
187
185
187 | 132
131
132
136
145
147
155
156
161
160
164
167
173
182
164
148
150
154
157
164
168
170
168 | 128
129
129
136
142
142
154
156
156
158
160
161
166
146
146
147
146
149
152
154
163
163
163
163
163
163
163
163 | 130
131
130
132
141
145
148
155
155
158
160
162
163
168
171
155
148
152
155
148
152
167
167
164
169
165
164
153 | 133
126
139
138
136
131
141
147
151
159
156

115
125
136
128
119
124
130
135
140 | 121
121
125
130
131
136
138
140
146
150
153
152

107
112
124
112
113
115
122
130
135 | 124
123
134
133
133
137
139
144
150
155
156
154

110
118
118
114
119
125
133
139
143
147
159
127 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 215
212
172
160
154
165
172
180
181
181
186
190
195
147
146
156
164
167
169
172
176
183
189
188
189
188 | 211
172
160
145
146
154
165
172
175
176
180
185
147
135
139
146
156
164
165
167
170
176
183
184
177 | 213
192
167
150
148
161
168
176
177
179
183
188
139
143
151
160
165
167
169
173
179
183
177
185
187 | 193
195
198
209
211
194
184
189
200
190
193
196
192
181
181
181
188
191
196
203
203
195
180 | 188
190
189
197
194
183
177
179
184
186
190
192
177
176
177
177
179
183
176
196
192
179
175 | 190
192
192
201
203
188
181
187
188
191
194
179
178
178
179
185
187
183
201
198
188
177 | 132
131
132
136
145
147
155
156
161
160
164
164
167
173
182
164
148
150
154
157
168
170
168 | 128
129
129
136
142
142
144
154
156
156
156
161
166
145
146
149
152
154
163
161
165
163
165
162 | 130
131
130
132
141
145
148
155
158
158
160
162
163
168
171
155
146
148
152
155
146
148
152 | 133
126
139
138
136
138
141
147
151
159
159
156

-15
125
136
128
119
124
130
135
140 | 121
121
125
130
131
136
138
140
146
150
153
152

107
112
124
112
113
115
122
130
135 | 124
123
134
133
133
137
139
144
150
155
156
154

110
118
131
118
119
125
133
139 | #### 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25° CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--|---------------------------------|---------------------------------|---------------------------------| | | | JUNE | | | JULY | | A | UGUST | | SEI | TEMBER | | | 1
2
3
4
5 | 123
130
130
130
135 | 108
122
125
125
130 | 116
126
128
128
133 | 174
184
193
193
188 | 168
174
184
186
184 | 171
179
190
190 | 225
222
220
229
232 | 221
214
200
220
226 | 223
219
213
225
229 | 240
210
223
247
247 | 210
200
206
223
232 | 227
204
212
240
240 | | 6
7
8
9
10 | 139
157
150
108
114 | 133
137
108
100
105 | 137
146
127
103
109 | 193
201
201
205
211 | 185
192
198
199
204 | 189
196
199
201
207 | 231
232
225
223
218 | 227
225
222
217
214 | 229
229
224
220
216 | 232
222
227
229
229 | 222
219
221
227
226 | 227
221
223
229
227 | | 11
12
13
14
15 | 119
124
135
145
151 | 112
117
118
134
144 | 115
120
126
140
148 | 218
221
220
 | 211
217
215
 | 214
219
217
 | 223
226
233
234
228 | 216
221
225
228
219 | 218
223
228
231
222 | 232
234
232
229
231 | 226
231
229
225
222 | 229
232
231
227
228 | | 16
17
18
19
20 | 151
140
134
130
141 | 137
134
126
127
130 | 146
137
129
128
136 |

238
231 |

228
220 |

232
226 | 220
217
223
225
223 | 214
213
216
220
216 | 217
215
220
223
219 | 225
223
222
217
198 | 220
213
214
197
192 | 222
217
218
205
194 | | 21
22
23
24
25 | 144
150
158
162
168 | 141
143
149
156
162 | 143
147
153
159
165 | 231
232
236
232
222 | 224
227
232
222
215 | 228
228
233
226
218 | 219
213
210
204
204 | 212
210
203
198
199 | 215
211
206
202
202 | 200
211
221
237
236 | 193
200
211
216
220 | 196
205
218
227
229 | | 26
27
28
29
30
31 | 169
170
182
183
175 | 166
162
163
171
171 |
168
165
167
175
173 | 219
217
217
 | 208
210
213
 | 212
214
215
 | 215
231
232
229
216
240 | 204
215
227
210
213
215 | 208
225
229
218
214
226 | 220
215
219
237
226 | 205
205
201
219
194 | 212
210
205
232
211 | | MONTH
YEAR | 183
314 | 100
100 | 140
196 | 238 | 168 | 208 | 240 | 198 | 219 | 247 | 192 | 220 | ## PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEDIAN | |----------------------------------|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|---------------------------------|--| | | | OCTOBER | 2 | NO | VEMBER | | DE | CEMBER | | JA | NUARY | | | 1
2
3
4
5 | 7.9
8.2
8.3
8.4 | 7.4
7.4
7.5
7.5
7.5 | 7.6
7.7
7.8
7.8
7.9 | 8.8
8.9
8.8
8.8 | 7.8
8.0
8.0
8.0 | 8.4
8.6
8.5
8.5
8.6 | 8.1
7.9
8.1
8.2
8.0 | 7.2
7.3
7.3
7.3
7.3 | 7.5
7.5
7.6
7.6
7.5 | 7.8
7.8
7.8
7.8
7.8 | 7.6
7.6
7.6
7.6
7.6 | 7.7
7.7
7.7
7.7 | | 6
7
8
9
10 | 8.3
8.4
8.5
8.5 | 7.5
7.6
7.6
7.7
7.8 | 7.8
7.9
8.0
8.0 | 8.8
8.9
8.9
8.9 | 8.0
8.2
8.2
8.2
8.2 | 8.5
8.6
8.7
8.6
8.7 | 8.1
8.1
7.7
8.0
8.1 | 7.3
7.3
7.3
7.4
7.5 | 7.6
7.6
7.5
7.6
7.7 | 7.8
7.7
7.9
7.8
7.9 | 7.6
7.6
7.6
7.6
7.6 | 7.7
7.6
7.7
7.7 | | 11
12
13
14
15 | 8.6
8.6
8.7
8.6
8.7 | 7.8
7.8
7.9
7.9
7.9 | 8.2
8.2
8.3
8.3 | 8.9
8.9
8.9
8.9 | 8.3
8.3
8.3
8.4 | 8.6
8.6
8.7
8.7 |
7.8
7.6
8.1 |
7.5
7.4
7.4 | 7.7
7.5
7.8 | 7.8
8.0
8.0
8.1
8.1 | 7.6
7.6
7.6
7.6
7.6 | 7.7
7.8
7.8
7.8
7.8 | | 16
17
18
19
20 | 8.7
8.8
8.8
8.8 | 7.8
7.9
8.0
8.0 | 8.4
8.4
8.4
8.5 | 8.9
8.9
8.9
8.7 | 8.4
8.3
8.3
8.3 | 8.8
8.7
8.7
8.6
8.6 | 8.3
7.9
7.9
8.1
7.8 | 7.6
7.6
7.5
7.5
7.5 | 7.8
7.7
7.7
7.7
7.6 | 8.2
8.0
8.1
7.8
8.1 | 7.7
7.6
7.5
7.6
7.6 | 7.9
7.8
7.7
7.7 | | 21
22
23
24
25 | 8.8
8.8
8.8
8.8 | 8.0
8.0
8.0
8.0
7.9 | 8.3
8.5
8.5
8.5
8.5 | 8.8
8.9
8.9
8.7
8.6 | 8.2
8.2
8.3
8.1
7.9 | 8.5
8.6
8.6
8.5
8.3 | 7.5
7.6
7.6
7.6
7.7 | 7.4
7.3
7.3
7.3
7.3 | 7.5
7.4
7.4
7.4
7.5 | 8.1
8.3
8.1
8.1 | 7.7
7.8
7.8
7.8
7.7 | 7.8
8.0
8.0
7.9
7.9 | | 26
27
28
29
30
31 | 8.8
8.8
8.9
8.9 | 8.0
8.1
8.0
8.1
8.2
8.2 | 8.5
8.5
8.6
8.6
8.6 | 8.6
8.6
8.5
7.8
7.7 | 7.7
7.5
7.4
7.3
7.2 | 8.1
7.9
7.9
7.5
7.4 | 7.8
7.8
7.8
7.8
7.8 | 7.4
7.4
7.5
7.5 | 7.6
7.6
7.6
7.6
7.6
7.7 | 8.3
8.4
8.5
8.5
8.1
7.8 | 7.6
7.7
7.7
7.6
7.6 | 7.9
8.1
8.1
8.0
7.9
7.7 | | MAX
MIN | 8.9
7.9 | 8.2
7.4 | 8.6
7.6 | 8.9
7.7 | 8.4
7.2 | 8.8
7.4 | 8.3
7.5 | 7.6
7.2 | 7.8
7.4 | 8.5
7.7 | 7.8
7.5 | 8.1
7.6 | #### 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | | K, WHOLE, FIF | MAX | | MEDIAN | | | MEDIAN | MAX | MTN | MEDIAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|---------------------------------|--| | DAI | | FEBRUAR | | MAX | MARCH | MEDIAN | | APRIL | MEDIAN | | MAY | MEDIAN | | 1
2
3
4
5 | 7.8
7.6
7.6
7.5
7.6 | 7.6
7.5
7.4
7.3
7.4 | 7.6
7.6
7.5
7.4 | 8.9
8.8
8.4
8.3 | 7.8
7.8
7.6
7.4
7.7 | 8.5
8.5
7.9
7.9
8.1 | 7.2
7.2
7.1
7.2
7.3 | 7.0 | 7.1
7.1
7.1
7.1
7.2 | 7.0
6.8
6.8
6.9 | | 6.7
6.7
6.8
6.8 | | 6
7
8
9
10 | 7.7
7.7
7.9
7.9
7.9 | 7.4
7.4
7.4
7.5
7.5 | 7.6
7.5
7.7
7.7 | 8.4
8.5
8.6
8.6 | 7.6
7.4
7.5
7.5
7.3 | 8.0
8.0
8.1
8.0
7.9 | 7.4
7.5
7.5
7.5
7.6 | 7.2
7.2
7.3
7.3
7.2 | 7.3
7.4
7.4
7.4
7.3 | 6.9
6.9
7.0
6.8
7.0 | 6.7
6.7
6.7
6.7
6.6 | 6.8
6.8
6.7
6.8 | | 11
12
13
14
15 | 8.2
8.2
7.9
7.6
7.7 | 7.5
7.6
7.5
7.2
7.4 | 7.8
7.8
7.7
7.4
7.4 | 8.6
8.3
7.8
8.0
8.2 | 7.5
7.5
7.2
7.1
7.3 | 8.0
7.8
7.4
7.6
7.6 | 7.7
7.5
7.7
7.6
7.8 | 7.2
7.3
7.2
7.2
7.1 | 7.5
7.4
7.4
7.4
7.4 | 7.0
6.9
 | 6.7
6.7
 | 6.8
6.8
 | | 16
17
18
19
20 | 7.9
7.9
8.2
8.3
8.4 | 7.4
7.5
7.5
7.6
7.6 | 7.5
7.7
7.8
7.9
7.9 | 7.6
7.6
7.4
7.5
7.4 | 7.2
7.1
7.2
7.1
7.2 | 7.4
7.3
7.3
7.3
7.3 | 7.4
6.9
7.0
7.0
6.8 | 6.8
6.8
6.7 | 7.0
6.9
6.8
6.8 | 7.2
7.3
7.4
7.3 | 7.1
7.2
7.3
7.3 | 7.2
7.2
7.3
7.3 | | 21
22
23
24
25 | 8.5
8.5
8.8
8.9 | 7.5
7.6
7.7
7.9
7.7 | 8.0
8.1
7.9
8.5
8.3 | 7.3
7.4
7.6
7.6
7.6 | 7.2
7.3
7.3
7.3
7.3 | 7.2
7.3
7.4
7.4
7.4 | 6.9
7.0
7.3
7.2
7.2 | 7.0
7.1
7.1 | 6.8
6.9
7.1
7.2
7.2 | 7.3
7.5
7.6
7.6
7.7 | 7.3
7.3
7.4
7.4
7.4 | 7.3
7.4
7.5
7.5
7.5 | | 26
27
28
29
30
31 | 9.0
8.6
8.8
 | 7.9
7.6
7.8
 | 8.6
8.1
8.5
 | 7.4
7.5
7.4
7.1
7.1 | 7.3
7.3
7.1
7.0
7.0 | 7.4
7.4
7.4
7.0
7.0
7.1 | 7.5
7.7
7.4
7.2
7.2 | 7.1
7.2
7.2
7.1
7.0 | 7.2
7.4
7.3
7.1
7.1 | 7.7
7.8
7.9
8.0
7.7
7.1 | 7.5
7.5
7.6
7.1
7.1 | 7.5
7.6
7.7
7.7
7.2
7.1 | | MAX
MIN | 9.0
7.5 | 7.9
7.2 | 8.6
7.4 | 8.9
7.1 | 7.8
7.0 | 8.5
7.0 | 7.8
6.8 | 7.3
6.7 | 7.5
6.8 | 8.0
6.8 | 7.6
6.6 | 7.7
6.7 | | DAY | MAX | MIN
JUNE | MEDIAN | MAX | MIN
JULY | MEDIAN | MAX | MIN
AUGUST | MEDIAN | MAX
SEI | MIN
PTEMBER | MEDIAN | | 1
2
3
4
5 | 7.2
7.4
7.5
7.6
7.6 | 7.1
7.2
7.3
7.3
7.4 | 7.3
7.4
7.5 | 8.1
8.4
8.4
8.5 | 7.5
7.5
7.6
7.6
7.6 | 7.7
7.8
7.9
7.9
8.1 | 8.7
8.7
8.6
8.6
8.4 | 7.7
7.7
7.5
7.6
7.6 | 8.2
8.0
8.1 | 8.2
8.4
8.7
8.7 | 7.6 | 7.8
7.9
8.3
8.3 | | 6
7
8
9
10 | 7.6
7.5
7.4
7.3
7.3 | 7.4
7.4
7.2
7.2
7.2 | 7.5
7.4
7.3
7.2
7.3 | 8.9
8.9
9.1
9.1 | 7.7
7.8
7.8
7.8
7.8 | 8.2
8.2
8.5
8.4
8.5 | 8.7
8.7
8.7
8.8
8.8 | 7.6
7.8
7.8
7.8
7.8 | 8.2
8.2
8.3
8.3 | 8.8
8.8
8.8
8.8 | 7.9 | 8.4
8.4
8.4
8.5 | | 11
12
13
14
15 | 7.4
7.4
7.4
7.4
7.6 | | | 9.2
9.2
9.3
 | 7.9
8.0
7.9
 | 8.6
8.5
8.5
 | 8.8
8.9
8.9
8.9
8.8 | 7.8
7.8
7.8
7.8
7.8 | 8.3
8.3
8.4
8.4 | 8.8
8.9
8.9
8.9
8.6 | 7.9
8.1
8.1
8.1
7.9 | 8.5
8.5
8.5
8.2 | | 16
17
18
19
20 | 7.6
7.6
7.5
7.7 | 7.5
7.5
7.4
7.4
7.5 | 7.5
7.6
7.5
7.5
7.6 |

9.3
9.2 | 7.9 |

8.4
8.1 | 8.8
8.7
8.7
8.7
8.6 | 7.7
7.6
7.6
7.6
7.5 | 8.2
8.1
8.0
8.1
8.0 | 8.6
8.7
8.7
8.8
8.8 | 7.6
7.7
7.6
7.7
7.7 | 8.0
8.1
8.1
8.2
8.2 | | 21
22
23
24
25 | 7.8
8.0
8.2
8.4
8.5 | 7.5
7.5
7.6
7.6
7.7 | 7.6
7.7
7.8
7.9
8.0 | 9.2
8.9
8.8
8.4
8.6 | 7.8
7.8
7.6
7.6
7.6 | 8.3
8.2
8.2
7.8
8.0 | 8.7
8.8
8.5
8.1
8.6 | 7.5
7.6
7.6
7.4
7.4 | 8.1
8.1
7.9
7.7
8.0 | 8.7
8.7
8.7
8.7
8.9 | 7.6
7.6
7.7
7.8 | 8.2
8.1
8.1
8.2
8.4 | | 26
27
28
29
30
31 | 8.6
8.7
8.0
7.5
7.8 | 7.7
7.7
7.4
7.4
7.5 | 8.0
8.1
7.5
7.4
7.6 | 8.5
8.1
8.4
 | 7.6
7.6
7.6
 | 7.9
7.8
7.8
 | 8.6
8.7
8.4
8.2
8.4
8.5 | 7.5
7.6
7.7
7.7
7.6
7.7 | 8.1
8.2
8.1
7.9
8.0
8.1 | 8.4
8.3
8.5
8.4
8.4 | 7.8
7.6
7.4
7.6
7.6 | 8.1
7.8
7.8
7.9
7.8 | | MAX
MIN | 8.7
7.2 | 7.7
7.1 | 8.1
7.2 | 9.3
8.1 | 8.0
7.5 | 8.6
7.7 | 8.9
8.1 | 7.8
7.4 | 8.4
7.7 | 8.9
8.2 | 8.1
7.4 | 8.5
7.8 | YEAR MAX MIN MEDIAN MAXIMUM 9.3 MINIMUM 6.8 MAXIMUM 8.4 MINIMUM 6.6 MAXIMUM 8.8 MINIMUM 6.7 ## 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN |
---|---|---|---|--|---|--|---|--|---|--|--|--| | | | OCTOBER | | | NOVEMBER | | ; | DECEMBER | | | JANUARY | | | 1
2
3
4
5 | 15.0
16.5
18.5
19.5
19.5 | 14.5
14.0
15.5
17.0
17.5 | 14.5
15.0
17.0
18.0
18.5 | 11.5
13.5
13.5
13.0
12.5 | 9.5
11.0
13.0
12.0
10.0 | 10.5
12.0
13.5
12.5
11.5 | 12.5
12.0
10.0
9.5
10.0 | 12.0
10.0
9.0
8.5
9.0 | 12.0
11.0
9.5
9.0
9.5 | 0.5
0.5
0.5
1.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.5
1.0 | | 6
7
8
9
10 | 19.0
18.0
15.5
15.0
15.0 | 18.0
15.5
14.0
12.5
13.0 | 18.5
16.5
14.5
14.0
14.0 | 10.0
10.5
11.0
11.0 | 9.0
9.0
9.5
10.0
9.0 | 9.5
10.0
10.5
10.5
9.5 | 10.5
11.0
10.5
8.5
7.5 | 9.5
10.0
8.5
7.5
6.5 | 10.0
10.5
9.5
8.0
7.0 | 1.5
1.5
1.0
1.0
2.5 | 0.5
1.0
0.0
0.5
1.0 | 1.0
1.0
0.5
1.0 | | 11
12
13
14
15 | 18.0
18.0 | 14.0
15.0
16.0
17.0 | 15.0
16.0
17.0
17.5
17.5 | 9.5
8.5
8.0
8.0
9.5 | 8.5
7.5
7.0
6.5
7.5 | 9.0
8.0
7.5
7.5
8.5 |
7.5
8.5
8.5 | 7.0
7.5
7.0 | 7.5
8.0
8.0 | 3.5
4.0
4.5
4.0 | 2.5
3.0
3.0
2.5
3.0 | 2.5
3.5
3.5
3.5
3.5 | | 17
18
19 | 16.0
14.5
14.0 | 15.5
14.0
13.0
12.0
12.5 | 16.5
15.5
13.5
13.0
13.5 | 10.0
10.0
9.5
9.5 | | | 7.0
6.5
7.5
7.0
6.5 | 6.0
6.0
6.5
6.0
5.5 | 6.5
6.5
7.0
6.5
6.0 | 4.0
4.0
3.5
3.0
2.0 | 3.0
3.0
3.0
1.0
0.5 | 3.5
3.5
3.5
2.0
1.5 | | 21
22
23
24
25 | 16.0
16.0
17.5 | 14.5
15.5 | 14.0
15.0
15.5
16.5
17.0 | 8.5
7.5
7.5
9.0
11.0 | 7.0
6.0
6.0
7.5
9.0 | | 5.5
4.5
4.0
5.0
4.0 | | | | | | | 26
27
28
29
30
31 | 14.0
11.5
11.5
12.0 | 14.0
11.5
10.0
9.5
10.5 | 15.0
12.5
11.0
10.5
11.5 | 11.5
11.0
11.0
11.0 | 10.5
9.5
10.0
11.0 | 11.0
10.0
10.5
11.0
11.5 | 3.5
3.0
2.0
2.0
1.5
0.5 | 3.0
2.0
1.0
1.5
0.0 | 3.0
2.5
1.5
1.5
0.5 | 5.0
5.0
5.5
6.0
6.0 | 3.5
3.5
3.5
4.0
5.0 | 4.5
4.0
4.5
4.5
5.5 | | MONTH | 19.5 | 9.5 | | 13.5 | | | 12.5 | DAY | MAX | MTN | MEAN | | DAY | MAX | MIN FEBRUARY | | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | DAY 1 2 3 4 5 | | | | | MARCH | | | APRIL | | | MAY | MEAN 11.0 11.5 12.0 12.0 13.0 | | 1
2
3
4
5 | 5.5
5.0
3.0
2.5
1.5 | FEBRUARY | 5.0
4.0
2.5
2.0
1.0 | | MARCH 4.5 5.0 6.5 6.0 5.0 | 6.0
6.0
7.5
7.0
5.5 | | 9.5
9.5
11.0
10.0
9.0 | 10.0
10.5
11.5
10.5 | 12.0
12.0
12.5
13.0
14.0 | 10.5
11.0
11.5
11.5
12.0 | 11.0
11.5
12.0
12.0
13.0
14.0
15.5
17.0 | | 1
2
3
4
5
6
7
8
9 | 5.5
5.0
3.0
2.5
1.5
2.0
2.5
3.5
4.0
5.5 | 5.0
3.0
2.5
1.5
0.5
1.0
2.0
2.0
2.0
3.5 | 5.0
4.0
2.5
2.0
1.0
1.5
2.0
2.5
3.0
4.5 | 7.0
6.5
8.0
7.5
6.0
7.5
8.0
10.0 | 4.5
5.0
6.5
6.0
5.0
4.5
5.5
6.5
7.0
8.0 | 6.0
6.0
7.5
7.0
5.5
5.5
6.5
7.0
8.5
9.5 | 10.5
11.5
12.5
11.5
10.5 | 9.5
9.5
11.0
10.0
9.0
8.5
8.0
8.5
9.5 | 10.0
10.5
11.5
10.5
10.0
9.0
8.5
9.0
10.5 | 12.0
12.0
12.5
13.0
14.0 | 10.5
11.0
11.5
12.0
13.0
14.5
16.5
16.0 | 11.0
11.5
12.0
13.0
14.0
15.5
17.0
17.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 5.5
5.0
2.5
1.5
2.0
2.5
3.5
4.0
5.5
5.5
4.0
5.5 | 5.0
3.0
2.5
1.5
0.5
1.0
2.0
2.0
2.5
3.5
4.0
3.5
3.0
2.5 | 5.0
4.0
2.5
2.0
1.0
1.5
2.0
4.5
5.0
3.5
4.0
3.5 | 7.0
6.5
8.0
7.5
6.0
7.5
8.0
10.0
10.5 | 4.5
5.0
6.5
6.0
5.0
4.5
5.5
6.5
7.0
8.0 | 6.0
6.0
7.5
7.0
5.5
6.5
7.0
8.5
9.5
7.0
8.0 | 10.5
11.5
12.5
11.5
10.5
9.5
9.5
9.5
11.5
13.0 | 9.5
9.5
9.5
11.0
10.0
9.0
8.5
8.0
8.5
9.5
11.5 | 10.0
10.5
11.5
10.5
10.0
9.0
8.5
9.0
10.5
12.0 | 12.0
12.0
12.5
13.0
14.0
15.0
17.0
18.0
17.5
18.0 | 10.5
11.0
11.5
11.5
12.0
13.0
14.5
16.5
16.5
16.5 | 11.0
11.5
12.0
12.0
13.0
14.0
15.5
17.0
17.0
17.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 5.5
5.0
2.5
1.5
2.0
2.5
3.5
4.0
5.5
5.5
4.0
5.5
3.5
4.0
5.5 | 5.0
3.0
2.5
1.5
0.5
1.0
2.0
2.0
2.5
3.5
4.0
3.5
3.5
2.5
3.0
4.0
3.0
3.0 | 5.0
4.0
2.5
2.0
1.0
1.5
2.0
4.5
3.0
4.5
4.5
3.0
3.0
3.5
4.5
3.5
4.5 | 7.0
6.5
8.0
7.5
6.0
6.0
7.5
8.0
10.0
10.5
8.0
7.5
9.5
10.5 | 4.5
5.0
6.5
6.0
5.0
4.5
5.5
7.0
8.0
6.5
7.0
7.0
8.5 | 6.0
6.0
7.5
7.0
5.5
5.5
6.5
7.0
8.5
9.5
7.0
8.0
9.5 | 10.5
11.5
12.5
11.5
10.5
9.5
9.5
9.5
11.5
13.0
13.5
12.5
14.5
15.5
17.5 | 9.5
9.5
9.5
11.0
10.0
9.0
8.5
8.0
8.5
9.5
11.5
12.0
12.5
14.0
15.0 | 10.0
10.5
11.5
10.5
10.0
9.0
8.5
9.0
10.5
12.0
12.5
12.5
13.5
15.0
16.0 | 12.0
12.0
12.5
13.0
14.0
15.0
17.0
18.0
17.5
18.0 | 10.5
11.0
11.5
11.5
12.0
13.0
14.5
16.5
16.0
16.5
16.5 | 11.0
11.5
12.0
12.0
13.0
14.0
15.5
17.0
17.0
17.0
17.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 5.5
5.0
2.5
1.5
2.0
2.5
3.5
4.0
5.5
5.5
4.0
4.5
5.5
5.0
4.5
6.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8 | 5.0
3.0
2.5
1.5
0.5
1.0
2.0
2.0
2.5
3.5
4.0
3.5
2.5
2.5
3.0
4.0
3.0
4.5
6.0
6.5
6.0
6.0 | 5.0
4.0
2.5
2.0
1.0
1.5
2.0
4.5
5.0
3.5
4.5
3.0
3.0
3.5
4.5
3.0
6.5
7.0
7.0
7.0
8.0
7.5
6.0 | 7.0
6.5
8.0
7.5
6.0
10.0
10.5
8.0
7.5
9.5
9.5
10.5
8.0
7.0
7.0
8.0
7.0
7.0
7.0
8.0
7.0
7.0
7.0
7.0 | ### ### ### ### ### ### ### ### ### ## | 6.0
6.0
7.5
7.0
5.5
5.5
7.0
8.5
9.5
7.0
8.0
7.5
7.5
6.0
6.5
6.5
7.5
6.5
7.5 | 10.5
11.5
12.5
11.5
10.5
9.5
9.5
9.5
11.5
13.0
13.5
14.5
14.5
14.5
15.5
17.5
20.5
21.0
21.0
19.5
21.0
21.0 | 9.5
9.5
9.5
11.0
10.0
9.0
8.5
8.0
8.5
9.5
11.5
12.5
14.0
15.0
16.0
17.5
18.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5 | 10.0
10.5
11.5
10.5
10.0
9.0
8.5
9.0
10.5
12.0
12.5
13.5
15.0
16.0
17.0
18.5
19.5
20.5
20.0
14.0
14.0
13.0
13.0
12.5
13.0 |
12.0
12.0
12.5
13.0
14.0
15.0
17.0
18.0
17.5
18.0
17.5
15.5
15.0
14.0
13.5
14.5
16.5
17.5
14.5
16.5
17.5 | 10.5
11.0
11.5
12.0
13.0
14.5
16.5
16.5
16.5
16.5
11.5
12.5
11.5
11.0
12.0
13.5
14.0
13.5
14.0
13.5
14.0
13.5
14.0 | 11.0
11.5
12.0
12.0
13.0
14.0
15.5
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 5.5
5.0
2.5
1.5
2.0
2.5
3.5
4.0
5.5
5.5
4.0
4.5
3.5
3.0
4.5
6.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9 | 5.0
3.0
2.5
1.5
0.5
1.0
2.0
2.0
2.5
3.5
4.0
3.5
2.5
2.5
3.0
4.0
3.0
3.0
4.5
6.0
6.5
6.0
6.0 | 5.0
4.0
2.5
2.0
1.0
1.5
2.0
3.0
4.5
5.0
3.0
3.0
3.5
4.5
4.0
5.0
6.5
7.5
7.0
7.0
7.0 | 7.0
6.5
8.0
7.5
6.0
6.0
7.5
8.0
10.0
10.5
9.5
7.5
9.5
7.5
8.0
8.0
7.0
8.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | ### ### ### ### ### ### ### ### ### ## | 6.0
6.0
7.5
7.0
5.5
5.5
7.0
8.5
9.5
7.0
8.0
9.5
7.5
7.5
7.5
6.5
6.5
6.5
6.5
7.0 | 10.5
11.5
12.5
11.5
10.5
9.5
9.5
9.5
11.5
13.0
13.5
12.5
14.5
15.5
17.5
18.5
19.5
20.5
21.0
21.0
19.5
16.5
15.0
14.0 | 9.5
9.5
9.5
11.0
10.0
9.0
8.5
8.0
8.5
9.5
11.5
12.0
12.5
14.0
15.0
16.0
17.5
18.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19 | 10.0
10.5
11.5
10.5
10.0
9.0
8.5
12.0
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5 | 12.0
12.0
12.5
13.0
14.0
15.0
17.0
18.0
17.5
18.0
17.5
15.5
15.0
14.0
13.5
12.5
13.5
14.5
14.5
17.5
17.5 | 10.5
11.0
11.5
11.5
12.0
13.0
14.5
16.0
16.5
16.0
16.5
16.5
11.5
11.5
12.5
11.5
12.5 | 11.0
11.5
12.0
12.0
13.0
14.0
15.5
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0 | ## 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued ## TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | 11111 | LIGHT CICE, | WITTER (DI | .G. C), 1171 | I ER I EI II (| OCTOBER 20 | or to ber | I EMBER 200 | ,_ | | | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------| | DAY | MAX | MIN | MEAN | | | | JUNE | | | JULY | | A | UGUST | | SEP | TEMBER | | | 1
2
3
4
5 | 21.5
21.5
21.5
21.0
22.0 | 19.5
20.0
20.0
20.0
19.5 | 20.5
21.0
21.0
20.5
20.5 | 27.5
29.0
30.0
31.0
30.0 | 25.5
26.0
27.0
28.0
28.0 | 26.5
27.0
28.5
29.5
29.0 | 30.5
31.0
30.5
31.5
30.5 | 27.5
28.5
27.5
28.5
29.0 | 29.0
29.5
29.0
30.0
29.5 | 21.5
21.0
23.0
25.0
25.0 | 20.5
19.5
20.0
22.5
23.0 | 21.0
20.0
21.5
23.5
24.0 | | 6
7
8
9
10 | 22.0
21.0
19.5
19.5
20.5 | 21.0
19.5
18.5
17.5
18.5 | 21.5
20.0
19.0
18.5
19.5 | 28.0
27.0
28.0
28.5
28.5 | 26.5
25.0
25.0
25.5
26.0 | 27.0
26.0
26.5
27.0
27.0 | 29.5
26.5
26.0
27.0
27.5 | 26.5
24.5
24.0
24.0
24.5 | 28.0
25.5
25.0
25.5
26.0 | 24.5
24.5
25.0
25.5
26.5 | 22.5
22.0
22.5
23.0
24.0 | 23.5
23.5
23.5
24.5
25.0 | | 11
12
13
14
15 | 22.0
22.5
22.5
21.0
19.5 | 20.0
21.5
21.0
19.5
18.5 | 21.0
22.0
21.5
20.0
19.0 | 27.0
27.5
26.5
 | 24.5
24.0
24.5
 | 26.0
25.5
25.5
 | 28.0
28.5
29.5
30.0
29.5 | 25.0
26.0
27.0
27.5
27.5 | 26.5
27.5
28.5
28.5
28.5 | 26.0
23.0
22.5
23.0
23.5 | 22.5
21.0
20.5
21.5
23.0 | 24.5
22.0
21.5
22.5
23.5 | | 16
17
18
19
20 | 19.0
19.5
20.5
20.0
21.5 | 17.5
18.0
18.5
19.0
19.5 | 18.5
19.0
19.5
19.5
20.5 |

29.0
29.5 | 27.5
26.5 |

28.0
28.0 | 30.0
30.5
31.0
30.5
29.5 | 28.0
28.5
29.0
28.5
28.0 | 29.0
29.5
30.0
29.5
29.0 | 24.5
24.5
24.0
23.5
23.5 | 23.0
22.5
22.0
21.5
22.0 | 23.5
23.5
23.0
22.5
23.0 | | 21
22
23
24
25 | 23.0
24.0
25.0
26.0
27.5 | 20.5
22.0
23.0
24.5
25.5 | 21.5
23.0
24.0
25.0
26.0 | 29.0
29.5
30.5
29.0
27.0 | 27.0
26.5
27.5
26.5
25.5 | 28.0
28.0
28.5
27.5
26.0 | 29.0
28.0
27.5
26.0
26.5 | 27.0
26.0
26.0
25.0
24.0 | 28.0
27.0
27.0
25.5
25.5 | 24.5
25.0
24.5
23.0
22.0 | 22.5
23.5
23.0
21.5
20.5 | 23.5
24.5
23.5
22.5
21.5 | | 26
27
28
29
30
31 | 28.0
28.5
27.0
26.5
27.0 | 26.0
26.5
25.5
24.5
25.0 | 27.0
27.5
26.0
25.5
26.0 | 25.5
24.5
26.5
 | 24.5
24.0
24.0
 | 25.0
24.0
25.0
 | 26.5
26.0
25.5
23.5
22.0
22.0 | 25.0
24.5
23.5
21.5
21.0
21.0 | 26.0
25.0
24.5
22.0
21.5
21.5 | 21.5
20.0
21.0
20.5
20.5 | 20.0
19.0
19.5
19.0
18.5 | 20.5
19.5
20.5
20.0
19.5 | | MONTH | 28.5 | 17.5 | 21.8 | 31.0 | 24.0 | 26.9 | 31.5 | 21.0 | 27.0 | 26.5 | 18.5 | 22.5 | ## OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|---|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--| | | | OCTOBER | | N | OVEMBER | | D | ECEMBER | | J | ANUARY | | | 1
2
3
4
5 | 11.0
11.6
11.5
11.3
11.2 | 9.7
9.9
9.5
9.2
9.0 | 10.3
10.6
10.4
10.1
10.0 | 14.1
14.1
13.0
13.7
13.4 | 11.1
11.4
10.8
10.7 | 12.6
12.7
11.8
12.1
12.1 | 12.4
12.0
12.5
12.7
12.5 | 9.6
9.9
10.2
10.7 | 10.9
10.9
11.3
11.6
11.5 | 14.9
15.3
15.6
15.6 | 14.2
14.3
15.0
14.8
14.8 | 14.5
14.8
15.2
15.2
15.1 | | 6
7
8
9
10 | 10.6
11.2
11.8
12.1
12.4 | 8.8
9.0
9.5
10.1
10.4 | 9.5
10.0
10.6
11.0
11.3 | 13.7
14.1
14.4
14.0
14.2 | 10.9
11.6
11.6
11.4
11.6 | 12.3
12.8
12.9
12.7
12.8 | 12.6
12.3
11.6
12.5
13.1 | 10.7
10.4
10.3
10.6
11.2 | 11.5
11.2
11.0
11.4
12.1 | 15.2
14.8
15.4
15.2
15.3 | 14.6
14.3
14.5
14.7
14.5 | 14.8
14.5
14.9
14.9 | | 11
12
13
14
15 | 12.4
12.1
12.0
11.6
11.7 | 10.4
9.8
9.7
9.3
9.0 | 11.2
10.9
10.8
10.3
10.3 | 14.2
14.3
14.6
15.0
14.8 | 11.8
11.9
12.4
12.7
12.3 | 12.9
13.0
13.6
13.8
13.6 | 12.6
12.0
13.0 | 11.8
11.2
11.0 | 12.1
11.6
11.9 | 14.7
14.8
14.3
14.8
14.9 | 14.0
13.7
13.4
13.5
13.7 | 14.3
14.1
13.9
14.1
14.2 | | 16
17
18
19
20 | 11.7
11.8
12.6
12.8
12.9 | 9.3
9.5
10.1
10.5
10.6 | 10.5
10.6
11.2
11.6
11.6 | 14.5
14.5
14.6
14.3
13.7 | 12.2
12.0
12.3
12.3
11.9 | 13.3
13.2
13.4
13.3
12.8 | 13.7
12.9
12.6
13.2
12.8 | 11.7
12.1
11.5
11.6
11.9 | 12.6
12.4
12.0
12.3
12.3 | 15.1
14.8
15.0
14.5
15.7 | 13.7
13.7
13.6
13.7
14.0 | 14.3
14.2
14.2
14.1
14.7 | | 21
22
23
24
25 | 12.8
12.8
12.5
12.5
11.9 | 10.4
10.3
9.9
9.8
9.3 | 11.6
11.4
11.1
11.1
10.5 | 14.7
15.2
15.2
14.3
13.9 | 12.2
12.9
13.0
12.6
11.8 | 13.2
13.9
14.0
13.4
12.7 | 12.9
13.4
13.6
13.4
13.7 | 12.1
12.4
12.6
12.6
12.7 | 12.5
12.9
13.1
13.0
13.1 | 15.6
15.9
15.2
14.5
14.5 | 14.4
14.4
14.3
13.8
13.1 | 14.9
15.1
14.7
14.1
13.8 | | 26
27
28
29
30
31 | 11.9
12.2
13.2
13.7
13.9 | 9.4
10.1
10.5
11.2
11.4
11.2 | 10.7
11.1
11.8
12.4
12.6
12.2 | 13.6
13.6
13.6
11.8
11.8 | 10.9
10.8
10.9
10.3
9.6 | 12.1
12.2
12.1
10.8
10.6 | 13.7
13.8
14.0
14.2
14.4 | 12.7
12.6
13.1
13.4
13.4 | 13.2
13.2
13.5
13.8
13.9
14.3 | 14.9
15.2
15.3
15.1
13.9
13.2 | 12.9
13.4
13.3
13.2
12.8
12.5 | 13.9
14.2
14.2
14.1
13.5
12.8 | | MONTH | 13.9 | 8.8 | 10.9 | 15.2 | 9.6 |
12.8 | 14.8 | 9.6 | 12.3 | 15.9 | 12.5 | 14.4 | ## 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued ## OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|---|---|--|--|---|--|--|---|---|---|--|---| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 13.3
13.5
13.9
13.9
14.2 | 12.4
12.6
13.1
13.2
13.3 | 12.8
13.0
13.5
13.5 | 15.0
14.8
13.4
13.7
14.5 | 11.8 | 13.8
13.7
12.7
12.7
13.5 | 11.9
11.8
11.4
12.1
12.2 | 11.4
11.2
10.9
11.0
11.4 | 11.6
11.6
11.2
11.6
11.9 | 11.6
11.2
10.9
11.1
10.9 | | 11.4
11.0
10.8
10.9
10.7 | | 6
7
8
9
10 | 14.3
14.1
14.2
14.1
13.8 | 13.5
13.3
13.2
13.1
13.0 | 13.9
13.7
13.7
13.6
13.4 | 14.5
14.6
14.6
14.1
13.6 | 12.8
12.7
12.6
12.2
11.2 | 13.6
13.6
13.5
13.1
12.3 | 12.2
12.7
13.1
13.0
12.7
12.0 | | 12.3
12.7
12.7
12.3
11.6 | 10.4
9.9
9.7
9.1
9.5 | 9.9
9.2
8.3
8.6
8.3 | 10.3
9.7
9.3
8.8
9.1 | | 11
12
13
14
15 | 13.5
13.9
13.2
13.9
13.9 | 12.4
12.3
12.7
12.8
13.1 | 12.9
13.1
12.9
13.3
13.4 | 14.2
13.8
12.8
14.3
14.1 | 11.8
11.9
11.3
12.2 | 12.8
12.9
12.3
12.9
13.1 | 12.0
11.7
11.6
11.3
11.0 | 11.0
10.9
10.7
10.3
9.9 | 11.6
11.3
11.2
10.8
10.5 | | 8.7
8.6

 | 9.1
8.8

 | | 16
17
18
19
20 | 13.8
13.5
13.9
14.3 | 13.0
12.6
12.8
13.1
12.5 | 13.3
13.0
13.4
13.6
13.3 | 12.7
13.3
13.1
13.8
13.1 | 11.9
11.9
12.6 | 12.6
13.0
12.9 | 9.3
9.1
8.6 | 8.9
8.7
8.7
7.8
7.8 | 9.6
9.0
9.0
8.6
8.2 | 10.5
10.2
10.6
10.9 | 10.0
9.3
10.0
10.6 | 10.3
10.0
10.4
10.7 | | 23
24
25 | 13.8
13.7
14.2
14.4
14.4 | 11.1 | 12.9
12.8
12.7
13.3
13.2 | 13.0
13.4
13.9
13.7
13.5 | 12.7
12.4
13.1
12.8
12.5 | 12.8
12.9
13.4
13.3
13.0 | 9.2
9.9
11.2
11.7
11.1 | | 8.6
9.4
10.5 | | 10.8
10.5
10.2
9.6
9.3 | 10.9
10.9
10.6
10.2
9.7 | | 26
27
28
29
30
31 | 14.4
13.7
14.6
 | 12.1
11.2
11.8
 | 13.2
12.3
13.2
 | 13.1
12.9
12.8
12.9
12.8
12.2 | 12.4
12.4
12.3
12.4
12.1
11.8 | | 11.9
12.1
11.6
11.0
11.3 | 10.7
11.1
10.7
10.5
11.0 | 11.3
11.6
11.1
10.8
11.2 | 9.8
10.0
10.0
9.8
8.8
8.8 | 9.2
9.0
8.9
8.8
8.5 | 9.4
9.5
9.4
9.2
8.6
8.7 | | MONTH | 14.6 | 11.1 | | 15.0 | | | 13.1 | | | 11.6 | | 9.9 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | JUNE | | | JULY | | | AUGUST | | SE | PTEMBER | MEAN | | DAY 1 2 3 4 5 | 8.6
8.7
9.0 | 8.2
8.1
8.2
8.4
8.3 | 8.4
8.4
8.6
8.6 | 8.8
9.3
9.0
8.8
8.7 | 7.1
7.2
7.2
6.7
6.5 | 8.0
8.2
8.1
7.7
7.6 | 9.6
9.7
9.4
10.0
9.0 | 6.3
6.7
6.4
6.7 | 8.0
8.1
7.9
8.2
7.9 | 9.8
10.5
11.0
11.0 | 8.6
8.7
8.6
8.1
7.7 | 9.1
9.6
9.7
9.4
9.2 | | 1
2
3
4
5
6
7
8
9 | 8.6
8.7
9.0
8.9
9.0 | 8.2
8.1
8.2
8.4
8.3 | 8.4
8.4
8.6
8.6 | | 7.1
7.2
7.2
6.7
6.5 | 8.0
8.2
8.1
7.7
7.6 | | 6.3
6.7
6.4
6.7 | 8.0
8.1
7.9
8.2
7.9 | 9.8
10.5
11.0
11.0 | 8.6
8.7
8.6
8.1
7.7 | 9.1
9.6
9.7
9.4
9.2 | | 1
2
3
4
5
6
7
8
9 | 8.6
8.7
9.0
8.9
9.0
8.8
8.6
8.8
9.0
8.8 | 8.2
8.1
8.2
8.4
8.3 | 8.4
8.4
8.6
8.6
8.6
8.7
8.7 | 8.8
9.3
9.0
8.8
8.7 | 7.1
7.2
7.2
6.7
6.5
6.5
6.7
6.8
6.4
6.0 | 8.0
8.2
8.1
7.7
7.6
7.8
7.9
7.4
7.2 | 9.6
9.7
9.4
10.0
9.0 | 6.3
6.7
6.4
6.7
6.7
7.1
7.9
8.2
8.4
8.6 | 8.0
8.1
7.9
8.2
7.9 | 9.8
10.5
11.0
11.0 | 8.6
8.7
8.6
8.1
7.7
7.9
7.9
7.9
7.9 | 9.1
9.6
9.7
9.4
9.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 8.6
8.7
9.0
8.9
9.0
8.8
8.6
8.8
9.0
8.8 | 3.2
8.1
8.2
8.4
8.3
8.1
8.1
8.5
8.7
8.4 | 8.4
8.6
8.6
8.6
8.7
8.7
8.7
8.7 | 8.8
9.3
9.0
8.8
8.7
9.0
9.1
9.1
8.8
8.6 | 7.1
7.2
7.2
6.7
6.5
6.5
6.4
6.0
5.9
5.7 | 8.0
8.2
8.1
7.7
7.6
7.7
7.8
7.9
7.4
7.2
7.0
6.9 | 9.6
9.7
9.4
10.0
9.0
10.8
11.3
11.8
11.9 | 6.3
6.7
6.4
6.7
6.7
7.1
7.9
8.2
8.4
8.6 | 8.0
8.1
7.9
8.2
7.9
8.8
9.5
10.0
10.1 | 9.8
10.5
11.0
11.0
10.8
11.1
11.1
11.2
11.2
11.3
10.4
11.5
12.0
11.9 | 8.6
8.7
8.6
8.1
7.7
7.9
7.9
7.9
7.7
7.4
7.8
8.6
8.5 | 9.1
9.6
9.7
9.4
9.2
9.4
9.4
9.3
8.9
9.5
10.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 8.6
8.7
9.0
8.9
9.0
8.8
8.6
8.8
9.0
8.8
8.7
8.3
8.1
8.2
8.5 | 3.2
8.1
8.2
8.4
8.3
8.1
8.1
8.5
8.7
8.4
8.1
7.8
7.9
8.1 | 8.4
8.6
8.6
8.6
8.4
8.7
8.7
8.7
8.1
9.1
8.4
8.9
8.4
8.8 | 8.8
9.3
9.0
8.8
8.7
9.0
9.1
9.1
8.8
8.6
8.2
8.0
7.7
 | 7.1
7.2
7.2
6.7
6.5
6.5
6.6.4
6.0
5.9
5.7
5.5 | 8.0
8.2
8.1
7.7
7.6
7.7
7.8
7.9
7.4
7.2
7.0
6.9
6.5 | 9.6
9.7
9.4
10.0
9.0
10.8
11.3
11.8
11.9
11.6
11.7 | 6.3
6.7
6.4
6.7
6.7
7.1
7.9
8.2
8.4
8.6
8.1
8.3
7.9 |
8.0
8.1
7.9
8.2
7.9
8.8
9.5
9.7
10.0
10.1 | 9.8
10.5
11.0
11.0
10.8
11.1
11.1
11.2
11.2
11.3
10.4
11.5
12.0
11.9
10.7 | 8.6
8.7
8.6
8.1
7.7
7.9
7.9
7.9
7.7
7.4
7.8
8.6
8.5
8.0
7.6
8.1
7.7 | 9.1
9.6
9.7
9.4
9.2
9.4
9.4
9.3
8.9
9.5
10.1
9.9
9.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 8.6
8.7
9.0
8.8
8.6
8.8
9.0
8.8
8.7
8.3
8.1
2
8.5
8.2
9.1
9.2
9.5
9.7
9.8
9.7
9.8
8.3
7.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9 | 3.2
8.1
8.2
8.4
8.3
8.1
8.5
8.7
8.4
8.1
7.8
7.9
8.1
7.8
8.4
8.5
8.6
8.5
8.7 | 8.4
8.6
8.6
8.4
8.7
8.7
8.1
9.1
8.8
8.9
8.8
8.8
8.8
8.8
8.8
8.7
7.1
7.7 | 8.8
9.3
9.0
8.8
8.7
9.0
9.1
9.1
8.8
8.6
8.2
8.0
7.7

10.0
8.3
9.3
9.0
8.3
9.3 | 7.1 7.2 7.2 6.7 6.5 6.5 6.7 6.8 6.4 6.0 5.9 5.7 5.5 5.9 6.6 6.7 6.6 7.0 | 8.0
8.2
8.1
7.7
7.6
7.7
7.8
7.9
7.4
7.2
7.0
6.9
6.5

7.6
6.8
7.8
7.8 | 9.6
9.7
9.4
10.0
9.0
10.8
11.3
11.8
11.9
11.6
11.7
11.4

9.1
10.8
10.9
11.3
10.0
9.9
10.7 | 8.1
8.3
7.9
8.4
8.6
8.1
8.3
7.9

7.1
7.3
7.5
7.8
7.8
8.2
8.2 | 8.0
8.1
7.9
8.2
7.9
8.8
9.5
10.0
10.1
9.8
9.6

8.0
8.9
9.1
9.4
8.9
9.5 | 9.8
10.5
11.0
11.0
11.0
11.1
11.1
11.2
11.2
11.3
10.4
11.5
12.0
11.9
10.7
10.7
11.0
10.6
10.5 | **BPTEMBER** **8.6** **8.6** **8.1** **7.7** **7.9** **7.9** **7.9** **7.7** **7.8** **8.6** **8.5** **8.0** **7.6** **8.1** **7.5** **7.2** **7.1** **7.8** **8.0** **8.0** **7.5** **7.2** **7.1** **7.8** **8.0** **8.0** **8.0** **8.0** **7.2** **7.1** **7.2** **7.1** **7.2** **7.1** **7.2** **7.1** **7.2** **7.1** **8.0** **8 | 9.1
9.6
9.7
9.4
9.2
9.4
9.4
9.3
8.9
9.5
10.1
9.0
9.1
9.0
8.8
8.6
8.5
9.5
9.5
9.5
9.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 8.6
8.7
9.0
8.8
8.6
8.8
9.0
8.8
8.7
8.3
8.1
8.2
8.5
8.8
9.1
9.1
9.1
9.2
9.4
9.5
9.7
9.8
8.3 | ## STANS | 8.44
8.66
8.66
8.44
8.77
8.19
8.14
8.98
8.88
8.88
8.88
8.88
8.88
8.75
4.1 | 8.8
9.3
9.0
8.8
8.7
9.0
9.1
18.8
8.6
8.2
8.0
7.7

10.0
8.3
9.3
9.0
8.3 | 7.1 7.2 7.2 6.7 6.5 6.5 6.5 6.7 6.5 6.5 6.7 6.6 7.0 | 8.0
8.2
8.1
7.7
7.6
7.7
7.8
7.9
7.4
7.2
7.0
6.9
6.5

7.6
6.8
7.8
7.8
7.9 | 9.6
9.7
9.4
10.0
9.0
10.8
11.3
11.8
11.9
11.6
11.7
11.4

9.1
10.8
10.9
11.3 | 8.1
8.3
6.7
6.7
7.1
7.9
8.2
8.4
8.6
8.1
8.3
7.9

7.1
7.3
7.5
7.8
8.2 | 8.0
8.1
7.9
8.2
7.9
8.8
9.5
9.7
10.0
10.1
9.8
9.6
 | 9.8
10.5
11.0
11.0
10.8
11.1
11.1
11.2
11.2
11.3
10.4
11.5
12.0
11.9
10.7
11.0
10.4
10.6
10.5
10.3
10.2
10.3
10.7
11.5 | **BPTEMBER** **8.6** **8.6** **8.1** **7.7** **7.9** **7.9** **7.9** **7.9** **7.9** **7.7** **7.4** **8.6** **8.5** **8.0** **7.6** **8.1** **7.9** **7.5** **7.2** **7.1** **7.6** **7.8** **8.0** | 9.1
9.6
9.7
9.4
9.2
9.4
9.4
9.3
8.9
9.5
10.1
9.9
9.1
9.0
8.8
8.6
8.5
9.5
9.5
8.9
9.5
8.9 | ## 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued OXYGEN DIS. PERCENT, in % OF SATURATION, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|--|--|---|---|--|---|---|--|--|--|--|--| | | | OCTOBER | | | OVEMBER | | D | ECEMBER | | | JANUARY | | | 1
2
3
4
5 | 109
119
122
123
123
| 95
96
96
95
94 | 102
106
108
107
107 | 129
134
126
130
122 | 98
103
103
99
100 | 113
118
113
114
111 | 117
110
111
112
111 | 89
90
89
92
94 | 102
99
100
101
101 | 103
106
108
108
110 | 97
98
103
102
102 | 100
102
105
105
106 | | 7 | 113
116
118
120
124 | 93
92
93
95
99 | 102
102
104
107
110 | 122
127
130
126
126 | 95
100
102
102
101 | 108
113
115
113
113 | 113
111
101
107
109 | 93
92
90
90
92 | 102
101
96
97
100 | 107
105
109
108
112 | 102
101
100
102
102 | 104
103
104
105
106 | | 11
12
13
14
15 | 126
126
127
123
124 | 100
98
99
97
94 | 111
111
112
109
108 | 124
121
123
127
128 | 102
99
102
104
104 | 112
110
113
115
116 |
106
102
110 |
97
94
93 |
101
98
100 | 110
113
110
112
114 | 103
101
101
100
102 | 106
106
105
106
108 | | 16
17
18
19
20 | 121
119
123
125
126 | 94
95
96
98
100 | 107
106
108
111
112 | 129
128
127
125
119 | 105
104
104
104
103 | 116
116
115
115
111 | 112
105
105
109
103 | 94
97
95
94
95 | 102
101
99
101
99 | 115
112
113
106
113 | 102
102
101
99
99 | 108
107
107
102
105 | | 21
22
23
24
25 | 127
130
127
131
125 | 100
100
98
99
96 | 113
113
112
113
109 | 124
126
126
123
125 | 101
105
106
106
104 | | 101
104
105
105
104 | | | | | 107
110
109
108
107 | | 26
27
28
29
30
31 | 118
114
122
126
129
118 | 93
94
93
99
103
101 | 106
104
107
112
116
110 | 125
122
123
107
109 | 98
96
96
94
87 | 110
109
108
98
97 | 104
102
101
103
101
103 | 94
92
92
95
93
97 | 99
97
97
99
97 | 117
119
120
120
112
106 | 98
101
100
100
100 | 107
109
110
110
107
102 | | MONTH | | 92 | | 134 | 87 | | 117 | DAY | MAX | MIN | MEAN | | DAY | | MIN
FEBRUARY | | MAX | | MEAN | MAX | MIN
APRIL | MEAN | | MIN
MAY | MEAN | | DAY 1 2 3 4 5 | | | | | MARCH | | 106
108
106
110
108 | APRIL | | | MAY | | | 1
2
3
4
5
6
7
8
9 | 105
103
103
101
101
103
104
107
108
108 | FEBRUARY | 100
99
100
98
96 | | 98
99
100
97
98 | 111
110
106
105
107 | | 100
100
100
99
101 | 103
104
103
104
105 | | MAY
103
99
98
98 | 104
101
100
102
102 | | 1
2
3
4
5
6
7
8
9 | 105
103
103
101
101
103
104
107
108 | 98
96
96
95
93 | 100
99
100
98
96
99
101
102
103 | 124
120
112
114
116 | 98
99
100
97
98
100
101
102
102
98 | 111
110
106
105
107
110
112
112
118 | 106
108
106
110 | 100
100
100
100
99
101
103
104
106
106
103 | 103
104
103
104
105
107
109
110
110 | 105
103
103
105
106 | 103
99
98
98
96
97
94
86
89 | 104
101
100
102
102 | | 1
2
3
4
5
6
7
8
9
10 | 105
103
103
101
101
103
104
107
108
108 | 98 96 95 93 95 97 98 97 93 95 95 95 | 100
99
100
98
96
99
99
101
102
103 | 124
120
112
114
116
121
123
124
121
121
115
106
125 | 98
99
100
97
98
100
101
102
102
98
95
96
98 | 111
110
106
105
107
107
110
112
112
108 | 106
108
106
110
108
111
115
114
114
114
114
116
110
115
114 | 100
100
100
100
99
101
103
104
106
106
103
103
103
103 | 103
104
103
104
105
107
109
110
108
109
107
108 | 105
103
105
106
103
101
103
95
101 | 103
99
98
98
96
97
94
86
89
85 | 104
101
100
102
102
101
98
97
91
94 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 105
103
101
101
101
103
104
108
107
106
102
104
103
107
106
107
106 | 98 96 95 93 95 97 98 97 98 97 99 97 | 100
99
100
98
96
99
99
101
102
103
101
99
99
99
99 | 124
120
112
114
116
116
121
123
124
121
125
106
125
127 | 98
99
100
97
98
100
101
102
102
98
95
96
98
94
104 | 111
110
106
105
107
107
110
112
112
108
107
106
102
110
115 | 106
108
106
110
108
111
115
114
114
114
115
115
115
115
117
115
117
117 | 100
100
100
99
101
103
104
106
106
103
103
103
102
101
98 | 103
104
103
104
105
107
109
110
110
108
109
107
106
100
96
98
96 | 105
103
105
106
103
101
103
95
101
101
95
 | 98 98 96 97 94 86 89 85 90 88 100 93 97 | 104
101
100
102
102
101
98
97
91
94
95
91

101
98 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 105
103
103
101
101
107
108
108
107
106
102
104
103
107
111
112
116
115
120
121
122
124
115
120
 | 98
96
96
95
93
95
97
95
97
98
97
95
96
97
97
95
97
97
97
97
97
97
97 | 100
99
100
98
96
99
99
101
102
103
101
99
99
99
101
101
104
105
106
106
107
109
110
109 | 124
120
112
114
116
116
121
123
124
121
125
126
127
114
113
109
110
110
110
110
1112
112
112
115 | 98
99
100
97
98
100
101
102
102
98
95
96
98
94
104
103
100
98
99
106
104
102
104
102 | 111
110
106
105
107
107
110
112
112
112
108
107
106
102
110
115
109
106
107
107
106
108
107
107
106
108
107 | 106
108
106
110
108
111
115
114
114
114
115
116
1102
103
103
95
96
99
110
116
117
118
1111
118
1111 | 100
100
100
100
99
101
103
104
106
106
103
103
103
101
98
95
91
93
88
87
92
96
101
102 | 103
104
103
104
105
107
109
110
110
108
109
107
106
100
96
98
96
91
95
102
107
107
104 | 105 103 103 101 103 101 103 95 101 101 95 104 100 102 103 104 105 106 106 106 106 107 108 108 1098 | 103
99
98
98
96
97
94
86
88
85
90
88

100
93
97
100
100
99
98
98
94 | 104
101
100
102
102
101
98
97
91
94
95
91

101
98
100
102 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 105
103
103
101
101
103
104
108
107
106
107
106
107
111
112
116
115
120
121
122
124
115 | 98
96
95
93
95
97
97
98
97
95
96
97
97
97
97
97
97
97
97
97 | 100
99
100
98
96
99
99
101
102
103
101
99
99
101
101
101
104
105
106
106
106
109
110
109 | 124
120
112
114
116
116
121
123
124
121
125
106
125
127
114
113
109
117
110
110
110
110
1110
110
110
110
11 | 98
99
100
97
98
100
101
102
102
98
95
96
98
94
104
103
100
98
99
106
104
102
102
104
102 | 111
110
106
105
107
107
110
112
112
108
107
106
102
110
115
109
107
107
106
108
107
108
108
107 | 106
108
106
110
108
111
115
114
114
114
115
116
110
115
114
115
106
102
103
103
95
99
110
116
107 | 100
100
100
100
99
101
103
104
106
106
103
103
103
102
101
98
95
91
93
88
87
92
96
101
102 | 103
104
103
104
105
107
109
110
110
108
107
106
100
96
91
91
95
102
107
104
107
111
106
101 | 105
103
105
106
103
101
101
95
101
101
95
101
101
95
103
104
105
106
106
106
106 | 103
99
98
98
96
97
94
86
89
85
90
88
 | 104
101
100
102
102
101
98
97
91
94
95
91

101
98
100
102
102
102
102
101
100 | ## 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued OXYGEN DIS. PERCENT, in % OF SATURATION, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------|----------------------------
---------------------------------|---------------------------------|----------------------------|---------------------------------|--|----------------------------------|--|---------------------------------|----------------------------|---------------------------------| | | | JUNE | | | JULY | | | AUGUST | | SE | PTEMBER | | | 1
2
3
4
5 | 96
99
102
100
103 | 90
90
91
94
91 | 93
94
96
96
97 | 112
121
120
118
116 | 88
89
91
86
84 | 100
105
105
101
100 | 129
131
126
135
120 | 81
86
81
86
88 | 104
107
103
109 | 110
118
129
133
131 | 96
95
95
94
91 | 102
106
110
111
109 | | 6
7
8
9
10 | 101
95
95
97
98 | 92
90
93
93 | 95
92
94
95
95 | 116
116
116
113
111 | 82
81
83
79
75 | 98
97
99
94
91 | 140
141
140
148
150 | 91
95
98
101
103 | 112
117
119
123
125 | 133
134
136
137
141 | 92
91
92
92
92 | 111
111
112
113
114 | | 11
12
13
14
15 | 99
96
91
91
92 | 92
91
89
88
88 | 95
93
90
89
90 | 103
101
96
 | 71
69
67
 | 87
84
80
 | 149
151
150
 | 99
103
100
 | 123
125
124
 | 125
134
140
139
127 | 90
88
95
96
94 | 107
109
116
115
107 | | 16
17
18
19
20 | 95
100
100
100
105 | 82
90
93
93
95 | 91
96
96
96
99 |

 |

 | |

 |

 |

 | 129
131
124
125
124 | 89
94
93
89
90 | 106
110
106
105
105 | | 21
22
23
24
25 | 108
111
115
119
124 | 95
95
95
96
95 | 101
102
104
107
109 | 133
106
118 |
75
71
80 |
100
86
97 |

111
136 |

87
87 |

98
109 | 123
125
123
126
131 | 87
85
84
86
88 | 104
103
101
104
108 | | 26
27
28
29
30
31 | 124
126
104
93
107 | 98
90
86
81
86 | 109
108
93
88
96 | 111
100
114
 | 81
78
84
 | 94
91
97
 | 135
139
120
113
122
125 | 92
94
95
95
93
98 | 112
114
106
103
107
111 | 108
111
116
118
116 | 89
88
84
88
89 | 99
97
99
102
102 | | MONTH
YEAR | 126
151 | 81
67 | 97
104 | 133 | 67 | 95 | 151 | 81 | 112 | 141 | 84 | 107 | ## TURBIDITY, FIELD, IN (NTU), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|---|--------------------------------------|--------------------------------------|--------------------------------------|--|--|---|---------------------------------------|--|---| | | OCTOBER | | | NOVEMBER | | | D | DECEMBER | | | ANUARY | | | 1
2
3
4
5 | 4.3
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | 5.8
3.7
5.1
5.1
4.6 | <2.0
<2.0
<2.0
<2.0
<2.0 | 2.9
2.4
2.3
2.1
2.5 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | | 6
7
8
9
10 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | 2.1
<2.0
2.0
2.1
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | 2.0
2.1
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
3.4
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | | 11
12
13
14
15 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | 2.3
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 |
<2.0
2.7
<2.0 |
<2.0
<2.0
<2.0 |
<2.0
<2.0
<2.0 | 4.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | | 16
17
18
19
20 | <2.0
2.7
3.1
2.4
2.4 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
3.5
3.6 | <2.0
<2.0
<2.0
<2.0
<2.2 | <2.0
<2.0
<2.0
2.3
5.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | | 21
22
23
24
25 | 2.0
<2.0
2.4
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | 17
10
10
9.4
9.0 | 7.1
6.4
6.2
6.3
5.2 | 11
7.9
7.6
7.9
7.2 | <2.0
<2.0
<2.0
4.2
10 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | | 26
27
28
29
30
31 | 2.9
2.0
2.4
3.0
4.2
3.8 | <2.0
<2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0
2.4
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | 7.3
2.1
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0
<2.0 | 2.9
<2.0
<2.0
<2.0
<2.0
<2.0 | 10
3.8
2.6
2.3
2.7
3.4 | 2.5
2.3
<2.0
<2.0
<2.0
<2.0 | 5.0
2.6
2.0
<2.0
<2.0
<2.0 | | MONTH | 4.3 | <2.0 | <2.0 | 5.8 | <2.0 | <2.0 | 17 | <2.0 | 2.6 | 10 | <2.0 | <2.0 | ## 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued TURBIDITY, FIELD, IN (NTU), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |--|--|--|---|--
--|--|---|--|--|--|--|---| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 30 | <2.0
4.1
4.2
4.4
3.9 | 2.3
9.7
6.0
6.6
5.4 | <2.0
<2.0
8.2
6.9
4.4 | <2.0
<2.0
<2.0
<1.0
<2.4 | <2.0
<2.0
3.3
5.2
3.1 | 20
9.1
8.8
11
9.3 | 4.5
4.4
4.0
4.1
3.4 | 6.1
5.8
5.5
5.8
4.5 | 33
32
26
16
9.0 | 3.0 | 12
6.0
16
7.5
5.3 | | 6
7
8
9
10 | 5.6
4.5
3.6
3.3
3.3 | 3.6
3.0
2.6
2.2
2.0 | 4.6
3.7
3.0
2.7
2.3 | 3.1
2.7
2.5
<2.0
<2.0 | 2.4
<2.0
<2.0
<2.0
<2.0 | 2.8
2.3
<2.0
<2.0
<2.0 | 5.8
5.2
3.7
2.0
<2.0 | 3.2
2.8
<2.0
<2.0
<2.0 | 3.9
3.6
2.6
<2.0
<2.0 | 8.9
7.1
5.1
7.3
6.8 | 2.5
2.3
<2.0
<2.0
<2.0 | 4.7
3.2
3.5
2.0
2.8 | | 11
12
13
14
15 | 3.3
3.0
16
10
15 | 2.1
2.3
2.5
5.7 | 2.7
2.8
6.6
7.2 | 2.0
2.4
2.8
3.1
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
2.3
<2.0
<2.0 | 3.5
<2.0
3.1
2.7 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | 4.8
2.6
 | <2.0
<2.0

 | <2.0
<2.0

 | | 16
17
18
19
20 | 14
12
7.6
6.7
5.6 | 11
7.4
6.3
5.1
4.2 | 12
9.9
6.9
5.8
4.5 | <2.0
<2.0
<2.0
2.4
28 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<4.6 | 26
37
10
7.3
6.9 | <2.0
3.5
<2.0
<2.0
<2.0 | 8.0
11
3.9
2.7
<2.0 | 12
18
16
12 | 3.0
<2.0
6.8
3.9 | 6.6
8.4
10
7.3 | | 22 | 4.2
4.9
4.5
2.9
3.3 | 3.2
2.8
2.4
2.3
<2.0 | | | | | | | | 8.4
7.0
6.6
5.3
5.4 | | | | 26
27
28
29
30
31 | 2.1 | <2.0
<2.0
<2.0
 | <2.0
<2.0
<2.0
 | 5.7
3.7
33
24
23
11 | <2.0
<2.0
3.5
8.8
11
6.5 | 2.7
<2.0
9.8
16
16
8.1 | <2.0
2.2
2.7
24
38 | <2.0
<2.0
<2.0
2.4
9.6 | <2.0
<2.0
<2.0
8.0
22 | 5.4
4.0
3.8
5.7
33 | <2.0
<2.0
<2.0
<2.0
<2.0
5.7 | 2.4
2.3
2.3
2.5
12 | | MONTH | 30 | <2.0 | | | | | | | | 36 | a = | | | | | 2.4 | JUNE | 26 | 1.4 | JULY | 0.7 | 2.0 | | .0.0 | | PTEMBER | .0.0 | | 1
2
3
4
5 | ~ ~ | 20
12
5.5 | | | 6.1
<2.0
3.1
<2.0
<2.0 | 8.7
4.3
4.2
2.4
2.7 | 2.9
4.0
13
2.5
3.6 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
3.4
<2.0
2.1 | 2.9
3.3
2.8
2.7
2.7 | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
2.6
<2.0
<2.0
<2.0 | | 2
3
4 | 21
17
11
9.1
6.8 | 20
12
5.5
4.7
2.8 | | 14
9.2
8.3
4.5
4.1
3.2
3.6
6.9
2.9 | 6.1
<2.0
3.1
<2.0
<2.0 | <2.0 | | <2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
3.4
<2.0
2.1 | 2.9
3.3
2.8
2.7
2.7
<2.0
<2.0
5.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | 2.6
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0 | | 2
3
4
5
6
7
8
9 | 21
17
11
9.1
6.8
47
40
28
24 | 20
12
5.5
4.7
2.8
3.0
3.0
17
15
8.9 | 4.9
15
27
20
16 | 3.2
3.2
3.6
2.9
2.4 | 6.1
<2.0
3.1
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0 | 2.9
4.0
13
2.5
3.6
2.9
8.3
8.2
4.1
3.4 | <2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0 | <2.0 3.4 <2.0 2.1 <2.0 2.4 2.3 2.1 <2.0 | 2.9
3.3
2.8
2.7
2.7
<2.0
<2.0
<2.0
6.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0 | 2.6 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 | | 2
3
4
5
6
7
8
9
10
11
12
13
14 | 21
17
11
9.1
6.8
47
40
28
24
12
13
14 | 20
12
5.5
4.7
2.8
3.0
3.0
17
15
8.9
6.1
4.9
7.0
4.8 | 4.9
15
27
20
16
8.6
8.3
10
7.9 | 3.2
3.6
2.9
2.4
3.9
3.4
3.9 | 6.1
<2.0
3.1
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0 | 2.9
4.0
13
2.5
3.6
2.9
8.3
8.2
4.1
3.4
2.2
3.1
2.9
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0 | <2.0 3.4 <2.0 2.1 <2.0 2.4 2.3 2.1 <2.0 <2.0 <2.0 <2.0 <2.0 | 2.9 3.3 2.8 2.7 2.7 <2.0 <2.0 <5.0 <2.0 6.0 <2.0 <2.0 <2.0 <2.0 <2.0 | <2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0 | 2.6 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 21
17
11
9.1
6.8
47
40
28
24
12
13
14
14
14
10
36
36
12 | 20
12
5.5
4.7
2.8
3.0
3.0
17
15
8.9
6.1
4.9
7.0
4.8
6.0
4.3
3.6
2.5
4.0 | 4.9
15
27
20
16
8.6
8.3
10
7.9
9.0
6.4
7.6
6.1
7.1 | 3.2
3.6
2.9
2.4
3.9
3.4
3.9
 | 6.1
<2.0
3.1
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0 | <2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0 | 2.9
4.0
13
2.5
3.6
2.9
8.3
8.2
4.1
3.4
2.2
3.1
2.9
<2.0
3.0 | <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 | <2.0 3.4 <2.0 2.1 <2.0 2.4 2.3 2.1 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 | 2.9 3.3 2.8 2.7 2.7 2.7 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 | <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 | 2.6 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 21
17
11
9.1
6.8
47
40
28
24
12
13
14
14
14
10
36
36
12
12
12
12
8.3
6.1
5.4
7 | 20
12
5.5
4.7
2.8
3.0
3.0
17
15
8.9
6.1
4.9
7.0
4.8
6.0
4.3
3.6
2.5
4.0
4.6 | 4.9
15
27
20
16
8.6
8.3
10
7.9
9.0
6.4
7.6
6.1
7.1
7.4
5.5
3.7
6.2,9 | 3.2
3.6
2.9
2.4
3.9
3.4
3.9

2.6
13
3.6
6.4 | 6.1
<2.0
3.1
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0 | <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 | 2.9 4.0 13 2.5 3.6 2.9 8.3 8.2 4.1 3.4 2.2 3.1 2.9 <2.0 3.0 2.6 4.0 6.0
5.5 3.1 4.0 3.0 2.0 2.3 2.9 2.7 5.8 2.7 2.6 2.7 | <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 | <pre><2.0 3.4 <2.0 2.1 <2.0 2.4 2.3 2.1 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0</pre> | 2.9 3.3 2.8 2.7 2.7 2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 | <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 | 2.6 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 21
17
11
9.1
6.8
47
40
28
24
12
13
14
14
14
10
36
36
31
12
12
12
8.3
6.1
5.0
7
2.8
8.3
3.2
93
120
21 | 20 12 5.5 4.7 2.8 3.0 3.0 17 15 8.9 6.1 4.9 7.0 4.8 6.0 4.3 3.6 2.5 4.0 4.6 3.2 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <7 6.7 | 4.9
15
27
20
16
8.6
8.3
10
7.9
9.0
6.4
7.6
6.1
7.1
7.4
5.5
3.7
3.6
2.9
<2.0
2.2
<2.0
28
39
13 | 3.2
3.2
3.6
2.9
2.4
3.9
3.4
3.9

2.6
13
3.6
4.6
4.5
9.3
5.4
7.2
5.4 | 6.1
<2.0
3.1
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2.0
<2 | <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 | 2.9 4.0 13 2.5 3.6 2.9 8.3 8.2 4.1 3.4 2.2 3.1 2.9 <2.0 3.0 2.6 4.0 6.0 5.5 3.1 4.0 2.0 2.3 2.9 2.7 5.8 2.7 2.6 | <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 | <pre><2.0 3.4 <2.0 2.1 <2.0 2.4 2.3 2.1 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0</pre> | 2.9 3.3 2.8 2.7 2.7 2.7 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 | <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 | 2.6 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 | #### 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued ## 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued #### 01464645 NORTH BRANCH NESHAMINY CREEK BELOW LAKE GALENA NEAR NEW BRITAIN, PA LOCATION.--Lat 40°18'44", long 75°12'25", Bucks County, Hydrologic Unit 02040201, on left bank 0.3 mi downstream from Lake Galena (Peace Valley Reservoir), 1.5 mi west of New Britain, 2.0 mi north of Chalfont on Callowhill Road, and 4.0 mi west of Doylestown. **DRAINAGE AREA**.--16.2 mi². PERIOD OF RECORD.--November 1985 to current year. GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Elevation of gage is 280 ft above National Geodetic Vertical Datum of 1929, from topographic map. **REMARKS.**--No estimated daily discharges. Records fair. Flow regulated by Lake Galena (Peace Valley Reservoir). Several measurements of water temperature were made during the year. Satellite and landline telemetry at station. COOPERATION.--Records of change in contents in Lake Galena provided by Forest Park Water Company. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | | | | | | | | | | | | |----------------------------------|---|----------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------|----------------------------------|----------------------------|----------------------------------|----------------------------------|----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 27 | 27 | 25 | 25 | 25 | 28 | 26 | 30 | 29 | 34 | 34 | 23 | | 2 | 27 | 27 | 26 | 25 | 25 | 25 | 25 | 36 | 31 | 34 | 36 | 23 | | 3 | 26 | 28 | 26 | 26 | 25 | 27 | 25 | 29 | 30 | 34 | 34 | 25 | | 4 | 28 | 28 | 26 | 26 | 25 | 25 | 25 | 25 | 30 | 35 | 30 | 28 | | 5 | 28 | 28 | 27 | 26 | 25 | 25 | 25 | 24 | 31 | 32 | 31 | 29 | | 6
7
8
9 | 28
26
26
25
25 | 28
27
27
27
28 | 26
25
25
24
25 | 26
26
26
26
26 | 25
25
25
25
25
25 | 26
26
27
26
26 | 26
26
26
34
28 | 25
26
27
26
26 | 32
31
27
27
30 | 31
31
33
34
34 | 32
31
31
30
31 | 28
27
26
28
31 | | 11 | 26 | 29 | 26 | 26 | 26 | 27 | 28 | 25 | 31 | 34 | 29 | 30 | | 12 | 28 | 29 | 26 | 25 | 25 | 28 | 28 | 25 | 32 | 34 | 33 | 25 | | 13 | 27 | 28 | 26 | 25 | 25 | 28 | 29 | 38 | 29 | 32 | 35 | 25 | | 14 | 25 | 28 | 26 | 25 | 25 | 27 | 26 | 129 | 28 | 31 | 34 | 25 | | 15 | 26 | 28 | 25 | 25 | 25 | 27 | 26 | 85 | 25 | 32 | 35 | 24 | | 16 | 26 | 28 | 24 | 25 | 24 | 27 | 27 | 56 | 23 | 35 | 37 | 24 | | 17 | 28 | 28 | 26 | 25 | 24 | 27 | 29 | 41 | 25 | 36 | 37 | 27 | | 18 | 29 | 28 | 24 | 25 | 24 | 29 | 29 | 78 | 28 | 38 | 38 | 26 | | 19 | 29 | 28 | 23 | 25 | 23 | 26 | 29 | 77 | 26 | 38 | 38 | 25 | | 20 | 28 | 27 | 24 | 25 | 23 | 36 | 30 | 53 | 27 | 35 | 35 | 26 | | 21 | 27 | 27 | 26 | 24 | 23 | 30 | 29 | 39 | 29 | 34 | 33 | 25 | | 22 | 30 | 27 | 27 | 25 | 23 | 29 | 30 | 32 | 28 | 34 | 33 | 24 | | 23 | 30 | 26 | 26 | 25 | 23 | 26 | 27 | 27 | 28 | 33 | 32 | 26 | | 24 | 31 | 26 | 24 | 27 | 23 | 26 | 29 | 25 | 33 | 31 | 29 | 27 | | 25 | 33 | 26 | 24 | 26 | 23 | 26 | 29 | 25 | 34 | 31 | 27 | 26 | | 26
27
28
29
30
31 | 32
31
30
28
28
28 | 26
26
24
23
23 | 24
23
23
23
24
25 | 26
25
25
25
24
25 | 25
27
28
 | 25
26
26
27
26
26 | 29
28
35
28
30 | 25
28
29
30
30
30 | 33
35
30
29
30 | 31
28
29
34
34
34 | 29
28
28
27
26
25 | 26
27
26
25
25 | | TOTAL | 866 | 810 | 774 | 786 | 689 | 836 | 841 | 1201 | 881 | 1030 | 988 | 782 | | MEAN | 27.9 | 27.0 | 25.0 | 25.4 | 24.6 | 27.0 | 28.0 | 38.7 | 29.4 | 33.2 | 31.9 | 26.1 | | MAX | 33 | 29 | 27 | 27 | 28 | 36 | 35 | 129 | 35 | 38 | 38 | 31 | | MIN | 25 | 23 | 23 | 24 | 23 | 25 | 25 | 24 | 23 | 28 | 25 | 23 | | (≠) | -6.2 | -12.1 | -5.0 | -1.5 | -2.2 | +16.3 | +11.1 | +4.9 | 0.0 | -3.6 | -3.2 | -6.0 | | STATIST | CICS OF M | ONTHLY ME | AN DATA FO | R WATER Y | EARS 198 | 6 - 2002, | BY WATER | YEAR (WY) |) | | | | | MEAN | 23.5 | 24.7 | 47.0 | 34.3 | 27.7 | 38.5 | 31.6 | 28.9 | 25.0 | 21.2 | 18.5 | 24.0 | | MAX | 81.8 | 86.4 | 145 | 80.4 | 58.8 | 123 | 80.0 | 81.1 | 80.4 | 55.3 | 41.7 | 114 | | (WY) | 1997 | 1996 | 1997 | 1996 | 1988 | 1994 | 1996 | 1998 | 2001 | 1988 | 1994 | 1999 | | MIN | 3.91 | 5.85 | 17.5 | 6.62 | 5.36 | 4.75 | 4.68 | 6.55 | 5.38 | 4.92 | 4.97 | 3.63 | | (WY) | 1989 | 1992 | 1995 | 1986 | 1989 | 1988 | 1988 | 1986 | 1986 | 1990 | 1987 | 1988 | [≠] Change in contents, equivalent in cubic feet per second, in Lake Galena. #### 01464645 NORTH BRANCH NESHAMINY CREEK BELOW LAKE GALENA NEAR NEW BRITAIN, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1986 - 2002 | |--------------------------|------------------------|-----------------------|---------------------------| | ANNUAL TOTAL | 12447 | 10484 | | | ANNUAL MEAN | 34.1 | 28.7 | 29.2 | | HIGHEST ANNUAL MEAN | | | 44.3 1996 | | LOWEST ANNUAL MEAN | | | 13.1 1992 | | HIGHEST DAILY MEAN | 943 Jun 17 | 129 May 14 | 1040 Sep 17 1999 | | LOWEST DAILY MEAN | 23 Jan 7 a | 23 Nov 29,30 b | 3.1 Dec 22 1989 | | ANNUAL SEVEN-DAY MINIMUM | 23 Mar 1 | 23 Feb 19 | 3.1 Dec 22 1989 | | MAXIMUM PEAK FLOW | | 173 May 13 | c 2340 Sep 16 1999 | | MAXIMUM PEAK STAGE | |
2.71 May 13 | 4.96 Sep 16 1999 | | 10 PERCENT EXCEEDS | 36 | 34 | 51 | | 50 PERCENT EXCEEDS | 28 | 27 | 23 | | 90 PERCENT EXCEEDS | 24 | 25 | 5.0 | ^{a Also Nov. 29, 30, Dec. 19, 27-29. b Also Dec. 19, 27-29, Feb. 19-25, June 16, Sept. 1, 2. c From rating curve extended above 270 ft³/s on basis of slope-conveyance computation.} #### 01464720 NORTH BRANCH NESHAMINY CREEK AT CHALFONT, PA LOCATION.--Lat 40°17'17", long 75°12'15"', Bucks County, Hydrologic Unit 02040201, on right bank 250 ft upstream from Route 202 bridge in Chalfont, and 0.6 mi upstream from mouth. **DRAINAGE AREA**.--31.5 mi². PERIOD OF RECORD.--December 1990 to current year. REVISED RECORDS.--WDR PA-99-1: 1993-98(M). GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 250 ft above National Geodetic Vertical Datum of 1929, from topographic map. DISCHARGE CURIC EEET BED SECOND WATER VEAR OCTORER 2001 TO SERTEMBER 2002 **REMARKS.**--No estimated daily discharges. Records fair. Diversion for municipal supply by Forest Park Water Company upstream of gage. Flow regulated by Lake Galena (Peace Valley Reservoir) 1.8 mi upstream, drainage area 15.8 mi², normal pool capacity 6,539 acre-ft. Several measurements of water temperature were made during the year. Satellite and landline telemetry at station. COOPERATION .-- Records of diversion provided by Forest Park Water Company. | | | | DISCHAI | RGE, CUBIC | FEET PER SI | | TER YEAR (
EAN VALUE | OCTOBER 200
S | 1 TO SEPT | EMBER 2002 | 2 | | |---|--|--|---|--|--|--|---|--|---|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 6.3
7.3
6.7
6.6
7.4 | 5.2
5.4
5.9
6.6
5.2 | 3.3
5.0
3.5
3.5
5.3 | 7.7
4.2
7.2
5.9
7.5 | 9.8
10
9.4
7.3
7.5 | 7.5
8.0
27
14
8.0 | 15
11
11
11
9.7 | 21
79
86
22
16 | 11
13
10
10 | 8.6
8.8
7.4
9.1
7.5 | 6.5
18
16
8.8
8.4 | 12
9.3
7.9
7.3
7.4 | | 6
7
8
9
10 | 7.7
5.8
5.9
5.6
4.7 | 4.7
4.1
4.2
4.3
4.8 | 6.0
3.9
4.0
5.3
4.1 | 8.5
7.3
6.3
6.6
6.5 | 6.2
6.6
6.8
6.4
7.0 | 8.4
7.7
8.0
9.0
7.5 | 10
10
11
23
9.8 | 13
11
9.8
17
12 | 22
58
17
12
11 | 7.3
6.8
5.9
9.1
9.6 | 7.0
7.9
8.2
6.8
7.3 | 6.5
6.3
5.9
5.8
7.1 | | 11
12
13
14
15 | 5.9
7.2
6.6
5.6
5.6 | 6.6
4.7
5.8
4.2
4.6 | 4.5
4.5
5.4
5.4 | 12
7.7
7.4
5.7
6.0 | 6.4
6.2
6.6
5.1
5.1 | 7.8
8.0
9.6
9.0
8.5 | 9.0
9.7
12
11
9.6 | 10
12
55
178
81 | 8.9
13
21
26
22 | 7.2
7.4
7.5
8.0
5.9 | 6.6
7.4
8.1
7.3
8.1 | 6.4
6.0
6.3
6.5
8.7 | | 16
17
18
19
20 | 7.3
5.6
7.8
7.3
6.9 | 4.5
5.0
6.4
4.5
4.1 | 4.5
4.2
7.4
4.8
4.8 | 5.8
5.1
5.6
6.1
6.7 | 5.7
6.0
4.2
4.2
4.4 | 9.7
8.4
28
22
111 | 8.7
8.7
9.6
8.4 | 44
27
158
107
61 | 13
9.5
10
11
8.4 | 7.8
7.9
9.0
33
49 | 8.6
8.2
7.8
7.1
8.2 | 8.1
8.5
7.0
5.0
4.5 | | 21
22
23
24
25 | 5.6
8.1
8.0
8.0 | 3.9
3.8
4.6
4.3
5.9 | 5.1
5.8
6.4
7.6
5.0 | 4.9
5.9
5.6
19 | 4.5
4.1
4.2
4.6
3.9 | 69
27
18
15 | 10
11
9.5
8.7 | 36
24
17
15 | 9.1
8.3
8.4
15
7.2 | 14
10
6.8
7.8
6.3 | 6.8
8.6
9.1
7.2
6.4 | 5.8
5.2
6.3
5.8
4.7 | | 26
27
28
29
30
31 | 9.0
6.8
7.6
5.9
5.7 | 4.6
5.0
5.1
4.1
3.7 | 6.4
4.9
4.8
4.8
5.9
6.7 | 10
8.6
6.9
6.1
6.4
9.0 | 4.9
6.2
7.1
 | 13
35
18
15
15 | 12
11
67
43
20 | 14
16
14
13
14 | 6.4
26
17
10
8.7 | 7.6
6.5
5.6
6.5
6.9
5.9 | 6.3
6.2
6.0
14
7.3
6.8 | 8.0
46
49
13
8.2 | | TOTAL
MEAN
MAX
MIN
(†)
(≠) | 209.6
6.76
10
4.7
22.5
-6.2 | 145.8
4.86
6.6
3.7
22.1
-12.1 | 156.8
5.06
7.6
3.3
21.0
-5.0 | 230.2
7.43
19
4.2
22.1
-1.5 | 170.4
6.09
10
3.9
22.2
-2.2 | 578.1
18.6
111
7.5
21.9
+16.3 | 422.4
14.1
67
8.4
22.7
+11.1 | 1207.8
39.0
178
9.8
23.0
+4.9 | 432.9
14.4
58
6.4
24.9
0.0 | 306.7
9.89
49
5.6
28.7
-3.6 | 257.0
8.29
18
6.0
29.0
-3.2 | 294.5
9.82
49
4.5
24.0
-6.0 | | STATIST | rics of | MONTHLY ME | AN DATA E | FOR WATER | YEARS 199 | 1 - 2002, | BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 28.3
131
1997
6.76
2002 | 28.6
108
1996
4.86
2002 | 59.8
236
1997
5.06
2002 | 61.5
209
1996
7.43
2002 | 38.3
74.6
1998
6.09
2002 | 77.2
222
1994
18.6
2002 | 49.0
121
1996
11.8
1995 | 32.9
136
1998
11.1
1995 | 25.7
113
2001
5.92
1995 | 18.1
55.8
1996
7.65
1999 | 19.7
67.5
1994
4.82
1995 | 28.5
197
1999
5.86
1992 | [†] Diversion by Forest Park Water Company, equivalent in cubic feet per second. [≠] Change in contents, equivalent in cubic feet per second, in Lake Galena. ## 01464720 NORTH BRANCH NESHAMINY CREEK AT CHALFONT, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1991 - 2002 | |--------------------------|------------------------|---------------------|---------------------------| | ANNUAL TOTAL | 11560.9 | 4412.2 | | | ANNUAL MEAN | 31.7 | 12.1 | 39.2 | | HIGHEST ANNUAL MEAN | | | 67.0 1996 | | LOWEST ANNUAL MEAN | | | 12.1 2002 | | HIGHEST DAILY MEAN | 1320 Jun 17 | 178 May 14 | 2090 Sep 16 1999 | | LOWEST DAILY MEAN | 3.3 Dec 1 | 3.3 Dec 1 | 2.3 Aug 18 1991 | | ANNUAL SEVEN-DAY MINIMUM | 4.0 Nov 28 | 4.0 Nov 28 | 3.0 Aug 12 1991 | | MAXIMUM PEAK FLOW | | 712 May 2 | a 6930 Sep 16 1999 | | MAXIMUM PEAK STAGE | | 5.61 May 2 | 11.36 Sep 16 1999 | | 10 PERCENT EXCEEDS | 62 | 18 | 78 | | 50 PERCENT EXCEEDS | 11 | 7.5 | 15 | | 90 PERCENT EXCEEDS | 5.0 | 4.7 | 6.1 | $[\]textbf{a} \ \ \text{From rating curve extended above 1,550 ft}^3\hspace{-0.5em}/\text{s on basis of velocity-area study of peak flow at gage height 11.36 ft}.$ #### 01464750 NESHAMINY CREEK NEAR RUSHLAND, PA LOCATION.--Lat 40°15'37", long 75°02'07"', Bucks County, Hydrologic Unit 02040201, on left bank at bridge on Rushland Road, 2,000 ft upstream from confluence with Little Neshaminy Creek. **DRAINAGE AREA**.--91.0 mi². PERIOD OF RECORD.--December 1986 to September 1992; October 2001 to current year. Water Year 1988 1989 1990 1991 1992 GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 160 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Several measurements of water temperature were made during the year. Satellite telemetry at station. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 1,950 ft³/s and maximum(*): July May June | | | Discharge | Gage Height | | | Dischar | ge Gage Height | |--------|------|--------------------|-------------|------|---------|--------------|----------------| | Date | Time | ft ³ /s | (ft) | Date | e Tii | me ft^3/s | (ft) | | May 18 | 1530 | *1,750 | *6.70 | (No | peaks a | above base o | discharge.) | Date Sept. 20, 1989 Aug. 20, 1991 27, 1988 30, 1990 5, 1992 **REVISIONS.**--The peak discharges and annual maximums reported for water years 1988 to 1992 have been revised as shown in the following table. They supersede previously published figures. Discharge ft³/s 4,340 5,300 4,490 2,620 2,380 Gage Height (ft) 10.66 12.33 10.91 8.02 7.64 | | | | DISCHAR | GE CUBIC | FEET PER SE | COND WA | ATER YEAR | OCTOBER 200 | 1 TO SEPTI | EMBER 2002 | | | | | |-------------|-------------------|------------|------------|-------------|-------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|--|--| | | DAILY MEAN VALUES | | | | | | | | | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 1 | 39 | 20 | 25 | e44 | e68 | 33 | 109 | 173 | 39 | 42 | 18 | 68 | | | | 2 | 33 | 21 | 24 | 45 | 92 | 36 | 91 | 168 | 36 | 39 | 18 | 148 | | | | 3
4 | 30
27 | 23
29 | 25
24 | 40
45 | 67
56 | 246
125 | 75
82 | 689
185 | 35
33 | 38
34 | 204
48 | 63
50 | | | | 5 | 26 | 25 | 25 | e38 | 50 | 72 | 70 | 129 | 33 | 32 | 27 | 44 | | | | 6
7 | 28
29 | 22
21 | 27
28 | e42
e88 | 46
43 | 57
53 | 65
63 | 108
94 | 54
408 | 28
27 | 24
21 | 42
39 | | | | 8 | 25 | 20 | 28
28 | e88
e63 | 43 | 49 | 59 | 94
85 | 104 | 26 | 23 | 39
37 | | | | 9 | 27 | 20 | 72 | e54 | 41 | 45 | 63 | 142 | 65 | 25 | 22 | 37 | | | | 10 | 26 | 18 | 45 | e50 | 39 | 49 | 71 | 138 | 53 | 27 | 19 | 38 | | | | 11 | 24 | 18 | 32 | e78 | 43 | 48 | 57 | 90 | 46 | 27 | 20 | 40 | | | | 12
13 | 29
31 | 21
20 | 29
29 | 157
77 | 41
39 | 44
49 | 54
61 | 83
186 | 72
90 | 23
22 | 20
23 | 37
36 | | | | 13 | 28 | 20 | 32 | 58 | 39 | 71 | 60 | 721 | 169 | 23 | 23 | 37 | | | | 15 | 31 | 19 |
51 | 48 | 33 | 54 | 58 | 243 | 192 | 24 | 23 | 39 | | | | 16
17 | 38
30 | 19
19 | 36
31 | 43
40 | 32
33 | 50
48 | 55
53 | 149
109 | 88
63 | 23
23 | 25
24 | 65
50 | | | | 18 | 27 | 18 | 59 | e36 | 33 | 181 | 53
52 | 805 | 55 | 23 | 24 | 34 | | | | 19 | 29 | 21 | 60 | e37 | 30 | 210 | 53 | 358 | 67 | 52 | 24 | 31 | | | | 20 | 29 | 19 | 37 | e40 | 29 | 619 | 56 | 192 | 63 | 194 | 31 | 28 | | | | 21 | 25 | 19 | 32 | e50 | 36 | 494 | 55 | 140 | 48 | 49 | 38 | 24 | | | | 22
23 | 24
27 | 18
17 | 32
33 | e36
e37 | 37
33 | 191
130 | 59
71 | 109
87 | 45
41 | 29
25 | 25
83 | 22
21 | | | | 24 | 27 | 16 | 75 | e160 | 30 | 106 | 58 | 70 | 40 | 26 | 37 | 22 | | | | 25 | 28 | 18 | 63 | 197 | 31 | 91 | 59 | 60 | 57 | 25 | 32 | 22 | | | | 26
27 | 30
29 | 56
34 | e36
e31 | 84
62 | 30
31 | 81
256 | 81
64 | 53
56 | 39
44 | 21
22 | 29
26 | 22
244 | | | | 28 | 23 | 29 | e31 | 51 | 33 | 142 | 266 | 53 | 301 | 19 | 26 | 244 | | | | 29 | 27 | 28 | e31 | 47 | | 105 | 300 | 48 | 71 | 18 | 145 | 67 | | | | 30 | 25 | 27 | e31 | e41 | | 94 | 142 | 45 | 50 | 18 | 93 | 37 | | | | 31 | 22 | | e36 | e50 | | 90 | | 42 | | 18 | 50 | | | | | TOTAL | 873 | 677 | 1149 | 1938 | 1154 | 3919 | 2462 | 5610 | 2501 | 1021 | 1246 | 1684 | | | | MEAN
MAX | 28.2
39 | 22.6
56 | 37.1
75 | 62.5
197 | 41.2
92 | 126
619 | 82.1
300 | 181
805 | 83.4
408 | 32.9
194 | 40.2
204 | 56.1
244 | | | | MIN | 22 | 16 | 24 | 36 | 29 | 33 | 52 | 42 | 33 | 18 | 18 | 21 | | | | CFSM | 0.31 | 0.25 | 0.41 | 0.69 | 0.45 | 1.39 | 0.90 | 1.99 | 0.92 | 0.36 | 0.44 | 0.62 | | | | IN. | 0.36 | 0.28 | 0.47 | 0.79 | 0.47 | 1.60 | 1.01 | 2.29 | 1.02 | 0.42 | 0.51 | 0.69 | | | | STATIST | CICS OF M | ONTHLY MEA | AN DATA F | OR PERIOD | OF DAILY | RECORD, | BY WATER | YEAR (WY) | | | | | | | | MEAN | 72.0 | 100 | 111 | 166 | 142 | 156 | 150 | 192 | 138 | 117 | 64.6 | 73.8 | | | | MAX | 211 | 249 | 187 | 311 | 315 | 214 | 321 | 374 | 443 | 315 | 132 | 244 | | | | (WY) | 1990 | 1989 | 1991 | 1990 | 1988 | 1987 | 1987 | 1989 | 1989 | 1989 | 1989 | 1989 | | | | MIN | 28.2 | 22.6 | 37.1 | 62.5 | 41.2 | 95.7 | 61.9 | 70.0 | 30.4 | 32.5 | 32.2 | 24.8 | | | | (WY) | 2002 | 2002 | 2002 | 2002 | 2002 | 1990 | 1988 | 1987 | 1991 | 1992 | 1987 | 1992 | | | e Estimated. # 01464750 NESHAMINY CREEK NEAR RUSHLAND, PA--Continued | SUMMARY STATISTICS | FOR 2002 WATER YEAR | FOR PERIOD OF DAILY RECORD | |--------------------------|----------------------|----------------------------| | ANNUAL TOTAL | 24234 | | | ANNUAL MEAN | 66.4 | 123 | | HIGHEST ANNUAL MEAN | | 214 1989 | | LOWEST ANNUAL MEAN | | 66.4 2002 | | HIGHEST DAILY MEAN | 805 May 18 | 3130 Jul 19 1989 | | LOWEST DAILY MEAN | 16 Nov 24 | 15 Aug 14 1987 | | ANNUAL SEVEN-DAY MINIMUM | 18 Nov 18 | 16 Sep 14 1992 | | MAXIMUM PEAK FLOW | a 1750 May 18 | a 5300 Sep 20 1989 | | MAXIMUM PEAK STAGE | 6.70 May 18 | 12.33 Sep 20 1989 | | ANNUAL RUNOFF (CFSM) | 0.73 | 1.36 | | ANNUAL RUNOFF (INCHES) | 9.91 | 18.44 | | 10 PERCENT EXCEEDS | 141 | 257 | | 50 PERCENT EXCEEDS | 39 | 62 | | 90 PERCENT EXCEEDS | 22 | 23 | a From rating curve extended above 916 ft³/s based on slope-area measurement at gage height 10.33 ft. #### 01464907 LITTLE NESHAMINY CREEK AT VALLEY ROAD NEAR NESHAMINY, PA (National Water-Quality Assessment Station) **LOCATION**.--Lat 40°13'45", long 75°07'12"', Bucks County, Hydrologic Unit 02040201, on left bank just upstream from bridge on Valley Road, 6.8 mi upstream from confluence with Neshaminy Creek, 3.0 mi downstream from Bradford Dam, 2.0 mi downstream from Park Creek, and 1.1 mi east of Neshaminy. **DRAINAGE AREA**.--26.8 mi². PERIOD OF RECORD.--November 1998 to current year. REVISED RECORDS.--WDR PA-01-1: 1999, 2000 (P). GAGE.--Water stage recorder and crest-stage gage. Datum of gage is 190.42 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records good except those for estimated daily discharges, which are poor. Satellite and landline telemetry at station. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 1,600 ft³/s and maximum(*): | Date
June | | me | ischarge
ft ³ /s
1,590 | Gage Height
(ft)
*5.88 | t | | Date (No | | ime | ischarge
ft ³ /s
ase discl | Gage Heigh
(ft)
narge.) | t | |--|---|---|---|--|---|---|---|---|--|---|---|---| | | | | DISCHA | ARGE, CUBIC F | FEET PER S | | TER YEAR (
EAN VALUE | | 2001 TO SEP | TEMBER 20 | 02 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 5.8
5.1
3.8
3.2
2.6 | 2.7
2.1
3.1
3.2
3.7 | 4.1
4.1
4.0
3.9
3.8 | 3.2
2.9
2.9
2.9
2.6 | 27
23
14
12
9.8 | 4.5
5.1
156
30
17 | 25
17
15
15 | 33
50
38
19
15 | 13
8.0
6.9
6.7 | 7.0
5.9
5.0
3.8
3.2 | 0.87
11
32
6.2
3.3 | 30
25
9.3
6.0
3.9 | | 6
7
8
9
10 | 3.2
3.5
2.7
2.5
2.4 | 2.2
1.8
1.7
1.3 | 3.7
4.4
7.1
31
9.6 | 12
40
16
9.7
9.2 | 8.9
9.4
9.6
8.5
8.1 | 14
11
9.2
8.3
9.6 | 12
10
9.9
9.7
16 | 13
12
10
70
29 | 136
295
30
17
14 | 2.3
2.4
2.7
2.6
7.2 | 2.7
2.1
1.5
1.2 | 3.0
e2.4
e1.6
e1.1
1.5 | | 11
12
13
14
15 | 2.2
2.2
2.2
1.9
6.0 | 1.2
1.2
2.5
1.6
1.9 | 6.0
4.4
4.5
8.7 | 75
38
17
12
9.8 | 9.6
7.9
7.2
6.4
7.0 | 8.0
7.4
12
14
10 | 6.0
8.0
10
10 | 16
22
139
146
35 | 12
17
17
66
38 | 3.1
2.2
1.8
2.0
2.1 | 0.96
0.97
0.98
1.3 | 0.95
1.7
2.3
2.6
4.3 | | 16
17
18
19
20 | 4.7
3.3
3.7
3.9
3.2 | 2.0
1.8
2.0
2.0
2.5 | 7.0
5.9
20
12
7.6 | 8.2
7.0
6.2
5.8
6.7 | 6.7
6.7
6.1
5.6
5.4 | 9.0
8.3
91
48
321 | 9.5
8.4
7.7
7.3
8.4 | 22
17
489
74
36 | 20
14
12
17
13 | 2.0
2.0
2.0
10
7.4 | 1.2
1.2
1.4
1.3
2.9 | 12
5.9
3.6
2.7
3.0 | | 21
22
23
24
25 | 3.3
2.9
2.4
2.3
2.6 | 1.7
1.7
1.3
1.2 | 5.8
4.8
4.5
35 | 5.6
6.3
7.5
103
49 | 10
7.9
6.7
6.3
6.5 | 105
40
26
21
18 | 8.0
10
10
8.1 | 27
21
18
15
12 | 9.2
7.7
6.8
9.2
7.8 | 2.6
2.1
5.7
7.4
3.2 | 1.8
2.0
3.3
2.6
2.7 | e2.4
e2.0
e1.8
1.8 | | 26
27
28
29
30
31 | 3.0
e3.7
e2.6
e3.3
2.9
2.8 | 26
11
5.0
4.5
4.2 | 8.5
6.4
5.5
4.9
4.2
3.6 | 20
14
11
9.4
9.4
29 | 6.1
5.8
5.0
 | 17
82
29
21
18
18 | 15
9.6
97
42
24 | 16
14
12
11
9.7
9.1 | 6.0
20
64
13
8.7 | 2.1
1.7
1.7
1.8
1.4 | 2.4
1.9
1.9
52
15
6.6 | 7.1
95
78
16
8.8 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 99.9
3.223
6.0
1.9
0.12
0.14 | 102.0
3.400
26
1.2
0.13
0.14 | 262.0
8.452
35
3.6
0.32
0.36 | 551.3
17.78
103
2.6
0.66
0.77 | 253.2
9.043
27
5.0
0.34
0.35 | 1188.4
38.34
321
4.5
1.43
1.65 | 461.6
15.39
97
6.0
0.57
0.64 | 1449.8
46.77
489
9.1
1.75
2.01 | 911.7
30.39
295
6.0
1.13
1.27 | 107.5
3.468
10
1.1
0.13
0.15 | 167.68
5.409
52
0.87
0.20
0.23 | 337.45
11.25
95
0.95
0.42
0.47 | | STATISTI | | | | FOR WATER Y | | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 14.26
23.6
2000
3.22
2002 | 16.39
25.5
2000
4.07
2002 | 27.70
56.7
2001
2.47
1999 | 40.58
71.2
1999
17.8
2002 | 41.78
68.4
2001
9.04
2002 | 71.30
93.1
2001
38.3
2002 | 32.75
44.7
2000
15.4
2002 | 32.73
46.8
2002
13.3
1999 | 65.18
211
2001
3.06
1999 | 13.00
34.2
2000
1.40
1999 | 22.78
47.5
2000
5.41
2002 | 59.96
174
1999
11.2
2002 | e Estimated. #### 01464907 LITTLE NESHAMINY CREEK AT VALLEY ROAD NEAR NESHAMINY, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1999 - 2002 | |--------------------------|------------------------|---------------------|----------------------------| | ANNUAL TOTAL | 16772.7 | 5892.53 | | | ANNUAL MEAN | 45.95 | 16.14 | 35.96 | | HIGHEST ANNUAL MEAN | | | 52.5 2001 | | LOWEST ANNUAL MEAN | | | 16.2 2002 | | HIGHEST DAILY MEAN | 2170 Jun 17 | 489 May 18 | 2830 Sep 16 1999 | | LOWEST DAILY MEAN | 1.2 Nov 10-12,24 | 0.87 Aug 1 | 0.24 Aug 2 1999 | | ANNUAL SEVEN-DAY MINIMUM | 1.5 Nov 6 | 1.1 Aug 9 | 0.27 Aug 1 1999 | | MAXIMUM PEAK FLOW | | a 1590 Jun 7 | a 11300 Jun 16 2001 | | MAXIMUM PEAK STAGE | | 5.88 Jun 7 | b 14.57 Jun 16 2001 | | INSTANTANEOUS LOW FLOW | | 0.75 Aug 1 c | 0.15 Aug 8 1999 | | ANNUAL RUNOFF (CFSM) | 1.71 | 0.60 | 1.34 | | ANNUAL RUNOFF (INCHES) | 23.28 | 8.18 | 18.23 | | 10 PERCENT EXCEEDS | 70 | 30 | 68 | | 50 PERCENT EXCEEDS | 14 | 7.0 | 13 | | 90 PERCENT EXCEEDS | 2.4 | 1.8 | 2.9 | ^{a From rating curve extended above 758 ft³/s on basis of
contracted-opening measurements at gage height 11.68 and at peak flow. b From outside high-water mark. c Also Aug. 2, 15, Sept. 11.} # 01464907 LITTLE NESHAMINY CREEK AT VALLEY ROAD NEAR NESHAMINY, PA--Continued (National Water-Quality Assessment Station) #### WATER-QUALITY RECORDS **PERIOD OF RECORD.**--November 1998 to current year. **REMARKS.**--These samples were collected as part of the Delaware River Basin National Water-Quality Assessment Program (DELR NAWQA). For the definition of the type of quality-control data listed under SAMPLE TYPE refer to "Quality-Control Data" in the "Introduction". | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | |-----------|------|---|---|---|--|--|--|---|---|--|--|--|--| | NOV | | | | | | | | | | | | | | | 01 | 1120 | 2.8 | 764 | 79 | 9.3 | 7.6 | 879 | 19.5 | 8.4 | 172 | 210 | 122 | 84.9 | | DEC | | | | | | | | | | | | | | | 07 | 0900 | 4.3 | 755 | 72 | 7.9 | 7.2 | 832 | 16.0 | 11.0 | 144 | 179 | 110 | 80.4 | | JAN | | | | | | | | | | | | | | | 09 | 0910 | 9.8 | 752 | 99 | 14.0 | 7.6 | 622 | 1.0 | .5 | 99 | 121 | 96.8 | 53.0 | | MAR | | | = | | | | | | | | | | | | 07 | 0850 | 11 | 762 | 99 | 12.8 | 7.6 | 567 | | 4.5 | 97 | 119 | 82.9 | 47.5 | | APR
04 | 1230 | 15 | 767 | 178 | 18.7 | 8.8 | 517 | | 13.5 | 107 | 126 | 72.0 | 46.0 | | MAY | 1230 | 13 | 767 | 1/0 | 10.7 | 0.0 | 21/ | | 13.5 | 107 | 120 | 72.0 | 40.0 | | 08 | 1020 | 10 | 760 | 93 | 8.6 | 7.5 | 544 | 22.5 | 19.0 | 117 | 142 | 66.8 | 47.3 | | JUN | 1020 | 10 | 700 | ,,, | 0.0 | ,.5 | 311 | 22.5 | 10.0 | 11, | 112 | 00.0 | 17.5 | | 13 | 0920 | 16 | 753 | 77 | 6.8 | 7.6 | 497 | 19.5 | 21.0 | 105 | 128 | 51.7 | 43.2 | | JUL | | | | | | | | | | | | | | | 10 | 1230 | 7.4 | 756 | 141 | 11.3 | 8.3 | 624 | | 26.0 | 116 | 138 | 83.4 | 47.0 | | SEP | | | | | | | | | | | | | | | 05 | 1330 | 3.9 | 758 | 105 | 9.0 | 7.9 | 449 | | 22.5 | 97 | 118 | 46.2 | 41.9 | | | | | | | | | | | | | | | | | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |---|---|--|---|---|---|--|---| | | | | | | | | | | .61 | < .04 | 1.85 | .009 | .17 | .20 | .0 | .2 | | 0.5 | E 02 | 2 77 | 0.27 | 16 | 22 | 0.4 | 3.7 | | .05 | E.U2 | 3.// | .027 | .10 | . 22 | .04 | 3.7 | | .64 | .07 | 1.57 | .023 | .06 | .112 | .17 | 6.4 | | | | 4 =0 | | | | | | | .45 | < .04 | 1.58 | E.007 | .03 | .094 | .24 | 8.1 | | 46 | < 04 | 66 | 012 | 0.3 | 069 | 15 | 3.6 | | | | | | | | | | | .57 | < .04 | .98 | .028 | .05 | .119 | .14 | 5.3 | | | | 4 = 0 | | | | | | | .41 | E.03 | 1.50 | .011 | .09 | .136 | .42 | 9.8 | | 5.0 | < 0.4 | 1 14 | 014 | 11 | 157 | 1.2 | 6.4 | | .50 | 1.01 | 1.11 | .014 | | .137 | .13 | 0.1 | | .50 | < .04 | 1.00 | E.005 | .08 | .137 | .06 | 5.7 | | | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .61 .85 .64 .45 .46 .57 .41 | GEN, AM- MONIA + AMMONIA ORGANIC TOTAL (MG/L AS N) AS N) (00625) (00608) .61 <.04 .85 E.02 .64 .07 .45 <.04 .46 <.04 .57 <.04 .41 E.03 .58 <.04 | GEN, AM- MONIA + AMMONIA NO2+NO3 ORGANIC DIS- TOTAL SOLVED SOLVED (MG/L (MG/L AS N) AS N) (00625) (00608) (00631) .61 <.04 1.85 .85 E.02 3.77 .64 .07 1.57 .45 <.04 1.58 .46 <.04 .66 .57 <.04 .98 .41 E.03 1.50 .58 <.04 1.14 | GEN, AM- MONIA + AMMONIA NO2+NO3 NITRITE ORGANIC DIS- DIS- DIS- TOTAL SOLVED SOLVED SOLVED (MG/L (MG/L (MG/L (MG/L AS N) AS N) AS N) AS N) (00625) (00608) (00631) (00613) .61 <.04 1.85 .009 .85 E.02 3.77 .027 .64 .07 1.57 .023 .45 <.04 1.58 E.007 .46 <.04 .66 .012 .57 <.04 .98 .028 .41 E.03 1.50 .011 .58 <.04 1.14 .014 | GEN, AM- MONIA + AMMONIA NO2+NO3 NITRITE DIS- TOTAL SOLVED SOLVED SOLVED SOLVED (MG/L (MG/L (MG/L (MG/L AS N) (00625) (00608) (00631) (00613) (00671) | GEN, AM- MONIA + AMMONIA NO2+NO3 NITRITE PHATE, PHOS- ORGANIC DIS- DIS- DIS- TOTAL SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED (MG/L (| GEN | #### 01464907 LITTLE NESHAMINY CREEK AT VALLEY ROAD NEAR NESHAMINY, PA--Continued #### WATER-COLUMN PESTICIDE ANALYSES **REMARKS**.--Selected samples were analyzed for pesticides with laboratory schedule 2001 (listed in its entirety, with laboratory reporting levels, on page 179). Only pesticides identified by the analyses in one or more surface-water samples are listed in the following table. | DATE | TIME | SAMF
TYF | | | ACETO-
CHLOR,
WATER
FLTRD
REC
(µG/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(µG/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(µG/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(39632) | BEN-
FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µG/L)
(82673) | CAR-
BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82680) | CHLOR-
PYRIFOS
DIS-
SOLVED
(µG/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(04041) | DCPA WATER FLTRD 0.7 µ GF, REC (µG/L) (82682) | |---
--|---|--|---|--|--|---|---|---|--|--|---|---| | NOV
01 | 1120 | ENVIRONM | IENTAL | | <.004 | <.002 | <.005 | .019 | <.010 | <.041 | <.005 | <.018 | <.003 | | DEC
07 | 0900 | ENVIRONM | IENTAL | | <.004 | <.002 | <.005 | .021 | <.010 | <.041 | <.005 | <.018 | <.003 | | JAN
09 | 0910 | ENVIRONM | IENTAL | | <.006 | <.004 | <.005 | .015 | <.010 | E.005 | <.005 | <.018 | <.003 | | MAR
07 | 0850 | ENVIRONM | IENTAL | | <.006 | <.004 | <.005 | .011 | <.010 | E.008 | <.005 | <.018 | <.003 | | APR 04 | 1230 | ENVIRONM | IENTAL | | <.006 | <.004 | <.005 | .014 | <.010 | <.041 | <.005 | <.018 | <.003 | | MAY
08 | 1020 | ENVIRONM | IENTAL | | <.006 | <.004 | <.005 | .032 | <.010 | E.003 | <.005 | <.018 | <.003 | | 08
JUN | 1021 | SPLIT RE | PLICATE | | <.006 | <.004 | <.005 | .032 | <.010 | E.003 | <.005 | <.018 | <.003 | | 13
JUL | 0920 | ENVIRONM | IENTAL | | .016 | < .004 | <.005 | .509 | <.010 | E.017 | <.005 | <.018 | <.003 | | 10
SEP | 1230 | ENVIRONM | IENTAL | | <.006 | < .004 | <.005 | .168 | <.010 | E.006 | <.005 | <.018 | <.003 | | 05 | 1330 | ENVIRONM | IENTAL | | <.006 | <.004 | <.005 | .019 | <.010 | E.011 | <.005 | <.018 | <.003 | | | | | | | | | | | | | | | | | DATE | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(µG/L)
(39572) | EPTC
WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82668) | LINDANE
DIS-
SOLVED
(µG/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(μG/L)
(39532) | METHYL
AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µG/L)
(82686) | METO-
LACHLOR
WATER
DISSOLV
(µG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630) | NAPROP-
AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82684) | PENDI-
METH-
ALIN
WAT FLT
0.7 µ
GF, REC
(µG/L)
(82683) | PRO-
METON,
WATER,
DISS,
REC
(µG/L)
(04037) | PRO-
PANIL
WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82679) | | NOV | ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(04040) | AZINON,
DIS-
SOLVED
(µG/L)
(39572) | WATER
FLTRD
0.7 μ
GF, REC
(μG/L)
(82668) | DIS-
SOLVED
(µG/L)
(39341) | URON WATER FLTRD 0.7 µ GF, REC (µG/L) (82666) | THION,
DIS-
SOLVED
(µG/L)
(39532) | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µG/L)
(82686) | LACHLOR
WATER
DISSOLV
(µG/L)
(39415) | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630) | AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82684) | METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μG/L)
(82683) | METON,
WATER,
DISS,
REC
(µG/L)
(04037) | PANIL
WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82679) | | NOV
01
DEC | ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(04040) | AZINON,
DIS-
SOLVED
(µG/L)
(39572) | WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82668) | DIS-
SOLVED
(µG/L)
(39341) | URON WATER FLTRD 0.7 μ GF, REC (μG/L) (82666) | THION,
DIS-
SOLVED
(µG/L)
(39532) | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µG/L)
(82686) | LACHLOR
WATER
DISSOLV
(µG/L)
(39415) | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630) | AMIDE
WATER
FLTRD
0.7 μ
GF, REC
(μG/L)
(82684) | METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μG/L)
(82683) | METON,
WATER,
DISS,
REC
(µG/L)
(04037) | PANIL
WATER
FLTRD
0.7 μ
GF, REC
(μG/L)
(82679) | | NOV
01
DEC
07
JAN | ATRA-
ZINE,
WATER,
DISS,
REC
(μG/L)
(04040)
E.018 | AZINON,
DIS-
SOLVED
(µG/L)
(39572)
<.005 | WATER
FLTRD
0.7 μ
GF, REC
(μG/L)
(82668)
<.002 | DIS-
SOLVED
(µG/L)
(39341)
<.004 | URON WATER FLTRD 0.7 μ GF, REC (μG/L) (82666) <.035 | THION,
DIS-
SOLVED
(µG/L)
(39532)
<.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μG/L)
(82686)
<.050 | LACHLOR
WATER
DISSOLV
(µG/L)
(39415)
E.004 | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630)
<.006 | AMIDE
WATER
FLTRD
0.7 μ
GF, REC
(μG/L)
(82684)
<.007 | METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μG/L)
(82683)
<.010 | METON,
WATER,
DISS,
REC
(μG/L)
(04037)
<.01 | PANIL
WATER
FLTRD
0.7 μ
GF, REC
(μG/L)
(82679)
<.011 | | NOV
01
DEC
07
JAN
09 | ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(04040)
E.018
E.018 | AZINON,
DIS-
SOLVED
(μG/L)
(39572)
<.005
<.005 | WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82668)
<.002
<.002 | DIS-
SOLVED (µG/L)
(39341)
<.004
<.004 | URON WATER FLITED 0.7 µ GF, REC (µG/L) (82666) <.035 <.035 | THION, DIS-
SOLVED (µG/L) (39532)
<.027
<.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μG/L)
(82686)
<.050
<.050 | LACHLOR WATER DISSOLV (µG/L) (39415) E.004 <.013 E.006 | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630)
<.006
<.006 | AMIDE
WATER
FLTRD
0.7 μ
GF, REC
(μG/L)
(82684)
<.007
<.007 | METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μG/L)
(82683)
<.010
<.010 | METON,
WATER,
DISS,
REC
(µG/L)
(04037)
<.01
<.01 | PANIL WATER FLTRD 0.7 µ GF, REC (µG/L) (82679) <.011 <.011 | | NOV
01
DEC
07
JAN
09
MAR
07 | ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(04040)
E.018
E.018
E.009 | AZINON,
DIS-
SOLVED
(µG/L)
(39572)
<.005
<.005
<.005 | WATER
FLITRD
0.7 µ
GF, REC
(µG/L)
(82668)
<.002
<.002
<.006
<.002 | DIS-
SOLVED (µG/L) (39341)
<.004
<.004
<.004 | URON WATER FLTRD 0.7 µ GF, REC (µG/L) (82666) <.035 <.035 <.035 | THION, DIS-
SOLVED (µG/L) (39532) <.027 <.027 <.027 <.027 | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µG/L)
(82686)
<.050
<.050
<.050 | LACHLOR WATER DISSOLV (µG/L) (39415) E.004 <.013 E.006 E.008 | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630)
<.006
<.006
<.006 | AMIDE WATER FLTRD 0.7 µ GF, REC (µG/L) (82684) < .007 < .007 < .007 | METH- ALIN WAT FLT 0.7 µ GF, REC (µG/L) (82683) <.010 <.010 <.022 <.022 | METON,
WATER,
DISS,
REC
(μG/L)
(04037)
<.01
<.01 | PANIL WATER FLTRD 0.7 µ GF, REC (µG/L) (82679) <.011 <.011 <.011 <.011 | | NOV
01
DEC
07
JAN
09
MAR
07
APR
04 | ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(04040)
E.018
E.018
E.009
E.007 | AZINON,
DIS-
SOLVED
(μG/L)
(39572)
<.005
<.005
<.005
E.004 | WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82668)
<.002
<.002
<.006
<.002 | DIS-
SOLVED (μG/L)
(39341)
<.004
<.004
<.004
<.004 | URON WATER FLTRD 0.7 | THION, DIS-
SOLVED (µG/L) (39532)
<.027
<.027
<.027
<.027 | AZIN-PHOS WAT FLT 0.7 µ GF, REC (µG/L) (82686) < .050 < .050 < .050 < .050 < .050 | LACHLOR WATER DISSOLV (µG/L) (39415) E.004 <.013 E.006 E.008 E.010 | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630)
<.006
<.006
<.006
<.006 | AMIDE WATER FLTRD 0.7 µ GF, REC (µG/L) (82684) <.007 <.007 <.007 <.007 | METH- ALIN WAT FLT 0.7 µ GF, REC (µG/L) (82683) <.010 <.010 <.022 <.022 <.022 | METON,
WATER,
DISS,
REC
(μG/L)
(04037)
<.01
<.01
.02
<.02
E.01 | PANIL WATER FLTRD 0.7 µ GF, REC (µG/L) (82679) <.011 <.011 <.011 <.011 <.011 | | NOV
01
DEC
07
JAN
09
MAR
07
APR
04
MAY
08 | ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(04040)
E.018
E.018
E.009 | AZINON,
DIS-
SOLVED
(µG/L)
(39572)
<.005
<.005
<.005 | WATER
FLITRD
0.7 µ
GF, REC
(µG/L)
(82668)
<.002
<.002
<.006
<.002 | DIS-
SOLVED (µG/L) (39341)
<.004
<.004
<.004 | URON WATER FLTRD 0.7 µ GF, REC (µG/L) (82666) <.035 <.035 <.035 | THION, DIS-
SOLVED (µG/L) (39532) <.027 <.027 <.027 <.027 | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µG/L)
(82686)
<.050
<.050
<.050 | LACHLOR WATER DISSOLV (µG/L) (39415) E.004 <.013 E.006 E.008 | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630)
<.006
<.006
<.006 | AMIDE WATER FLTRD 0.7 µ GF, REC (µG/L) (82684) < .007 < .007 < .007 | METH- ALIN WAT FLT 0.7 µ GF, REC (µG/L) (82683) <.010 <.010 <.022 <.022 | METON,
WATER,
DISS,
REC
(μG/L)
(04037)
<.01
<.01 | PANIL WATER FLTRD 0.7 µ GF, REC (µG/L) (82679) <.011 <.011 <.011 <.011 | | NOV
01
DEC
07
JAN
09
MAR
07
APR
04
MAY
08
08
JUN
13 |
ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(04040)
E.018
E.018
E.009
E.007
E.007 | AZINON,
DIS-
SOLVED
(μG/L)
(39572)
<.005
<.005
<.005
E.004 | WATER
FLTRD
0.7 μ
GF, REC
(μG/L)
(82668)
<.002
<.002
<.002
<.002
<.002 | DIS-
SOLVED (µG/L) (39341)
<.004
<.004
<.004
<.004
<.004
<.004 | URON WATER FLTRD 0.7 µ GF, REC (µG/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µG/L) (39532) <.027 <.027 <.027 <.027 <.027 <.027 <.027 | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µG/L)
(82686)
<.050
<.050
<.050
<.050 | LACHLOR WATER DISSOLV (µG/L) (39415) E.004 <.013 E.006 E.008 E.010 .013 | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630)
<.006
<.006
<.006
<.006
<.006 | AMIDE WATER FLTRD 0.7 µ GF, REC (µG/L) (82684) < .007 < .007 < .007 < .007 < .007 < .007 < .007 | METH- ALIN WAT FLT 0.7 μ GF, REC (μG/L) (82683) <.010 <.010 <.022 <.022 <.022 <.022 <.022 | METON, WATER, DISS, REC (µG/L) (04037) <.01 <.01 .02 <.02 E.01 .02 | PANIL WATER FLTRD 0.7 µ GF, REC (µG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 | | NOV
01
DEC
07
JAN
09
MAR
07
APR
04
MAY
08
JUN | ATRA-
ZINE,
WATER,
DISS,
REC
(μg/L)
(04040)
E.018
E.018
E.009
E.007
E.007 | AZINON,
DIS-
SOLVVED
(μG/L)
(39572)
<.005
<.005
<.005
E.004
.005 | WATER FLTRD 0.7 µ GF, REC (µG/L) (82668) <.002 <.002 <.006 <.002 <.002 <.002 | DIS-
SOLVED (µG/L) (39341)
<.004
<.004
<.004
<.004
<.004
<.004 | URON WATER FLTRD 0.7 μ GF, REC (μG/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µG/L) (39532) <.027 <.027 <.027 <.027 <.027 <.027 <.027 | AZIN-PHOS WAT FLT 0.7 µ GF, REC (µG/L) (82686) <.050 <.050 <.050 <.050 <.050 <.050 | LACHLOR WATER DISSOLV (µG/L) (39415) E.004 <.013 E.006 E.008 E.010 .013 .013 | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630)
<.006
<.006
<.006
<.006
<.006 | AMIDE WATER FLITRD 0.7 µ GF, REC (µG/L) (82684) < .007 < .007 < .007 < .007 < .007 < .007 < .007 | METH- ALIN WAT FLT 0.7 µ GF, REC (µG/L) (82683) <.010 <.010 <.022 <.022 <.022 <.022 <.022 <.022 | METON,
WATER,
DISS,
REC
(μG/L)
(04037)
<.01
<.01
.02
<.02
E.01
.02 | PANIL WATER FLTRD 0.7 µ GF, REC (µG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | # 01464907 LITTLE NESHAMINY CREEK AT VALLEY ROAD NEAR NESHAMINY, PA--Continued | DATE | REC
(µG/L) | FLTRD
0.7 μ | WATER
FLTRD
0.7 µ
GF, REC
(µG/L) | |-----------|---------------|----------------|--| | NOV | | | | | 01 | <.011 | < .02 | <.034 | | DEC | | | | | 07
JAN | <.011 | <.02 | <.034 | | 09 | <.005 | <.02 | <.034 | | MAR | 1.005 | 1.02 | 1.031 | | 07 | <.005 | <.02 | <.034 | | APR | | | | | 04 | E.005 | <.02 | <.034 | | MAY | .008 | <.02 | . 024 | | 08
08 | .008 | <.02 | <.034
<.034 | | JUN | .007 | 1.02 | V.034 | | 13 | .232 | .02 | < .034 | | JUL | | | | | 10 | .081 | <.02 | < .034 | | SEP | | | | | 05 | .006 | < .02 | < .034 | #### 01465500 NESHAMINY CREEK NEAR LANGHORNE, PA (Pennsylvania Water-Quality Network Station) **LOCATION**.--Lat 40°10'26", long 74°57'26", Bucks County, Hydrologic Unit 02040201, on left bank at bridge on State Highway 213, 0.3 mi downstream from Mill Creek, and 1.7 mi west of Langhorne. **DRAINAGE AREA**.--210 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1934 to current year. REVISED RECORDS.--WSP 1332: 1949. WSP 1432: 1936-37. WDR PA-83-1: 1982(P). GAGE.--Water-stage recorder. Datum of gage is 40.57 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records good except those for estimated daily discharges, which are poor. Some regulation at low flow by mills above station. Flow regulated by upstream reservoirs on Little Neshaminy Creek, Robin Run, Pine Run, North Branch Neshaminy Creek, and Core Creek (combined flood control capacity, about 9,560 acre-ft). Occasional regulation by Springfield Lake, capacity, 2,000 acre-ft, completed in 1934; no significant regulation except during period May 1934 to January 1944, when the lake was filling, and in September 1949, July 1954, July through October 1957, and September, October 1961. Interceptor sewer installed along left bank during May and June 1966. Several measurements of water temperature were made during the year. Satellite and landline telemetry at station. **EXTREMES OUTSIDE PERIOD OF RECORD.**--Flood of Aug. 23, 1933 reached a stage of 17.3 ft, from floodmark, discharge, about 30,000 ft³/s, from rating curve extended as explained in footnotes on next page. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 4,500 ft³/s and maximum(*): | Date
May 18 | Time
1500 | | 3/s | Gage Heigh
(ft)
*6.90 | t | | Date
(N | | Γime
above | Discharge
ft ³ /s
base disch | Gage Hei
(ft)
narge.) | ght | |----------------------------------|----------------------------------|----------------------------|-----------------------------------|--------------------------------------|----------------------|--|---------------------------------|----------------------------------|---------------------------------|---|------------------------------------|--------------------------------| | | | | DISCHA | RGE, CUBIC F | FEET PER SE | | ΓER YEAR C
AN VALUES | | 001 TO SE | PTEMBER 2002 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 53 | 37 | 40 | e55 | 168 | 50 | 200 | 257 | 101 | 89 | 36 | 93 | | 2 | 52 | 35 | 38 | e50 | 164 | 50 | 182 | 251 | 93 | 78 | 37 | 288 | | 3 | 48 | 38 | 37 | e48 | 129 | 565 | 150 | 869 | 81 | 72 | 388 | 115 | | 4 | 46 | 39 | 38 | e47 | 107 | 283 | 147 | 314 | 75 | 66 | 131 | 72 | | 5 | 44 | 43 | 36 | e46 | e85 | 151 | 136 | 199 | 73 | 59 | 70 | 54 | | 6 | 43 | 40 | 38 | 66 | e78 | 113 | 123 | 163 | 183 | 53 | 53 | 45 | | 7 | 43 | 37 | 40 | e150 | e76 | 101 | 115 | 143 | 1250 | 49 | 43 | 41 | | 8 | 42 | 36 | 43 | e130 | e78 | 89 | 110 | 130 | 288 | 47 | 38 | 43 | | 9 | 38 | 35 | 94 | 112 | 77 | 83 | 108 | 213 | 166 | 53 | 35 | 40 | | 10 | 40 | 35 | 120 | 83 | 71 | 88 | 128 | 299 | 131 | 141 | 33 | 39 | | 11 | 39 | 34 | 63 | 132 | 89 | 85 | 118 | 159 | 110 | 64 | 30 | 39 | | 12 | 37 | 34 | 52 | 313 | 79 | 73 | 95 | 140 | 132 | 51 | 35 | 35 | | 13 | 39 | 37 | 50 | 140 | 72 | 80 | 105 | 299 | 193 | 47 | 46 | 32 | | 14 | 39 | 35 | 56 | 102 | 65 | 113 | 111 | 1200 | 263 | 45 | 50 | 38 | | 15 | 42 | 38 | 79 | 84 | 61 | 100 | 114 | 453 | 469 | 47 | 45 | 46 | | 16
17
18
19
20 | 43
45
38
36
39 | 34
35
35
35
39 | 76
55
77
123
75 | 73
67
61
56
57 | 61
60
55
53 | 87
83
242
443
1010 | 106
99
93
91
91 | 271
208
1910
869
407 | 208
153
132
131
138 | 46
41
40
49
218 | 39
40
39
39
38 | 66
82
43
38
38 | | 21 | 40 | 38 | 58 | 66 | 57 | 1210 | 91 | 294 | 106 | 108 | 50 | 35 | | 22 | 38 | 36 | 52 | 63 | 66 | 384 | 96 | 234 | 92 | 62 | 45 | 32 | | 23 | 38 | 36 | 50 | 61 | 57 | 247 | 111 | 195 | 84 | 49 | 83 | 33 | | 24 | 40 | 35 | 106 | 196 | 52 | 196 | 92 | 167 | 89 | 54 | 80 | 30 | | 25 | 40 | 39 | 147 | 471 | 52 | 169 | 92 | 149 | 100 | 57 | 53 | 31 | | 26
27
28
29
30
31 | 39
39
39
36
39
37 | 75
81
49
44
42 | 79
61
54
54
43
e58 | 174
124
100
88
81
114 | 51
50
 | 151
454
290
200
172
165 | 125
109
389
565
250 | 134
140
132
120
110 | 81
91
555
174
110 | 46
42
42
39
37
36 | 47
39
38
106
219
72 | 37
463
509
200
101 | | TOTAL | 1271 | 1206 | 1992 | 3410 | 2125 | 7527 | 4342 | 10534 | 5852 | 1927 | 2097 | 2758 | | MEAN | 41.0 | 40.2 | 64.3 | 110 | 75.9 | 243 | 145 | 340 | 195 | 62.2 | 67.6 | 91.9 | | MAX | 53 | 81 | 147 | 471 | 168 | 1210 | 565 | 1910 | 1250 | 218 | 388 | 509 | | MIN | 36 | 34 | 36 | 46 | 50 | 50 | 91 | 105 | 73 | 36 | 30 | 30 | | | | | | FOR WATER | | _ | | • | - | | | | | MIN | 130 | 236 | 360 | 408 | 453 | 538 | 431 | 288 | 207 | 184 | 167 | 164 | | | 840 | 1170 | 1424 | 1509 | 1074 | 1246 | 1455 | 862 | 882 | 1161 | 1694 | 1330 | | | 1997 | 1973 | 1997 | 1979 | 1939 | 1936 | 1983 | 1989 | 1989 | 1938 | 1955 | 1999 | | | 13.8 | 23.2 | 34.3 | 47.2 | 75.9 | 105 | 89.8 | 54.5 | 33.7 | 21.8 | 15.1 | 15.4 | | | 1958 | 1937 | 1966 | 1981 | 2002 | 1985 | 1985 | 1963 | 1965 | 1957 | 1966 | 1951 | e Estimated. #### 01465500 NESHAMINY CREEK NEAR LANGHORNE, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALE | NDAR YEAR | FOR 2002 WAT | ER YEAR | WATER YEARS | 1935 - 2002 | |--------------------------|---------------|--------------|--------------|----------------|----------------|-------------| | ANNUAL TOTAL | 99473 | | 45041 | | | | | ANNUAL MEAN | 273 | | 123 | | 296 | | | HIGHEST ANNUAL MEAN | | | | | 565 | 1973 | | LOWEST ANNUAL MEAN | | | | | 121 | 1985 | | HIGHEST DAILY MEAN | 11100 | Jun 17 | 1910 | May 18 | 27300 | Aug 19 1955 | | LOWEST DAILY MEAN | 34 | Nov 11,12,16 | 30 | Aug 11,Sep 24 | 2.9 | Sep 8 1957 | | ANNUAL SEVEN-DAY MINIMUM | 35 | Nov 8 | 34 | Sep 20 | 8.2 | Aug 26 1944 | | MAXIMUM PEAK FLOW | | | 3960 | May 18 | a 49300 | Aug 19 1955 | | MAXIMUM PEAK STAGE | | | 6.90 | May 18 | b 22.84 | Aug 19 1955 | | INSTANTANEOUS LOW FLOW | | | 27 | Dec 30, Aug 12 | 1.9 | Sep 8 1957 | | 10 PERCENT EXCEEDS | 557 | | 244 | | 575 | | | 50 PERCENT EXCEEDS | 109 | | 72 | | 139 | | | 90 PERCENT EXCEEDS | 38 | | 37 | | 32 | | $a \ \ \text{From rating curve extended above 4,700 ft}^3/s \ on \ basis \ of \ slope-area \ measurement \ of \ peak \ flow \ at \ gage \ height \ 22.84 \ ft.$ # 01465500 NESHAMINY CREEK NEAR LANGHORNE,
PA--Continued (Pennsylvania Water-Quality Network Station) #### WATER-QUALITY RECORDS **PERIOD OF RECORD**.--April 2002 to current year. **REMARKS**.--Other data for the Water-Quality Network can be found on pages 410-425. **COOPERATION.**—Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection. | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
TOTAL
RECOV-
ERABLE
(MG/L
AS CA)
(00916) | MAGNE-
SIUM,
TOTAL
RECOV-
ERABLE
(MG/L
AS MG)
(00927) | ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945> | |-----------------------|---|--|---|---|---|--|--|---|--|--|--|--|--| | APR 2002
30
JUN | 0850 | 9813 | 257 | 30 | 10.7 | 7.6 | 326 | 11.6 | 92 | 22.8 | 8.6 | 64 | 27.4 | | 18
AUG | 1120 | 9813 | 125 | 30 | 12.2 | 8.4 | 372 | 20.8 | 110 | 26.6 | 11.0 | 72 | 32.3 | | 14 | 0830 | 9813 | 50 | 30 | 5.8 | 7.7 | 473 | 24.4 | 120 | 31.1 | 10.5 | 88 | 37.2 | | Date | RESIDUE
AT 105
DEG. C,
DIS-
SOLVED
(MG/L)
(00515) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N)
(00620) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N)
(00615) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | PHOS-
PHORUS
ORTHO
TOTAL
(MG/L
AS P)
(70507) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | COPPER,
TOTAL
RECOV-
ERABLE
(µG/L
AS CU)
(01042) | IRON,
TOTAL
RECOV-
ERABLE
(µG/L
AS FE)
(01045) | LEAD,
TOTAL
RECOV-
ERABLE
(µG/L
AS PB)
(01051) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(µG/L
AS MN)
(01055) | | APR 2002
30
JUN | 202 | 8 | .050 | 1.44 | <.040 | 2.1 | .13 | .180 | 6.2 | <10 | 360 | <1.0 | 20 | | 18
AUG | 264 | 4 | <.020 | 2.28 | <.040 | 2.7 | .16 | .180 | 4.0 | <10 | 240 | <1.0 | 30 | | 14 | 296 | 8 | .340 | .86 | .090 | 1.8 | .15 | .250 | 5.1 | <10 | 370 | <1.0 | 100 | | Date | NICKEL,
TOTAL
RECOV-
ERABLE
(µG/L
AS NI)
(01067) | | |-----------------------|--|-----| | APR 2002
30
JUN | <50 | 10 | | 18 | <50 | <10 | | AUG
14 | <50 | 10 | #### POQUESSING CREEK BASIN #### 01465798 POQUESSING CREEK AT GRANT AVENUE, PHILADELPHIA, PA **LOCATION**.--Lat 40°03'25", long 74°59'08", Philadelphia County, Hydrologic Unit 02040202, on right bank 600 ft upstream from Interstate Highway 95, 3,000 ft upstream from mouth, and in northeast Philadelphia. **DRAINAGE AREA**.--21.4 mi². e Estimated. PERIOD OF RECORD.--July 1965 to current year. Records for 1971-74 published in WDR PA-81-1. Gage Height REVISED RECORD.--WDR PA-86-1: 1985. Discharge GAGE.--Water-stage recorder, crest-stage gage, and concrete low-water control. Datum of gage is 2.68 ft above National Geodetic Vertical Datum of 1929. **REMARKS.**—Records fair except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. Flow occasionally affected by tide. Gage Height PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,200 ft³/s and maximum (*): | Date
May
June | 18 | Time
1045
2345 | ft ³ /s
1,500
1,360 | (ft)
7.51
7.26 | it | | Date
June | | Time
2015 | ft ³ /s
*1,690 | (ft)
*7.82 | ıt | |------------------------------------|---|--|--------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|--------------------------|---------------------------------|---|--------------------------------------| | | | | DISCHA | ARGE, CUBIC I | FEET PER S | | ATER YEAR (
EAN VALUE | | R 2001 TO SE | EPTEMBER 20 | 002 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | . JUI | JUL | AUG | SEP | | 1
2
3
4
5 | 22
5.5
2.6
1.8
1.4 | e0.60
e0.60
e2.0
e2.5
e1.8 | | 3.2
3.2
3.4
3.3
3.3 | 19
11
5.6
5.0
4.3 | 3.3
5.5
137
9.0
5.6 | 43
8.4
6.7
6.1
5.9 | 17
44
17
6.6
5.8 | | 5.2
7 4.5 | 1.8
35
160
5.3
16 | 95
120
5.6
2.9
1.8 | | 6
7
8
9
10 | 18
4.0
1.4
1.2
1.2 | e1.7
e1.7
e3.0
e2.5
e2.3 | 2.6
3.0
36
63
6.3 | 84
44
9.9
7.8
7.3 | 4.0
7.4
6.2
4.2
5.5 | 4.8
4.4
3.9
3.9
29 | 5.6
5.2
4.9
5.0
5.7 | 5.4
5.2
4.9
51
9.1 | 2 163
9 13
9.4 | | 8.3
2.1
1.3
1.1 | 1.5
1.1
1.0
0.95
0.84 | | 11
12
13
14
15 | 1.3
1.3
1.4
1.8 | e2.2
e2.1
e2.0
e1.9
e1.9 | 5.1
4.1
5.4
17
9.1 | 39
11
5.9
5.1
4.8 | 28
5.5
4.3
4.0
4.0 | 5.0
3.9
11
7.1
4.3 | 4.8
12
9.1
6.0
5.1 | 5.3
33
99
29
7.6 | 21
11
99 | 5.6
4.0
3.7
4.4
4.2 | 0.91
0.76
0.74
0.66
0.57 | 0.97
1.7
2.0
19
6.4 | | 16
17
18
19
20 | 3.1
1.5
e1.3
e1.2
e1.2 | e2.0
1.7
1.8
2.1
5.0 | 4.1
3.9
52
7.2
4.3 | 4.6
4.4
4.5
7.3 | 4.1
4.0
3.8
3.9
3.9 | 3.9
4.9
102
15
201 | 4.7
4.5
4.2
20
15 | 5.8
5.4
436
25
11 | | 3.0
2.8
51 | 0.58
0.53
0.43
0.37
23 | 9.2
2.2
1.1
0.83
0.74 | | 21
22
23
24
25 | e1.0
e1.0
e1.0
e1.0 | 5.5
2.3
1.9
1.9 | 4.0
3.7
3.7
82
7.2 | 8.6
11
12
136
19 | 4.8
4.3
3.8
3.7 | 32
12
7.8
6.6
5.8 | 5.1
25
7.4
4.7
30 | 7.9
6.9
6.4
6.1
5.7 | 4.4
4 3.8
275 | 3.8 | 1.6
0.68
0.98
8.7
5.4 | 0.69
0.70
0.72
0.71
0.67 | | 26
27
28
29
30
31 | e0.90
e0.80
e0.80
e0.70
e0.60 | 28
4.5
3.3
3.1
2.9 | 4.6
4.0
3.7
3.7
3.5 | 8.2
6.4
5.7
5.0
6.7 | 3.7
3.7
3.4
 | 15
99
11
7.6
7.0
22 | 12
5.2
140
38
13 | 6.0
5.2
22
10
5.1
4.6 | 74
73
8.5
6.3 | 3.7 | 1.2
0.74
0.60
90
5.2
2.1 | 46
140
80
4.6
2.4 | | TOTAL
MEAN
MAX
MIN | 112.60
3.63
30
0.60 | 126.80
4.23
32
0.60 | 11.7
82 | 514.0
16.6
136
3.2 | 168.8
6.03
28
3.4 | 790.3
25.5
201
3.3 | 462.3
15.4
140
4.2 | 909.0
29.3
436
4.6 | 36.8
5 275 | 8.50
5 71 | 377.85
12.2
160
0.37 | 551.32
18.4
140
0.67 | | STATIS | TICS OF | MONTHLY | MEAN DATA | FOR WATER | YEARS 196 | 55 - 2002, | , BY WATER | YEAR (| WY) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 20.8
59.9
1997
3.63
2002 | 25.8
112
1973
4.23
2002 | 124
1997
3.58 | 34.8
136
1979
4.34
1981 | 33.3
105
1979
6.03
2002 | 40.1
98.0
1994
9.17
1985 | 36.0
104
1983
8.91
1985 | 33.6
74.2
1989
10.6
1977 | 84.7
9 1989
5 5.94 | 7 112
9 1989
1 3.98 | 31.3
130
1971
4.22
1995 | 28.9
109
1999
3.93
1970 | # POQUESSING CREEK BASIN #### 01465798 POQUESSING CREEK AT GRANT AVENUE, PHILADELPHIA, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1965 - 2002 | |--------------------------|-------------------------------|----------------------|---------------------------| | ANNUAL TOTAL | 8750.30 | 5742.27 | | | ANNUAL MEAN | 24.0 | 15.7 | 32.1 | | HIGHEST ANNUAL MEAN | | | 52.3 1979 | | LOWEST ANNUAL MEAN | | | 15.7 2002 | | HIGHEST DAILY MEAN | 621 Mar 30 | 436 May 18 | 2490 Sep 16 1999 | | LOWEST DAILY MEAN | e 0.60 Oct 30 a | 0.37 Aug 19 | 0.21 Aug 3 1999 | | ANNUAL SEVEN-DAY MINIMUM | 0.67 Oct 27 b | 0.55 Aug 13 | 0.33 Aug 1 1999 | | MAXIMUM PEAK FLOW | | c 1690 Jun 24 | c 9400 Jul 28 1982 | | MAXIMUM PEAK STAGE | | 7.82 Jun 24 | 15.35 Jul 28 1982 | | 10 PERCENT EXCEEDS | 48 | 35 | 60 | | 50 PERCENT EXCEEDS | 9.2 | 4.8 | 12 | | 90 PERCENT EXCEEDS | 2.0 | 1.0 | 4.2 | ^{a Also Oct. 31, Nov. 1, 2. b Computed using estimated daily discharges. c From rating curve extended above 550
ft³/s on basis of slope-area measurement of peak flow. e Estimated.} #### PENNYPACK CREEK BASIN #### 01467048 PENNYPACK CREEK AT LOWER RHAWN STREET BRIDGE, PHILADELPHIA, PA LOCATION.--Lat 40°03'00", long 75°01'59", Philadelphia County, Hydrologic Unit 02040202, on left bank at downstream side of footbridge pier, 400 ft downstream from Lower Rhawn Street bridge, and 0.8 mi upstream from Wooden Bridge Run in Philadelphia. DRAINAGE AREA.--49.8 mi². PERIOD OF RECORD.--June 1965 to current year. Records for 1971-74 published in WDR PA-81-1. REVISED RECORDS: WDR PA-81-1: 1974. WDR PA-89-1: 1988. Discharge Gage Height GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 21.27 ft above National Geodetic Vertical Datum of 1929. **REMARKS.**—Records fair except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. Satellite telemetry at station. Discharge Gage Height PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,700 ft³/s and maximum (*): | Date | Ti | Disch
me ft ³ | | Gage Heigh
(ft) | t | | Date | | Time | Discharge ft ³ /s | Gage Heig
(ft) | ght | |----------------------------------|---|---|--|---|---|---|---|---|---|---|--|---| | May 18 | 11 | 30 1,9 | 90 | 6.62 | | | June | 7 | 0330 | *2,240 | *6.94 | | | | | | DISCHA | RGE, CUBIC I | FEET PER SE | | TER YEAR OO
EAN VALUES | | 2001 TO SEP | TEMBER 2002 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 41
23
17
16
15 | 16
16
16
20
17 | 15
14
14
16
14 | e17
e16
e16
e15
e14 | 50
38
29
27
25 | 20
27
370
44
27 | 89
40
34
32
29 | 48
83
58
29
26 | 53
28
25
26
39 | 27
25
24
23
21 | 14
21
228
25
49 | 113
141
26
19
16 | | 6
7
8
9
10 | 35
21
15
15 | 15
16
16
16 | 14
15
48
135
25 | e90
143
45
33
32 | 24
29
30
24
30 | 24
23
22
22
54 | 29
28
28
29
32 | 23
23
22
102
44 | 190
632
59
42
38 | 20
19
20
22
206 | 25
16
14
14
14 | 15
14
13
13 | | 11
12
13
14
15 | 15
14
14
14
55 | 16
16
16
16 | 20
18
20
40
38 | 88
55
33
29
25 | 60
28
24
23
23 | 25
22
33
33
24 | 27
36
33
33
42 | 24
54
160
116
36 | 45
101
73
229
81 | 30
23
22
23
23 | 13
13
13
13
12 | 14
11
11
17
33 | | 16
17
18
19
20 | 19
15
14
15
14 | 16
16
17
19 | 19
18
e79
28
19 | 23
22
22
e21
e20 | 23
23
22
22
22 | 23
25
177
56
388 | 29
25
23
39
51 | 28
25
783
94
54 | 45
42
56
63
43 | 21
19
19
90
117 | 12
12
11
12
20 | 52
19
17
13
12 | | 21
22
23
24
25 | 15
14
14
14
15 | 20
18
18
17
58 | 17
16
16
143
31 | e20
e19
e19
e240
73 | 32
24
22
21
21 | 116
50
38
34
32 | 23
54
29
21
40 | 47
44
41
38
33 | 34
31
29
53
61 | 27
22
21
36
23 | 13
11
12
37
25 | 12
12
11
11 | | 26
27
28
29
30
31 | 13
14
15
15
16
16 | 82
18
16
15
15 | 21
20
19
18
e18
e17 | 35
28
26
25
30
78 | 21
21
21
 | 50
197
47
38
36
57 | 41
21
230
70
36 | 31
31
32
31
30
30 | 31
108
221
35
29 | 19
19
19
19
e17
15 | 13
12
11
158
31
17 | 58
360
171
28
20 | | MAX
MIN
CFSM (| 562
18.1
55
13
0.36
0.42 | 605
20.2
82
15
0.40
0.45 | 945
30.5
143
14
0.61
0.71 | 1352
43.6
240
14
0.88
1.01 | 759
27.1
60
21
0.54
0.57 | 2134
68.8
388
20
1.38
1.59 | 1273
42.4
230
21
0.85
0.95 | 2220
71.6
783
22
1.44
1.66 | 2542
84.7
632
25
1.70
1.90 | 1031
33.3
206
15
0.67
0.77 | 891
28.7
228
11
0.58
0.67 | 1276
42.5
360
10
0.85
0.95 | | STATISTICS | S OF M | ONTHLY MEAN | DATA | FOR WATER | YEARS 196 | 5 - 2002, | BY WATER | YEAR (V | VY) | | | | | MAX
(WY)
MIN | 58.0
174
1997
18.1
2002 | 73.2
300
1973
17.5
1966 | 93.4
311
1997
18.5
1999 | 97.8
334
1979
14.0
1981 | 94.9
252
1979
27.1
2002 | 121
273
1994
33.5
1985 | 117
338
1983
32.5
1985 | 101
194
1978
42.5
1995 | 87.0
270
2001
21.4
1995 | 83.9
257
1975
18.2
1999 | 69.9
163
1967
15.7
1966 | 73.7
276
1999
17.4
1970 | e Estimated. # PENNYPACK CREEK BASIN #### 01467048 PENNYPACK CREEK AT LOWER RHAWN STREET BRIDGE, PHILADELPHIA, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1965 - 2002 | |--------------------------|------------------------|---------------------|----------------------------| | ANNUAL TOTAL | 29595 | 15590 | | | ANNUAL MEAN | 81.1 | 42.7 | 89.6 | | HIGHEST ANNUAL MEAN | | | 165 1973 | | LOWEST ANNUAL MEAN | | | 42.7 2002 | | HIGHEST DAILY MEAN | e 4330 Jun 17 | 783 May 18 | e 4900 Sep 16 1999 | | LOWEST DAILY MEAN | 13 Oct 26 | 10 Sep 25 | 7.8 Aug 7 1999 | | ANNUAL SEVEN-DAY MINIMUM | 14 Oct 20 | 12 Sep 19 | 9.1 Aug 1 1999 | | MAXIMUM PEAK FLOW | | 2240 Jun 7 | a 12400 Sep 16 1999 | | MAXIMUM PEAK STAGE | | 6.94 Jun 7 | b 14.77 Sep 16 1999 | | INSTANTANEOUS LOW FLOW | | 8.9 Sep 25,26 | 6.0 Oct 11 1966 | | ANNUAL RUNOFF (CFSM) | 1.63 | 0.86 | 1.80 | | ANNUAL RUNOFF (INCHES) | 22.11 | 11.65 | 24.44 | | 10 PERCENT EXCEEDS | 133 | 80 | 169 | | 50 PERCENT EXCEEDS | 44 | 23 | 49 | | 90 PERCENT EXCEEDS | 16 | 14 | 21 | $[\]begin{array}{l} \textbf{a} \ \ \text{From rating curve extended above 3,900 ft}^{3}\hspace{-0.5mm}/\text{s on basis of slope-area measurement at gage height 13.15 ft.} \\ \textbf{b} \ \ \text{From high-water mark in gage shelter.} \end{array}$ e Estimated. #### FRANKFORD CREEK BASIN #### 01467087 FRANKFORD CREEK AT CASTOR AVENUE, PHILADELPHIA, PA Discharge Gage Height LOCATION.--Lat 40°00'57", long 75°05'50", Philadelphia County, Hydrologic Unit 02040203, on left bank at upstream side of Castor Avenue bridge, and 2.8 mi upstream from mouth in northeast Philadelphia. **DRAINAGE AREA**.--30.4 mi². PERIOD OF RECORD.--July 1982 to current year. Discharge GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 16.56 ft above National Geodetic Vertical Datum of 1929. **REMARKS.**—Records fair except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. Satellite telemetry at station. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 3,000 ft³/s and maximum (*): Gaga Haight | Date
June | | Time
2115 | Disch
ft ³
4 , 7 | /s | Gage Heig
(ft)
7.64 | ht | | | Date
Aug. | | Time
1945 | | scharge
ft ³ /s
7 , 630 | Gage Height
(ft)
*9.81 | | |--|--|--------------|-----------------------------------|--|---|--------------------------------------|------------------|---|---|---------------------------------|------------------------|---|--|---|---| | | | | | DISCHA | ARGE, CUBIC | FEET PE | | | ΓER YEAR (
CAN VALUE | | ER 2001 | TO SEP | TEMBER 200 | 02 | | | DAY | OCT | | NOV | DEC | JAN | FE | В | MAR | APR | MZ | ΑY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | e21
e6.5
5.4
5.2
4.7 | | 3.7
4.4
5.0
5.5
3.8 | 2.9
2.9
2.9
3.0
3.2 | 4.3
4.4
4.5
4.4
4.5 | 16
9.
6.
6. | 4
6 | 4.0
25
233
6.9
5.2 | 37
7.2
6.8
7.0
6.6 | 12
95
15
5 | | 7.8
5.2
5.0
5.2
49 | 5.9
5.8
6.4
6.4
5.9 | 3.6
3.7
22
3.6
28 | 81
41
1.7
1.3
1.0 | | 6
7
8
9
10 | 32
6.0
4.8
4.8
4.4 | | 4.1
3.7
3.6
4.2
4.0 | 2.8
2.6
64
54
e5.0 | 164
29
8.9
8.9
7.3 | 6.
8.
7.
5. | 9
0 | 4.8
4.6
4.5
4.8
22 | 6.5
6.4
6.1
6.2
7.1 | 5
5
5
51
6 | . 7
. 2 | 230
70
7.0
5.9
5.7 | 6.2
6.2
6.1
10
60 | 3.8
1.6
2.2
1.5 | 1.0
0.89
0.99
0.81
0.76 | | 11
12
13
14
15 | 4.2
4.2
4.3
4.1 | | 7.4
4.5
4.0
4.0
3.7 | e4.5
e6.0
10
22
8.5 | 39
7.9
5.6
5.1
5.3 | 28
6.
6.
6. | 4
1 | 4.3
4.5
8.8
5.8
4.5 | 5.9
13
7.7
6.8
6.7 | 4.
75
154
22
8. | . 7 | 5.9
8.6
5.4
92
9.1 | 7.2
6.7
7.9
10
7.7 | 1.7
1.7
1.5
1.6 | 0.64
0.49
0.56
2.1
4.4 | |
16
17
18
19
20 | 3.6
4.2
4.1
4.3
4.5 | | 3.9
3.9
4.0
4.0
6.1 | 4.8
5.2
43
6.0
4.9 | 5.2
5.2
5.5
5.9
8.2 | 6.
6.
6.
6. | 4
1
6 | 4.5
7.1
64
8.3
211 | 5.9
5.3
11
19 | 7
6
518
15
10 | | 5.7
37
38
76
9.7 | 6.1
5.7
5.6
43
16 | 1.7
1.7
1.8
1.2
2.9 | 6.7
0.83
0.58
0.50 | | 21
22
23
24
25 | 4.7
4.7
5.0
5.0 | e
e | 6.1
4.5
4.0
6.0 | 4.8
5.2
5.2
97
6.3 | 9.3
10
11
164
13 | 11
5.
5.
5.
6. | 3
6 | 17
8.5
7.2
6.7
6.6 | 5.7
29
6.5
5.2 | 9 .
8 .
7 .
7 . | . 5
. 3
. 8 | 5.9
5.8
5.5
41 | 4.8
4.3
5.1
8.6
4.1 | 1.3
0.69
1.1
287
11 | 0.46
0.53
0.48
0.48
0.39 | | 26
27
28
29
30
31 | 4.5
4.9
5.1
5.8
4.1
3.7 | | 2.9
2.8
2.8
2.7 | 5.0
4.6
4.5
4.6
4.7
4.6 | 7.7
7.2
6.7
6.0
15
29 | 5.
5.

 | 0
0
-
- | 55
100
8.2
7.3
6.9 | 8.0
5.0
145
9.5
7.6 | 7.
7. | . 0
. 2
. 0 | 7.3
224
36
6.8
6.3 | 3.6
3.9
3.8
3.6
3.3 | 1.1
0.80
0.64
194
2.0
1.1 | 132
154
103
2.9
2.1 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 228.8
7.38
44
3.6
0.24
0.28 | 6 | 9.3
5.64
50
2.7
5.22 | 404.7
13.1
97
2.6
0.43
0.50 | 612.0
19.7
164
4.3
0.65
0.75 | 218.
7.7
2
5.
0.2
0.2 | 9
8
0
6 | 898.0
29.0
233
4.0
0.95
1.10 | 431.7
14.4
145
5.0
0.47
0.53 | 1110 : 35 : 51 | . 8
L8
. 7
L8 | 026.8
34.2
230
5.0
1.13
1.26 | 283.5
9.15
60
3.3
0.30
0.35 | 589.73
19.0
287
0.64
0.63
0.72 | 544.09
18.1
154
0.39
0.60
0.67 | | STATIS' | TICS OF | MONTH | LY MEAN | DATA | FOR WATER | YEARS | 1982 | - 2002, | BY WATER | YEAR | (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 26.6
86.5
1997
7.38
2002 | 8
1
6 | 3.0
1.7
987
6.64 | 36.3
145
1997
6.47
1999 | 35.0
61.8
1996
10.6
1985 | 33.
80.
198
7.7
200 | 4
8
9 | 50.4
91.4
1994
11.7
1985 | 46.4
143
1983
14.4
2002 | 48.
98.
198
20.
198 | . 4
39
. 8 | 42.2
111
1989
11.1
1999 | 48.5
116
1989
4.91
1999 | 38.3
71.4
1999
5.66
1995 | 44.7
143
1999
9.02
1998 | e Estimated. # FRANKFORD CREEK BASIN # 01467087 FRANKFORD CREEK AT CASTOR AVENUE, PHILADELPHIA, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1982 - 2002 | |--------------------------|------------------------|---------------------|----------------------------| | ANNUAL TOTAL | 11706.9 | 6546.92 | | | ANNUAL MEAN | 32.1 | 17.9 | 40.3 | | HIGHEST ANNUAL MEAN | | | 61.7 1996 | | LOWEST ANNUAL MEAN | | | 17.9 2002 | | HIGHEST DAILY MEAN | 1220 Jun 16 | 518 May 18 | 3140 Sep 16 1999 | | LOWEST DAILY MEAN | 2.6 Dec 7 | 0.39 Sep 25 | 0.39 Sep 25 2002 | | ANNUAL SEVEN-DAY MINIMUM | 2.8 Nov 27 | 0.48 Sep 19 | 0.48 Sep 19 2002 | | MAXIMUM PEAK FLOW | | 7630 Aug 24 | a 10300 Jul 31 1985 | | MAXIMUM PEAK STAGE | | 9.81 Aug 24 | 11.82 Jul 31 1985 | | INSTANTANEOUS LOW FLOW | | 0.31 Sep 25 | 0.31 Sep 25 2002 | | ANNUAL RUNOFF (CFSM) | 1.06 | 0.59 | 1.33 | | ANNUAL RUNOFF (INCHES) | 14.33 | 8.01 | 18.02 | | 10 PERCENT EXCEEDS | 51 | 38 | 77 | | 50 PERCENT EXCEEDS | 15 | 5.9 | 16 | | 90 PERCENT EXCEEDS | 4.4 | 1.7 | 6.6 | a From rating curve extended above 8,000 ft³/s on basis of slope-area measurement at gage height 9.97 ft. #### 01467200 DELAWARE RIVER AT BENJAMIN FRANKLIN BRIDGE AT PHILADELPHIA, PA LOCATION.--Lat 39°57'14", long 75°08'16", Philadelphia County, Hydrologic Unit 02040202, on right bank at river end of pier 12, 150 ft upstream from Ben Franklin bridge, and at Philadelphia. DRAINAGE AREA.--7,993 mi². PERIOD OF RECORD.--August 1949 to current year. #### PERIOD OF DAILY RECORD.-- SPECIFIC CONDUCTANCE: November 1963 to current year. pH: October 1967 to current year. WATER TEMPERATURE: November 1960 to current year. DISSOLVED OXYGEN: October 1961 to current year. INSTRUMENTATION.--Water-quality monitor interfaced with a data collection platform. REMARKS.--Water temperature, pH, and specific conductance records rated good. Dissolved oxygen record rated good except for period, Nov. 13-19, which is fair, and May 28 to June 5, and July 10-12, which are poor. Prior to July 1988, located on edge of pier 11 about 300 ft downstream of pier 12. Further information on this station is given in U.S. Geological Survey Water-Supply Paper 1809-0. Data collection for pH and dissolved oxygen discontinued during winter months, specific conductance and water temperature data collected for the entire water year. Other interruptions in the record were due to malfunctions of the pump or recording instrument. EXTREMES FOR PERIOD OF DAILY RECORD.— SPECIFIC CONDUCTANCE: Maximum, 1,450 microsiemens, Nov. 20, 1964; minimum, 65 microsiemens, Sept. 15, 1979. pH: Maximum, 8.7, Oct. 14, 1979; minimum, 4.7, Dec. 29, 1978. WATER TEMPERATURE: Maximum, 31.0°C, July 13-15, 1966; minimum, 0.0°C, many days during winters. DISSOLVED OXYGEN: Maximum, 14.1 mg/L, Dec. 14, 1962; minimum, 0.0 mg/L, on many days. #### EXTREMES FOR CURRENT YEAR.-- SPECIFIC CONDUCTANCE: Maximum, 516 microsiemens, Sept. 26; minimum, 124 microsiemens, May 19. WATER TEMPERATURE: Maximum, 28.5°C, Aug. 2-6, 18-21; minimum, 2.5°C, Jan. 10. SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25° CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|---------------------------------|---| | | | OCTOBER | | N | OVEMBER | 1 | I | DECEMBER | | | JANUARY | | | 1
2
3
4
5 | 318
317
305
314
318 | 278
274
269
271
280 | 296
293
288
294
298 | 355
353
356
356
356 | 300
298
301
298
296 | 325
325
325
324
324 | 419
422
426
415
405 | 322
313
311
313
310 | 366
357
359
355
352 | 296
296
303
306
304 | 253
252
249
255
256 | 271
273
276
280
280 | | 6
7
8
9
10 | 316
307
305
315
311 | 281
278
273
277
277 | 297
292
289
294
294 | 352
356
383
369 | 294
300
300
301 | 319
325
334
332 | 405
391
421
389
400 | 312
307
304
302
298 | 352
346
348
346
343 | 301
298
298
304
299 | 249
249
243
247
244 | 276
273
266
272
268 | | 11
12
13
14
15 | 315
323
323
327
336 | 276
278
278
281
281 | 291
295
298
302
307 |

390
397 |

314
311 |

348
350 | 394
391
406
405
380 | 299
300
306
301
280 | 339
339
348
343
327 | 306
298
296
283
291 | 245
245
245
236
242 | 273
268
269
259
263 | | 16
17
18
19
20 | 330
325
317
332
330 | 270
275
271
271
279 | 302
303
292
300
304 | 407
422
430
417
407 | 315
312
328
325
322 | 358
360
370
369
360 | 389
415
390
372
360 | 290
293
284
284
284 | 332
344
332
325
314 | 288
301
295
299 | 250
250
255
255
 | 268
272
273
276
 | | 21
22
23
24
25 | 337
328
343
343
333 | 279
280
274
287
289 | 303
302
305
311
308 | 440
432
443
439
443 | 321
332
326
331
334 | 366
378
375
379
382 | 322
325
327
312
298 | 266
263
264
263
258 | 287
287
294
284
275 |
332
339
336 |
299
299
307 |
314
321
319 | | 26
27
28
29
30
31 | 330
329
342
343
349
358 | 289
283
283
288
294
297 | 306
299
303
317
319
323 | 432
420
423
441
434 | 329
323
317
312
321 | 369
366
364
367
372 | 298
304
301
302
295
291 | 257
260
260
255
253
250 | 274
276
275
274
271
270 | 337
335
348
351
344
348 | 305
305
307
309
309 | 319
318
322
325
325
325
326 | | MONTH | 358 | 269 | 301 | 443 | 294 | 353 | 426 | 250 | 320 | 351 | 236 | 287 | # 01467200 DELAWARE RIVER AT BENJAMIN FRANKLIN BRIDGE AT PHILADELPHIA, PA--Continued SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25° CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|--|--|---
---|--|---|--|--|---|---|---|---| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 350
324
326
324
320 | 311
306
306
308
305 | 327
316
315
315
311 | 252
256
267
238
234 | 213
212
216
212
212 | 232
234
240
223
222 | 216
204
201
181
185 | 187
175
170
161
161 | 204
192
182
170
172 | 189
189
186
169
157 | 181 | 185
185
174
158
153 | | 6
7
8
9
10 | 322
323
320
319
317 | 305
298
296
283
277 | 313
310
309
302
297 | 238
234
238
240
239 | 213
216
219
222
225 | 223
224
227
229
230 | 179
180
180
177
176 | 164
162
164
164
162 | 171
170
172
171
170 | 156
155
159
164
163 | 147
152
152 | 151
152
155
158
159 | | 11
12
13
14
15 | 312
327
307
290
280 | 243
252
236
230
222 | 285
285
276
259
250 | 235
246
247
246
246 | 222
225
225
232
230 | 228
234
236
239
239 | 178
181
182
182
183 | 161
167
171
171
174 | 170
174
176
178
179 | 163
165
165
167
174 | 156
158
160 | 159
160
163
164
169 | | 16
17
18
19
20 | 269
267
253
263
262 | 222
222
217
223
223 | 243
240
234
242
241 | 244
248
251
252
256 | 223
225
229
227
231 | 236
236
240
240
244 | 185
184
186
194
189 | 177
178
178
182
182 | 180
182
182
186
186 | 172
165
160
139
136 | 157
149
131
124
131 | 166
158
144
130
134 | | 21
22
23
24
25 | 257
257
253
256
259 | 225
230
224
221
220 | 238
242
238
238
239 | 241
228
231
233
234 | 224
221
225
226
219 | 233
224
228
230
228 | 189 | 183
185
185
184
185 | 186
191
192
193
196 | 140
148
148
148
148 | 133
136
142
141
138 | 137
143
144
144
143 | | 26
27
28
29
30
31 | 262
253
248
 | 217
219
210
 | 237
235
229
 | 245
243
245
250
239
225 | 221
222
218
217
210
200 | 232
234
231
230
224
214 | 204
201
200
196
188 | 179
178
178
177
177 | 193
190
190
183
181 |

156
159
160 | |

151
154
157 | | MONTH | 350 | 210 | 270 | 267 | 200 | 231 | 216 | 161 | 182 | 189 | 124 | 155 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | | MIN
EPTEMBE | | | DAY 1 2 3 4 5 | 166
170
171
170
170 | JUNE | 161
166
166
162
159 | | JULY | 173
177
182
186
189 | 257
263
265
266
269 | 240
243
248
248
249 | 249
254
257
257
259 | | EPTEMBE | | | 1
2
3
4 | 166
170
171
170 | JUNE | 161
166
166
162
159 | 178
182
185
190
194
197
199
202
205
208 | JULY 163 159 178 181 184 187 189 191 194 197 | | 257
263
265
266
269
274
282
285
292 | 240
243
248
248
249
250
253
255
258
261 | 249
254
257
257
259
259
264
268
270
276 | S | 298
282
285
284
284 | 338
315
317
316 | | 1
2
3
4
5
6
7
8
9 | 166
170
171
170
170
169
166
164
156 | 158
163
158
148
150
136
139
140
144
150 | 161
166
166
162
159
153
148
147
150
154 | 178
182
185
190
194
197
199
202
205
208 | JULY 163 159 178 181 184 187 189 191 194 197 | 173
177
182
186
189 | 257
263
265
266
269
274
282
285
292 | 240
243
248
248
249 | 249
254
257
257
259
259
264
268
270
276 | 401
379
360
359
366 | 298
282
285
284
284
283
289
290
287
293 | 338
315
317
316
317
321
328
331
333 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 166
170
171
170
170
169
164
156
157 | JUNE 158 163 158 148 150 136 139 140 144 150 145 137 136 134 | 161
166
166
162
159
153
148
147
150
154 | 178
182
185
190
194
197
199
202
205
208
214
219
217
218 | JULY 163 159 178 181 184 187 189 191 194 197 203 204 204 | 173
177
182
186
189
191
194
198
200
203
206
211
212
213 | 257
263
265
266
269
274
282
285
292
297
303
308
318 | 240
243
248
248
249
250
253
255
258
261
262
268
274
273 | 249
254
257
257
259
264
268
270
276
279
286
292 | 401
379
360
359
366
367
382
391
378
395
402
411
418
420 | 298
282
285
284
284
284
289
290
287
293
308
299
308
309 | 338
315
317
316
317
321
328
331
333
344
347
341
356
359 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 166
170
171
170
170
169
166
157
157
157
157
157
157
157
151
141
146
151 | 158
163
158
148
150
136
139
140
144
150
145
137
136
134
131 | 161
166
166
162
159
153
148
147
150
154
154
149
147
145
140 | 178 182 185 190 194 197 199 202 205 208 214 219 217 218 220 223 225 228 230 | JULY 163 159 178 181 184 187 189 191 194 197 197 203 204 204 206 209 211 214 214 | 173
177
182
186
189
191
194
198
200
203
206
211
212
213
214
216
219
221 | 257
263
265
266
269
274
282
285
292
297
303
308
318
317
322
331
344
344 | 240
243
248
248
249
250
253
255
258
261
262
268
274
273
275
276
282
284 | 249
254
257
257
259
264
268
270
276
279
286
292
292
295
299
302
307
310 | 401
379
360
359
366
367
382
391
378
395
402
411
418
420
426
431
455
465 | 298
282
285
284
284
283
289
290
287
293
308
299
308
309
308
310
309
303
307 | 338
315
317
316
317
321
328
331
333
344
347
341
356
359
358
360
358
362
368 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 166
170
171
170
170
169
166
157
157
157
157
157
157
156
157
151
141
146
151
160 | 158
163
158
148
150
136
139
140
144
150
145
137
136
134
131
134
135
140
144
148 | 161
166
166
162
159
153
148
147
150
154
154
147
145
140
137
138
144
149
154 | 178 182 185 190 194 197 199 202 205 208 214 219 217 218 220 223 225 228 230 230 231 233 231 | JULY 163 159 178 181 184 187 189 191 194 197 197 203 204 204 206 209 211 214 215 215 215 215 | 173
177
182
186
189
191
194
198
200
203
206
211
212
213
214
216
219
221
223
222
223
223
223
223
223 | 257
263
265
266
269
274
285
292
297
303
308
318
317
322
331
344
354
363
374
366
388 | 240
243
248
248
249
250
253
255
258
261
262
268
274
273
275
276
282
284
286
288 | 249 254 257 257 259 264 268 270 276 279 286 292 295 299 302 307 316 322 325 324 336 | 401
379
360
359
366
367
382
391
378
395
402
411
418
420
426
431
455
465
458 | 298 282 285 284 284 284 283 289 290 287 293 308 299 308 309 308 310 309 307 306 310 307 306 |
338
315
317
316
317
321
328
331
333
344
347
341
356
359
358
360
358
362
368
371
375
374
380
382 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
20
20
20
20
20
20
20
20
20
20
20
20
20 | 166
170
170
170
169
166
157
157
157
157
157
157
157
157
157
157 | 158 163 158 148 150 136 139 140 144 150 145 137 136 134 131 135 140 144 148 153 159 162 163 163 161 162 166 | 161
166
166
162
159
153
148
147
150
154
154
149
147
145
140
137
138
144
149
154
166
167
168
170
169
168
172 | 178 182 185 190 194 197 199 202 205 208 214 219 217 218 220 223 225 228 230 230 231 233 231 230 235 238 239 241 245 249 | JULY 163 159 178 181 184 187 189 191 194 197 203 204 206 209 211 214 215 215 215 215 216 217 220 226 230 237 | 173 177 182 186 189 191 194 198 200 203 206 211 212 213 214 216 219 221 223 223 223 223 223 223 223 223 223 | 257
263
265
266
269
274
285
292
297
303
308
317
322
331
344
354
363
374
366
388
372
375
376
409
383
370 | 240
243
248
248
249
250
253
255
258
261
262
268
274
273
275
276
282
284
284
288
292
292
292
292
292
292 | 249
254
257
257
259
264
268
270
276
279
286
292
292
295
302
307
316
322
325
324
336
328
334
335
345
340
329 | 401
379
360
359
366
367
382
391
378
395
402
411
418
420
426
431
455
465
458
463
447
463
467
468
516
502
435
424
421 | 298 282 285 284 284 284 283 289 290 287 293 308 299 308 309 308 310 309 307 306 310 307 306 3110 307 308 316 325 320 292 285 296 | 338
315
317
316
317
321
328
331
333
344
347
341
356
359
358
360
358
360
358
368
371
375
374
380
382
392
410
404
356
344
347 | # 01467200 DELAWARE RIVER AT BENJAMIN FRANKLIN BRIDGE AT PHILADELPHIA, PA--Continued PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN I | MEDIAN | MAX | MIN | MEDIAN | MAX | MIN | MEDIAN | MAX | MIN | MEDIAN | |---|--------------------------|----------------------|--------------|------------------|-------------------|------------------|---|--|---|---|---|---| | | | OCTOBER | | | NOVEMBER | | 1 | DECEMBER | | | JANUAR | Y | | 1 2 | 7.0 | 6.9 | 6.9 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | | | | 3 | 7.0
6.9 | 6.9
6.9 | 6.9
6.9 | 7.0
7.0 | 7.0
7.0 | 7.0
7.0 | 7.0
7.0 | 7.0
6.9 | 7.0
7.0 | | | | | 4
5 | 7.0
6.9 | 6.9
6.9 | 6.9
6.9 | 7.0
7.0 | 7.0
6.9 | 7.0
7.0 | 7.0 | 7.0 | 7.0 | | | | | | | | | | | | | | | | | | | 6
7 | 7.0
7.0 | 6.9
6.9 | 6.9
6.9 | 7.0
7.0 | 6.9
7.0 | 7.0
7.0 | | | | | | | | 8
9 | 7.0 | 6.9 | 7.0 | 7.0 | 7.0 | 7.0 | | | | | | | | 10 | 7.0
7.0 | 6.9
6.9 | 7.0
7.0 | 7.1 | 7.0 | 7.0 | | | | | | | | 11 | 7.0 | 6.9 | 7.0 | | | | | | | | | | | 12 | 7.0 | 6.9 | 7.0 | | | | | | | | | | | 13
14 | 7.0
7.0 | 6.9
6.9 | 6.9
6.9 | 7.1 | 7.0 | 7.1 | | | | | | | | 15 | 6.9 | 6.9 | 6.9 | 7.1 | 7.0 | 7.1 | | | | | | | | 16 | 6.9 | 6.9 | 6.9 | 7.1 | 7.0 | 7.0 | | | | | | | | 17
18 | 7.0
7.0 | 6.9
7.0 | 7.0
7.0 | 7.1
7.1 | 7.0
7.0 | 7.0
7.0 | | | | | | | | 19 | 7.0 | 7.0 | 7.0 | 7.1 | 7.0 | 7.0 | | | | | | | | 20 | 7.0 | 7.0 | 7.0 | 7.1 | 7.0 | 7.0 | | | | | | | | 21 | 7.0 | 6.9 | 7.0 | 7.1 | 7.0 | 7.0 | | | | | | | | 22
23 | 7.0
6.9 | 6.9
6.9 | 6.9
6.9 | 7.1
7.1 | 7.0
7.0 | 7.0
7.0 | | | | | | | | 24 | 6.9 | 6.9 | 6.9 | 7.0 | 7.0 | 7.0 | | | | | | | | 25 | 6.9 | 6.9 | 6.9 | 7.1 | 7.0 | 7.0 | | | | | | | | 26
27 | 7.0
7.0 | 6.9
7.0 | 6.9
7.0 | 7.0
7.0 | 7.0
7.0 | 7.0
7.0 | | | | | | | | 28 | 7.1 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | | | | | | | | 29
30 | 7.0
7.1 | 7.0
6.9 | 7.0
7.0 | 7.0
7.0 | 6.9
7.0 | 7.0
7.0 | | | | | | | | 31 | 7.1 | 7.0 | 7.0 | | | | | | | | | | | MAX | 7.1 | 7.0 | 7.0 | 7.1 | 7.0 | 7.1 | 7.0 | 7.0 | 7.0 | | | | | MIN | 6.9 | 6.9 | 6.9 | 7.0 | 6.9 | 7.0 | 7.0 | 6.9 | 7.0 | | | | | | | | | | | | | | | | | | | DAV | MΔΥ | MTN 1 | MEDIAN | мдұ | MTN | MEDIAN | MAY | MIN | MEDTAN | MAX | MTN | MEDIAN | | DAY | MAX | | MEDIAN | MAX | | MEDIAN | MAX | | MEDIAN | MAX | MIN
MAY | MEDIAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2 | | FEBRUARY | | | MARCH | | 7.3
7.3 | 7.3
7.3 | 7.3
7.3 | 7.2
7.2 | MAY 7.0 7.1 | 7.1
7.2 | | 1
2
3 | | FEBRUARY | | | MARCH | | 7.3
7.3
7.3 | 7.3
7.3
7.2 | 7.3
7.3
7.3 | 7.2
7.2
7.2 | MAY 7.0 7.1 7.1 | 7.1
7.2
7.1 | | 1
2 |
 | FEBRUARY | |
 | MARCH |
 | 7.3
7.3 | 7.3
7.3 | 7.3
7.3 | 7.2
7.2 | MAY 7.0 7.1 | 7.1
7.2 | | 1
2
3
4 |

 | FEBRUARY

 | |

 | MARCH

 |

 | 7.3
7.3
7.3
7.2 | 7.3
7.3
7.2
7.2 | 7.3
7.3
7.3
7.2 | 7.2
7.2
7.2
7.1 | 7.0
7.1
7.1
7.1 | 7.1
7.2
7.1
7.1 | | 1
2
3
4
5 | ===
===
===
=== | FEBRUARY |

 |

 | MARCH |

 | 7.3
7.3
7.3
7.2
7.2
7.2 | 7.3
7.3
7.2
7.2
7.2
7.2
7.2 | 7.3
7.3
7.3
7.2
7.2
7.2 | 7.2
7.2
7.2
7.1
7.1
7.0
7.0 | MAY 7.0 7.1 7.1 7.1 7.0 7.0 7.0 | 7.1
7.2
7.1
7.1
7.1
7.0
7.0 | | 1
2
3
4
5
6
7
8
9 | | FEBRUARY | |

 | MARCH |

 | 7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2 | 7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | 7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2 | 7.2
7.2
7.2
7.1
7.1
7.0
7.0
7.0 | 7.0
7.1
7.1
7.1
7.0
7.0
7.0
7.0 | 7.1
7.2
7.1
7.1
7.0
7.0
7.0 | | 1
2
3
4
5
6
7
8 | | FEBRUARY | |

 | MARCH | | 7.3
7.3
7.3
7.2
7.2
7.2
7.2 | 7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2 | 7.3
7.3
7.3
7.2
7.2
7.2
7.2 | 7.2
7.2
7.2
7.1
7.1
7.0
7.0 | 7.0
7.1
7.1
7.1
7.0
7.0
7.0 | 7.1
7.2
7.1
7.1
7.1
7.0
7.0 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | | MARCH | | 7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.3 | 7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | 7.3
7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | 7.2
7.2
7.2
7.1
7.1
7.0
7.0
7.0
7.2
7.1 | 7.0
7.1
7.1
7.1
7.0
7.0
7.0
7.0
7.0
7.1 | 7.1
7.2
7.1
7.1
7.0
7.0
7.0
7.1
7.1 | | 1
2
3
4
5
6
7
8
9 | | FEBRUARY | | | MARCH | | 7.3
7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | 7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | 7.3
7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2 | 7.2
7.2
7.2
7.1
7.1
7.0
7.0
7.0
7.2
7.1 | 7.0
7.1
7.1
7.1
7.0
7.0
7.0
7.0
7.0 | 7.1
7.2
7.1
7.1
7.0
7.0
7.0
7.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | | FEBRUARY | | | MARCH | | 7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | APRIL 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 | 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 | 7.2
7.2
7.2
7.1
7.1
7.0
7.0
7.2
7.1
7.1
7.1
7.0 | 7.0
7.1
7.1
7.0
7.0
7.0
7.0
7.0
7.1
7.1
7.1
7.0
6.9 | 7.1
7.2
7.1
7.1
7.0
7.0
7.0
7.1
7.1
7.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | | MARCH | | 7.3
7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | 7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | 7.3
7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | 7.2
7.2
7.2
7.1
7.1
7.0
7.0
7.0
7.2
7.1
7.1
7.1
7.0
7.0 | 7.0
7.1
7.1
7.1
7.0
7.0
7.0
7.0
7.0
7.1
7.1
7.1
7.0
6.9 | 7.1
7.2
7.1
7.1
7.0
7.0
7.0
7.1
7.1
7.1
7.1
7.0
7.0 | |
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | | FEBRUARY | | | MARCH | | 7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | APRIL 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 | 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.1 7.1 | 7.2
7.2
7.2
7.1
7.1
7.0
7.0
7.2
7.1
7.1
7.1
7.1
7.0
7.0
7.0 | 7.0
7.1
7.1
7.0
7.0
7.0
7.0
7.0
7.1
7.1
7.1
7.0 | 7.1
7.2
7.1
7.1
7.0
7.0
7.0
7.1
7.1
7.1
7.1
7.0
7.0
7.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | | MARCH | | 7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | 7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | 7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | 7.2
7.2
7.2
7.1
7.1
7.0
7.0
7.0
7.2
7.1
7.1
7.1
7.0
7.0
7.2 | 7.0
7.1
7.1
7.1
7.0
7.0
7.0
7.0
7.0
7.1
7.1
7.1
7.1
7.1
7.0
7.0 | 7.1
7.2
7.1
7.1
7.0
7.0
7.0
7.1
7.1
7.1
7.1
7.0
7.0
7.0
7.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | | MARCH | | 7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | 7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.1 7.1 | 7.2
7.2
7.2
7.1
7.1
7.0
7.0
7.0
7.1
7.1
7.1
7.1
7.1
7.0
7.0 | 7.0
7.1
7.1
7.1
7.0
7.0
7.0
7.0
7.0
7.1
7.1
7.1
7.1
7.1 | 7.1
7.2
7.1
7.1
7.0
7.0
7.0
7.1
7.1
7.1
7.1
7.0
7.0
7.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | | FEBRUARY | | | MARCH | | 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.1 7.1 7.1 7.1 | 7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | 7.3
7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | 7.2
7.2
7.2
7.1
7.1
7.0
7.0
7.0
7.2
7.1
7.1
7.1
7.0
7.0
7.0
7.0 | 7.0
7.1
7.1
7.1
7.0
7.0
7.0
7.0
7.0
7.1
7.1
7.1
7.0
7.0
7.0
7.0
7.0 | 7.1
7.2
7.1
7.1
7.0
7.0
7.0
7.1
7.1
7.1
7.1
7.0
7.0
7.0
7.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | | FEBRUARY | | | MARCH | | 7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | 7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.1 7.1 7.1 7.1 7.0 7.0 7.0 | 7.2
7.2
7.2
7.1
7.1
7.0
7.0
7.0
7.1
7.1
7.1
7.1
7.2
7.2
7.2
7.2
7.0
7.0 | 7.0
7.1
7.1
7.1
7.0
7.0
7.0
7.0
7.0
7.1
7.1
7.1
7.1
7.0
7.0
7.0 | 7.1
7.2
7.1
7.1
7.0
7.0
7.0
7.1
7.1
7.1
7.1
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | | FEBRUARY | | | MARCH | | 7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | 7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.1 7.1 7.1 7.1 7.0 7.0 | 7.2
7.2
7.2
7.1
7.1
7.0
7.0
7.2
7.1
7.1
7.1
7.0
7.0
7.0
7.0
7.0
7.1 | 7.0
7.1
7.1
7.0
7.0
7.0
7.0
7.0
7.1
7.1
7.1
7.0
6.9
7.0
7.0
7.0
7.0 | 7.1
7.2
7.1
7.1
7.0
7.0
7.0
7.1
7.1
7.1
7.1
7.0
7.0
7.0
7.0
7.0
7.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | | FEBRUARY | | | MARCH | | 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.1 7.1 7.1 7.0 7.1 | 7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.1 7.1 7.1 7.0 7.0 7.0 7.0 7.1 | 7.2
7.2
7.2
7.1
7.1
7.0
7.0
7.0
7.1
7.1
7.1
7.1
7.2
7.2
7.2
7.2
7.0
7.0 | 7.0
7.1
7.1
7.0
7.0
7.0
7.0
7.0
7.0
7.1
7.1
7.1
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 7.1
7.2
7.1
7.1
7.0
7.0
7.0
7.1
7.1
7.1
7.1
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | | FEBRUARY | | | MARCH | | 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 | 7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.1 7.1 7.1 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.1 | 7.2
7.2
7.2
7.1
7.1
7.0
7.0
7.2
7.1
7.1
7.1
7.2
7.2
7.2
7.2
7.2
7.0
7.0 | 7.0
7.1
7.1
7.0
7.0
7.0
7.0
7.0
7.1
7.1
7.1
7.0
6.9
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 7.1
7.2
7.1
7.1
7.0
7.0
7.0
7.1
7.1
7.1
7.1
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27
26
27
27
28
28
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | | FEBRUARY | | | MARCH | | 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 | 7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 7.2
7.2
7.2
7.1
7.1
7.0
7.0
7.0
7.1
7.1
7.1
7.2
7.2
7.2
7.2
7.2
7.0
7.0 | 7.0
7.1
7.1
7.0
7.0
7.0
7.0
7.0
7.0
7.1
7.1
7.1
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 7.1
7.2
7.1
7.1
7.0
7.0
7.0
7.1
7.1
7.1
7.1
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | | FEBRUARY | | | MARCH | | 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.1 7.1 7.1 7.1 7.0 7.1 7.1 7.0 7.0 7.0 7.0 7.0 | 7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.1
7.1
7.1
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.1 7.1 7.1 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 7.2
7.2
7.2
7.1
7.1
7.0
7.0
7.2
7.1
7.1
7.1
7.2
7.2
7.2
7.2
7.2
7.0
7.0
7.0 | 7.0
7.1
7.1
7.0
7.0
7.0
7.0
7.0
7.1
7.1
7.0
6.9
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 7.1
7.2
7.1
7.1
7.0
7.0
7.0
7.1
7.1
7.1
7.1
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | | 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | | FEBRUARY | | | MARCH | | 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.1 7.1 7.1 7.0 7.1 7.1 7.0 7.0 7.0 | 7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | 7.3 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.1 7.1 7.1 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 7.2 7.2 7.2 7.1 7.1 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.0 7.0 7.0 7.0 7.1 7.1 7.1 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 | 7.0
7.1
7.1
7.0
7.0
7.0
7.0
7.0
7.0
7.1
7.1
7.1
7.0
7.0
7.0
7.0
7.0
7.0 | 7.1
7.2
7.1
7.1
7.0
7.0
7.0
7.1
7.1
7.1
7.1
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | | FEBRUARY | | | MARCH | | 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 | 7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 7.2 7.2 7.1 7.1 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.0 7.0 7.1 7.1 7.1 7.1 7.0 7.0 7.0 7.1 7.1 7.1 7.0 7.0 7.0 7.0 7.1 7.1 7.1 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 7.0
7.1
7.1
7.0
7.0
7.0
7.0
7.0
7.0
7.1
7.1
7.1
7.0
7.0
7.0
7.0
7.0
7.0 | 7.1
7.2
7.1
7.1
7.0
7.0
7.0
7.1
7.1
7.1
7.1
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | #### 01467200 DELAWARE RIVER AT BENJAMIN FRANKLIN BRIDGE AT PHILADELPHIA, PA--Continued PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEDIAN | |----------------------------------|---------------------------------|--------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------
--------------------------|--------------------------|--------------------------|---------------------------------|--------------------------|--------------------------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | ER | | 1
2
3
4
5 | 7.0
7.0
7.0
6.9
7.0 | 6.9
6.9
6.9
6.8 | 7.0
7.0
7.0
6.9
6.9 | 6.8
6.9
6.9
6.8 | 6.7
6.8
6.7
6.7 | 6.8
6.8
6.7
6.8 | 6.9
6.9
6.8
6.9 | 6.8
6.8
6.8
6.8 | 6.8
6.8
6.8
6.8 | 6.9
6.9
6.9
6.9 | 6.8
6.8
6.8
6.8 | 6.9
6.9
6.9
6.8 | | 6
7
8
9
10 | 7.0
7.0
6.9
6.9 | 6.9
6.8
6.8
6.9 | 6.9
6.9
6.9
6.9 | 6.9
7.0
7.0
7.0
7.0 | 6.8
6.8
6.9
6.9 | 6.8
6.9
6.9
6.9 | 6.9
6.9
6.9
6.9 | 6.8
6.9
6.9 | 6.8
6.9
6.9
6.9 | 6.9
7.0
6.9
6.9 | 6.8
6.9
6.8
6.8 | 6.9
6.9
6.9
6.8 | | 11
12
13
14
15 | 6.9
6.8
6.8
6.8 | 6.8
6.7
6.7
6.7 | 6.9
6.8
6.8
6.8 | 7.0
7.1
7.1
7.0
7.0 | 6.9
6.9
7.0
6.9
6.9 | 6.9
7.0
7.0
7.0
6.9 | 6.9
6.9
6.9
6.9 | 6.9
6.8
6.8
6.8 | 6.9
6.8
6.9
6.9 | 6.8
6.8
6.8
6.8 | 6.8
6.8
6.8
6.8 | 6.8
6.8
6.8
6.8 | | 16
17
18
19
20 | 6.8
6.9
6.9
6.9
7.1 | 6.8
6.8
6.8
6.8 | 6.8
6.8
6.8
6.9 | 6.9
6.8
6.8
6.8 | 6.8
6.7
6.7
6.7 | 6.9
6.9
6.7
6.8 | 6.9
6.9
6.9
6.9 | 6.8
6.8
6.8
6.8 | 6.9
6.8
6.8
6.8 | 6.9
6.9
6.9
6.9 | 6.8
6.9
6.9
6.9 | 6.8
6.9
6.9
6.9 | | 21
22
23
24
25 | 7.0
7.0
7.0
6.9 | 6.9
6.9
6.8
6.8 | 6.9
6.9
6.9
6.9 | 6.8
6.8
6.8
6.8 | 6.7
6.7
6.7
6.7 | 6.7
6.7
6.8
6.8 | 6.9
6.9
6.9
6.8 | 6.8
6.8
6.8
6.8 | 6.8
6.8
6.8
6.8 | 6.9
6.9
6.9
7.0 | 6.9
6.9
6.9
6.9 | 6.9
6.9
6.9
6.9 | | 26
27
28
29
30
31 | 6.8
6.8
6.8
6.8 | 6.8
6.8
6.7
6.7 | 6.8
6.8
6.8
6.8 | 6.8
6.9
6.8
6.8 | 6.8
6.8
6.8
6.8
6.8 | 6.8
6.8
6.8
6.8
6.8 | 6.9
6.8
6.9
6.9 | 6.8
6.8
6.8
6.8 | 6.8
6.8
6.8
6.8 | 7.0
7.0
7.0
7.0
7.0 | 6.9
6.9
6.9
6.9 | 6.9
6.9
7.0
6.9 | | MAX
MIN | 7.1
6.8 | 6.9
6.7 | 7.0
6.8 | 7.1
6.8 | 7.0
6.7 | 7.0
6.7 | 6.9
6.8 | 6.9
6.8 | 6.9
6.8 | 7.0
6.8 | 6.9
6.8 | 7.0
6.8 | #### WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|---------------------------------|---------------------------------|---------------------------------| | | | OCTOBER | | | NOVEMBER | ! | 1 | DECEMBER | | | JANUARY | | | 1
2
3
4
5 | 20.5
20.0
20.0
20.0
20.0 | 20.0
19.5
19.5
19.5
20.0 | 20.0
20.0
20.0
20.0
20.0 | 15.0
15.0
15.0
15.0 | 14.5
14.5
15.0
14.5
14.0 | 14.5
15.0
15.0
15.0 | 12.5
12.5
12.5
12.5
12.5 | 12.5
12.0
12.0
12.0
12.0 | 12.5
12.5
12.0
12.0 | 5.0
4.5
4.5
4.5
4.0 | 4.5
4.0
4.0
3.5
3.5 | 5.0
4.5
4.0
4.0
4.0 | | 6
7
8
9
10 | 20.0
19.5
19.0
18.5
18.0 | 19.5
19.0
18.5
18.0
18.0 | 20.0
19.5
18.5
18.0
18.0 | 14.0
14.0
14.0
13.5 | 14.0
13.5
13.5
13.5 | 14.0
14.0
13.5
13.5 | 12.5
12.5
12.0
12.0
11.5 | 12.0
12.0
11.5
11.5 | 12.0
12.0
12.0
11.5
11.5 | 4.0
4.0
3.5
3.5
3.5 | 3.5
3.5
3.0
3.0
2.5 | 3.5
3.5
3.5
3.0
3.0 | | 11
12
13
14
15 | 18.0
18.0
18.5
18.5 | 17.5
18.0
18.0
18.0 | 18.0
18.0
18.0
18.5 |

12.5
12.5 | 12.0
12.0 | 12.5
12.5 | 11.5
11.0
11.0
11.0 | 11.0
11.0
11.0
11.0 | 11.0
11.0
11.0
11.0 | 3.5
3.5
3.5
3.5
3.5 | 3.0
3.0
3.0
3.0
3.0 | 3.5
3.5
3.5
3.5
3.5 | | 16
17
18
19
20 | 18.5
18.0
17.5
17.0 | 18.0
17.5
17.0
16.5
16.5 | 18.0
18.0
17.0
17.0 | 12.5
12.5
12.5
12.5
12.0 | 12.0
12.0
12.0
12.0
11.5 | 12.5
12.0
12.0
12.0
12.0 | 10.5
10.5
10.5
10.0 | 10.5
10.0
10.0
10.0
9.5 | 10.5
10.5
10.5
10.0 | 3.5
4.0
3.5
3.5 | 3.5
3.5
3.5
3.0 | 3.5
3.5
3.5
3.5 | | 21
22
23
24
25 | 17.0
17.0
17.0
17.5 | 16.5
16.5
17.0
17.0 | 16.5
17.0
17.0
17.0 | 12.0
11.5
11.5
11.5
12.0 | 11.5
11.5
11.0
11.5
11.5 | 11.5
11.5
11.5
11.5 | 9.5
9.0
8.5
8.5 | 9.0
8.5
8.0
8.0
7.5 | 9.0
8.5
8.5
8.5
8.0 | 3.5
4.0
4.0 | 3.0
3.5
3.5 | 3.5
3.5
4.0 | | 26
27
28
29
30
31 | 17.5
16.5
16.0
15.5
15.0 | 16.5
16.0
15.5
15.0
15.0 | 17.0
16.0
15.5
15.0
15.0 | 12.0
12.0
12.0
12.0
12.5 | 11.5
11.5
12.0
12.0
12.0 | 12.0
12.0
12.0
12.0
12.0 | 8.0
7.5
7.0
6.5
6.5 | 7.5
7.0
6.5
6.0
5.5
4.5 | 7.5
7.0
6.5
6.5
6.0
5.0 | 4.0
4.5
5.0
5.0 | 3.5
4.0
4.0
4.5
4.5 | 4.0
4.5
4.5
5.0 | | MONTH | 20.5 | 14.5 | 17.7 | 15.0 | 11.0 | 12.8 | 12.5 | 4.5 | 9.9 | 5.5 | 2.5 | 3.8 | # 01467200 DELAWARE RIVER AT BENJAMIN FRANKLIN BRIDGE AT PHILADELPHIA, PA--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|--|---|--|--|--|--|--|--|--|--|--|--| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 5.5
5.5
5.5
5.5 | 5.0
5.5
5.0
5.5
5.0 | 5.5
5.5
5.5
5.5 | 6.5
6.5
7.0
7.0
6.5 | 6.0
6.5
6.5
6.0 | 6.0
6.0
6.5
6.5 | 9.5
9.5
10.0
10.5
10.5 | 9.0
9.0
9.5
10.0
10.0 | 9.0
9.5
10.0
10.0 | 15.5
15.0
14.5
14.0
14.0 | 14.5
14.5
13.5
13.0
13.5 | 15.0
14.5
14.0
13.5
13.5 | | 6
7
8
9
10 | 5.0
5.0
5.0
5.0 | 5.0
5.0
5.0
5.0 | 5.0
5.0
5.0
5.0 | 6.5
7.0
7.5
8.0
8.0 | 6.0
6.5
6.5
7.0
7.5 | 6.5
6.5
7.0
7.5
8.0 | 10.5
10.5
11.0
11.5
12.0 | 10.0
10.0
10.0
10.5
11.5 | 10.5
10.5
10.5
11.0
11.5 | 14.5
15.0
15.5
15.5
16.0 | 13.5
14.0
15.0
15.0 | 14.0
14.5
15.0
15.0 | | 11
12
13
14
15 | 5.5
5.0
5.0
5.0
4.5 | 4.5
4.5
4.0
4.0 | 5.0
5.0
5.0
4.5
4.0 | 8.0
8.0
8.0
8.5
9.0 | 7.5
7.5
7.5
8.0
8.0 | 8.0
8.0
8.0
8.0 | 12.5
12.5
13.0
13.0 | 11.5
12.0
12.0
12.5
13.0 | 12.0
12.0
12.5
13.0
13.5 | 16.5
16.5
17.0
17.0 | 15.5
16.0
16.5
16.5 | 16.0
16.0
16.5
17.0
17.0 | | 16
17
18
19
20 | 4.5
4.5
4.5
5.0 | 4.0
4.0
4.0
4.5
4.5 | 4.5
4.5
4.5
4.5
4.5 | 9.0
9.0
8.5
9.0
9.0 | 8.5
8.5
8.5
8.5 | 9.0
9.0
8.5
8.5
9.0 | 14.5
15.5
16.0
17.0
18.0 | 13.5
14.5
15.0
16.0
16.5 | 14.0
14.5
15.5
16.5
17.0 | 16.5
16.0
15.5
15.0 | 15.5
15.0
14.5
14.5
14.5 | 16.0
15.5
15.0
14.5
15.0 | | 21
22
23
24
25 |
5.5
5.5
6.0
6.0 | 5.0
5.5
5.5
5.5 | 5.0
5.5
5.5
5.5
6.0 | 9.0
9.0
8.5
8.5 | 8.5
8.5
8.5
8.0 | 9.0
9.0
8.5
8.5 | 18.5
18.0
18.0
18.0 | 17.0
16.5
16.5
16.5 | 17.5
17.5
17.5
17.0
17.0 | 15.0
15.0
15.5
15.5 | 14.5
14.5
14.5
15.0 | 15.0
15.0
15.0
15.0 | | 26
27
28
29
30
31 | 6.5
6.5
6.5
 | 6.0
6.5
6.0
 | 6.0
6.5
6.0
 | 8.0
8.5
8.5
8.5
9.0 | 8.0
8.0
7.5
8.0
8.0 | 8.0
8.0
8.0
8.0
8.5
9.0 | 17.0
17.0
17.0
17.0
16.0 | 16.5
16.5
16.5
15.5 | 17.0
17.0
17.0
16.5
16.0 | 17.5
19.0
20.0 | 17.0
17.5
18.0 | 17.0
18.0
19.0 | | MONTH | 6.5 | 4.0 | 5.1 | 9.0 | 6.0 | 7.9 | 18.5 | 9.0 | 13.8 | 20.0 | 13.0 | 15.4 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | MAX | MIN
AUGUST | MEAN | | MIN
SEPTEMBE | | | DAY 1 2 3 4 5 | MAX
21.5
22.0
22.0
22.0
22.0 | | MEAN 20.5 21.0 21.5 21.5 22.0 | MAX
26.5
27.0
27.5
28.0
28.0 | | MEAN 26.0 26.5 27.0 27.5 27.5 | 28.0
28.5
28.5
28.5
28.5 | | MEAN 27.5 28.0 28.0 28.5 28.5 | | 24.5
24.0 | | | 1
2
3
4 | 21.5
22.0
22.0
22.0 | JUNE 19.5 20.5 21.0 21.5 | 20.5
21.0
21.5
21.5 | 26.5
27.0
27.5
28.0 | JULY 25.5 26.0 26.5 27.0 | 26.0
26.5
27.0
27.5 | 28.0
28.5
28.5
28.5 | 27.5
27.5
28.0
28.0 | 27.5
28.0
28.0
28.5 | 25.0
24.5
24.5
24.5 | 24.5
24.0
24.0
24.0
24.0
24.0
24.0 | 25.0
24.0
24.0
24.5 | | 1
2
3
4
5
6
7
8
9
10 | 21.5
22.0
22.0
22.0
22.0
22.5
22.5
22.5
22 | JUNE 19.5 20.5 21.0 21.5 21.5 22.0 22.0 22.0 22.0 22.0 21.5 21.5 | 20.5
21.0
21.5
21.5
22.0
22.0
22.0
22.0
22.0 | 26.5
27.0
27.5
28.0
28.0
27.5
27.5
27.5
27.5
27.0 | JULY 25.5 26.0 26.5 27.0 27.5 27.0 26.5 26.5 27.0 26.5 26.5 | 26.0
26.5
27.0
27.5
27.5
27.5
27.0
27.0
27.0 | 28.0
28.5
28.5
28.5
28.5
28.5
27.5
27.0 | 27.5
27.5
28.0
28.0
28.5
28.0
27.5
27.0
27.0
26.5 | 27.5
28.0
28.0
28.5
28.5
28.5
27.5
27.0
27.0 | 25.0
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5 | 24.5
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.5
24.5
24.5 | 25.0
24.0
24.0
24.5
24.5
24.5
24.5
24.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 21.5
22.0
22.0
22.0
22.0
22.5
22.5
22.5
22 | JUNE 19.5 20.5 21.0 21.5 21.5 22.0 22.0 22.0 22.0 21.5 21.5 21.5 21.5 | 20.5
21.0
21.5
21.5
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22 | 26.5
27.0
27.5
28.0
28.0
27.5
27.5
27.5
27.5
27.0
26.5
26.5 | JULY 25.5 26.0 26.5 27.0 27.5 27.0 27.0 26.5 26.5 27.0 26.5 26.5 | 26.0
26.5
27.0
27.5
27.5
27.5
27.0
27.0
27.0
27.0
26.5
26.5
26.5 | 28.0
28.5
28.5
28.5
28.5
28.5
28.0
27.5
27.0
27.0
27.0
27.5
27.5
27.5 | 27.5
27.5
28.0
28.0
28.5
27.5
27.0
27.0
27.0
26.5
27.0
27.0
27.0
27.0 | 27.5
28.0
28.5
28.5
28.5
27.5
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.5 | 25.0
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5 | 24.5
24.0
24.0
24.0
24.0
24.0
24.0
24.5
24.5
24.5
24.5
24.0
24.0
24.0 | 25.0
24.0
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 21.5
22.0
22.0
22.0
22.5
22.5
22.5
22.5
22 | JUNE 19.5 20.5 21.0 21.5 21.5 22.0 22.0 22.0 22.0 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 | 20.5
21.0
21.5
21.5
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22 | 26.5
27.0
27.5
28.0
28.0
27.5
27.5
27.5
27.5
27.6
26.5
26.5
26.5
26.5 | JULY 25.5 26.0 26.5 27.0 27.5 27.0 27.0 26.5 26.5 27.0 26.5 26.0 26.0 26.0 26.0 26.0 26.0 | 26.0
26.5
27.0
27.5
27.5
27.5
27.0
27.0
27.0
27.0
26.5
26.5
26.5
26.5
26.5
26.5 | 28.0
28.5
28.5
28.5
28.5
28.5
28.0
27.0
27.0
27.0
27.0
27.5
28.0
27.5
28.0
28.0
28.0 | 27.5
27.5
28.0
28.0
28.5
28.0
27.5
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.5
27.0
27.5
27.5
27.5
27.5 | 27.5
28.0
28.5
28.5
28.5
27.5
27.0
27.0
27.0
27.0
27.0
27.5
27.5
27.5
27.5
27.5 | 25.0
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5 | 24.5
24.0
24.0
24.0
24.0
24.0
24.0
24.5
24.5
24.5
24.5
24.5
24.0
24.0
24.0
24.0
24.0
24.0 | 25.0
24.0
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 21.5
22.0
22.0
22.0
22.5
22.5
22.5
22.5
22 | 19.5 20.5 21.0 21.5 21.5 22.0 22.0 22.0 22.0 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 | 20.5
21.0
21.5
21.5
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22 | 26.5
27.0
27.5
28.0
28.0
27.5
27.5
27.5
27.5
27.0
26.5
26.5
26.5
26.5
27.0
27.0
27.0
27.5
27.5 | JULY 25.5 26.0 26.5 27.0 27.5 27.0 27.0 26.5 26.5 27.0 26.5 26.0 26.0 26.0 26.0 27.0 27.0 27.0 27.0 | 26.0
26.5
27.0
27.5
27.5
27.5
27.0
27.0
27.0
27.0
26.5
26.5
26.5
26.5
26.5
27.0
27.0
27.0 | 28.0
28.5
28.5
28.5
28.5
28.0
27.0
27.0
27.0
27.0
27.5
28.0
28.0
28.0
28.5
28.5
28.5 | 27.5
27.5
28.0
28.0
28.5
28.0
27.5
27.0
27.0
27.0
27.0
27.0
27.0
27.5
27.5
27.5
28.0
27.5
28.0
27.5 | 27.5
28.0
28.5
28.5
28.5
27.5
27.0
27.0
27.0
27.0
27.0
27.5
27.5
28.0
28.0
28.0
28.5
28.0
28.5 | 25.0
24.5
24.5
24.5
24.5
24.5
24.5
24.5
25.0
25.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24 | 24.5 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 | 25.0
24.0
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 21.5
22.0
22.0
22.0
22.5
22.5
22.5
22.5
22 | JUNE 19.5 20.5 21.0 21.5 21.5 22.0 22.0 22.0 22.0 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 | 20.5
21.0
21.5
21.5
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22 | 26.5
27.0
27.5
28.0
28.0
27.5
27.5
27.5
27.5
26.5
26.5
26.5
26.5
27.0
27.0
27.0
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5 | JULY 25.5 26.0 27.0 27.5 27.0 27.0 26.5 26.5 27.0 26.5 27.0 26.5 27.0 26.5 27.0 26.5 27.0 26.5 27.0 26.5 27.0 26.5 27.0 26.5 27.0 26.5 27.0 | 26.0
26.5
27.0
27.5
27.5
27.5
27.0
27.0
27.0
27.0
26.5
26.5
26.5
26.5
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0 | 28.0
28.5
28.5
28.5
28.5
28.0
27.0
27.0
27.0
27.5
28.0
28.0
28.0
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5 | 27.5
27.5
28.0
28.5
28.0
27.5
27.0
27.0
27.0
27.0
27.0
27.0
27.5
27.5
28.0
28.0
28.0
28.0
28.0
28.0
27.5
27.5
27.5
28.0
27.5
27.5
27.5
27.5
28.0
27.5
27.5
27.5
27.5
27.5
28.0
27.5
27.5
27.5
27.5
27.5
27.5
28.0
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5 | 27.5
28.0
28.5
28.5
28.5
27.5
27.0
27.0
27.0
27.0
27.0
27.5
27.5
28.0
28.0
28.0
28.5
28.0
28.5
28.0
28.5
28.0
28.5 | 25.0
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0 | 24.5 24.0 24.0 24.0 24.0 24.0 24.5 24.5 24.5 24.5 24.5 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 | 25.0
24.0
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5 | # 01467200 DELAWARE RIVER AT BENJAMIN FRANKLIN BRIDGE AT PHILADELPHIA, PA--Continued OXYGEN, DISSOLVED (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|---------------|------------------------|------------------|--------------------------|--------------|------------------|--|--|--|--|---
---| | | | OCTOBER | | | NOVEMBER | | | DECEMBER | 1 | | JANUAR | 7 | | 1 2 | 6.2
6.2 | 5.8
5.8 | 6.0
6.0 | 7.6
7.6 | 6.9 | 7.2
7.2 | 7.5
7.6 | 6.6
6.5 | 7.0
7.0 | | | | | 3 | 6.3 | 5.9 | 6.1 | 7.6 | 6.7 | 7.1 | 7.6 | 6.4 | 6.9 | | | | | 4
5 | 6.3
6.0 | 5.9
5.5 | 6.0
5.7 | 7.4
7.5 | 6.7
6.7 | 7.0
7.0 | | | | | | | | 6 | 5.9 | 5.5 | 5.7 | 7.5 | 6.9 | 7.1 | | | | | | | | 7 | 6.0 | 5.5 | 5.8 | 7.5 | 6.2 | 7.1 | | | | | | | | 8
9 | 6.3
6.4 | 5.7
6.0 | 6.0
6.1 | 7.6
7.9 | 7.0
7.2 | 7.3
7.5 | | | | | | | | 10 | 6.4 | 5.9 | 6.2 | | | | | | | | | | | 11 | 6.6 | 6.1 | 6.3 | | | | | | | | | | | 12
13 | 6.6
6.6 | 6.0
6.0 | 6.3
6.3 | | | | | | | | | | | 14
15 | 6.7
6.5 | 5.9
5.9 | 6.2
6.2 | 7.3
7.3 | 6.8
6.7 | 7.0
6.9 | 16
17 | 6.5
7.1 | 5.7
5.8 | 6.2
6.5 | 7.3
7.3 | 6.6
6.7 | 6.9
6.9 | | | | | | | | 18 | 7.1 | 6.5 | 6.8 | 7.2 | 6.7 | 6.9 | | | | | | | | 19
20 | 7.1
7.1 | 6.4
6.5 | 6.8
6.8 | 7.3
7.3 | 6.7
6.8 | 6.9
7.0 | | | | | | | | 21 | 7.0 | 6.3 | 6.6 | 7.5 | 6.8 | 7.1 | | | | | | | | 22 | 6.9 | 6.1 | 6.5 | 7.4 | 6.9 | 7.1 | | | | | | | | 23
24 | 6.8
6.7 | 6.2
6.1 | 6.5
6.4 | 7.5
7.4 | 7.0
6.9 | 7.2
7.1 | | | | | | | | 25 | 6.6 | 6.0 | 6.3 | 7.6 | 7.0 | 7.3 | | | | | | | | 26 | 6.9 | 6.2 | 6.5 | 7.5 | 7.0 | 7.2 | | | | | | | | 27
28 | 7.3
7.6 | 6.5
6.7 | 6.8
7.1 | 7.6
7.6 | 6.9
6.7 | 7.2
7.1 | | | | | | | | 29 | 7.4 | 6.8 | 7.2 | 7.6 | 6.7 | 7.1 | | | | | | | | 30
31 | 7.7
7.7 | 6.9
7.0 | 7.3
7.3 | 7.6
 | 6.5
 | 7.0 | | | | | | | | MONTH | 7.7 | 5.5 | 6.4 | 7.9 | 6.2 | 7.1 | 7.6 | 6.4 | 7.0 | DAY | MAX | MIN | MEAN | | DAY | | MIN
FEBRUARY | MEAN | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | 1 | | | MEAN | MAX | | MEAN | MAX
10.4 | | MEAN | MAX
8.2 | | MEAN | | 1
2 | :
 | FEBRUARY | | | MARCH | | 10.4
10.4 | APRIL 10.1 10.2 | 10.3
10.3 | 8.2
8.2 | MAY 6.9 7.4 | 7.7
7.9 | | 1
2
3
4 | :

 | FEBRUARY

 | | | MARCH |

 | 10.4
10.4
10.5
10.2 | 10.1
10.2
10.1
10.0 | 10.3
10.3
10.3 | 8.2
8.2
8.6
8.8 | MAY
6.9
7.4
7.8
8.3 | 7.7
7.9
8.2
8.6 | | 1
2
3 |
 | FEBRUARY |
 | | MARCH |
 | 10.4
10.4
10.5 | 10.1
10.2
10.1 | 10.3
10.3
10.3 | 8.2
8.2
8.6 | MAY 6.9 7.4 7.8 | 7.7
7.9
8.2 | | 1
2
3
4
5 | | FEBRUARY | | | MARCH | | 10.4
10.4
10.5
10.2
10.1 | 10.1
10.2
10.1
10.0
9.9 | 10.3
10.3
10.3
10.1
10 | 8.2
8.2
8.6
8.8
8.7 | MAY 6.9 7.4 7.8 8.3 8.4 | 7.7
7.9
8.2
8.6
8.6 | | 1
2
3
4
5 | :

 | FEBRUARY | |

 | MARCH |

 | 10.4
10.4
10.5
10.2 | 10.1
10.2
10.1
10.0
9.9 | 10.3
10.3
10.3
10.1 | 8.2
8.2
8.6
8.8
8.7 | MAY 6.9 7.4 7.8 8.3 8.4 | 7.7
7.9
8.2
8.6
8.6 | | 1
2
3
4
5
6
7
8 | | FEBRUARY |

 | ===
===
===
=== | MARCH |

 | 10.4
10.4
10.5
10.2
10.1
9.9
9.9
9.8
9.7 | APRIL 10.1 10.2 10.1 10.0 9.9 9.8 9.6 9.6 9.6 9.5 | 10.3
10.3
10.3
10.1
10
9.9
9.7
9.7
9.7 | 8.2
8.6
8.8
8.7
8.5
8.3
8.4 | MAY 6.9 7.4 7.8 8.3 8.4 8.2 7.9 7.9 8.1 | 7.7
7.9
8.2
8.6
8.6
8.1
8.1 | | 1
2
3
4
5
6
7
8
9 | | FEBRUARY | | | MARCH | | 10.4
10.4
10.5
10.2
10.1
9.9
9.9
9.8
9.7
9.6 | APRIL
10.1
10.2
10.1
10.0
9.9
9.8
9.6
9.6
9.5
9.4 | 10.3
10.3
10.3
10.1
10.1
9.9
9.7
9.7
9.6
9.5 | 8.2
8.2
8.6
8.8
8.7
8.5
8.3
8.4
8.4 | MAY 6.9 7.4 7.8 8.3 8.4 8.2 7.9 7.9 8.1 8.0 | 7.7
7.9
8.2
8.6
8.6
8.1
8.1
8.1 | | 1
2
3
4
5
6
7
8 | | FEBRUARY |

 |

 | MARCH |

 | 10.4
10.4
10.5
10.2
10.1
9.9
9.9
9.8
9.7 | APRIL 10.1 10.2 10.1 10.0 9.9 9.8 9.6 9.6 9.6 9.5 | 10.3
10.3
10.3
10.1
10
9.9
9.7
9.7
9.7 | 8.2
8.6
8.8
8.7
8.5
8.3
8.4 | MAY 6.9 7.4 7.8 8.3 8.4 8.2 7.9 7.9 8.1 | 7.7
7.9
8.2
8.6
8.6
8.1
8.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13 | | FEBRUARY | | | MARCH | | 10.4
10.4
10.5
10.2
10.1
9.9
9.8
9.7
9.6 | APRIL 10.1 10.2 10.1 10.0 9.9 9.8 9.6 9.6 9.5 9.4 9.4 9.2 9.0 | 10.3
10.3
10.3
10.1
10.1
9.9
9.7
9.7
9.6
9.5 | 8.2
8.2
8.6
8.8
8.7
8.5
8.3
8.4
8.4
8.2 | MAY 6.9 7.4 7.8 8.3 8.4 8.2 7.9 7.9 7.9 7.9 7.6 7.3 | 7.7
7.9
8.2
8.6
8.6
8.1
8.1
8.1
8.2
8.1 | | 1
2
3
4
5
6
7
8
9
10 | : | FEBRUARY | | | MARCH | | 10.4
10.4
10.5
10.2
10.1
9.9
9.8
9.7
9.6 | APRIL 10.1 10.2 10.1 10.0 9.9 9.8 9.6 9.6 9.5 9.4 9.4 9.2 | 10.3
10.3
10.3
10.1
10
9.9
9.7
9.7
9.6
9.5 | 8.2
8.2
8.6
8.8
8.7
8.5
8.3
8.4
8.2 | MAY 6.9 7.4 7.8 8.3 8.4 8.2 7.9 7.9 8.1 8.0 | 7.7
7.9
8.2
8.6
8.6
8.1
8.1
8.1
8.2
8.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | | MARCH | | 10.4
10.4
10.5
10.2
10.1
9.9
9.9
9.8
9.7
9.6
9.7
9.5
9.3
9.2
9.2 | APRIL 10.1 10.2 10.1 10.0 9.9 9.8 9.6 9.6 9.5 9.4 9.2 9.0 8.9 8.8 8.6 | 10.3
10.3
10.3
10.1
10
9.9
9.7
9.6
9.5
9.5
9.4
9.1
8.9 | 8.2
8.2
8.6
8.8
8.7
8.5
8.3
8.4
8.2
8.1
7.7
7.4
7.8 | MAY 6.9 7.4 7.8 8.3 8.4 8.2 7.9 7.9 8.1 8.0 7.9 7.6 7.3 6.7 | 7.7
7.9
8.2
8.6
8.6
8.1
8.1
8.2
8.1
8.0
7.9
7.5
7.0
7.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | | MARCH | | 10.4
10.4
10.5
10.2
10.1
9.9
9.8
9.7
9.6
9.7
9.5
9.3
9.2
9.2 | APRIL 10.1 10.2 10.1 10.0 9.9 9.8 9.6 9.6 9.5 9.4 9.4 9.2 9.0 8.9 8.8 8.6 8.5 | 10.3
10.3
10.3
10.1
10
9.9
9.7
9.6
9.5
9.5
9.4
9.1
8.9 | 8.2
8.2
8.6
8.8
8.7
8.5
8.3
8.4
8.2
8.1
7.7
7.4
7.8
8.3
8.3 | MAY 6.9 7.4 7.8 8.3 8.4 8.2 7.9 7.9 8.1 8.0 7.9 7.6 7.3 6.7 6.8 | 7.7
7.9
8.2
8.6
8.6
8.1
8.1
8.1
8.2
8.1
8.0
7.9
7.5
7.0
7.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | | FEBRUARY | | | MARCH | | 10.4
10.4
10.5
10.2
10.1
9.9
9.9
9.8
9.7
9.6
9.7
9.5
9.2
9.2 | APRIL 10.1 10.2 10.1 10.0 9.9 9.8 9.6 9.6 9.5 9.4 9.2 9.0 8.9 8.8 8.6 8.5 8.2 7.7 | 10.3
10.3
10.3
10.1
10
9.9
9.7
9.6
9.5
9.5
9.4
9.1
8.9
8.8
8.7
8.5 | 8.2
8.2
8.6
8.8
8.7
8.5
8.3
8.4
8.2
8.1
7.7
7.4
7.8
8.3
8.2
8.3
8.4 | MAY 6.9 7.4 7.8 8.3 8.4 8.2 7.9 7.6 8.1 8.0 7.9 7.6 7.3 6.7 6.8 7.3 7.8 6.6 7.4 | 7.7
7.9
8.2
8.6
8.6
8.1
8.1
8.2
8.1
8.0
7.9
7.5
7.0
7.2
7.8
8.0
7.4 | | 1 2 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 | | FEBRUARY | | | MARCH | | 10.4
10.4
10.5
10.2
10.1
9.9
9.8
9.7
9.6
9.7
9.5
9.3
9.2
9.2 | APRIL 10.1 10.2 10.1 10.0 9.9 9.8 9.6 9.6 9.5 9.4 9.4 9.2 9.0 8.9 8.8 8.6 8.5 8.2 | 10.3
10.3
10.3
10.1
10
9.9
9.7
9.7
9.6
9.5
9.5
9.4
9.1
9.1
8.8
8.8
8.7
8.5 | 8.2
8.6
8.8
8.7
8.5
8.3
8.4
8.2
8.2
8.1
7.7
7.4
7.8 | MAY 6.9 7.4 7.8 8.3 8.4 8.2 7.9 7.9 7.6 7.3 6.7 6.8 7.3 6.7 6.8 | 7.7
7.9
8.2
8.6
8.6
8.1
8.1
8.1
8.2
8.1
8.0
7.9
7.5
7.0
7.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | | FEBRUARY | | | MARCH | | 10.4
10.4
10.5
10.2
10.1
9.9
9.8
9.7
9.6
9.7
9.5
9.3
9.2
9.2
9.0
9.0
8.7
7.7 | APRIL 10.1 10.2 10.1 10.0 9.9 9.8 9.6 9.6 9.5 9.4 9.2 9.0 8.9 8.8 8.6 8.5 8.2 7.7 7.3 6.8 | 10.3
10.3
10.3
10.1
10
9.9
9.7
9.6
9.5
9.5
9.4
9.1
8.9
8.8
8.7
8.5
7.5 | 8.2
8.8
8.6
8.8
8.7
8.5
8.3
8.4
8.2
8.1
7.7
7.4
7.8
8.3
8.2
8.3
8.4
8.2 | MAY 6.9 7.4 8.3 8.4 8.2 7.9 8.1 8.0 7.9 7.6 8.7 6.8 7.3 7.8 6.7 7.3 7.8 | 7.7
7.9
8.2
8.6
8.6
8.4
8.1
8.2
8.1
8.0
7.9
7.5
7.0
7.2
7.8
8.0
7.8 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | | FEBRUARY | | | MARCH | | 10.4
10.4
10.5
10.2
10.1
9.9
9.8
9.7
9.6
9.7
9.5
9.3
9.2
9.0
8.7
8.2
7.7 | APRIL 10.1 10.2 10.1 10.0 9.9 9.8 9.6 9.6 9.5 9.4 9.4 9.2 9.0 8.9 8.8 8.6 8.5 8.2 7.7 7.3 6.8 6.5 6.3 | 10.3
10.3
10.1
10.1
10.1
9.9
9.7
9.7
9.5
9.5
9.5
9.5
9.5
9.5
9.5
7.1
8.9
8.8
8.7
8.5
8.0
7.5 | 8.2
8.6
8.8
8.7
8.5
8.3
8.4
8.2
8.1
7.7
7.4
7.8
8.3
8.3
8.4
8.2 | MAY 6.9 7.4 7.8 8.3 8.4 8.2 7.9 7.9 8.0 7.9 7.6 7.3 6.7 6.8 7.3 7.8 7.9 | 7.7
7.9
8.2
8.6
8.6
8.1
8.1
8.1
8.2
8.1
8.0
7.9
7.5
7.0
7.2
7.8
8.0
7.8 | |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | | FEBRUARY | | | MARCH | | 10.4
10.4
10.5
10.2
10.1
9.9
9.8
9.7
9.6
9.7
9.5
9.3
9.2
9.2 | APRIL 10.1 10.2 10.1 10.0 9.9 9.8 9.6 9.6 9.5 9.4 9.2 9.0 8.9 8.8 8.6 8.5 8.2 7.7 7.3 6.8 6.5 | 10.3
10.3
10.3
10.1
10
9.9
9.7
9.6
9.5
9.5
9.4
9.1
8.9
8.8
8.7
8.5
7.5 | 8.2
8.2
8.6
8.8
8.7
8.5
8.3
8.4
8.2
8.1
7.7
7.4
7.8
8.3
8.2
8.0
8.3
8.4
8.2 | MAY 6.9 7.4 8.3 8.4 8.2 7.9 7.9 8.0 7.9 7.6 7.3 6.8 7.3 7.8 | 7.7
7.9
8.2
8.6
8.6
8.1
8.1
8.2
8.1
8.0
7.9
7.5
7.0
7.2
7.8
8.0
7.4
8.0
7.8 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | | FEBRUARY | | | MARCH | | 10.4
10.4
10.5
10.2
10.1
9.9
9.8
9.7
9.6
9.7
9.5
9.3
9.2
9.2
9.0
8.7
8.2
7.7 | APRIL 10.1 10.2 10.1 10.0 9.9 9.8 9.6 9.6 9.5 9.4 9.4 9.2 9.0 8.9 8.8 8.6 8.5 8.2 7.7 7.3 6.8 6.5 6.3 6.3 6.3 | 10.3
10.3
10.1
10.1
10.9
9.7
9.7
9.6
9.5
9.5
9.4
9.1
8.9
8.8
8.7
8.5
8.0
7.5 | 8.2
8.2
8.6
8.8
8.7
8.5
8.3
8.4
8.2
8.1
7.7
7.4
7.8
8.3
8.4
8.2
8.3
8.4 | MAY 6.9 7.4 8.3 8.4 8.2 7.9 8.1 8.0 7.9 7.6 8.7 7.3 6.7 6.8 7.3 7.8 7.8 7.8 7.8 | 7.7
7.9
8.2
8.6
8.6
8.4
8.1
8.2
8.1
8.0
7.9
7.5
7.0
7.2
7.8
8.0
7.8
8.0
7.9
8.0
7.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27 | | FEBRUARY | | | MARCH | | 10.4
10.4
10.5
10.2
10.1
9.9
9.8
9.7
9.6
9.7
9.5
9.3
9.2
9.2
9.0
8.7
7.7
7.4
7.0
6.8
6.7
6.5 | APRIL 10.1 10.2 10.1 10.0 9.9 9.8 9.6 9.6 9.5 9.4 9.2 9.0 8.8 8.6 8.5 8.2 7.7 7.3 6.8 6.5 6.3 6.0 5.9 5.8 | 10.3
10.3
10.3
10.1
10
9.9
9.7
9.6
9.5
9.5
9.4
9.1
8.9
8.8
8.7
8.5
7.5
7.1
6.5
6.4
6.2
6.0 | 8.2
8.2
8.6
8.8
8.7
8.5
8.3
8.4
8.2
8.1
7.7
7.4
7.8
8.3
8.2
8.0
8.2
8.1
8.2
8.3
8.4
8.2 | MAY 6.9 7.4 7.8 8.3 8.4 8.2 7.9 7.6 8.0 7.9 7.6 7.3 7.8 6.7 7.3 7.8 7.9 7.8 7.9 | 7.7
7.9
8.2
8.6
8.6
8.4
8.1
8.2
8.1
8.0
7.9
7.5
7.0
7.2
7.8
8.0
7.4
8.0
7.8 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | | FEBRUARY | | | MARCH | | 10.4
10.4
10.5
10.2
10.1
9.9
9.8
9.7
9.6
9.7
9.5
9.3
9.2
9.2
9.0
8.7
7.7
7.4
7.0
6.8
6.7
6.5 | APRIL 10.1 10.2 10.1 10.0 9.9 9.8 9.6 9.6 9.5 9.4 9.2 9.0 8.9 8.8 8.6 8.5 8.2 7.7 7.3 6.8 6.5 6.3 6.0 5.9 5.8 | 10.3
10.3
10.3
10.1
10
9.9
9.7
9.6
9.5
9.5
9.1
8.9
8.8
8.7
8.5
7.5
7.1
6.5
6.4
6.0
6.0
5.9 | 8.2
8.6
8.8
8.7
8.5
8.3
8.4
8.2
8.1
7.7
7.4
7.8
8.3
8.2
8.0
8.4
8.2 | MAY 6.9 7.4 7.8 8.3 8.4 8.2 7.9 7.6 7.3 6.7 6.8 7.3 7.8 7.9 7.8 7.9 7.8 7.9 | 7.7
7.9
8.2
8.6
8.6
8.1
8.1
8.1
8.0
7.9
7.5
7.0
7.2
7.8
8.0
7.7
8.0
8.1
8.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
20
20
20
20
20
20
20
20
20
20
20
20
20 | | FEBRUARY | | | MARCH | | 10.4
10.4
10.5
10.2
10.1
9.9
9.8
9.7
9.6
9.7
9.5
9.3
9.2
9.2
9.0
8.7
7.7
7.4
7.0
6.8
6.7
6.5
6.1
6.1
7.6 | APRIL 10.1 10.2 10.1 10.0 9.9 9.8 9.6 9.5 9.4 9.2 9.0 8.9 8.8 8.6 8.5 8.2 7.7 7.3 6.8 6.5 6.3 6.0 5.9 5.8 5.7 5.6 6.0 | 10.3
10.3
10.3
10.1
10
9.9
9.7
9.6
9.5
9.5
9.4
9.1
8.9
8.8
8.7
8.5
7.5
7.1
6.7
6.5
6.0
6.0
6.8 | 8.2
8.2
8.6
8.8
8.7
8.5
8.3
8.4
8.2
8.1
7.7
7.4
7.8
8.3
8.2
8.0
8.2
8.1
8.2
8.3
8.4
7.7
7.7
7.8 | MAY 6.9 7.4 7.8 8.3 8.4 8.2 7.9 7.6 8.0 7.9 7.6 8.7 7.8 7.8 7.8 7.8 7.8 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.9 | 7.7
7.9
8.2
8.6
8.6
8.1
8.1
8.2
8.1
8.0
7.9
7.5
7.0
7.2
7.8
8.0
7.4
8.0
7.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | | FEBRUARY | | | MARCH | | 10.4
10.4
10.5
10.2
10.1
9.9
9.8
9.7
9.6
9.7
9.5
9.3
9.2
9.2
9.0
9.0
8.7
7.7
7.4
7.0
6.8
6.7
6.5 | APRIL 10.1 10.2 10.1 10.0 9.9 9.8 9.6 9.5 9.4 9.4 9.2 9.0 8.9 8.8 8.6 8.5 27.7 7.3 6.8 6.5 6.3 6.0 5.9 5.8 5.7 5.5 | 10.3
10.3
10.3
10.1
10
9.9
9.7
9.6
9.5
9.5
9.4
9.1
8.9
8.8
8.7
5.5
7.1
6.7
6.4
6.2
6.0
6.0
6.0 | 8.2
8.8
8.6
8.8
8.7
8.5
8.3
8.4
8.2
8.1
7.7
7.4
7.8
8.3
8.2
8.1
8.2
8.3
8.4 | MAY 6.9 7.4 7.8 8.3 8.4 8.2 7.9 8.1 8.0 7.9 7.6 6.8 7.3 7.8 6.7 6.8 7.3 7.8 7.8 7.8 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 | 7.7
7.9
8.2
8.6
8.6
8.1
8.1
8.2
8.1
8.0
7.9
7.5
7.0
7.2
7.8
8.0
7.8
8.0
7.8
8.0
7.7
8.0
8.1 | # 01467200 DELAWARE RIVER AT BENJAMIN FRANKLIN BRIDGE AT PHILADELPHIA, PA--Continued OXYGEN, DISSOLVED (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | | | JUNE | | | JULY | | | AUGUST | | S | EPTEMBE | R | | 1
2
3
4
5 | 7.3
7.2
7.1
7.1
6.9 | 7.0
6.9
6.5
6.6 | 7.2
7.0
6.9
6.8
6.6 | 5.1
5.1
4.9
4.6
4.9 | 4.2
4.2
3.9
3.7
3.8 | 4.6
4.5
4.2
4.0
4.1 | 4.8
4.7
4.6
4.4 | 4.0
4.0
3.9
3.7
3.5 | 4.3
4.3
4.2
4.0
3.8 | 4.7
4.7
4.6
4.6
5.0 | 3.9
4.0
4.1
4.0
4.3 | 4.3
4.3
4.4
4.7 | | 6
7
8
9
10 | 6.4
6.1
6.4
6.4 | 6.1
5.7
5.8
5.8
5.9 | 6.2
5.9
6.0
6.2
6.2 | 5.1
5.6
5.9
6.3
6.0 | 4.0
4.2
4.5
4.7
4.5 | 4.4
4.7
5.0
5.3
5.1 | 4.0
4.4
4.5
4.7 | 3.2
3.6
3.8
4.2
4.3 | 3.7
4.0
4.2
4.5
4.5 | 5.1
5.1
5.0
5.0
4.8 | 4.5
4.6
4.6
4.5
4.2 | 4.8
4.8
4.8
4.7
4.5 | | 11
12
13
14
15 | 6.4
6.3
6.2
6.1
5.8 | 5.8
5.8
5.7
5.3 | 6.1
6.0
5.9
5.6
5.5 | 5.9
6.0
6.0
5.7
5.3 | 4.3
4.5
4.9
4.6
4.4 | 5.0
5.2
5.2
5.0
4.6 | 4.8
4.7
4.5
4.5 | 4.3
4.3
4.2
4.1
4.1 | 4.5
4.5
4.3
4.3 | 4.7
4.8
4.9
5.2
5.0 | 4.0
4.3
4.3
4.6 | 4.3
4.4
4.6
4.9
4.8 | | 16
17
18
19
20 | 5.9
6.4
6.3
6.3 | 5.2
5.7
5.7
5.7
5.6 | 5.5
6.0
5.9
6.0
5.9 | 5.0
4.7
4.5
4.5 | 4.2
4.1
3.9
3.9
3.7 | 4.5
4.4
4.2
4.2
4.0 | 4.7
4.6
4.6
4.5 | 4.2
4.1
4.0
4.0
3.9 | 4.4
4.3
4.3
4.3 | 5.0
4.9
5.0
5.0 | 4.3
4.5
4.5
4.5
4.5 | 4.7
4.7
4.7
4.7 | | 21
22
23
24
25 | 6.4
6.5
6.5
6.4
6.1 | 5.5
5.5
5.5
5.5 | 5.9
6.0
6.1
6.0
5.8 | 4.3
4.3
4.6
4.6
4.7 | 3.7
3.7
3.7
3.9
4.2 | 3.9
4.0
4.1
4.2
4.5 | 4.7
4.7
4.6
4.6 | 4.0
4.1
4.1
4.0
3.6 | 4.4
4.4
4.3
3.8 | 5.0
5.0
5.0
5.1
5.2 | 4.5
4.5
4.5
4.5
4.8 | 4.7
4.8
4.8
4.9
5.0 | | 26
27
28
29
30
31 | 5.9
5.7
5.4
5.2
5.2 | 5.1
5.0
4.7
4.5
4.4 | 5.5
5.3
4.9
4.8
4.7 | 4.7
4.7
4.5
4.5
4.4
4.6 | 4.3
4.1
4.1
3.9
3.9
4.0 | 4.5
4.4
4.2
4.1
4.1
4.2 | 3.9
3.5
4.0
4.0
3.9
4.5 | 3.3
3.2
3.3
3.6
3.3 | 3.6
3.4
3.6
3.8
3.7 | 5.3
5.3
4.9
5.4
5.2 | 4.7
4.7
4.4
4.5
4.4 | 5.0
5.0
4.7
4.9
4.8 | | MONTH | 7.3 | 4.4 | 5.9 | 6.3 | 3.7 | 4.5 | 4.8 | 3.2 | 4.1 | 5.4 | 3.9 | 4.7 | #### 01468500 SCHUYLKILL RIVER AT LANDINGVILLE, PA LOCATION.--Lat 40°37'45", long 76°07'30", Schuylkill County, Hydrologic Unit 02040203, on left bank 10 ft upstream from highway bridge on SR 2011 at Landingville, 0.1 mi upstream from Mahannon Creek, and 5.0 mi downstream from West Branch Schuylkill River. DRAINAGE AREA.--133 mi². PERIOD OF RECORD.--August 1947 to April 1953, October 1963 to September 1965, August 1973 to current year. **REVISED RECORDS.--**WDR PA-75-1: 1973(P), 1974(P). **GAGE.**—Water-stage recorder and crest-stage gage. Datum of gage is 470.64 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 27, 1947, nonrecording gage 10 ft downstream at same datum. **REMARKS**.--Records fair except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. Satellite and landline telemetry at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1972 reached a stage of 17.36 ft,
discharge, about 14,000 ft³/s. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,300 ft³/s and maximum (*): | Date
May 18 | Time
0900 | | /s | Gage Height
(ft)
*5.96 | | | Date
(No p | | | scharge
ft ³ /s
base o | Gage Height
(ft)
discharge.) | | |----------------------------------|---|---|--|--|--|--|---|--|--|---|------------------------------------|---| | | | | DISCHA | RGE, CUBIC FE | EET PER SE | ECOND, WATI
DAILY MEA | | OCTOBER 2001 '
S | TO SEP | TEMBER 2 | 2002 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUI | L AUG | SEP | | 1
2
3
4
5 | 77
79
77
75
73 | 62
62
57
56
56 | 125
92
86
83
83 | e95
e95
e100
101
86 | 144
138
129
132
130 | 79
82
258
151
135 | 395
326
310
284
256 | 380
614
542
482
435 | 206
186
179
178
173 | 94
90
87
79 | 52
7 52
3 53 | 66
61
52
53
52 | | 6
7
8
9
10 | 69
63
64
70
71 | 60
61
64
63
58 | 84
93
102
158
113 | 84
91
80
79
84 | 127
127
123
110
116 | 133
130
122
121
228 | 244
229
210
209
244 | 390
359
337
409
340 | 242
267
173
151
141 | 7°
84
83
8°
93 | 4 55
3 54
7 54 | 52
49
44
44
42 | | 11
12
13
14
15 | 67
60
59
63
181 | 54
54
54
54
53 | 99
91
94
119
111 | 105
98
92
89
86 | 162
121
112
108
107 | 154
148
151
150
143 | 192
180
187
223
691 | 287
298
357
442
358 | 127
265
222
249
215 | 79
76
69
71
68 | 5 49
9 47
1 46 | 38
38
40
42
98 | | 16
17
18
19
20 | 85
91
74
70
62 | 54
53
54
55
64 | 97
106
201
158
149 | 86
85
83
e85
e92 | 109
106
103
104
107 | 143
137
227
207
357 | 478
421
380
366
334 | 342
323
896
682
585 | 190
161
141
160
128 | 63
63
63
66 | 3 46
3 45
7 46 | 224
84
73
64
63 | | 21
22
23
24
25 | 61
61
62
61
58 | 61
59
59
55
198 | 140
128
116
134
115 | 93
91
92
147
157 | 109
102
96
91
91 | 417
369
331
301
279 | 302
292
258
232
242 | 510
447
402
365
329 | 126
121
119
113
108 | 61
61
91
87 | 1 48
5 57
7 58 | 60
74
153
73
60 | | 26
27
28
29
30
31 | 55
53
54
56
59
62 | 197
100
80
78
121 | 107
e100
105
101
94
e90 | 133
123
119
117
126
130 | 88
88
81
 | 363
727
537
464
406
369 | 233
211
397
450
400 | 307
286
270
258
237
213 | 103
178
157
102
97 | 6°
66
59
58 | 5 44
3 43
9 75
3 50 | 68
381
415
166
123 | | MEAN
MAX
MIN
CFSM | 2172
70.1
181
53
0.53
0.61 | 2156
71.9
198
53
0.54
0.60 | 3474
112
201
83
0.84
0.97 | 3124
101
157
79
0.76
0.87 | 3161
113
162
81
0.85
0.88 | 7819
252
727
79
1.90
2.19 | 9176
306
691
180
2.30
2.57 | 12482
403
896
213
3.03
3.49 | 4978
166
267
97
1.25
1.39 | 2288
73.8
99
59
0.59 | 3 51.4
5 75
6 43
6 0.39 | 2852
95.1
415
38
0.71
0.80 | | STATISTIC | S OF MON | | | FOR PERIOD (| | • | | | | | | | | MIN | 173
760
1977
28.5
1964 | 254
569
1952
52.5
1965 | 335
918
1997
59.7
1999 | 326
887
1979
41.2
1981 | 319
620
1981
113
2002 | 435
929
1977
164
1985 | 428
1079
1993
157
1985 | 355
811
1989
127
1965 | 226
562
1982
77.1
1965 | 167
471
1984
54.2
1965 | 1 253
4 2000
2 51.4 | 152
475
1975
55.6
1964 | e Estimated. # 01468500 SCHUYLKILL RIVER AT LANDINGVILLE, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | FOR PERIOD OF DAILY RECORD | |--------------------------|------------------------|---------------------|----------------------------| | ANNUAL TOTAL | 59767 | 55275 | | | ANNUAL MEAN | 164 | 151 | 272 | | HIGHEST ANNUAL MEAN | | | 441 1952 | | LOWEST ANNUAL MEAN | | | 122 1965 | | HIGHEST DAILY MEAN | 740 Mar 30 | 896 May 18 | 4660 Apr 16 1983 | | LOWEST DAILY MEAN | 53 Oct 27 | 38 Sep 11,12 | 21 Nov 4 1963 | | ANNUAL SEVEN-DAY MINIMUM | 54 Nov 11 | 41 Sep 8 | 23 Oct 25 1963 | | MAXIMUM PEAK FLOW | | 1290 May 18 | ab 8570 Nov 25 1950 | | MAXIMUM PEAK STAGE | | 5.96 May 18 | 13.60 Apr 16 1983 | | INSTANTANEOUS LOW FLOW | | 35 Sep 11 | 19 Oct 30 1963 | | ANNUAL RUNOFF (CFSM) | 1.23 | 1.14 | 2.05 | | ANNUAL RUNOFF (INCHES) | 16.72 | 15.46 | 27.82 | | 10 PERCENT EXCEEDS | 326 | 357 | 541 | | 50 PERCENT EXCEEDS | 132 | 99 | 190 | | 90 PERCENT EXCEEDS | 62 | 53 | 74 | $[\]begin{array}{ll} \textbf{a} & \text{From rating curve extended above 5,000 ft}^3/s. \\ \textbf{b} & \text{Gage height, 13.29 ft.} \end{array}$ #### 01469500 LITTLE SCHUYLKILL RIVER AT TAMAQUA, PA LOCATION.--Lat 40°48'25", long 75°58'20", Schuylkill County, Hydrologic Unit 02040203, on left bank along State Highway 309, 0.6 mi upstream from Tamaqua, and 0.8 mi upstream from Panther Creek. **DRAINAGE AREA**.--42.9 mi². **PERIOD OF RECORD.**—October 1919 to current year. June 1916 to September 1919, gage heights and discharge measurements only, in reports of Water Supply Commission of Pennsylvania. REVISED RECORDS.--WSP 756: Drainage area. WSP 971: 1942. WSP 1302: 1922, 1926-30. WSP 1432: 1920-21, 1933. GAGE.--Water-stage recorder and broad-crested weir. Datum of gage is 817.48 ft above National Geodetic Vertical Datum of 1929. Prior to June 21, 1929, nonrecording gage at site 3,600 ft downstream at datum 28.64 ft lower. **REMARKS.**--Records good except those for estimated daily discharges, which are poor. Flow regulated by Still Creek Reservoir (station 01469200) 6.5 mi upstream. Several measurements of water temperature were made during the year. Satellite telemetry at station. COOPERATION .-- Records of diversion and change in contents of Still Creek Reservoir provided by the Borough of Tamaqua. # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |------------------------------------|---------------------------------|------------------------------------|-----------------------------------|----------------------------------|----------------------------------|--|-----------------------------------|-----------------------------------|----------------------------------|----------------------------------|---------------------------------------|--------------------------------------| | 1
2
3
4
5 | e23
e20
e18
17
16 | 10
10
10
10 | 63
47
37
36
34 | e38
e36
e34
33
32 | 53
55
50
51
49 | 31
30
86
66
51 | 162
127
114
104
93 | 127
159
135
116
136 | 68
59
53
49
48 | 30
27
26
e24
e23 | 11
11
12
10
9.5 | 12
12
8.7
7.7
6.8 | | 6
7
8
9
10 | 17
16
14
13 | 9.4
9.2
9.2
9.1
8.7 | 35
31
33
51
43 | 33
43
37
33
32 | 47
47
46
44
45 | 49
48
47
50
112 | 87
82
77
76
84 | 135
123
111
136
124 | 70
98
66
53
47 | 22
21
20
19
19 | 9.1
8.4
8.3
7.9 | 6.5
6.2
5.9
5.8
5.6 | | 11
12
13
14
15 | 13
13
13
14
29 | 8.7
8.4
8.4
8.5
9.3 | 38
34
34
37
41 | 37
38
36
33
31 | 74
59
53
48
48 | 85
80
79
78
76 | 82
91
92
97
158 | 101
107
151
206
167 | 41
47
53
64
67 | 19
17
17
17
17 | 7.7
7.1
7.1
6.9
8.3 | 5.3
5.1
5.2
5.1 | | 16
17
18
19
20 | 20
24
18
16
15 | 8.9
8.5
8.3
8.3 | 35
36
69
61
56 | 30
30
29
28
31 | 48
48
47
44
44 | 74
68
78
80
105 | 155
148
142
130
118 | 153
142
297
260
237 | 59
49
48
53
56 | 16
15
15
16
17 | 9.4
7.7
7.2
6.8
6.5 | 59
22
19
59
57 | | 21
22
23
24
25 | 15
14
14
14
13 | 9.3
8.6
8.3
8.5 | 52
51
58
69
63 | 30
29
27
32
44 | 46
43
40
38
36 | 141
134
127
120
111 | 111
108
95
76
75 | 201
160
137
122
109 | 45
40
37
36
37 | 16
15
e14
e16
e18 | 6.2
6.0
6.4
10
9.0 | 58
59
68
63
61 | | 26
27
28
29
30
31 | 12
11
10
10
10 | e88
e90
e80
e74
69 | 57
52
49
46
41
e40 | 40
38
38
40
44
46 | 35
36
33
 | 134
332
259
219
179
154 | 68
63
120
173
135 | 99
93
87
91
79
72 | 33
39
57
39
33 | 15
15
15
14
14
12 | 6.9
6.7
6.3
11
8.8
7.3 | 62
127
147
54
36 | | TOTAL
MEAN
MAX
MIN
(†) | 475
15.32
29
10
3.0 |
661.6
22.05
90
8.3
2.9 | 1429
46.10
69
31
2.8 | 1082
34.90
46
27
3.0 | 1307
46.68
74
33
3.2 | 3283
105.9
332
30
3.2 | 3243
108.1
173
63
3.4 | 4373
141.1
297
72
3.8 | 1544
51.47
98
33
4.0 | 561
18.10
30
12
4.1 | 254.4
8.206
12
6.0
4.1 | 1064.9
35.50
147
5.1
4.3 | [†] Diversion from Still Creek Reservoir, equivalent in cubic feet per second. e Estimated. #### 01469500 LITTLE SCHUYLKILL RIVER AT TAMAQUA, PA--Continued | : | STATISTICS | OF. | MONTHLY | MEAN DATA | FOR WATER | YEARS 19. | 33 - 2002, | BY WATER | YEAR (WY) | (SINC | E REGULATI | <u>ON</u>) | | |---|------------------------|----------------------------|--------------------------------------|---------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | ľ | MAX
(WY) 1
MIN 5 | 9.17
317
977
5.82 | 80.40
242
1952
7.81
1942 | 321
1997
12.2 | 89.45
338
1996
8.57
1981 | 94.61
242
1951
26.6
1934 | 141.0
365
1936
42.5
1985 | 141.4
475
1993
46.6
1985 | 107.2
315
1989
21.1
1941 | 64.66
430
1972
14.6
1941 | 49.79
394
1947
8.87
1965 | 38.47
226
1933
6.25
1944 | 43.07
259
1933
6.46
1964 | | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1933 - 2002 | |--------------------------|------------------------|---------------------|---------------------------| | ANNUAL TOTAL | 18058.3 | 19277.9 | | | ANNUAL MEAN | 49.5 | 52.8 | 83.4 | | HIGHEST ANNUAL MEAN | | | 155 195 <u>2</u> | | LOWEST ANNUAL MEAN | | | 33.8 1965 | | HIGHEST DAILY MEAN | 285 Mar 30 | 332 Mar 27 | 2790 Aug 24 1933 | | LOWEST DAILY MEAN | 7.6 Sep 19 | 5.1 Sep 12,14 | 2.9 Sep 2 1966 | | ANNUAL SEVEN-DAY MINIMUM | 8.6 Nov 13 | 5.4 Sep 8 | 3.5 Aug 27 1966 | | MAXIMUM PEAK FLOW | | 423 Mar 27 | a 7790 Aug 18 1955 | | MAXIMUM PEAK STAGE | | 3.56 Mar 27 | 11.10 Aug 18 1955 | | INSTANTANEOUS LOW FLOW | | | 2.6 Sep 2 1966 | | 10 PERCENT EXCEEDS | 105 | 127 | 176 | | 50 PERCENT EXCEEDS | 36 | 38 | 51 | | 90 PERCENT EXCEEDS | 10 | 8.5 | 13 | | STATIST | CICS OF | MONTHLY | MEAN DATA | FOR WATER | YEARS 192 | 10 - 1932, | BY WATER | R YEAR (WY) | (PRIOR | TO REGULA | <u>rion</u>) | | |---------|---------|---------|-----------|-----------|-----------|------------|----------|-------------|--------|-----------|---------------|------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 73.0 | 96.5 | 101 | 78.7 | 103 | 188 | 143 | 112 | 74.4 | 57.0 | 33.7 | 37.7 | | MAX | 227 | 308 | 241 | 266 | 344 | 410 | 227 | 208 | 209 | 185 | 81.5 | 152 | | (WY) | 1928 | 1927 | 1928 | 1924 | 1925 | 1920 | 1928 | 1924 | 1922 | 1928 | 1927 | 1924 | | MIN | 6.67 | 6.74 | 7.99 | 13.3 | 25.7 | 88.5 | 72.6 | 32.8 | 27.3 | 14.5 | 10.3 | 6.66 | | (WY) | 1931 | 1931 | 1931 | 1931 | 1931 | 1931 | 1926 | 1926 | 1921 | 1923 | 1923 | 1932 | | SUMMARY STATISTICS | WATER YEARS | 1920 - 1932 | |--------------------------|-------------|-------------| | | | | | ANNUAL TOTAL ANNUAL MEAN | 91.5 | | | HIGHEST ANNUAL MEAN | 145 | 1928 | | LOWEST ANNUAL MEAN | 42.3 | 1931 | | HIGHEST DAILY MEAN | 3600 | Sep 30 1924 | | LOWEST DAILY MEAN | 3.0 | Dec 23 1930 | | ANNUAL SEVEN DAY MINIMUM | 3.8 | Dec 14 1930 | | MAXIMUM PEAK FLOW | 5000 | Sep 30 1924 | | INSTANTANEOUS LOW FLOW | 1.8 | Dec 18 1931 | | ANNUAL RUNOFF (CFSM) | 2.13 | | | ANNUAL RUNOFF (INCHES) | 28.97 | | | 10 PERCENT EXCEEDS | 201 | | | 50 PERCENT EXCEEDS | 54 | | | 90 PERCENT EXCEEDS | 12 | | a From rating curve extended above 3,200 ft³/s on basis of contracted-opening measurement of peak flow. # 01470500 SCHUYLKILL RIVER AT BERNE, PA--Continued (Pennsylvania Water-Quality Network Station) LOCATION.--Lat 40°31'21", long 75°59'55", Berks County, Hydrologic Unit 02040203, on right bank 50 ft upstream from bridge on Township Route 558 at Berne, 0.5 mi upstream from Mill Creek, and 6.5 mi downstream from Little Schuylkill River. **DRAINAGE AREA**.--355 mi². #### WATER-DISCHARGE RECORDS **PERIOD OF RECORD**.--August 1947 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 310.65 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records good except those for estimated daily discharges, which are poor. Some regulation at low flow by mine pumpage and by Still Creek Reservoir (station 01469200) about 25 mi upstream. Several measurements of water temperature were made during the year. Satellite and landline telemetry at station. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 4,400 ft³/s and maximum (*): | Date
Apr. | | Γime
0800 | Discharge
ft ³ /s
*3,230 | Gage Heig
(ft)
*7.36 | | | Date
(No | | | scharge
ft ³ /s
se discl | Gage Heigh
(ft)
harge.) | nt | |--|---|-------------------------------|---|-----------------------------------|---|---|---|--|--|---|--|---| | | | | DISCH | ARGE, CUBIC | C FEET PER S | | TER YEAR C
EAN VALUES | | 2001 TO SEPT | TEMBER 20 | 02 | | | DAY | OCT | NC | V DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 178
173
167
156
151 | 12
12
12
11
11 | 4 273
3 225
6 209 | e210
e230
e245 | 357
381
333
328
320 | 190
187
622
511
409 | 1120
903
816
760
669 | 1320
1780
1840
1530
1330 | 487
443
402
382
376 | 245
234
221
210
196 | 112
106
111
112
111 | 107
193
126
113
105 | | 6
7
8
9
10 | 144
139
123
125
127 | 11
11
12
12
11 | 9 204
0 202
0 375 | e235
e215
e205 | 309
305
300
274
261 | 381
369
345
327
615 | 623
586
542
530
615 | 1170
1050
943
1080
992 | 443
796
472
389
349 | 183
183
185
184
204 | 113
107
107
106
103 | 100
98
88
82
80 | | 11
12
13
14
15 | 127
122
117
113
332 | 10
10
10
10 | 4 230
4 225
6 246 | 258
233
219 | 370
326
289
258
252 | 492
452
454
449
420 | 508
484
489
599
2280 | 785
753
888
1220
994 | 319
375
628
511
566 | 177
168
159
156
161 | 97
92
93
88
86 | 79
76
75
77
101 | | 16
17
18
19
20 | 207
199
175
150
137 | 10
10
10
10 | 6 236
4 456
4 470 | 202
198
190 | 256
258
245
233
238 | 411
385
525
591
906 | 1860
1480
1240
1130
1050 | 921
874
2110
2070
1720 | 469
406
350
451
361 | 151
142
143
145
147 | 118
103
90
86
98 | 482
249
158
150
174 | | 21
22
23
24
25 | 130
126
122
122
123 | 12
11
11
11
20 | 8 326
7 302
3 341 | 200
196
290 | 249
240
226
214
210 | 1540
1280
1090
949
836 | 899
864
771
668
655 | 1450
1230
1060
948
830 | 324
303
290
277
268 | 140
136
143
227
157 | 95
91
106
113
144 | 169
202
309
231
185 | | 26
27
28
29
30
31 | 122
115
114
114
116
120 | 66
31
24
22
24 | 6 248
7 266
5 e260
7 e250 | 369
343
326
324 | 208
216
202
 | 780
2100
1650
1420
1220
1050 | 657
571
934
1680
1390 | 752
696
637
611
563
513 | 255
275
568
306
262 | 141
138
138
135
124
120 | 103
92
87
124
149 | 182
739
1090
489
332 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 4486
145
332
113
0.41
0.47 | 464
15
66
10
0.4 | 5 285
1 470
4 193
4 0.80
9 0.93 | 254
486
190
0.72
0.83 | 7658
274
381
202
0.77
0.80 | 22956
741
2100
187
2.09
2.41 | 27373
912
2280
484
2.57
2.87 | 34660
1118
2110
513
3.15
3.63 | 12103
403
796
255
1.14
1.27 | 5193
168
245
120
0.47
0.54 | 3247
105
149
86
0.30
0.34 | 6641
221
1090
75
0.62
0.70 | | | | | | FOR WATER | | - | | - | • | 257 | 224 | 252 | | MEAN
MAX
(WY)
MIN
(WY) | 417
1896
1977
75.7
1964 | 68
163
197
12
196 | 1 2932
1 1997
0 125 | 2547
1979
88.4 | 880
1735
1981
274
2002 | 1176
2525
1994
462
1985 | 1123
3319
1993
424
1985 | 875
2689
1989
314
1999 | 560
3410
1972
148
1965 | 371
1240
1984
104
1999 | 334
1594
1955
105
2002 | 353
1381
1987
94.6
1964 | e Estimated. #### 01470500 SCHUYLKILL RIVER AT BERNE, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALEN | IDAR YEAR | FOR 2002 WAT | ER YEAR | WATER YEARS | 1947 - 2002 | |--------------------------|----------------|-----------|--------------|-----------|----------------|-------------| | ANNUAL TOTAL | 144017 | | 145684 | | | | | ANNUAL MEAN | 395 | |
399 | | 707 | | | HIGHEST ANNUAL MEAN | | | | | 1182 | 1952 | | LOWEST ANNUAL MEAN | | | | | 321 | 1965 | | HIGHEST DAILY MEAN | 1980 | Mar 30 | 2280 | Apr 15 | 26000 | Jun 23 1972 | | LOWEST DAILY MEAN | 97 | Sep 13 | 75 | Sep 13 | 40 | Sep 2 1949 | | ANNUAL SEVEN-DAY MINIMUM | 106 | Nov 12 | 80 | Sep 8 | 52 | Aug 30 1999 | | MAXIMUM PEAK FLOW | | | 3230 | Apr 15 | a 42800 | Jun 22 1972 | | MAXIMUM PEAK STAGE | | | 7.36 | Apr 15 | b 19.00 | Jun 22 1972 | | INSTANTANEOUS LOW FLOW | | | 70 | Sep 12,13 | 31 | Sep 2 1949 | | ANNUAL RUNOFF (CFSM) | 1.11 | | 1.12 | | 1.99 | | | ANNUAL RUNOFF (INCHES) | 15.09 |) | 15.27 | | 27.07 | | | 10 PERCENT EXCEEDS | 844 | | 948 | | 1460 | | | 50 PERCENT EXCEEDS | 275 | | 245 | | 448 | | | 90 PERCENT EXCEEDS | 119 | | 107 | | 158 | | ^{a From rating curve extended above 20,800 ft³/s. b From floodmark in gage shelter.} # 01470500 SCHUYLKILL RIVER AT BERNE, PA--Continued (Pennsylvania Water-Quality Network Station) #### WATER-QUALITY RECORDS **PERIOD OF RECORD.**--April 2002 to current year. **REMARKS**.--Other data for the Water-Quality Network can be found on pages 410-425. COOPERATION.--Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection. | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | CALCIUM
TOTAL
RECOV-
ERABLE
(MG/L
AS CA)
(00916) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | MAGNE-
SIUM,
TOTAL
RECOV-
ERABLE
(MG/L
AS MG)
(00927) | |----------------|--|---|---|--|---|--|--|--|--|---|--|---|--| | APR 2002
11 | 1000 | 9813 | 513 | 40 | 10.6 | 7.1 | 276 | 12.0 | 100 | 18.8 | 20.4 | 11.3 | 12.2 | | JUN
13 | 0955 | 9813 | 619 | 40 | 7.6 | 6.9 | 318 | 21.7 | 130 | 26.5 | 25.8 | 15.6 | 15.5 | | AUG
21 | 1020 | 9813 | 98 | 40 | 7.3 | 7.5 | 557 | 23.4 | 230 | 47.7 | 46.7 | 29.0 | 28.4 | | | ANC
WATER | | RESIDUE | RESIDUE
TOTAL | NITRO- | NITRO- | NITRO- | | PHOS- | | OXYGEN
DEMAND, | | COPPER, | | Date | UNFLTRD
FET
LAB
(MG/L AS
CACO3)
(00417) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | AT 105
DEG. C,
DIS-
SOLVED
(MG/L)
(00515) | AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | GEN,
NITRATE
TOTAL
(MG/L
AS N)
(00620) | GEN,
NITRITE
TOTAL
(MG/L
AS N)
(00615) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | PHORUS
ORTHO
TOTAL
(MG/L
AS P)
(70507) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | BIO-
CHEM-
ICAL,
5 DAY
(MG/L)
(00310) | COPPER,
DIS-
SOLVED
(µG/L
AS CU)
(01040) | TOTAL
RECOV-
ERABLE
(µG/L
AS CU)
(01042> | | APR 2002
11 | FET
LAB
(MG/L AS
CACO3) | DIS-
SOLVED
(MG/L
AS SO4) | DEG. C,
DIS-
SOLVED
(MG/L) | DEG. C,
SUS-
PENDED
(MG/L) | AMMONIA
TOTAL
(MG/L
AS N) | NITRATE
TOTAL
(MG/L
AS N) | NITRITE
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | ORTHO
TOTAL
(MG/L
AS P) | PHORUS
TOTAL
(MG/L
AS P) | CHEM-
ICAL,
5 DAY
(MG/L) | DIS-
SOLVED
(µG/L
AS CU) | RECOV-
ERABLE
(µG/L
AS CU) | | APR 2002 | FET
LAB
(MG/L AS
CACO3)
(00417) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | DEG. C,
DIS-
SOLVED
(MG/L)
(00515) | DEG. C,
SUS-
PENDED
(MG/L)
(00530) | AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRATE
TOTAL
(MG/L
AS N)
(00620) | NITRITE
TOTAL
(MG/L
AS N)
(00615) | GEN,
TOTAL
(MG/L
AS N)
(00600) | ORTHO
TOTAL
(MG/L
AS P)
(70507) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | CHEM-
ICAL,
5 DAY
(MG/L)
(00310) | DIS-
SOLVED
(µG/L
AS CU)
(01040) | RECOV-
ERABLE
(µG/L
AS CU)
(01042> | | Date | IRON,
DIS-
SOLVED
(µG/L
AS FE)
(01046) | IRON,
TOTAL
RECOV-
ERABLE
(µG/L
AS FE)
(01045) | LEAD,
DIS-
SOLVED
(µG/L
AS PB)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µG/L
AS PB)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(µG/L
AS MN)
(01056) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(µG/L
AS MN)
(01055) | ZINC,
DIS-
SOLVED
(µG/L
AS ZN)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µG/L
AS ZN)
(01092) | |-----------------------|---|--|---|--|---|--|---|--| | APR 2002
11
JUN | 40 | 320 | <1.0 | <1.0 | 440 | 500 | 10 | 20 | | 13
AUG | 50 | 660 | <1.0 | 1.8 | 140 | 360 | 7.3 | 20 | | 21 | 60 | 160 | <1.0 | <1.0 | 40 | 130 | <5.0 | 9.6 | Gage Height Discharge #### SCHUYLKILL RIVER BASIN #### 01470779 TULPEHOCKEN CREEK NEAR BERNVILLE, PA LOCATION.--Lat 40°24'48", long 76°10'19", Berks County, Hydrologic Unit, 02040203, on left bank 30 ft downstream from Mill Road bridge at Kricks Mill, 0.4 mi upstream from Mill Creek, and 3.5 mi west of Bernville. **DRAINAGE AREA**.--66.5 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--November 1974 to current year. Discharge REVISED RECORDS.--WDR PA-96-1: 1975-83(P), 1988(P), 1990(P), 1993-94(P). GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 311.26 ft above National Geodetic Vertical Datum of 1929 (Pennsylvania Department of Transportation datum). REMARKS.--Records fair except those for estimated daily discharges, which are poor. Satellite and landline telemetry at station. **EXTREMES OUTSIDE PERIOD OF RECORD.**--Flood of June 1972 reached a stage of about 9.5 ft, from information by local resident, discharge about 6,000 ft³/s. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 950 ft³/s and maximum (*): Gage Height | Date | Tim | | t ³ /s | (ft) | | | Date | Time | | ft ³ /s | (ft) | | |--|--|---|---|---|---|---|------------------------------------|---|---|--|---|--| | May 18 | 140 | 0 *: | 389 | *3.54 | | | (No | peaks ab | ove bas | se discl | narge.) | | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002
DAILY MEAN VALUES | | | | | | | | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 31
47
54
50
35 | 31
32
32
30
30 | 34
31
30
29
29 | e23
e22
e21
e19
e20 | 36
34
33
33
30 | 23
24
59
39
32 | 69
60
61
62
59 | 85
123
110
95
88 | 60
59
56
54
56 | 49
47
44
41
39 | 28
28
28
30
29 | 25
28
26
24
20 | | 6
7
8
9
10 | 46
57
57
40
36 | 30
32
31
30
29 | 28
28
30
38
30 | e19
e19
e19
e20
e23 | 29
30
29
29
28 | 31
30
29
29
35 | 57
54
52
51
57 | 82
76
70
84
76 | 61
103
64
59
56 | 38
38
39
36
36 | 32
29
28
31
33 | 18
16
15
16
16 | | 11
12
13
14
15 | 37
36
35
36
30 | 29
29
30
31
32 | 29
27
27
31
35 | e27
32
27
24
22 | 29
26
26
25
25 | 31
30
33
34
33 | 49
47
46
53
146 | 66
72
109
157
110 | 54
51
49
60
57 | 34
35
34
34
32 | 32
32
30
29
30 | 16
16
17
19
26 | | 16
17
18
19
20 | 26
28
26
26
26 | 31
30
30
29
29 | 28
29
38
33
30 | 22
22
22
e21
e20 | 25
25
25
24
24 | 33
32
47
53
89 | 91
76
69
65
63 | 96
88
215
148
126 |
49
47
50
47
42 | 32
32
32
31
30 | 32
23
20
22
25 | 30
28
28
27
27 | | 21
22
23
24
25 | 27
30
30
29
29 | 29
29
29
30
41 | 29
28
27
28
26 | e25
e22
e23
44
53 | 28
26
25
25
25 | 109
79
63
61
58 | 60
67
60
54
54 | 118
104
95
89
84 | 40
40
39
39
39 | 29
29
30
34
33 | 23
22
25
26
26 | 28
30
31
30
29 | | 26
27
28
29
30
31 | 28
30
31
31
32
31 | 51
35
31
29
32 | 26
25
e24
e23
e25
e26 | 40
37
34
33
32
34 | 25
25
23
 | 60
129
86
77
70
65 | 53
48
80
149
89 | 80
77
72
68
63
59 | 39
56
134
52
51 | 32
33
37
35
30
29 | 25
24
23
33
28
25 | 33
101
72
51
47 | | | 1087
35.1
57
26
0.53
0.61 | 943
31.4
51
29
0.47
0.53 | 901
29.1
38
23
0.44
0.50 | 821
26.5
53
19
0.40
0.46 | 767
27.4
36
23
0.41
0.43 | 1603
51.7
129
23
0.78
0.90 | 2001
66.7
149
46
1.00 | 2985
96.3
215
59
1.45
1.67 | 1663
55.4
134
39
0.83
0.93 | 1084
35.0
49
29
0.53
0.61 | 851
27.5
33
20
0.41
0.48 | 890
29.7
101
15
0.45
0.50 | | STATISTIC | s of mon | THLY MEA | N DATA F | OR WATER Y | EARS 1975 | 5 - 2002, | BY WATER | YEAR (WY) | | | | | | MAX
(WY)
MIN | 79.2
250
1977
35.1
2002 | 91.9
181
1997
31.4
2002 | 111
288
1997
29.1
2002 | 126
385
1979
26.5
2002 | 126
264
1979
27.4
2002 | 163
468
1994
51.7
2002 | 146
367
1993
58.8
1985 | 112
277
1989
59.5
1999 | 98.0
208
1982
41.4
1999 | 84.1
216
1984
32.1
1999 | 64.6
129
1976
27.5
2002 | 65.9
181
1975
29.7
2002 | e Estimated. # 01470779 TULPEHOCKEN CREEK NEAR BERNVILLE, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1975 - 2002 | |--------------------------|------------------------|---------------------|---------------------------| | ANNUAL TOTAL | 23451 | 15596 | | | ANNUAL MEAN | 64.2 | 42.7 | 105 | | HIGHEST ANNUAL MEAN | | | 164 199 <u>4</u> | | LOWEST ANNUAL MEAN | | | 42.7 2002 | | HIGHEST DAILY MEAN | 324 Mar 30 | 215 May 18 | 2140 Jan 26 1978 | | LOWEST DAILY MEAN | 22 Sep 17,2 | 2,23 15 Sep 8 | 15 Sep 8 2002 | | ANNUAL SEVEN-DAY MINIMUM | 23 Sep 17 | 16 Sep 7 | 16 Sep 7 2002 | | MAXIMUM PEAK FLOW | | 389 May 18 | a 7140 Jan 24 1979 | | MAXIMUM PEAK STAGE | | 3.54 May 18 | 10.16 Jan 24 1979 | | INSTANTANEOUS LOW FLOW | | 14 Sep 8 | 14 Sep 8 2002 | | ANNUAL RUNOFF (CFSM) | 0.97 | 0.64 | 1.57 | | ANNUAL RUNOFF (INCHES) | 13.12 | 8.72 | 21.36 | | 10 PERCENT EXCEEDS | 117 | 76 | 175 | | 50 PERCENT EXCEEDS | 54 | 32 | 81 | | 90 PERCENT EXCEEDS | 28 | 23 | 40 | a From rating curve extended above 740 ft³/s on basis of contracted-opening measurement at 3,900 ft³/s, gage height 8.01 ft. #### 01470779 TULPEHOCKEN CREEK NEAR BERNVILLE, PA--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--October 1978 to current year. PERIOD OF DAILY RECORD.--WATER TEMPERATURE: Water years 1978 to current year. INSTRUMENTATION.--Temperature recorder since October 1977. Temperature probe interfaced with a data collection platform since 1986 water year. **REMARKS**.--Water temperature records rated good. #### EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: Maximum, 28.5°C, July 6, 1999; minimum, 0.0°C, many days during winters. #### EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum, 27.5°C, Aug. 2; minimum, 0.0°C, several days during winter. WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--|---|---|--------------------------------------|------------------------------------|--------------------------------------|--|----------------------------------|-----------------------------------|--|---------------------------------|---------------------------------| | | | OCTOBER | 1 | : | NOVEMBER | 1 | | DECEMBER | | | JANUARY | | | 1
2
3
4
5 | 14.0
15.0
17.0
17.5
17.5 | 12.5
12.5
14.5
16.0
15.5 | 13.0
13.5
15.5
16.5
16.5 | 10.5
13.5
15.5
13.5
11.0 | 7.5
9.5
12.5
10.5
8.5 | 9.0
11.5
14.0
12.0
10.0 | 13.5
11.0
8.0
8.0
10.0 | 11.0
7.5
6.0
5.5
7.0 | 12.5
10.0
7.0
6.5
8.5 | 0.0
0.5
0.5
0.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 6
7
8
9
10 | 17.0
14.5
11.5
11.5
12.5 | 14.5
11.0
9.5
9.0
9.0 | 16.5
13.0
10.5
10.0
10.5 | 10.0
10.5
11.0
11.0
9.5 | 7.5
7.0
7.5
8.5
7.5 | 8.5
8.5
9.0
9.5
8.0 | 10.5
11.5
9.5
7.5
6.0 | 8.5
9.5
7.0
5.5
4.5 | 9.5
10.5
8.0
6.5
5.0 | 0.5
0.5
0.5
1.0
2.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.5
0.5 | | 11
12
13
14
15 | 14.5
16.0
17.5
17.5 | 10.5
12.5
14.5
15.5
14.5 | 12.5
14.5
16.0
16.5
16.5 | 9.0
8.0
7.0
7.5
9.5 | 6.5
5.0
4.0
4.0
5.5 | 8.0
6.5
5.0
5.5
7.5 | 7.0
7.0
8.0
9.5
9.5 | 4.5
5.0
6.0
8.0
6.5 | 5.5
6.0
7.0
9.0
8.5 | 3.5
4.5
4.0
4.0 | 1.5
3.0
2.5
2.0
2.5 | 2.5
3.5
3.5
3.0
3.5 | | 16
17
18
19
20 | 15.0
13.0
12.0
12.0
13.5 | 13.0
11.0
9.5
8.5
9.5 | 14.0
12.5
10.5
10.0
11.5 | 11.0
10.0
8.5
8.5
8.5 | 7.5
7.5
6.5
6.0 | 9.0
9.0
7.5
7.0
7.5 | 6.5
6.5
8.0
7.5
6.5 | 5.0
5.0
6.5
5.5
4.5 | 5.5
5.5
7.5
7.0
5.5 | 4.0
4.5
3.5
1.5 | 3.0
3.0
1.5
0.0 | 3.5
3.5
2.5
1.0
0.5 | | 21
22
23
24
25 | 14.5
16.0
16.0
18.0
18.0 | 11.0
12.5
14.0
14.5
15.0 | 12.5
14.0
15.0
16.0
16.5 | 7.0
6.0
6.5
8.0
11.5 | 4.5
3.5
3.5
4.5
8.0 | 5.5
4.5
5.0
6.5
10.0 | 5.0
4.0
4.0
5.0
3.5 | 3.0
2.5
2.0
3.5
2.0 | 4.0
3.0
3.0
4.0
3.0 | 1.5
4.0
4.5
5.0
6.0 | 0.0
1.0
1.5
3.5
4.0 | 0.5
2.0
3.0
4.5
5.0 | | 26
27
28
29
30
31 | 15.0
10.5
10.0
9.5
11.0
9.5 | 10.5
8.5
7.5
6.5
8.0
8.5 | 13.0
9.5
8.5
8.0
9.0
9.0 | 12.5
10.5
11.0
11.5
13.0 | 10.0
9.5
9.5
11.0
11.0 | 11.5
10.0
10.5
11.5
12.0 | 3.0
2.0
1.5
2.0
1.0
0.5 | 1.0
0.0
0.0
0.0
0.0 | 2.0
1.0
0.5
1.0
0.5 | 5.0
5.5
6.0
7.5
8.5
8.0 | 3.0
3.5
4.0
6.0 | 4.0
4.0
4.5
5.5
7.5 | | MONTH | 18.0 | 6.5 | 12.9 | 15.5 | 3.5 | 8.7 | 13.5 | 0.0 | 5.6 | 8.5 | 0.0 | 2.5 | # 01470779 TULPEHOCKEN CREEK NEAR BERNVILLE, PA--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|--|--|--|--|--|--|--|--|--
--|--|---| | | | FEBRUAR | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 6.5
5.5
4.5
3.5
2.5 | 5.0
3.0
2.5
1.5
0.5 | | 9.0
7.5
4.0 | | | 13.5
13.0
13.0
11.0
9.0 | 10.0
10.0
8.0
7.5 | 12.0
11.0
12.0
9.5
8.0 | 14.5
16.0 | 13 0 | 13.5
14.0
14.0
13.5
14.5 | | 6
7
8
9
10 | 3.0
4.5
6.0
6.5 | 0.0
1.5
2.5
3.0
4.0 | 1.5
3.0
4.0
4.5
5.5 | 6.5
8.5
10.0
12.0
11.5 | 1.5
4.0
6.0
7.5
6.5 | 4.0
6.0
7.5
10.0
9.5 | 9.5
10.5
11.5
13.5
16.5 | 6.5
6.0
9.0
10.5
12.5 | 8.0
8.0
10.0
12.5
14.0 | 16.0
17.5
18.5
18.0
17.0 | 14.0
15.5
16.0
13.5
13.0 | 15.5
16.5
17.5
15.5
15.0 | | 11
12
13
14
15 | 7.0
4.5
5.0
4.5
4.5 | 4.0
2.5
2.0
1.0 | | 7.5
8.0
7.5
11.5
13.5 | 4.0
4.0
6.0
7.0
9.0 | 5.5
5.5
7.0
9.0
11.0 | 16.0
13.0
14.5
17.0
18.5 | 12.0
12.0
12.0
13.5
15.5 | 14.0
12.5
13.0
15.5
17.0 | 17.0
17.0
16.5
15.0
14.5 | 15.5
15.0
13.0 | 15.5
16.0
15.5
14.0
13.0 | | 16
17
18
19
20 | 7.0
6.5
6.0
6.5
7.5 | 3.0
4.0
3.0
2.0
4.0 | 4.5
5.5
4.0
4.0
6.0 | 13.0
10.0
5.5
7.0
7.0 | 10.0
5.5
4.5
5.0
6.5 | 12.0
7.5
5.0
6.0
6.5 | 20.0
21.5
21.5
21.5
19.5 | 16.5
18.0
19.0
18.5
16.0 | 18.5
19.5
20.0
19.5
18.0 | 17.0
18.0
17.5
13.5 | 13.0
16.5
12.0
11.0 | 14.5
17.0
14.0
12.0
12.5 | | 21
22
23
24
25 | 10.0
9.0
8.5
8.0 | 7.0
7.0
5.0
3.5
3.5 | 8.0
8.0
6.5
5.0 | 9.5
8.5
7.0
8.0 | 5.5
5.0
3.0
5.0
7.0 | 7.5
6.5
5.0
6.5
7.5 | 16.0
11.5
13.0
15.0
13.0 | 11.5
10.5
9.5 | 14.0
11.0
11.0
12.5
12.0 | 13.0
14.5
16.0
18.0
18.0 | 11.0
12.5
14.5 | 12.0
13.0
14.5
16.5
17.0 | | 26
27
28
29
30
31 | 9.0
8.0
6.5
 | 5.0
4.5
3.0
 | 6.5
6.5
4.5
 | 7.0
7.0
9.5
11.5
14.0
13.0 | 6.0
6.0
6.0
8.5
11.0 | 6.5
6.5
7.5
10.0
12.0
12.0 | 13.5
15.0
14.0
14.0
13.0 | 9.5
11.0
13.0
11.5
10.0 | 11.5
13.0
13.5
13.0
11.5 | 18.0
18.0
17.0
18.0
19.0
20.0
20.5
21.5 | 15.5
16.0
17.5
18.0
19.0
19.5 | 16.5
17.0
18.5
19.0
19.5
20.5 | | MONTH | 10.0 | 0.0 | 4.6 | 14.0 | 1.5 | 7.2 | 21.5 | 6.0 | 13.2 | 21.5 | 10.0 | 15.4 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | | | MIN
JULY | | | AUGUST | | s | EPTEMBER | | | DAY 1 2 3 4 5 | 22.0
21.0
19.5
18.0
19.5 | | 20.5
20.0
18.5
17.5
18.5 | 23.0
24.5
25.5
26.5
25.5 | JULY 21.0 22.0 23.5 24.0 23.0 | 22.0
23.0
24.5
25.0
24.5 | 26.5
27.5
27.0
27.0
25.5 | 23.5
23.5
24.0
24.0
24.0 | 25.0
25.5
25.5
25.0
24.5 | 19.0
18.5
21.0
23.0
21.5 | 18.0
17.5
18.0
20.0
19.5 | | | 1
2
3
4
5
6
7
8
9 | 22.0
21.0
19.5
18.0
19.5
20.0
18.5
18.5
20.0
21.5 | JUNE 19.5 19.5 17.5 17.5 17.5 17.5 | 20.5
20.0
18.5
17.5
18.5 | | JULY 21.0 22.0 23.5 24.0 23.0 | 22.0
23.0
24.5
25.0
24.5 | | 23.5
23.5
24.0
24.0
24.0 | 25.0
25.5
25.5
25.0
24.5 | s | 18.0
17.5
18.0
20.0
19.5 | 18.5
18.0
19.0
21.5 | | 1
2
3
4
5
6
7
8
9 | 22.0
21.0
19.5
18.0
19.5
20.0
18.5
18.5 | JUNE 19.5 19.5 17.5 17.5 17.5 17.5 | 20.5
20.0
18.5
17.5
18.5
19.5
18.0
18.0
18.5
20.5 | 23.0
24.5
25.5
26.5
25.5 | JULY 21.0 22.0 23.5 24.0 23.0 21.0 19.5 19.0 21.0 21.5 | 22.0
23.0
24.5
25.0
24.5
22.0
20.5
20.5
22.0
22.5 | 26.5
27.5
27.0
27.0
25.5 | 23.5
23.5
24.0
24.0
24.0
21.5
19.5
18.0
18.0 | 25.0
25.5
25.5
25.0
24.5 | 19.0
18.5
21.0
23.0
21.5
21.0
21.0
21.0
21.5
22.5 | 18.0
17.5
18.0
20.0
19.5
18.0
17.0
17.0
17.0
17.0
18.5 | 18.5
18.0
19.0
21.5
20.5
19.5
19.0
19.0
20.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 22.0
21.0
19.5
18.0
19.5
20.0
21.5
22.5
22.5
21.5
19.0 | JUNE 19.5 19.5 17.5 17.5 17.5 17.5 20.5 21.0 19.0 16.0 15.5 17.5 17.5 | 20.5
20.0
18.5
17.5
18.5
19.5
18.0
18.0
20.5
21.5
20.5 | 23.0
24.5
25.5
26.5
25.5
23.0
21.5
22.5
23.5
24.0
21.5
21.0
20.5 | JULY 21.0 22.0 23.5 24.0 23.0 21.0 19.5 19.0 21.0 21.5 19.5 18.5 18.5 19.5 | 22.0
23.0
24.5
25.0
24.5
22.0
20.5
22.0
22.5
21.0
20.0
19.5
20.0 | 26.5
27.5
27.0
27.0
25.5
24.0
22.0
21.5
22.0
23.0
24.0
25.0
26.0
26.0 | 23.5
23.5
24.0
24.0
24.0
21.5
19.5
18.0
19.0
20.0
21.5
22.5
23.0 | 25.0
25.5
25.5
25.0
24.5
20.0
20.0
20.0
21.0
22.0
23.0
24.5 | 19.0
18.5
21.0
23.0
21.5
21.0
21.0
21.5
22.5
21.0
19.5
20.5 | 18.0
17.5
18.0
20.0
19.5
18.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
18.5 | 18.5
18.0
19.0
21.5
20.5
19.5
19.0
19.0
20.5
20.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 22.0
21.0
19.5
18.0
19.5
20.0
21.5
22.5
22.5
21.5
19.0
16.5
18.0
20.0
20.0
20.0 | JUNE 19.5 19.5 17.5 17.5 17.5 17.5 18.0 16.5 17.5 19.5 20.5 21.0 19.0 16.0 15.5 17.5 17.5 17.5 17.5 17.5 | 20.5
20.0
18.5
17.5
18.5
19.5
18.0
18.5
20.5
21.5
20.5
17.0
16.0 | 23.0
24.5
25.5
26.5
25.5
23.0
21.5
22.5
23.5
24.0
21.5
21.5
21.0
20.5
21.5
21.0
20.5
21.5
21.5
21.5 | JULY 21.0 22.0 23.5 24.0 23.0 21.0 19.5 19.0 21.5 19.5 18.5 19.5 19.5 19.5 22.5 22.5 | 22.0
23.0
24.5
25.0
24.5
22.0
20.5
22.0
22.5
21.0
20.0
19.5
20.0
21.0
22.5
22.5
23.5
23.5
23.5 | 26.5
27.5
27.0
27.0
25.5
24.0
22.0
21.5
22.0
23.0
24.0
25.0
26.0
26.5
26.0 | 23.5
23.5
24.0
24.0
24.0
21.5
19.5
18.0
19.0
20.0
21.5
22.5
23.0
23.0
23.5
23.5 | 25.0
25.5
25.5
25.0
24.5
20.0
20.0
20.0
21.0
22.0
23.0
24.5
24.5 | 19.0
18.5
21.0
23.0
21.5
21.0
21.0
21.5
22.5
21.0
21.5
22.5
21.0
21.5
22.5 |
18.0
17.5
18.0
20.0
19.5
18.0
17.0
17.0
17.0
17.0
17.0
17.0
18.5
19.5
17.0
15.0
16.5
19.5 | 18.5
18.0
19.0
21.5
20.5
19.5
19.0
19.0
20.5
20.5
18.5
17.0
20.5
21.0
20.0
19.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 22.0
21.0
19.5
18.0
19.5
20.0
21.5
22.5
22.5
21.5
19.0
16.5
18.0
20.0
20.0
20.0
21.5
22.5
22.5
22.5
22.5
22.5
22.5
22.5 | JUNE 19.5 19.5 17.5 17.5 17.5 17.5 18.0 16.5 17.5 19.5 20.5 21.0 19.0 16.0 17.5 17.0 18.0 19.0 19.5 20.0 21.0 21.0 21.5 22.0 20.5 20.5 20.5 | 20.5
20.0
18.5
17.5
18.5
19.5
18.0
18.5
20.5
21.5
20.5
21.5
21.5
20.0
22.0
22.0
22.0
22.5
23.0
21.5
23.0
21.5
21.5 | 23.0
24.5
25.5
26.5
25.5
23.0
21.5
23.5
24.0
22.5
23.0
21.5
23.0
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5 | JULY 21.0 22.0 23.5 24.0 23.0 21.0 19.5 19.5 18.5 19.5 18.5 19.0 21.0 20.5 22.5 22.5 22.5 22.5 22.5 22.5 22 | 22.0
23.0
24.5
25.0
24.5
22.0
20.5
22.0
22.5
21.0
22.5
21.0
22.5
23.5
23.5
23.5
23.5
24.5
24.5
24.5
22.5
23.5
23.5
24.5 | 26.5
27.5
27.0
25.5
24.0
22.0
23.0
24.0
25.0
26.0
26.5
26.0
26.5
25.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
25.5 | 23.5
23.5
24.0
24.0
24.0
21.5
19.5
18.0
19.0
20.0
21.5
22.5
23.0
23.0
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5 | 25.0
25.5
25.5
25.0
24.5
23.0
20.5
20.0
21.0
22.0
24.0
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5 | 19.0
18.5
21.0
23.0
21.5
21.0
21.0
21.5
22.5
21.0
19.5
20.5
21.0
21.5
20.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.5
21.0
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5 | 18.0
17.5
18.0
20.0
19.5
18.0
17.0
17.0
17.0
17.0
18.5
19.5
17.0
16.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19 | 18.5
18.0
19.0
21.5
20.5
19.0
19.0
19.0
20.5
20.5
18.5
17.0
20.0
19.5
20.5
21.0
20.0
19.5
21.0
20.0
19.5
20.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 22.0
21.0
21.0
19.5
18.0
19.5
20.0
21.5
22.5
22.5
21.5
19.0
16.5
18.0
20.0
20.0
20.0
21.5
22.5
23.5
24.0
24.5
24.5
24.5
24.5
24.5
22.5
22.5
24.5 | JUNE 19.5 19.5 17.5 17.5 17.5 17.5 18.0 16.5 17.5 19.5 20.5 21.0 19.0 16.0 17.5 17.5 18.0 19.0 19.5 20.0 21.5 22.0 22.5 22.0 20.5 | 20.5
20.0
18.5
17.5
18.5
19.5
18.0
18.5
20.5
21.5
21.5
20.5
17.0
16.0
17.0
18.5
19.0
20.0
22.5
23.0
23.5
23.0
21.5
23.0 | 23.0
24.5
25.5
26.5
25.5
23.0
21.5
22.5
23.5
24.0
21.0
20.5
23.0
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5 | JULY 21.0 22.0 23.5 24.0 23.0 21.0 19.5 19.5 19.5 18.5 19.5 18.5 19.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 | 22.0
23.0
24.5
25.0
24.5
22.0
20.5
22.0
22.5
21.0
20.0
21.0
22.5
23.5
23.5
23.5
23.5
23.5
24.5
22.5 | 26.5
27.5
27.0
27.0
25.5
24.0
22.0
23.0
24.0
25.0
26.5
26.0
26.5
26.5
25.0
24.0
24.0
24.0
24.0
25.5
25.5
25.5
25.5
25.5 | 23.5 23.5 24.0 24.0 24.0 21.5 19.5 18.0 19.0 20.0 21.5 23.0 23.5 23.5 23.0 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 | 25.0
25.5
25.5
25.0
24.5
20.0
20.0
21.0
22.0
24.0
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5 | 19.0
18.5
21.0
23.0
21.5
21.0
21.0
21.0
21.5
22.5
21.0
21.5
22.5
21.0
21.5
22.5
21.0
21.5
22.5
21.0
21.5
22.5
21.0
21.5
21.0
21.5
22.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
21.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5 | 18.0
17.5
18.0
20.0
19.5
18.0
17.0
17.0
17.0
17.0
18.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19 | 18.5
18.0
19.0
21.5
20.5
19.5
19.0
19.0
20.5
20.5
17.0
18.5
20.5
21.0
20.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
1 | # 01470779 TULPEHOCKEN CREEK NEAR BERNVILLE, PA--Continued # CROSS-SECTION ANALYSES, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAMPLE
LOC-
ATION,
CROSS
SECTION
(FT FM
R
BK)
(72103) | SAM-
PLING
DEPTH
(FEET)
(00003) | TEMPER-
ATURE
WATER
(DEG C) | |---|--|---|--|--|--| | JUN 2002 04 04 04 04 04 04 04 04 04 04 04 | 0933
0934
0935
0936
0937
0938
0940
0941
0942
0943 | 53

 | 0
8
13
18
23
28
33
38
43
48
53 | 1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00 | 17.6
17.6
17.6
17.5
17.5
17.5
17.5
17.7 | | 04 | 0945 | | 63 | | | | | | | | | | #### 01470853 FURNACE CREEK AT ROBESONIA, PA LOCATION.--Lat 40°20'24", long 76°08'37", Berks County, Hydrologic Unit 02040202, on left bank 500 ft upstream from Furnace Street in Robesonia. **DRAINAGE AREA**.--4.18 mi². PERIOD OF RECORD.--October 1982 to current year. REVISED RECORDS.--WDR PA-87-1: 1986 (P). **GAGE**.--Water-stage recorder and crest-stage gage. Datum of gage is 527.20 ft above National Geodetic Vertical Datum of 1929. Prior to Mar. 27, 1986, 760 ft downstream at different datum. **REMARKS**.--Records poor. Flow slightly regulated by Furnace Creek Reservoir 0.6 mi upstream, until drained in early 2002. Reservoir now acts as a retention basin and releases water through an unregulated 10 in. outlet pipe. Several measurements of water temperature were made during the year. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 100 ft³/s and maximum (*): | Date | : | Time | Di | ischarge
ft ³ /s | Gage Heigh
(ft) | t | | Date | | ne | scharge
ft ³ /s | Gage Height (ft) | | |--|--|------------------------|--|--|--|--|--|--|--|--|--|--|--| | Apr. | 28 | 2145 | | *41 | *1.24 | | | (No | peaks a | bove ba | se disc | harge.) | | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002
DAILY MEAN VALUES | | | | | | | | | | | | | | | DAY | OCT | Г | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.1
2.0
1.8
1.7
1.6 | | 2.2
2.5
2.6
2.7
2.7 | 2.8
1.9
1.7
1.6
1.6 | e1.4
e1.5
e1.5
e1.6 | 3.3
3.0
2.5
2.1
e1.9 | 1.1
1.2
1.7
1.2 | 5.7
4.7
4.5
4.5
4.5 | 5.5
11
7.9
5.2
4.2 | 3.8
3.6
3.2
3.3
3.4 | 3.0
2.2
2.3
2.4
2.4 | 1.3
1.1
1.2
1.2 | 1.4
1.5
1.3
1.3 | | 6
7
8
9
10 | 1.9
1.7
1.5
1.4 | | 2.7
2.6
2.5
2.1
1.9 | 1.4
1.2
1.6
3.4
2.2 | e1.6
e1.5
e1.6
e1.6
e1.7 | 1.8
1.7
1.7
1.6
1.5 | 0.56
0.54
1.1
1.2 | 4.3
3.9
3.5
3.4
3.4 | 3.6
3.1
2.8
5.8
3.5 | 6.7
15
4.0
3.2
3.2 | 2.3
2.3
2.2
2.2
2.2 | 1.2
1.1
1.1
1.0
0.96 | 1.2
1.1
1.1
1.1
0.96 | | 11
12
13
14
15 | 1.3
1.3
1.2
1.2 | | 1.8
1.8
1.8
1.8 | 1.9
1.9
1.9
2.7
3.0 | e4.0
4.0
3.0
2.4
2.3 | 1.9
1.7
1.8
1.7 | 1.2
1.1
1.1
1.0
1.1 | 3.3
3.5
3.3
3.1
5.4 | 2.5
2.7
8.9
16
11 | 3.5
3.4
3.1
3.5
5.1 | 2.2
2.1
2.1
2.2
2.2 | 0.96
1.0
1.2
0.68
0.83 | 0.96
0.91
0.82
0.72
0.82 | | 16
17
18
19
20 | 1.2
2.0
1.5
1.2
0.87 | 7 | 1.1
1.1
1.1
1.2
1.3 | 2.0
2.1
4.3
3.1
2.2 | 2.3
2.3
2.1
e2.0
e1.9 | 1.7
1.7
1.7
1.7 | 1.7
1.7
2.0
1.9
2.4 | 7.0
7.2
3.1
4.4
3.3 | 8.7
6.0
19
10 | 4.6
3.5
2.9
3.7
3.6 | 2.3
2.3
2.1
2.0
1.9 | 0.96
0.96
0.96
0.96
1.3 | 1.0
1.1
1.1
1.1 | | 21
22
23
24
25 | 0.83
0.79
0.84
0.95 |)
1 | 1.3
1.3
1.4
1.5
4.7 | 1.9
1.7
1.6
2.2
2.1 | 2.3
2.0
2.1
7.4
4.5 | 1.6
1.6
1.6
1.6 | 2.4
2.2
1.9
1.8
3.8 | 3.8
5.5
3.4
3.0
3.4 | 9.3
7.7
6.9
6.4
5.8 | 3.4
2.7
2.5
2.5
2.5 | 1.9
1.9
2.0
2.2
2.2 | 1.4
1.4
1.4
1.4 | 1.1
1.1
1.1
0.89
0.88 | | 26
27
28
29
30
31 | 1.2
1.6
1.8
1.8
2.0
1.9 | | 4.2
2.1
1.8
1.8
2.6 | 1.9
1.7
1.6
1.6
e1.7
e1.5 | 2.8
2.3
2.1
1.9
2.0
3.1 | 1.4
1.4
1.2
 | 7.1
9.5
8.6
8.2
6.6 | 3.0
2.6
14
20
8.1 | 5.5
5.5
4.5
4.4
4.6
4.3 | 2.5
3.7
7.6
3.9
3.5 | 1.8
1.5
1.6
1.7
1.8 | 1.4
1.2
0.83
1.6
1.6 | 1.0
7.5
2.7
0.26
0.35 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 45.98
1.48
2.4
0.79
0.35
0.41 | 3
1
9 | 63.5
2.12
4.7
1.1
0.51
0.57 | 64.0
2.06
4.3
1.2
0.49
0.57 | 74.2
2.39
7.4
1.4
0.57
0.66 | 50.4
1.80
3.3
1.2
0.43
0.45 | 84.30
2.72
9.5
0.54
0.65
0.75 | 152.8
5.09
20
2.6
1.22
1.36 | 212.3
6.85
19
2.5
1.64
1.89 | 121.1
4.04
15
2.5
0.97
1.08 | 65.1
2.10
3.0
1.5
0.50
0.58 | 36.20
1.17
1.6
0.68
0.28
0.32 | 38.77
1.29
7.5
0.26
0.31
0.35 | | STATIST | rics of | MONT | HLY MI | EAN DATA | FOR WATER | ZEARS 198 | 3 - 2002, | BY WATER | YEAR (WY) |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 3.13
7.31
1995
0.94
1989 | L
7
1 | 5.30
10.3
1987
1.68
2001 | 7.40
22.0
1997
2.06
2002 | 6.78
14.3
1996
2.34
1983 | 8.17
15.2
1996
1.80
2002 | 11.6
26.7
1994
2.72
2002 | 11.7
31.8
1993
3.32
1985 | 9.28
24.7
1989
4.29
1997 | 5.55
14.8
1989
2.10
1985 | 4.17
11.7
1984
1.36
1983 | 2.83
8.98
1986
0.85
1983 | 2.82
9.05
1999
0.63
1983 | e Estimated. # 01470853 FURNACE CREEK AT ROBESONIA, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1983 - 2002 | |--------------------------|------------------------|---------------------|---------------------------| | ANNUAL TOTAL | 1601.78 | 1008.65 | | | ANNUAL MEAN | 4.39 | 2.76 | 6.55 | | HIGHEST ANNUAL MEAN | | | 10.5 1994 | | LOWEST ANNUAL MEAN | | | 2.76 2002 | | HIGHEST DAILY MEAN | 28 Mar 30 | 20 Apr 29 | 139 Dec 5 1993 | | LOWEST DAILY MEAN | 0.79 Oct 22 | 0.26 Sep 29 | 0.11 Sep 11 1983 | | ANNUAL SEVEN-DAY MINIMUM | 0.94 Oct 19 | 0.88 Sep 10 | 0.19 Sep 16 1985 | | MAXIMUM PEAK FLOW | | 41 Apr 28 | a 718 Dec 17 2000 | | MAXIMUM PEAK STAGE | | 1.24 Apr 28 | b 4.72 Jan 19 1996 | | ANNUAL RUNOFF (CFSM) | 1.05 | 0.66 | 1.57 | | ANNUAL RUNOFF (INCHES) | 14.26 | 8.98 | 21.30 | | 10 PERCENT EXCEEDS | 9.8 | 5.5 | 13 | | 50 PERCENT EXCEEDS | 2.9 | 1.9 | 4.4 | | 90 PERCENT EXCEEDS | 1.5 | 1.1 | 1.4 | $[\]begin{array}{lll} \textbf{a} & \text{From rating curve extended above 308 ft}^3\!/\!\text{s on basis of slope-area measurement of peak flow at gage height 3.11 ft.} \\ \textbf{b} & \text{From peak indicator; ice jam.} \end{array}$ ## 01470960 TULPEHOCKEN CREEK AT BLUE MARSH DAMSITE NEAR READING, PA **LOCATION.**--Lat 40°22'14", long 76°01'32", Berks County, Hydrologic Unit 02040203, on right bank 1.0 mi upstream from Rebers Bridge and Plum Creek, 1.0 mi east of Blue Marsh, 3.0 mi north of Sinking Spring, and 5.5 mi northeast of Reading. **DRAINAGE AREA**.--175 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--May 1965 to current year. **REVISED RECORDS.--**WDR PA-72-1: 1969-71 (M). GAGE.--Water-stage recorder. Datum of gage is 230.06 ft above National Geodetic Vertical Datum of 1929 (Western Berks Water Authority datum). Prior to Nov. 25, 1974, water-stage recorder at site 0.3 mi downstream at same datum. DISCHARGE CURIC FEET PER SECOND, WATER YEAR OCTORER 2001 TO SEPTEMBER 2002 **REMARKS.**—No estimated daily discharges. Records good. Flow regulated since April 1979 by Blue Marsh Lake (station 01470870) 0.8 mi upstream. Satellite and landline telemetry at station. | | | | DISCHAR | GE, CUBIC F | EET PER SE | | TER YEAR C
AN VALUE: | OCTOBER 20
S | 01 TO SEPTI | EMBER 2002 | | | |--------|------|------|---------|-------------|------------|------|-------------------------|-----------------|-------------|------------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 122 | 50 | 27 | 32 | 89 | 56 | 166 | 362 | 120 | 209 | 48 | 53 | | 2 | 111 | 43 | 27 | 47 | 89 | 57 | 100 | 462 | 120 | 122 | 48 | 52 | | 3
4 | 112 | 38 | 27 | 57 | 89 | 58 | 60 | 601 | 120 | 90 | 48 | 51 | | 4 | 112 | 37 | 50 | 56 | 103 | 56 | 60 | 459 | 91 | 91 | 48 | 51 | | 5 | 113 | 45 | 65 | 56 | 117 | 57 | 60 | 453 | 69 | 82 | 48 | 52 | | 6 | 114 | 53 | 65 | 57 | 117 | 57 | 60 | 344 | 161 | 76 | 48 | 52 | | 7 | 115 | 52 | 65 | 56 | 101 | 56 | 60 | 218 | 282 | 76 | 48 | 53 | | 8 | 117 | 51 | 65 | 66 | 86 | 57 | 86 | 192 | 374 | 67 | 48 | 53 | | 9 | 171 | 51 | 65 | 75 | 86 | 57 | 123 | 192 | 264 | 60 | 48 | 72 | | 10 | 208 | 51 | 65 | 75 | 86 | 58 | 155 | 192 | 110 | 60 | 48 | 93 | | 11 | 208 | 51
| 81 | 62 | 85 | 58 | 136 | 192 | 68 | 60 | 48 | 93 | | 12 | 207 | 51 | 97 | 53 | 84 | 58 | 102 | 192 | 68 | 56 | 48 | 96 | | 13 | 207 | 51 | 97 | 54 | 84 | 58 | 102 | 315 | 68 | 53 | 47 | 116 | | 14 | 208 | 50 | 97 | 81 | 84 | 58 | 102 | 544 | 84 | 54 | 69 | 134 | | 15 | 248 | 84 | 97 | 98 | 84 | 58 | 259 | 473 | 93 | 54 | 93 | 135 | | 16 | 275 | 109 | 97 | 98 | 84 | 58 | 381 | 311 | 93 | 55 | 93 | 91 | | 17 | 273 | 109 | 86 | 98 | 84 | 58 | 355 | 220 | 105 | 55 | 93 | 50 | | 18 | 272 | 109 | 68 | 81 | 84 | 59 | 347 | 192 | 115 | 55 | 93 | 51 | | 19 | 181 | 96 | 84 | 70 | 68 | 58 | 240 | 192 | 115 | 55 | 94 | 53 | | 20 | 114 | 84 | 98 | 70 | 40 | 60 | 176 | 460 | 145 | 55 | 72 | 52 | | 21 | 115 | 85 | 98 | 70 | 40 | 110 | 176 | 627 | 141 | 55 | 53 | 51 | | 22 | 115 | 84 | 98 | 70 | 40 | 145 | 198 | 560 | 115 | 48 | 53 | 51 | | 23 | 82 | 84 | 98 | 70 | 40 | 145 | 217 | 380 | 115 | 44 | 53 | 139 | | 24 | 46 | 84 | 98 | 70 | 40 | 145 | 215 | 241 | 76 | 47 | 53 | 152 | | 25 | 48 | 85 | 98 | 146 | 40 | 145 | 161 | 208 | 45 | 46 | 53 | 50 | | 26 | 49 | 57 | 68 | 198 | 50 | 146 | 114 | 208 | 46 | 48 | 53 | 50 | | 27 | 49 | 27 | 39 | 198 | 56 | 400 | 114 | 208 | 47 | 48 | 53 | 51 | | 28 | 49 | 27 | 32 | 172 | 56 | 375 | 115 | 143 | 158 | 48 | 53 | 50 | | 29 | 50 | 27 | 32 | 105 | | 206 | 210 | 104 | 235 | 48 | 53 | 50 | | 30 | 50 | 27 | 32 | 89 | | 166 | 334 | 114 | 235 | 48 | 53 | 51 | | 31 | 50 | | 32 | 89 | | 166 | | 120 | | 48 | 53 | | | TOTAL | 4191 | 1852 | 2148 | 2619 | 2106 | 3301 | 4984 | 9479 | 3878 | 2013 | 1813 | 2148 | | MEAN | 135 | 61.7 | 69.3 | 84.5 | 75.2 | 106 | 166 | 306 | 129 | 64.9 | 58.5 | 71.6 | | MAX | 275 | 109 | 98 | 198 | 117 | 400 | 381 | 627 | 374 | 209 | 94 | 152 | | MIN | 46 | 27 | 27 | 32 | 40 | 56 | 60 | 104 | 45 | 44 | 47 | 50 | | | | | | | | | | | | | | | #### 01470960 TULPEHOCKEN CREEK AT BLUE MARSH DAMSITE NEAR READING, PA--Continued | STATISTI | CS OF | MONTHLY M | EAN DATA | FOR WATER | YEARS 1979 | - 2002, | BY WATER | YEAR (WY) | (SINCE | REGULATION) | | | |-------------|------------|------------|------------|-------------|-----------------|-------------|-------------|-----------------|------------|---------------|------------|-------------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN
MAX | 203
612 | 221
484 | 326
986 | 337
1151 | 341
596 | 441
1365 | 326
1016 | 298
1058 | 231
606 | 176
543 | 119
283 | 139
379 | | (WY) | 1980 | 1997 | 1997 | 1979 | 1979 | 1994 | 1993 | 1989 | 1982 | 1984 | 1994 | 1987 | | MIN | 51.4 | 61.7 | 61.3 | 84.5 | 75.2 | 106 | 49.8 | 123 | 69.9 | 64.9 | 55.4 | 54.0 | | (WY) | 1996 | 2002 | 1999 | 2002 | 2002 | 2002 | 1985 | 1999 | 1979 | 2002 | 1981 | 1983 | | | | | | | | | | | | | | | | SUMMARY | STATIS | STICS | FOI | R 2001 CAL | ENDAR YEAR | F | OR 2002 W | ATER YEAR | | WATER YEA | RS 1979 | - 2002 | | ANNUAL T | OTAL | | | 59280 | | | 40532 | | | | | | | ANNUAL M | EAN | | | 162 | | | 111 | | | 263 | | | | HIGHEST | ANNUAI | MEAN | | | | | | | | 435 | | 1994 | | LOWEST A | | | | | | | | | | 111 | | 2002 | | HIGHEST | | | | 702 | Apr 18 | | 627 | May 21 | | 3950 | Apr 18 | | | LOWEST D | AILY N | MEAN | | 27 | Nov 27 a | | 27 | Nov 27 a | | 25 | | <u>1995</u> | | | | DAY MINIMU | M | 27 | Nov 27 | | 27 | Nov 27 | | 26 | | 1995 | | MAXIMUM | PEAK F | FLOW | | | | | 686 | May 2,3 | 3 | b 4060 | Dec 6 | 1993 | | MAXIMUM | PEAK S | STAGE | | | | | 4.1 | 5 May 2 | | 8.02 | Jun 26 | 2000 | | 10 PERCE | NT EXC | CEEDS | | 354 | | | 212 | | | 508 | | | | 50 PERCE | NT EXC | CEEDS | | 115 | | | 82 | | | 168 | | | | 90 PERCE | NT EXC | CEEDS | | 49 | | | 48 | | | 62 | | | | | | | | | | | | | | | | | | STATISTI | CS OF MON | THLY MEAN | DATA 1 | FOR WATER | YEARS 1965 | - 1978, | BY WATER | YEAR (WY) | (PRIOR ' | TO REGULAT | 'ION') | | |----------|-----------|-----------|--------|-----------|------------|---------|----------|-----------|----------|------------|--------|-----| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 180 | 236 | 333 | 333 | 373 | 423 | 363 | 261 | 285 | 233 | 175 | 150 | | MEAN
MAX | 180
701 | 236
464 | 333
827 | 333
761 | 373
790 | 423
832 | 363
706 | 261
423 | 285
1244 | 233
523 | 175
350 | 150
536 | |-------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------|------------|------------|------------| | (WY) | 1977 | 1976 | 1978 | 1978 | 1971 | 1978 | 1970 | 1973 | 1972 | 1969 | 1969 | 1975 | | MIN | 56.2 | 58.3 | 69.9 | 100 | 146 | 163 | 144 | 89.2 | 60.4 | 45.0 | 31.9 | 43.4 | | (WY) | 1967 | 1966 | 1966 | 1966 | 1969 | 1969 | 1966 | 1965 | 1965 | 1966 | 1966 | 1966 | #### SUMMARY STATISTICS WATER YEARS 1965 - 1978 | ANNUAL MEAN | 283 | | |--------------------------|----------------|-------------| | HIGHEST ANNUAL MEAN | 416 | 1978 | | LOWEST ANNUAL MEAN | 122 | 1966 | | HIGHEST DAILY MEAN | 11000 | Jun 23 1972 | | LOWEST DAILY MEAN | 23 | Sep 12 1966 | | ANNUAL SEVEN-DAY MINIMUM | 25 | Sep 7 1966 | | MAXIMUM PEAK FLOW | b 16100 | Jun 22 1972 | | MAXIMUM PEAK STAGE | c 18.70 | Jun 22 1972 | | ANNUAL RUNOFF (CFSM) | 1.62 | | | ANNUAL RUNOFF (INCHES) | 22.00 | | | 10 PERCENT EXCEEDS | 551 | | | 50 PERCENT EXCEEDS | 178 | | | 90 PERCENT EXCEEDS | 69 | | - a Also Nov. 28-30, Dec. 1-3. b From rating curve extended above 3,540 ft³/s on basis of runoff comparison with downstream station. - **c** From floodmark. #### 01470960 TULPEHOCKEN CREEK AT BLUE MARSH DAMSITE NEAR READING, PA--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1972 to 1980. PERIOD OF DAILY RECORD.--WATER TEMPERATURE: Water years 1969 to current year. SUSPENDED-SEDIMENT DISCHARGE.--May 1973 to May 1976. INSTRUMENTATION.--Temperature recorder since October 1968. Temperature probe interfaced with a data collection platform since 1986 water year. **REMARKS.**--Water temperature records rated good. Temperature records collected at streamgage. Water-quality samples and suspended sediment samples collected at Rebers Bridge 1.0 mi downstream. ## EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: Maximum, 34.0°C, Oct. 2, 1968; minimum, 0.0°C, on several days during December 1970, January and March 1971, and February 1979. SUSPENDED-SEDIMENT CONCENTRATIONS: Maximum daily mean, 1,400 mg/L, June 22, 1973; minimum daily mean, 2 mg/L on many days. SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 8,570 tons, Jan. 27, 1976; minimum daily, 0.45 tons, July 13. ## EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum, 23.5°C, July 12, 25; minimum, 1.5°C, Jan. 6. WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|--|--|---------------------------------|---------------------------------|---------------------------------| | | | OCTOBER | ! | : | NOVEMBER | ! | 1 | DECEMBER | | | JANUARY | • | | 1
2
3
4
5 | 20.0
19.5
19.5
19.0
19.0 | 19.0
18.5
18.5
18.0
18.0 | 19.5
19.0
18.5
18.5 | 13.5
14.0
13.5
13.5 | 12.5
12.5
12.0
12.0
11.5 | 13.0
13.0
13.0
12.5
12.0 | 10.5
10.0
10.0
10.0 | 8.5
8.5
8.5
8.5
9.5 | 9.5
9.0
9.0
9.0
9.5 | 4.0
3.5
3.5
3.5
3.5 | 3.0
2.5
2.5
2.5
2.5 | 3.0
3.0
3.0
3.0
3.0 | | 6
7
8
9
10 | 19.0
18.5
18.5
18.0
18.0 | 17.5
17.5
17.5
17.5
17.5 | 18.0
18.0
18.0
17.5 | 13.0
13.0
13.0
12.5
12.5 | 12.0
12.0
11.5
11.5 | 12.0
12.0
12.0
12.0
11.5 | 10.0
10.5
9.5
9.5
9.5 | 9.5
9.5
9.0
9.0 | 9.5
10.0
9.5
9.5
9.0 | 3.0
3.0
3.0
3.0
3.0 | 1.5
2.5
2.0
2.5
2.0 | 2.5
2.5
2.5
2.5
2.5 | | 11
12
13
14
15 | 17.5
17.0
17.0
17.0 | 17.0
16.5
16.0
16.0 | 17.0
16.5
16.5
16.5
16.5 | 12.0
12.0
11.5
11.5
11.0 | 11.0
10.5
10.5
10.5
10.5 | 11.5
11.0
11.0
11.0
10.5 | 9.5
9.5
9.0
9.0 | 9.0
9.0
9.0
8.5
8.5 | 9.0
9.0
9.0
9.0
8.5 | 3.0
3.0
3.5
3.0
3.0 | 2.5
2.5
2.5
2.5
2.5 | 2.5
2.5
3.0
2.5
3.0 | | 16
17
18
19
20 | 17.0
17.0
16.5
16.5 | 16.5
16.5
16.0
15.5
15.5 | 16.5
16.5
16.0
16.0
16.0 | 11.0
10.5
10.0
10.0 | 10.0
9.5
9.5
9.5
9.0 | 10.5
10.0
10.0
9.5
9.5 | 8.5
8.5
8.5
8.0 | 8.0
8.5
8.0
8.0
7.5 | 8.5
8.5
8.5
8.0 | 3.0
3.5
3.5
3.0
3.0 | 2.5
2.5
2.5
2.0
2.5 | 3.0
3.0
2.5
2.5
2.5 | | 21
22
23
24
25 | 16.5
16.0
16.0
16.0 | 15.5
15.0
15.0
14.5
14.5 | 15.5
15.5
15.5
15.5
15.0 | 10.0
10.0
10.0
10.0
10.0 | 9.0
9.0
9.0
9.0
9.5 | 9.5
9.5
9.5
9.5
10.0 | 7.5
7.0
7.0
7.0
6.5 | 7.0
7.0
6.5
6.5 | 7.5
7.0
7.0
7.0
6.5 | 3.0
3.0
3.0
3.0 | 2.5
2.5
2.5
2.5
2.5 | 2.5
2.5
3.0
3.0 | | 26
27
28
29
30
31 | 15.5
15.0
14.5
14.5
14.5 | 14.5
14.0
13.0
13.0
13.0 | 15.0
14.5
14.0
13.5
13.5 | 10.0
10.0
10.0
9.5
10.0 | 8.5
8.5
9.0
9.0 | 9.5
9.5
9.5
9.5
9.5 | 6.5
6.0
6.0
5.5
4.5 | 5.5
5.0
4.5
4.0
3.5
3.0 | 6.0
5.5
5.0
5.0
4.0
3.5 | 3.5
3.5
3.5
4.0
4.0 | 3.0
3.0
3.0
3.5
3.5 |
3.0
3.0
3.5
3.5
3.5 | | MONTH | 20.0 | 12.5 | 16.4 | 14.0 | 8.5 | 10.8 | 10.5 | 3.0 | 7.9 | 4.0 | 1.5 | 2.8 | # 01470960 TULPEHOCKEN CREEK AT BLUE MARSH DAMSITE NEAR READING, PA--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|--|---|--|--|---|--|--|--|--|--|--|--| | | | FEBRUAR | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 4.0
4.0
4.0
4.0
3.0 | 3.5
3.0
3.5
3.0
2.5 | 3.5
3.5
3.5
3.5
3.0 | 6.5
5.5
6.0
6.5
5.5 | 4.0
4.5
4.5
4.0
4.0 | 5.0
5.0
5.5
5.0
4.5 | 9.0
9.0
9.5
10.5
9.0 | 7.5
7.5
8.0
8.0
7.5 | 8.0
8.0
8.5
8.5 | 13.0
13.0
14.5
13.5
14.0 | 12.0
12.0
12.5
13.0
13.0 | 12.5
12.5
13.5
13.5
13.5 | | 6
7
8
9
10 | 3.5
3.5
3.5
4.0
4.0 | 2.5
3.0
2.5
2.5
3.0 | 3.0
3.0
3.0
3.0
3.5 | 5.5
6.5
6.5
7.0 | 4.0
4.5
5.0
5.0 | 4.5
5.0
5.5
5.5 | 9.5
10.0
9.5
9.5
10.0 | 7.5
7.5
8.5
9.0
9.0 | 8.0
8.5
9.0
9.5
9.5 | 15.5
15.5
15.5
15.0
16.5 | 13.0
14.0
14.5
14.0
14.5 | 14.0
14.5
15.0
14.5
15.5 | | 11
12
13
14
15 | 4.0
4.0
4.0
4.0 | 3.0
3.0
3.0
3.0 | 3.5
3.5
3.5
3.5
3.5 | 6.5
6.5
5.5
7.5 | 4.5
5.0
5.5
5.0
6.0 | 5.5
5.5
5.5
6.0
6.5 | 11.0
9.5
10.5
11.5
12.0 | 9.0
9.0
9.5
10.0 | 10.0
9.5
10.0
10.5
11.0 | 16.0
16.0
16.0
16.5
16.0 | 15.5
14.5
15.0
15.5
15.0 | 15.5
15.5
15.5
15.5
15.5 | | 16
17
18
19
20 | 4.5
4.5
4.5
5.0 | 3.0
3.0
3.0
3.5
3.5 | | | 6.0
4.5
5.5
5.5 | 7.0
5.5
5.5
6.0
5.5 | | | 11.5
12.0
12.5
12.5 | 17.0
17.5
16.5
16.5 | 15.5
16.0
15.5
15.5 | 16.0
16.5
16.0
16.0 | | 21
22
23
24
25 | 6.0
5.5
6.0
6.5 | | | 7.0
6.5
6.5
6.5 | 5.5
5.5
5.5
5.5
6.0 | 6.0
6.0
6.0
6.0 | 13.5
13.0
14.0
13.0
12.5 | 11.5
11.5
12.5
12.0
11.5 | 12.5
12.0
13.0
12.5
12.0 | 16.5 | 15.0
15.0
15.0
15.5
16.0 | 15.5
15.5
16.0
16.5
16.5 | | 26
27
28
29
30
31 | 6.5
6.0
6.0
 | 4.5
4.5
4.5
 | 5.0
5.0
5.0
 | 6.0
6.0
6.5
7.0
8.0 | 5.5
5.5
5.5
6.0
6.5
7.0 | 6.0
6.0
6.5
7.5 | 13.5
13.0
13.5
14.0
13.0 | 11.5
12.0
12.0
12.0
12.0 | 12.5
12.5
12.5
13.0
12.5 | 16.5
17.5
18.0
18.0
19.0
20.0 | 15.5
16.5
16.0
16.0
16.5 | 16.0
16.5
17.0
17.0
17.5 | | MONTH | 6.5 | 2.5 | | | | 5.8 | 15.5 | 7.5 | 10.8 | 20.0 | 12.0 | 15.4 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | JUNE | | | MIN
JULY | | | AUGUST | | S | MIN
EPTEMBER | | | DAY 1 2 3 4 5 | 19.5
20.5
19.5
19.0
20.5 | JUNE 17.5 18.0 18.0 17.5 17.5 | 18.5
19.0
18.5
18.5 | 21.0
21.5
21.5
21.5
22.5 | JULY 19.5 20.0 19.5 19.5 | 20.5
20.5
20.5
20.0
20.5 | 22.5
22.5
22.0
22.0
21.5 | 19.0
19.0
19.0
18.5
18.5 | 20.0
20.0
20.0
19.5
20.0 | 19.0
19.5
21.0
21.5
20.0 | 18.5
18.5 | | | 1
2
3
4
5
6
7
8 | 19.5
20.5
19.5
19.0
20.5 | JUNE 17.5 18.0 18.0 17.5 17.5 | 18.5
19.0
18.5
18.5 | | JULY 19.5 20.0 19.5 19.5 | | 22.5
22.5
22.0
22.0
21.5 | 19.0
19.0
19.0
18.5
18.5 | | 19.0
19.5
21.0
21.5
20.0 | 18.5
18.5
18.5
18.5 | 18.5
19.0
19.0
19.5 | | 1
2
3
4
5
6
7
8
9 | 19.5
20.5
19.5
19.0
20.5 | JUNE 17.5 18.0 18.0 17.5 17.5 16.0 17.5 18.0 18.5 18.5 | 18.5
19.0
18.5
18.5 | 21.0
21.5
21.5
21.5
22.5
22.5
22.5
23.0
22.5 | JULY 19.5 20.0 19.5 19.5 19.5 19.5 20.0 20.0 | 20.5
20.5
20.5
20.0
20.5 | 22.5
22.5
22.0
22.0
21.5
22.0
22.0
22.0
22.5
22.5 | 19.0
19.0
18.5
18.5
19.0
19.5
19.0
19.0
19.0 | 20.0
20.0
20.0
19.5
20.0
20.0
20.0
20.0
20.0 | 19.0
19.5
21.0
21.5
20.0
21.5
21.5
21.5
21.5
21.5
22.0
21.5 | 18.5
18.5
18.5
18.5
18.5
18.5
18.5 | 18.5
19.0
19.0
19.5
19.5
19.5
19.5
20.0
20.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 19.5
20.5
19.5
19.0
20.5
19.0
19.0
20.0
21.0
21.5
21.5
20.5
19.5 | JUNE 17.5 18.0 18.0 17.5 17.5 16.0 17.5 18.0 18.5 18.5 18.5 19.0 18.5 18.5 | 18.5
19.0
18.5
18.5
19.0
18.5
18.5
19.0
19.5 | 21.0
21.5
21.5
21.5
22.5
21.5
22.5
22.5
23.0
22.5
23.5
22.5
23.5
22.5 | JULY 19.5 20.0 19.5 19.5 19.5 19.5 20.0 20.0 20.0 20.0 20.5 20.5 | 20.5
20.5
20.5
20.0
20.5
20.5
21.0
21.0
21.0
21.0
21.0
21.5
21.0 | 22.5
22.5
22.0
21.5
22.0
21.5
22.0
22.0
22.5
22.5
22.5
22.5 | 19.0
19.0
18.5
18.5
19.0
19.5
19.0
19.0
19.0
19.0 | 20.0
20.0
20.0
19.5
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20 | 19.0
19.5
21.0
21.5
20.0
21.5
21.5
21.5
21.5
22.0
21.5
21.5
22.0
22.0 | 18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5 | 18.5
19.0
19.5
19.5
19.5
19.5
20.0
20.0
20.5
21.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 19.5
20.5
19.5
19.0
20.5
19.0
20.0
21.0
21.5
21.5
20.5
19.0 | JUNE 17.5 18.0 17.5 17.5 16.0 17.5 18.0 17.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18 | 18.5
19.0
18.5
18.5
19.0
18.5
18.5
19.0
19.5
20.0
20.0
19.5
19.0
19.5 | 21.0
21.5
21.5
21.5
22.5
21.5
22.5
22.5
23.0
22.5
23.5
22.5
22.5
22.5
22.5
22.5
21.5 | JULY 19.5 20.0 19.5 19.5 19.5 19.5 20.0 20.0 20.0 20.0 20.5 20.5 18.5 | 20.5
20.5
20.5
20.0
20.5
20.5
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0 | 22.5
22.5
22.0
21.5
22.0
22.0
22.5
22.5
22.5
22.5
22.5
22 | 19.0
19.0
18.5
18.5
19.0
19.5
19.0
19.0
19.0
19.0
19.5
17.5
17.5
17.0 | 20.0
20.0
20.0
19.5
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20 | 19.0
19.5
21.0
21.5
20.0
21.5
21.5
21.5
21.5
22.0
21.5
22.0
21.5
22.0
22.0
21.5 | 18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5 | 18.5
19.0
19.5
19.5
19.5
19.5
20.0
20.0
20.5
21.0
21.5
21.5
21.0
21.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 19.5
20.5
19.0
20.5
19.0
20.0
21.0
21.5
20.5
19.0
21.5
20.5
21.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20 | JUNE 17.5 18.0 17.5 17.5 16.0 17.5 18.0 17.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18 | 18.5 19.0 18.5 18.5 19.0 18.5 18.5 19.0 20.0 19.5 19.0 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19. | 21.0
21.5
21.5
21.5
22.5
21.5
22.5
23.0
22.5
23.5
22.5
22.5
21.5
21.0
21.0
21.0
21.5
21.5
21.5
21.5
22.5
22.5
22.5
22.5 | JULY 19.5 20.0 19.5 19.5 19.5 19.5 20.0 20.0 20.0 20.0 20.5 20.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18 | 20.5
20.5
20.5
20.0
20.5
20.5
21.0
21.0
21.0
21.0
21.0
21.5
21.0
20.0
19.0
19.0
19.5
19.5
19.5
19.5 | 22.5
22.5
22.0
21.5
22.0
22.0
22.5
22.5
22.5
22.5
22.5
22 | 19.0
19.0
18.5
18.5
19.0
19.5
19.0
19.0
19.0
19.5
17.5
17.0
17.5
18.0
18.0
18.0
18.5
18.5
18.5
18.5 |
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0 | 19.0
19.5
21.0
21.5
20.0
21.5
21.5
21.5
21.5
22.0
21.5
22.0
21.5
22.0
22.5
22.0
22.5
22.5
22.5
22.5
22 | 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 | 18.5
19.0
19.5
19.5
19.5
19.5
20.0
20.0
20.5
21.0
21.5
21.0
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 19.5
20.5
19.0
20.5
19.0
20.0
21.0
21.5
21.5
20.5
19.0
21.5
21.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20 | JUNE 17.5 18.0 17.5 17.5 16.0 17.5 18.0 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 | 18.5 19.0 18.5 18.5 19.0 18.5 18.5 19.0 19.5 19.0 19.5 19.0 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 | 21.0
21.5
21.5
21.5
22.5
22.5
22.5
23.0
22.5
22.5
22.5
22.5
21.0
21.0
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.5
22.5
22.5
22.5
22.5
22.5
22.5 | JULY 19.5 20.0 19.5 19.5 19.5 19.5 20.0 20.0 20.0 20.0 20.0 20.1 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18 | 20.5
20.5
20.5
20.0
20.5
20.5
21.0
21.0
21.0
21.0
21.0
21.5
21.0
20.0
19.0
19.5
19.5
19.5
19.5 | 22.5
22.5
22.0
21.5
22.0
22.0
22.5
22.5
22.5
22.5
22.5
22 | 19.0
19.0
18.5
18.5
19.0
19.5
19.0
19.0
19.0
19.5
17.5
17.0
17.5
18.0
18.0
18.0
18.0
18.5
18.5
18.5 | 20.0
20.0
20.0
19.5
20.0
20.0
20.0
20.0
20.0
20.0
20.0
18.0
18.5
18.5
19.0
19.0
19.0
19.0
19.0
19.0
19.0 | 19.0
19.5
21.0
21.5
20.0
21.5
21.5
21.5
22.0
21.5
22.0
21.5
22.0
22.5
22.5
22.5
22.5
22.5
22.5
22 | 18.5
18.5
18.5
18.5
18.5
18.5
18.5
18.5 | 18.5
19.0
19.5
19.5
19.5
19.5
20.0
20.0
21.5
21.0
21.5
21.5
21.0
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5 | # 01470960 TULPEHOCKEN CREEK AT BLUE MARSH DAMSITE NEAR READING, PA--Continued CROSS-SECTION ANALYSES, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAMPLE
LOC-
ATION,
CROSS
SECTION
(FT FM
R BK)
(72103) | SAM-
PLING
DEPTH
(FEET)
(00003) | | |-----------|--------------|---|--|---|--------------| | JUN 2002 | | | | | | | 04 | 1200 | 68 | 100 | | | | 04 | 1201 | | 95 | . 2 | 18.8 | | 04 | 1202 | | 90 | . 4 | 18.7 | | 04 | 1203 | | 85 | . 4 | 18.6 | | 04 | 1204 | | 80 | . 4 | 18.6 | | 04 | 1205 | | 75 | . 4 | 18.5 | | 04 | 1206 | | 70 | .5 | 18.6 | | 04 | 1207 | | 65 | . 5 | 18.6 | | 04 | 1208 | | 60 | . 5 | 18.6 | | 04 | 1209 | | 55 | . 5 | 18.7 | | 04 | 1210 | | 50 | . 5 | 18.9 | | 04 | 1211 | | 45 | . 5 | 18.9 | | 04 | 1212 | | 40 | . 5 | 19.0 | | 04 | 1213 | | 35 | . 5 | 19.1 | | 04 | 1214 | | 30 | . 5 | 19.2 | | 04 | 1215 | | 25 | . 5 | 19.4 | | 04 | 1216 | | 20 | . 4 | 19.4 | | 04 | 1217 | | 15 | | 19.5 | | 04 | 1218
1219 | | 10
5 | .2 | 19.8
20.4 | | 04 | 1219 | | 0 | . ± | 20.4 | | · · · · · | 1220 | | O | | | #### 01471000 TULPEHOCKEN CREEK NEAR READING, PA (Pennsylvania Water-Quality Network Station LOCATION.--Lat 40°22'08", long 75°58'46", Berks County, Hydrologic Unit 02040203, on right bank 15 ft upstream from covered bridge on Township Route 921, 1.0 mi downstream from Cacoosing Creek, 2.5 mi upstream from mouth, and 3.5 mi northwest of town square in Reading. **DRAINAGE AREA**.--211 mi². MTN #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1950 to current year. REVISED RECORDS.--WSP 1382: 1951-53, 1954 (M). WSP 2102: 1965 (M). WDR PA-72-1: 1971 (M). GAGE.--Water-stage recorder. Datum of gage is 216.60 ft above National Geodetic Vertical Datum of 1929. **REMARKS.**—No estimated daily discharges. Records good. Flow regulated since April 1979 by Blue Marsh Lake (station 01470870) 3.9 mi upstream. Several measurements of water temperature were made during the year. Satellite and landline telemetry at station. #### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 128 179 77 75 23 51 63 79 28 52 413 189 211 ---TOTAL MEAN 151.5 67.57 81.61 100.4 94.54 134.3 194.0 358.9 164.5 80.19 72.16 86.73 MAX ## 01471000 TULPEHOCKEN CREEK NEAR READING, PA--Continued | STATIST | rics of | MONTHLY | MEAN DATA | FOR WATER | YEARS 1980 | - 2002, | BY WATER | YEAR (WY) | (SINCE | REGULATION) | | | |------------------------------------|--------------------------------------|------------------------------------|----------------------------|----------------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | | OCT | NO | V DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN
MAX
(WY)
MIN
(WY) | 234.8
651
1997
78.3
1996 | 269.0
589
199
67.0
200 | 9 1220
7 1997
6 80.1 | 1069
1996
99.8 | 385.4
663
1986
94.5
2002 | 507.8
1604
1994
134
2002 | 399.4
1191
1983
64.2
1985 | 362.8
1226
1989
155
1999 | 280.9
673
1982
98.8
1999 | 206.7
661
1984
80.2
2002 | 145.7
331
1994
63.1
1981 | 160.5
456
1987
63.0
1983 | | SIIMMARV | 7 STATTS | STICS | FC | DR 2001 CAT | ENDAR VEAR | Ŧ | OR 2002 W | ATER VEAR | | WATER VEARS | 1980 | - 2002 | | SUMMARY STATISTICS | FOR 2001 CALENDAR | YEAR | FOR 2002 WAT | ER YEAR | WATER YEARS | 1980 - 2002 | |--------------------------|-------------------|------------|--------------|--------------|---------------|-------------| | ANNUAL TOTAL | 70531 | | 48379 | | | | | ANNUAL MEAN | 193 | | 133 | | 308 | | | HIGHEST ANNUAL MEAN | | | | | 531 | 1984 | | LOWEST ANNUAL MEAN | | | | | 133 | 2002 | | HIGHEST DAILY MEAN | 830 Ap: | r 18 | 691 | May 21 | 3950 | Apr 18 1983 | | LOWEST DAILY MEAN | 35 No | v 29,Dec 3 | 35 | Nov 29,Dec 3 | 27 | Sep 24 1991 | | ANNUAL SEVEN-DAY MINIMUM | 36 No | v 27 | 36 | Nov 27 | 35 | Sep 19 1995 | | MAXIMUM PEAK FLOW | | | 754 | May 13 | a 4060 | Dec 6 1993 | | MAXIMUM PEAK STAGE | | | 2.48 | May 13 | 5.81 | Dec 6 1993 | | 10 PERCENT EXCEEDS | 393 | | 254 | | 593 | | | 50 PERCENT EXCEEDS | 147 | | 102 | | 206 | | | 90 DEDCENT EXCEEDS | 56 | | 55 | | 8.0 | | | STAI | ISTICS OF | MONTHLY MEA | N DATA | FOR WATER | TEARS 1951 | - 19/9, | BY WATER | YEAR (WY) | (PRIOR | TO REGULA | TION) | | |-------------|--------------|--------------|--------------|-------------|-------------|-------------|-------------|-------------|--------------|--------------|--------------|--------------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN
MAX | 1 178
689 | 259
490 | 360
829 | 405
1193 | 444
917 | 522
914 | 451
806 | 318
712 | 263
1434 | 210
645 | 178
481 | 192
588 | | (WY)
MIN | 1977
55.8 | 1973
67.5 | 1978
84.4 | 1979
124 | 1971
178 | 1978
202 | 1970
170 | 1953
116 | 1972
72.8 | 1969
57.5 | 1955
41.9 | 1975
54.8 | | (WY) | 1964 | 1966 | 1966 | 1966 | 1969 | 1969 | 1966 | 1965 | 1965 | 1966 | 1966 | 1957 | | SUMMARY STATISTICS | WATER YEARS 1 | 051 _ 1070 | |--------------------------|----------------|-------------| | SUMMARI STATISTICS | WAIER IEARS I | 1931 - 1979 | | ANNUAL MEAN | 314 | | | HIGHEST ANNUAL MEAN | 491 | 1952 | | LOWEST ANNUAL MEAN | 144 | 1966 | | HIGHEST DAILY MEAN | 12000 | Jun 23 1972 | | LOWEST DAILY MEAN | 33 | Sep 1 1966 | | ANNUAL SEVEN-DAY MINIMUM | 35 | Aug 28 1966 | | MAXIMUM PEAK FLOW | a 17000 | Jun 23 1972 | | MAXIMUM PEAK STAGE | b 15.65 | Jun 23 1972 | | INSTANTANEOUS LOW FLOW | 23 | Dec 1 1964 | | ANNUAL RUNOFF (CFSM) | 1.49 | | | ANNUAL RUNOFF (INCHES) | | | | 10 PERCENT EXCEEDS | 613 | | | 50 PERCENT EXCEEDS | 211 | | | 90 DERCENT EXCEEDS | 86 | | $\begin{array}{ll} \textbf{a} & From \ rating \ curve \ extended \ above \ 3,600 \ ft^3/s \ on \ basis \ of \ contracted-opening \ measurement \ of \ peak \ flow. \\ \textbf{b} & From \ floodmark \ in \ gage \ shelter. \end{array}$ # 01471000 TULPEHOCKEN CREEK NEAR READING, PA--Continued (Pennsylvania Water-Quality Network Station) # WATER-QUALITY RECORDS **PERIOD OF RECORD**.--April 2002 to current year. **REMARKS**.--Other data for the Water-Quality Network can be found on pages 410-425. **COOPERATION.**—Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection. ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
TOTAL
RECOV-
ERABLE
(MG/L
AS CA)
(00916) |
MAGNE-
SIUM,
TOTAL
RECOV-
ERABLE
(MG/L
AS MG)
(00927) | ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | |----------------|--|---|---|--|--|--|--|---|--|--|--|---|--| | APR 2002
11 | 1230 | 9813 | 151 | 40 | 12.1 | 8.5 | 375 | 11.3 | 170 | 45.5 | 13.6 | 114 | 24.4 | | JUN
13 | 1145 | 9813 | 102 | 40 | 7.5 | 7.5 | 398 | 18.8 | 180 | 49.4 | 13.6 | 124 | 23.2 | | AUG
21 | 1330 | 9813 | 61 | 40 | 8.9 | 7.8 | 422 | 19.3 | 190 | 51.6 | 13.9 | 146 | 22.5 | | | | RESIDUE | | | | | | | | | | | MANGA- | | Date | RESIDUE
AT 105
DEG. C,
DIS-
SOLVED | TOTAL AT 105 DEG. C, SUS- PENDED | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L | NITRO-
GEN,
NITRATE
TOTAL
(MG/L | NITRO-
GEN,
NITRITE
TOTAL
(MG/L | NITRO-
GEN,
TOTAL
(MG/L | PHOS-
PHORUS
ORTHO
TOTAL
(MG/L | PHOS-
PHORUS
TOTAL
(MG/L | CARBON,
ORGANIC
TOTAL
(MG/L | COPPER,
TOTAL
RECOV-
ERABLE
(µG/L | IRON,
TOTAL
RECOV-
ERABLE
(µG/L | LEAD,
TOTAL
RECOV-
ERABLE
(µG/L | NESE,
TOTAL
RECOV-
ERABLE
(μG/L | | | (MG/L)
(00515) | (MG/L)
(00530) | AS N)
(00610) | AS N)
(00620) | AS N)
(00615) | AS N)
(00600) | AS P)
(70507) | AS P)
(00665) | AS C)
(00680) | AS CU)
(01042) | AS FE)
(01045) | AS PB)
(01051) | AS MN)
(01055) | | APR 2002
11 | 250 | 14 | <.020 | 3.65 | <.040 | 4.3 | .03 | .070 | 3.2 | <10 | 120 | <1.0 | 60 | | JUN
13 | 298 | 6 | .060 | 4.08 | <.040 | 4.7 | .17 | .180 | 2.9 | 10 | 160 | <1.0 | 90 | | AUG | | | | | | | | | | | | | | | Date | TOTAL RECOV- ERABLE (µG/L AS NI) | TOTAL
RECOV
ERABL
(µG/L
AS ZN | |-----------------------|----------------------------------|---| | | (01067) | | | APR 2002
11
JUN | <50 | <10 | | 13
AUG | <50 | 10 | | 21 | <50 | <10 | #### 01471510 SCHUYLKILL RIVER AT READING, PA LOCATION.--Lat 40°20'05", long 75°56'12", Berks County, Hydrologic Unit 02040203, on left bank 200 ft downstream from bridge on Penn Street at Reading, and 1.0 mi downstream from Tulpehocken Creek. DRAINAGE AREA.--880 mi². **PERIOD OF RECORD.**—May 1914 to September 1915, October 1919 to September 1930, and July 1977 to current year. Prior to October 1914 monthly discharge only, published in WSP 1302. Diversion by Schuylkill Navigation Canal included during the navigation seasons of 1914-15. REVISED RECORD.--WDR PA-78-1: 1977. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 185.50 ft above National Geodetic Vertical Datum of 1929 (Pennsylvania Railroad datum). May 7, 1914, to Sept. 30, 1930, and July 6, 1979, to Dec. 5, 1980, nonrecording gage. June 30, 1977, to July 5, 1979, water-stage recorder at site 1,500 ft downstream on right bank at same datum. **REMARKS.**--Records fair except those for estimated daily discharges, which are poor. Flow regulated by Still Creek Reservoir (station 01469200) since February 1933, Blue Marsh Lake (station 01470870) since April 1979, and to some extent by Lake Ontelaunee. Several measurements of water temperature were made during the year. Satellite and landline telemetry at station. **EXTREMES OUTSIDE PERIOD OF RECORD.**—Flood of June 23, 1972, reached a stage of about 31.3 ft at site 1,500 ft downstream, from floodmarks, discharge, about 90,000 ft³/s. DISCHARGE CURIC FEET PER SECOND, WATER YEAR OCTORER 2001 TO SEPTEMBER 2002 | | | | DISCHA | RGE, CUBIC | FEET PER SI | | TER YEAR (
EAN VALUE | | 01 TO SEPT | EMBER 2002 | | | |----------------------------------|--|---------------------------------|--|---|-----------------------|--|--------------------------------------|--------------------------------------|----------------------------------|--|--|----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 563 | 301 | 573 | e315 | 874 | 396 | 2060 | 2600 | 971 | 679 | 246 | 288 | | 2 | 512 | 306 | 496 | e305 | 965 | 402 | 1780 | 3030 | 902 | 550 | 239 | 297 | | 3 | 483 | 303 | 407 | e325 | 852 | 915 | 1550 | 3700 | 837 | 460 | 270 | 286 | | 4 | 460 | 296 | 380 | e350 | 834 | 1110 | 1480 | 3010 | 756 | 435 | 258 | 255 | | 5 | 435 | 294 | 389 | e345 | 746 | 819 | 1330 | 2640 | 679 | 405 | 253 | 251 | | 6 | 440 | 315 | 376 | e340 | 751 | 740 | 1250 | 2310 | 892 | 366 | 273 | 236 | | 7 | 426 | 306 | 376 | e365 | 744 | 715 | 1190 | 1960 | 1750 | 352 | 256 | 230 | | 8 | 401 | 304 | 414 | 400 | 700 | 679 | 1150 | 1770 | 1300 | 354 | 245 | 226 | | 9 | 417 | 303 | 599 | 392 | 663 | 640 | 1190 | 1880 | 1000 | 351 | 241 | 227 | | 10 | 470 | 300 | 637 | 382 | 615 | 865 | 1360 | 1920 | 756 | 369 | 233 | 254 | | 11 | 477 | 295 | 536 | 427 | 693 | 907 | 1240 | 1580 | 618 | 356 | 234 | 250 | | 12 | 472 | 289 | 506 | 527 | 718 | 753 | 1090 | 1530 | 576 | 319 | 234 | 248 | | 13 | 461 | 284 | 474 | e510 | 637 | 763 | 1080 | 2120 | 1000 | 307 | 227 | 250 | | 14 | 470 | 288 | 537 | 494 | 583 | 765 | 1230 | 2770 | 880 | 302 | 229 | 269 | | 15 | 659 | 305 | 663 | 490 | 552 | 726 | 3550 | 2400 | 1080 | 307 | 257 | 292 | | 16 | 768 | 334 | 594 | 492 | 552 | 699 | 3510 | 2010 | 900 | 301 | 258 | 447 | | 17 | 627 | 334 | 546 | 492 | 555 | 677 | 2720 | 1800 | 797 | 289 | 281 | 466 | | 18 | 619 | 327 | 750 | 464 | 535 | 848 | 2330 | 3130 | 738 | 282 | 261 | 299 | | 19 | 505 | 319 | 972 | 429 | 501 | 1160 | 2030 | 3430 | 888 | 295 | 264 | 276 | | 20 | 400 | 318 | 853 | 425 | 456 | 1510 | 1920 | 3020 | 874 | 300 | 279 | 283 | | 21 | 391 | 327 | 776 | 441 | 493 | e3000 | 1670 | 2840 | 754 | 293 | 232 | 298 | | 22 | 384 | 317 | 691 | 442 | 489 | 2710 | 1650 | 2500 | 649 | 276 | 226 | 304 | | 23 | 370 | 311 | 631 | 428 | 454 | 2320 | 1560 | 2130 | 603 | 267 | 234 | 401 | | 24 | 315 | 311 | 668 | 616 | 428 | 2040 | 1390 | 1810 | 548 | 327 | 357 | 558 | | 25 | 310 | 416 | e565 | 1180 | 415 | 1820 | 1310 | 1610 | 462 | 320 | 285 | 315 | | 26
27
28
29
30
31 | 314
297
298
295
293
296 | 965
585
434
386
389 | e475
e390
e415
e390
e355
e325 | 1270
1160
1050
901
844
851 | 408
430
416
 | 1720
3300
3040
2560
2240
2010 | 1290
1150
1740
2950
2710 | 1490
1410
1280
1160
1100 | 432
558
1370
943
763 | 283
281
282
276
268
260 | 255
233
240
310
288
264 | 357
943
1430
880
573 | | TOTAL | 13628 | 10562 | 16759 | 17452 | 17059 | 42849 | 52460 | 66970 | 25276 | 10512 | 7962 | 11689 | | MEAN | 440 | 352 | 541 | 563 | 609 | 1382 | 1749 | 2160 | 843 | 339 | 257 | 390 | | MAX | 768 | 965 | 972 | 1270 | 965 | 3300 | 3550 | 3700 | 1750 | 679 | 357 | 1430 | | MIN | 293 | 284 | 325 | 305 | 408 | 396 | 1080 | 1030 | 432 | 260 | 226 | 226 | | STATIST | rics of M | ONTHLY ME | AN DATA E | OR WATER | YEARS 197 | 7 - 2002, | BY WATER | YEAR (WY |) | | | | | MEAN | 1029 | 1402 | 1971 | 1883 | 1911 | 2626 | 2395 | 1989 | 1313 | 914 | 691 | 763 | | MAX | 3390 | 2791 | 5763 | 5682 | 3358 | 6484 | 6472 | 5493 | 3411 | 2907 | 1531 | 2705 | | (WY) | 1980 | 1997 | 1997 | 1979 | 1984 | 1994 | 1983 | 1989 | 1982 | 1984 | 1994 | 1987 | | MIN | 322 | 352 | 278 | 265 | 609 | 824 | 606 | 724 | 415 | 330 | 257 | 273 | | (WY) | 1981 | 2002 | 1981 | 1981 | 2002 | 1985 | 1985 | 1999 | 1999 | 1999 | 2002 | 1983 | e Estimated. # 01471510 SCHUYLKILL RIVER AT READING, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1977 - 2002 | |--------------------------|------------------------|---------------------|----------------------------| | ANNUAL TOTAL | 348845 | 293178 | | | ANNUAL MEAN | 956 | 803 | 1575 | | HIGHEST ANNUAL MEAN | | | 2559 1984 | | LOWEST ANNUAL MEAN | | | 803 2002 | | HIGHEST DAILY MEAN | 4160 Jun 23 | 3700 May 3 | 24700 Jan 25 1979 | | LOWEST DAILY MEAN | 273 Sep 13 | 226 Aug 22 | 180 Oct 1 1980 | | ANNUAL SEVEN-DAY MINIMUM | 295 Nov 8 | 235 Aug 8 | 224 Dec 24 1980 | | MAXIMUM PEAK FLOW | | 4860 Apr 15 | a 37500 Jan 25 1979 | | MAXIMUM PEAK STAGE | | 5.76 Apr 15 | b 17.50 Apr 16 1983 | | 10 PERCENT EXCEEDS | 1990 | 1900 | 3200 | | 50 PERCENT EXCEEDS | 673 | 493 | 1050 | | 90 PERCENT EXCEEDS | 313 | 269 | 394 | $[\]begin{array}{l} \textbf{a} \ \ \text{From rating curve extended above 31,000 ft}^3/s, \ \text{gage height 17.36 ft, at site 150 ft downstream.} \\ \textbf{b} \ \ \text{Discharge, 33,100 ft}^3/s, \ \text{from rating curve extended above 31,000 ft}^3/s. \end{array}$ ## 01471875 MANATAWNY CREEK NEAR SPANGSVILLE, PA LOCATION.--Lat 40°20'22", long 75°44'33", Berks County, Hydrologic Unit 02040203, on left bank 200 ft north of powerline across stream, 1.2 mi south of Spangsville, and 1.3 mi north of SR 562 and Earlville. **DRAINAGE AREA**.--56.9 mi². PERIOD OF RECORD.--October 1993 to current year. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 265 ft above National Geodetic Vertical Datum of
1929, from topographic map. REMARKS.--Records fair. Several measurements of water temperature were made during the year. Satellite and landline telemetry at station. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,300 ft³/s and maximum (*): | Date
May 13 | Time
211! | e ft | harge
3/s
860 | Gage Height (ft) *7.64 | | | Date
No other | Timer peak gr | e f | charge
t ³ /s
an base | Gage Height (ft) discharge. | | |----------------------------------|---|---|---|---|--|---|---|--|---|---|---|--| | | | | DISCHA | RGE, CUBIC FI | EET PER SE | | ER YEAR OC
AN VALUES | TOBER 200 | 1 TO SEPTE | EMBER 20 | 02 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4 | 31
30
30
29 | 27
28
28
28 | 32
26
24
24 | 22
22
22
24 | 64
66
46
43 | 28
28
108
50 | 59
47
45
49 | 110
186
136
92 | 60
56
52
52 | 40
38
36
34 | 19
18
19
18 | 27
38
22
19 | | 5 | 28 | 27 | 23 | 24 | 40 | 37 | 41 | 79 | 53 | 32 | 17 | 17 | | 6
7
8
9
10 | 30
31
29
29
30 | 26
26
26
26
26 | 23
23
25
55
31 | 27
47
e35
33
33 | 37
39
38
36
35 | 35
34
32
32
35 | 39
38
37
38
51 | 70
66
61
91
84 | 125
319
91
72
61 | 31
31
30
30
31 | 19
17
16
14
14 | 16
15
15
15 | | 11
12
13
14
15 | 29
29
29
31
46 | 26
26
26
26
27 | 28
25
e26
e33
e58 | 63
68
49
41
39 | 38
34
33
31
31 | 32
31
34
34
32 | 40
37
38
44
182 | 60
74
837
778
217 | 56
56
55
71
77 | 28
28
28
28
29 | 14
14
13
13 | 15
15
15
16
18 | | 16
17
18
19
20 | 31
36
31
29
29 | 26
26
26
26
30 | e36
e33
64
43
32 | 39
36
34
e30
e28 | 33
32
30
30
30 | 31
30
68
67
213 | 75
55
48
46
50 | 167
139
474
184
144 | 62
51
48
57
47 | 26
26
25
25
33 | 14
14
14
14
17 | 27
19
17
17
17 | | 21
22
23
24
25 | 27
27
27
27
27 | 29
26
26
26
39 | 28
26
25
31
29 | 31
31
34
133
91 | 31
30
29
28
29 | 122
68
54
49
45 | 45
61
54
45
49 | 128
116
107
99
91 | 43
41
40
38
37 | 26
25
26
29
24 | 16
15
18
23
29 | 17
18
19
18
17 | | 26
27
28
29
30
31 | 26
26
26
27
27
27 | 62
30
27
26
27 | 26
23
23
23
22
e20 | 53
44
40
38
38
52 | 29
31
29
 | 44
118
61
51
47
43 | 56
44
254
301
113 | 85
84
75
71
68
63 | 37
107
200
53
43 | 21
21
21
20
20
19 | 18
16
16
45
25 | 19
119
56
27
22 | | MAX
MIN
CFSM | 911
29.4
46
26
0.52
0.60 | 851
28.4
62
26
0.50
0.56 | 940
30.3
64
20
0.53
0.61 | 1301
42.0
133
22
0.74
0.85 | 1002
35.8
66
28
0.63
0.66 | 1693
54.6
213
28
0.96
1.11 | 2081
69.4
301
37
1.22
1.36 | 5036
162
837
60
2.86
3.29 | 2160
72.0
319
37
1.27
1.41 | 861
27.8
40
19
0.49
0.56 | 551
17.8
45
13
0.31
0.36 | 707
23.6
119
15
0.41
0.46 | | STATISTIC | s of mon | THLY MEA | N DATA | FOR WATER Y | EARS 1994 | 1 - 2002, | BY WATER Y | EAR (WY) | | | | | | MAX
(WY)
MIN | 57.5
139
1997
27.4
1998 | 67.3
154
1997
28.4
2002 | 96.7
326
1997
21.1
1999 | 101
201
1996
42.0
2002 | 97.0
141
1996
35.8
2002 | 155
353
1994
54.6
2002 | 124
201
1996
69.4
2002 | 98.3
162
2002
50.8
1999 | 71.3
108
1998
26.3
1999 | 49.9
88.1
1996
14.6
1999 | 35.6
79.5
1994
13.6
1999 | 39.6
95.0
1999
18.9
1995 | e Estimated. # 01471875 MANATAWNY CREEK NEAR SPANGSVILLE, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1994 - 2002 | |--------------------------|------------------------|----------------------|---------------------------| | ANNUAL TOTAL | 24696 | 18094 | | | ANNUAL MEAN | 67.7 | 49.6 | 82.7 | | HIGHEST ANNUAL MEAN | | | 125 1994 | | LOWEST ANNUAL MEAN | | | 49.6 2002 | | HIGHEST DAILY MEAN | 814 Jul 26 | 837 May 13 | 1620 Oct 19 1996 | | LOWEST DAILY MEAN | e 20 Dec 31 | 13 Aug 13-15 | 8.8 Aug 3 1999 | | ANNUAL SEVEN-DAY MINIMUM | a 24 Dec 25 | 14 Aug 9 | 9.5 Aug 1 1999 | | MAXIMUM PEAK FLOW | | b 2860 May 13 | b 3380 Oct 19 1996 | | MAXIMUM PEAK STAGE | | 7.64 May 13 | 8.11 Oct 19 1996 | | INSTANTANEOUS LOW FLOW | | c 12 Dec 30 | 7.5 Jan 17 2000 | | ANNUAL RUNOFF (CFSM) | 1.19 | 0.87 | 1.45 | | ANNUAL RUNOFF (INCHES) | 16.15 | 11.83 | 19.76 | | 10 PERCENT EXCEEDS | 123 | 84 | 157 | | 50 PERCENT EXCEEDS | 48 | 31 | 53 | | 90 PERCENT EXCEEDS | 26 | 18 | 23 | - a Computed using estimated daily discharges. b From rating curve extended above 1,200 ft³/s. c Result of freezeup. e Estimated. # 01471980 MANATAWNY CREEK NEAR POTTSTOWN, PA **LOCATION.**--Lat 40°16′22″, long 75°40′49″, Berks County, Hydrologic Unit 02040203, on left bank 180 ft upstream from bridge on Manatawny Street, 0.7 mi downstream from Ironstone Creek, 2.4 mi northwest of Pottstown, 3.1 mi upstream from mouth, and 4.7 mi southwest of Boyertown. **DRAINAGE AREA**.--85.5 mi². PERIOD OF RECORD.--August 1974 to current year. Discharge GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 150.00 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). **REMARKS.**—Records good except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. Satellite telemetry at station. Discharge Gage Height EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 22, 1972 reached a stage of 17.1 ft from floodmarks, discharge, about 9,600 ft³/s. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,800 ft³/s and maximum (*): Gage Height | Date | Time | | t ³ /s | (ft) | | | Date | Time | | ft ³ /s | (ft) | | |--|---|---|--|---|--|---|---|---|---|--|---|---| | May 14 | 0045 | 5 *4 | ,680 | *9.11 | | | No other | r peak gre | eater th | an base | discharge. | | | | | | DISCHA | RGE, CUBIC FI | EET PER SE | | ER YEAR OO
AN VALUES | | I ТО SEPT | TEMBER 20 | 002 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 34
34
33
32
30 | 28
29
30
30
29 | 39
34
32
30
30 | e30
e30
e30
e33
e38 | 69
89
60
56
e52 | 36
37
164
78
56 | 79
68
65
69
61 | 120
202
168
99
86 | 71
68
63
63
64 | 49
47
45
42
40 | 25
23
24
24
23 | 34
54
32
26
23 | | 6
7
8
9
10 | 30
32
30
30
30 | 29
28
29
29
29 | 30
30
34
68
46 | 56
114
89
75
70 | e48
52
52
48
46 | 51
50
47
45
48 | 57
54
54
53
62 | 80
75
71
98
93 | 139
415
101
80
73 | 38
37
37
37
38 | 25
23
20
19 | 21
20
20
19
19 | | 11
12
13
14
15 | 30
30
31
31
43 | 29
28
28
29
30 | 37
36
35
42
62 | 132
135
69
55
51 | 50
47
45
e42
44 | 45
44
48
50
46 | 57
52
53
57
185 | 71
72
927
1580
364 | 68
68
65
95 | 36
34
34
34
35 | 18
18
18
16
16 | 19
17
18
19
23 | | 16
17
18
19
20 | 38
36
35
31
30 | 30
29
29
29
31 | 42
38
73
63
44 | 50
47
44
41
e42 | 43
41
40
39
40 | 45
45
96
101
340 | 89
67
59
56
59 | 229
169
620
284
179 | 72
64
60
66
60 | 33
30
30
31
42 | 16
17
16
16
17 | 37
27
23
22
22 | | 21
22
23
24
25 | 29
28
28
28
28 | 34
31
30
30
40 | 38
35
34
43
41 | e38
e38
41
160
140 | 41
39
38
37
38 | 234
105
84
74
68 | 55
68
68
55
56 | 149
130
118
110
99 | 55
52
49
48
47 | 36
32
29
44
35 | 20
17
19
38
45 | 22
23
24
24
23 | | 26
27
28
29
30
31 | 27
27
27
27
28
28 | 89
42
35
33
33 | 35
e30
e30
e30
e29
e27 | 68
57
52
50
49
63 | 38
40
38
 | 67
155
89
73
68
63 |
67
54
257
426
129 | 96
94
88
84
80
75 | 46
60
263
65
53 | 30
30
32
31
28
26 | 24
21
20
70
42
27 | 28
182
105
44
34 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 955
30.8
43
27
0.36
0.42 | 979
32.6
89
28
0.38
0.43 | 1217
39.3
73
27
0.46
0.53 | 1987
64.1
160
30
0.75
0.86 | 1312
46.9
89
37
0.55
0.57 | 2552
82.3
340
36
0.96
1.11 | 2591
86.4
426
52
1.01
1.13 | 6710
216
1580
71
2.53
2.92 | 2583
86.1
415
46
1.01
1.12 | 1102
35.5
49
26
0.42
0.48 | 736
23.7
70
16
0.28
0.32 | 1004
33.5
182
17
0.39
0.44 | | | | | | FOR WATER Y | | - | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 79.9
245
1997
30.8
2002 | 106
231
1997
32.6
2002 | 145
511
1997
32.2
1999 | 165
499
1979
28.0
1981 | 171
356
1984
46.9
2002 | 205
470
1994
69.6
1981 | 191
450
1993
53.6
1985 | 156
390
1989
67.4
1987 | 103
266
1982
36.1
1999 | 83.6
312
1984
18.2
1999 | 58.7
138
1990
21.6
1981 | 69.8
191
1987
27.1
1983 | e Estimated. # 01471980 MANATAWNY CREEK NEAR POTTSTOWN, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR | YEAR | FOR 2002 WAT | ER YEAR | WATER YEARS | 1974 | - 2002 | |--------------------------|------------------------------|-------------------|---------------|--------------------|---------------|------|--------| | ANNUAL TOTAL | 33993 | | 23728 | | | | | | ANNUAL MEAN | 93.1 | | 65.0 | | 127 | | | | HIGHEST ANNUAL MEAN | | | | | 230 | | 1984 | | LOWEST ANNUAL MEAN | | | | | 63.4 | | 1981 | | HIGHEST DAILY MEAN | e 1500 J [.] | un 23 | 1580 | May 14 | 3010 | Jul | 7 1984 | | LOWEST DAILY MEAN | 27 0 | ct 26-29 a | 16 | Aug 14-16 b | 11 | Aug | 3 1999 | | ANNUAL SEVEN-DAY MINIMUM | 27 0 | ct 23 | 16 | Aug 14 | 12 | Aug | 1 1999 | | MAXIMUM PEAK FLOW | | | c 4680 | May 14 | c 7550 | Sep | 9 1987 | | MAXIMUM PEAK STAGE | | | 9.11 | May 14 | 11.46 | Sep | 9 1987 | | INSTANTANEOUS LOW FLOW | | | 15 | Aug 11 | 9.1 | Aug | 3 1999 | | ANNUAL RUNOFF (CFSM) | 1.09 | | 0.76 | | 1.49 | | | | ANNUAL RUNOFF (INCHES) | 14.79 | | 10.32 | | 20.25 | | | | 10 PERCENT EXCEEDS | 189 | | 100 | | 237 | | | | 50 PERCENT EXCEEDS | 57 | | 42 | | 81 | | | | 90 PERCENT EXCEEDS | 30 | | 23 | | 33 | | | ^{a Also Dec. 31. b Also Aug. 18, 19. c From rating curve extended above 2,780 ft³/s. e Estimated.} #### 01472000 SCHUYLKILL RIVER AT POTTSTOWN, PA (Pennsylvania Water-Quality Network Station) LOCATION.--Lat 40°14'30", long 75°39'07", Montgomery County, Hydrologic Unit 02040203, on right bank 75 ft upstream from bridge on Hanover Street in Pottstown, and 0.3 mi downstream from Manatawny Creek. **DRAINAGE AREA**.--1,147 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1927 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 117.86 ft above National Geodetic Vertical Datum of 1929. October 1927 to Nov. 22, 1928, nonrecording gage, and Nov. 23, 1928, to Dec. 26, 1972, recording gage at site 100 ft downstream at same datum. Dec. 27, 1972, to May 10, 1974, nonrecording gage 1.0 mi downstream at datum 2.83 ft lower. REMARKS.--Records good except those for estimated daily discharges, which are fair. Flow regulated by Blue Marsh Lake (station 01470870) since April 1979, by Still Creek Reservoir (station 01469200) since February 1933, and by Lake Ontelaunee. Satellite and landline telemetry at station. **EXTREMES OUTSIDE PERIOD OF RECORD.**—Maximum stage known prior to October 1926, 21.0 ft, Feb. 28, 1902, from floodmarks, discharge, about 53,900 ft³/s. | | | | DISCH | ARGE, CUBIC | FEET PER SE | | TER YEAR C
EAN VALUES | | 01 TO SEPT | EMBER 2002 | 2 | | |----------------------------------|--|----------------------------------|---|---|-----------------------|--|--------------------------------------|--|------------------------------------|--|--|------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 729 | 362 | 569 | e390 | 1030 | 493 | 2030 | 3090 | 1200 | 972 | 294 | 432 | | 2 | 662 | 366 | 687 | e390 | 1150 | 482 | 1860 | 3240 | 1130 | 859 | 279 | 498 | | 3 | 634 | 361 | 540 | e406 | 1030 | 1140 | 1550 | 4730 | 1050 | 709 | 282 | 450 | | 4 | 603 | 355 | 467 | e426 | 941 | 1390 | 1500 | 3610 | 987 | 659 | 441 | 379 | | 5 | 578 | 348 | 461 | e418 | 929 | 1020 | 1330 | 3080 | 909 | 617 | 304 | 340 | | 6 | 564 | 350 | 452 | e414 | 873 | 888 | 1220 | 2690 | 1270 | 556 | 319 | 324 | | 7 | 560 | 357 | 433 | e437 | 871 | 842 | 1140 | 2260 | 2930 | 516 | 310 | 305 | | 8 | 534 | 354 | 465 | e481 | 840 | 815 | 1090 | 2000 | 1970 | 505 | 292 | 295 | | 9 | 501 | 346 | 674 | e481 | 797 | 787 | 1100 | 2140 | 1510 | 497 | 280 | 294 | | 10 | 569 | 347 | 789 | e481 | 746 | 809 | 1220 | 2290 | 1190 | 505 | 274 | 308 | | 11 | 587 | 346 | 647 | e570 | 755 | 1090 | 1270 | 1840 | 988 | 510 | 270 | 333 | | 12 | 593 | 336 | 592 | e830 | 848 | 907 | 1030 | 1670 | 945 | 459 | 271 | 320 | | 13 | 581 | 328 | 562 | 786 | 752 | 909 | 1010 | 3890 | 1180 | 428 | 266 | 317 | | 14 | 571 | 328 | 610 | 707 | 702 | 916 | 1080 | 7520 | 1390 | 425 | 254 | 343 | | 15 | 662 | 333 | 739 | 681 | 656 | 876 | 2790 | 3650 | 1500 | 426 | 264 | 381 | | 16 | 928 | 374 | 713 | 656 | 649 | 825 | 4060 | 2770 | 1320 | 416 | 296 | 494 | | 17 | 811 | 390 | 612 | 662 | 652 | 813 | 3130 | 2380 | 1160 | 395 | 302 | 743 | | 18 | 750 | 393 | 752 | 636 | 642 | 1120 | 2590 | 4130 | 1070 | 377 | 318 | 478 | | 19 | 707 | 393 | 1030 | 592 | 609 | 1390 | 2240 | 4730 | 1150 | 373 | 296 | 381 | | 20 | 535 | 388 | 907 | 601 | 566 | 2350 | 2050 | 3750 | 1260 | 410 | 386 | 364 | | 21 | 506 | 385 | 820 | 600 | 569 | 3300 | 1820 | 3550 | 1110 | 391 | 304 | 388 | | 22 | 493 | 388 | 750 | 590 | 585 | 3040 | 1810 | 3120 | 966 | 364 | 271 | 438 | | 23 | 490 | 372 | 694 | 590 | 559 | 2460 | 1740 | 2680 | 900 | 343 | 309 | 432 | | 24 | 430 | 369 | 716 | 1010 | 539 | 2090 | 1500 | 2260 | 856 | 410 | 380 | 687 | | 25 | 387 | 419 | 726 | 1410 | 512 | 1840 | 1410 | 1990 | 758 | 446 | 714 | 518 | | 26
27
28
29
30
31 | 372
361
360
364
353
352 | 1060
918
611
511
480 | 646
542
471
464
435
e402 | 1430
1260
1160
1040
918
1030 | 496
525
513
 | 1660
3050
3330
2640
2260
2020 | 1400
1240
2050
3890
3270 | 1820
1730
1620
1430
1340
1280 | 703
747
1970
1420
1080 | 372
350
362
361
325
311 | 374
322
300
607
467
402 | 436
1570
2050
1480
863 | | TOTAL | 17127 | 12668 | 19367 | 22083 | 20336 | 47552 | 55420 | 88280 | 36619 | 14649 | 10448 | 16641 | | MEAN | 552 | 422 | 625 | 712 | 726 | 1534 | 1847 | 2848 | 1221 | 473 | 337 | 555 | | MAX | 928 | 1060 | 1030 | 1430 | 1150 | 3330 | 4060 | 7520 | 2930 | 972 | 714 | 2050 | | MIN | 352 | 328 | 402 | 390 | 496 | 482 | 1010 | 1280 | 703 | 311 | 254 | 294 | | STATIST | rics of i | MONTHLY ME | EAN DATA | FOR WATER | YEARS 192 | 3 - 2002, | BY WATER | YEAR (WY |) | | | | | MEAN | 1128 | 1644 | 2154 | 2177 | 2429 | 3174 | 2912 | 2274 | 1556 | 1233 | 1021 | 1057 | | MAX | 3870 | 3897 | 7359 | 7383 | 5117 | 8948 | 7820 | 7220 | 7634 | 3940 | 5290 | 3732 | | (WY) | 1977 | 1951 | 1997 | 1979 | 1971 | 1936 | 1983 | 1989 | 1972 | 1984 | 1933 | 1987 | | MIN | 258 | 309 | 419 | 316 | 540 | 1101 | 875 | 729 | 462 | 302 | 301 | 256 | | (WY) | 1931 | 1931 | 1931 | 1981 | 1934 | 1981 | 1985 | 1965 | 1965 | 1966 | 1966 | 1932 | e Estimated. # 01472000 SCHUYLKILL RIVER AT POTTSTOWN, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDA | R YEAR | FOR 2002 WA | TER YEAR | WATER YEARS | 1928 - 2002 | |--------------------------|------------------|-----------|-------------|----------|----------------|-------------| | ANNUAL TOTAL | 466786 | | 361190 | | | | | ANNUAL MEAN | 1279 | | 990 | | 1894 | | | HIGHEST ANNUAL MEAN | | | | | 3211 | 1984 | | LOWEST ANNUAL MEAN | | | | | 843 | 1965 | | HIGHEST DAILY MEAN | 8260 | Jun 23 | 7520 | May 14 | 71200 | Jun 23 1972 | | LOWEST DAILY MEAN | 328 | Nov 13,14 | 254 | Aug 14 | 175 | Sep 19 1932 | | ANNUAL SEVEN-DAY MINIMUM | 338 | Nov 9 | 268 | Aug 9 | 210 | Sep 19 1932 | | MAXIMUM PEAK FLOW | | | 14800 | May 14 | a 95900 | Jun 23 1972 | | MAXIMUM PEAK STAGE | | | 9.68 | May 14 | b 29.97 | Jun 23 1972 | | 10 PERCENT EXCEEDS | 2640 | | 2180 | | 3810 | | | 50 PERCENT EXCEEDS | 898 | | 652 | | 1280 | | | 90 PERCENT EXCEEDS | 389 | | 335 | | 471 | | $[\]begin{array}{ll} \textbf{a} & \text{From rating curve extended above 50,400 ft}^3/s. \\ \textbf{b} & \text{From floodmark.} \end{array}$ # 01472000 SCHUYLKILL RIVER AT POTTSTOWN, PA--Continued (Pennsylvania Water-Quality Network Station) # WATER-QUALITY RECORDS **PERIOD OF RECORD.**--April 2002 to current year. **REMARKS**.--Other data for the Water-Quality Network can be found on pages 410-425. COOPERATION.--Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection. ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH WATER WHOLE FIELD (STAND- ARD
UNITS) (00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
TOTAL
RECOV-
ERABLE
(MG/L
AS CA)
(00916) | MAGNE-
SIUM,
TOTAL
RECOV-
ERABLE
(MG/L
AS MG)
(00927) | ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417) | FLUO-
RIDE,
TOTAL
(MG/L
AS F)
(00951) | |----------------|--|---|--|---|---|---|--|--|--|--|--|--|--| | APR 2002
09 | 1030 | 9813 | 1100 | 40 | 11.3 | 7.7 | 339 | 11.6 | 120 | 29.6 | 12.3 | 62 | <.2 | | JUN | 1030 | 2013 | 1100 | 40 | 11.5 | /./ | 337 | 11.0 | 120 | 20.0 | 12.5 | 02 | `.2 | | 27
AUG | 1000 | 9813 | 674 | 40 | 6.2 | 7.7 | 419 | 26.8 | 150 | 35.3 | 14.8 | 80 | <.2 | | 27 | 0940 | 9813 | 328 | 40 | 7.0 | 7.8 | 503 | 22.8 | 190 | 47.0 | 18.4 | 100 | <.2 | | | | | | | | | | | | | | | | | Date | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RESIDUE
AT 105
DEG. C,
DIS-
SOLVED
(MG/L)
(00515) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N)
(00620) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N)
(00615) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | PHOS-
PHORUS
ORTHO
TOTAL
(MG/L
AS P)
(70507) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | COPPER,
TOTAL
RECOV-
ERABLE
(µG/L
AS CU)
(01042) | CYANIDE
AMEN-
ABLE TO
CHLOR-
INATION
UNFLTRD
(MG/L)
(00722) | IRON,
TOTAL
RECOV-
ERABLE
(µG/L
AS FE)
(01045) | | APR 2002
09 | DIS-
SOLVED
(MG/L
AS SO4) | AT 105
DEG. C,
DIS-
SOLVED
(MG/L) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | PHORUS
ORTHO
TOTAL
(MG/L
AS P) | PHORUS
TOTAL
(MG/L
AS P) | ORGANIC
TOTAL
(MG/L
AS C) | TOTAL
RECOV-
ERABLE
(µG/L
AS CU) | AMEN-
ABLE TO
CHLOR-
INATION
UNFLTRD
(MG/L) | TOTAL
RECOV-
ERABLE
(µG/L
AS FE) | | APR 2002 | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | AT 105
DEG. C,
DIS-
SOLVED
(MG/L)
(00515) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | GEN,
NITRATE
TOTAL
(MG/L
AS N)
(00620) | GEN,
NITRITE
TOTAL
(MG/L
AS N)
(00615) | GEN,
TOTAL
(MG/L
AS N)
(00600) | PHORUS
ORTHO
TOTAL
(MG/L
AS P)
(70507) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | ORGANIC
TOTAL
(MG/L
AS C)
(00680) | TOTAL
RECOV-
ERABLE
(µG/L
AS CU)
(01042) | AMEN-
ABLE TO
CHLOR-
INATION
UNFLTRD
(MG/L)
(00722) | TOTAL
RECOV-
ERABLE
(µG/L
AS FE)
(01045) | | Date | LEAD,
TOTAL
RECOV-
ERABLE
(µG/L
AS PB)
(01051) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(µG/L
AS MN)
(01055) | NICKEL,
TOTAL
RECOV-
ERABLE
(µG/L
AS NI)
(01067) | ZINC,
TOTAL
RECOV-
ERABLE
(µG/L
AS ZN)
(01092) | PHENOLS
TOTAL
(µG/L)
(32730) | GROSS
ALPHA,
WATER,
UNFLT,
(PCI/L)
(01519) | GROSS
BETA,
WATER,
UNFLT,
(PCI/L)
(85817) | TRITIUM
TOTAL
(PCI/L)
(07000) | |----------------|--|--|--|--|---------------------------------------|---|--|--| | APR 2002
09 | 1.3 | 120 | <50 | <10 | <5 | .11 | 2 | | | JUN | | | | | | | | | | 27
AUG | <1.0 | 50 | <50 | <10 | <5 | 2.03 | 4 | 21 | | 27 | <1.0 | 90 | <50 | <10 | <5 | 1.47 | 5 | 56 | #### 01472104 SCHUYLKILL RIVER AT VINCENT DAM AT LINFIELD, PA LOCATION.--Lat 40°12'22", long 75°33'57", Montgomery County, Hydrologic Unit 02040203, on left bank 100 ft upstream from Vincent Dam, and 0.3 mi south of Linfield. **DRAINAGE AREA**.--1,189 mi². PERIOD OF RECORD.--Water years 1986 to current year. #### PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: January 1986 to September 1990. WATER TEMPERATURE: September 1989 to current year. DISSOLVED OXYGEN: January 1986 to September 1990; March 1997 to current year. **INSTRUMENTATION.**--Water-quality monitor January 1986 to September 1990, March 1997 to current year. In situ water temperature probe since October 1990. Probes interfaced with a data collection platform. **REMARKS.**--Water temperature records rated good. Dissolved oxygen records rated fair. Dissolved oxygen collection discontinued October through March. Other interruptions in the record were due to pump intake sedimentation and instrument malfunctions. #### EXTREMES FOR PERIOD OF DAILY RECORD.-- SPECIFIC CONDUCTANCE: Maximum, 752 microsiemens, Sept. 15, 1989; minimum, 118 microsiemens, Sept. 15, 1987. WATER TEMPERATURE: Maximum, 33.5°C, July 6, 1999; minimum, 0.0°C, many days during winters. DISSOLVED OXYGEN: Maximum, 19.6 mg/L, Mar. 24, 1988; minimum, 0.8 mg/L, July 26, 1986. ## EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum 33.0°C, Aug. 2, 3; minimum, 0.0°C, several days during winter. WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|--|---------------------------------|--|--| | | | OCTOBER | | | NOVEMBER | 1 | | DECEMBER | | | JANUARY | | | 1
2
3
4
5 | 16.0
18.5
20.0
21.0
21.0 | 14.5
14.0
16.0
17.5
17.5 | 15.0
16.0
18.0
19.0
19.5 | 12.5
15.0
16.5
15.0
13.5 | 9.5
11.0
14.5
12.5
10.5 | 11.0
13.0
15.0
13.5
12.0 | 14.5
12.5
10.5
10.0
11.5 | 12.5
10.0
8.5
8.0
9.5 | 13.0
11.5
9.5
9.0
10.0 | 1.5
1.5
2.0
1.5
1.5 | 0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5 | | 6
7
8
9
10 | 19.5
17.5
15.0
14.5
15.0 | 17.5
14.5
12.5
11.0
11.5 | 18.5
16.0
13.5
13.0 | 12.0
12.0
12.0
12.0
11.5 | 9.5
9.0
9.5
10.0
8.5 | 10.5
10.5
10.5
11.0 | 12.0
12.0
11.0
9.0
7.5 | 10.0
11.0
8.5
7.5
6.0 | 11.0
11.5
9.5
8.5
7.0 | 1.0
1.5
2.0
2.0
3.5 | 0.0
0.0
0.0
0.5
1.0 | 0.5
1.0
1.0
1.5
2.0 | | 11
12
13
14
15 | 17.0
18.0
19.5
19.5 | 13.0
14.5
16.5
18.0
17.0 | 14.5
16.0
18.0
18.5
18.0 | 10.5
9.0
9.0
9.0
10.5 | 8.5
6.5
6.0
6.0
7.5 | 9.5
8.0
7.5
7.5
9.0 | 8.5
7.5
8.5
10.0
10.0 | 7.0
6.0
7.0
8.5
8.0 | 7.5
7.0
8.0
9.0
9.0 | 4.5
4.5
4.5
4.5
5.5 | 3.0
3.0
3.5
2.5
3.0 | 3.5
3.5
4.0
3.5
4.0 | | 16
17
18
19
20 | 17.5
16.0
14.5
14.5 | 15.0
13.5
11.5
11.0
12.0 | 16.5
15.0
13.0
12.5
13.5 | 12.0
11.5
10.5
10.5 | 8.5
9.5
8.0
8.0 | 10.0
10.0
9.0
9.0
9.5 | 8.0
7.5
9.0
8.5
7.5 | 6.5
6.5
7.5
7.0
5.5 | 7.0
7.0
8.0
7.5
6.5 | 5.0
5.0
4.5
3.0
3.0 | 3.5
3.5
3.0
0.5 | 4.0
4.0
3.5
2.0
1.5 | | 21
22
23
24
25 | 16.0
17.5
18.0
19.5
19.0 | 12.5
14.0
15.5
16.5 | 14.0
15.5
16.5
18.0
18.0 | 9.0
8.0
8.0
10.0
12.0 | 6.5
6.0
6.0
7.0
10.0 | 7.5
7.0
7.0
8.5
11.0 | 6.0
5.0
5.0
6.0
4.5 | 4.5
3.5
3.5
4.5
3.5 | 5.0
4.5
4.0
5.5
4.0 | 2.5
4.0
4.0
5.5
6.5 | 1.0
1.5
2.5
4.0
5.0 | 1.5
2.5
3.5
5.0
5.5 | | 26
27
28
29
30
31 | 16.5
13.0
11.5
12.0
12.5
11.0 | 13.0
10.5
9.5
8.5
10.0
10.0 | 15.0
11.5
10.5
10.0
11.0 | 13.0
12.0
12.5
12.5
13.5 | 11.5
10.5
11.0
12.0
12.0 | 12.0
11.0
11.5
12.0
12.5 | 4.5
3.0
3.0
3.0
2.0 | 3.0
1.5
0.5
1.5
0.0 | 3.5
2.0
1.5
2.0
1.0
0.5 | 6.0
6.0
6.0
7.0
8.0 | 4.0
3.5
4.0
4.5
6.5
7.0 |
5.0
4.5
4.5
5.5
7.0
7.0 | | MONTH | 21.0 | 8.5 | 15.1 | 16.5 | 6.0 | 10.2 | 14.5 | 0.0 | 6.8 | 8.0 | 0.0 | 3.0 | # 01472104 SCHUYLKILL RIVER AT VINCENT DAM AT LINFIELD, PA--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|--|---|--|--|--|--|--|--|--|--|--|--| | | | FEBRUAR | Y | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 7.5
6.5
5.0
4.5
3.5 | 6.5
4.5
3.5
2.5
0.5 | 7.0
5.5
4.5
3.5
2.0 |

 |

 |

 | 12.5
12.5
13.5
12.0
11.0 | 10.5
10.5
12.0
10.5
9.5 | 11.5
11.5
12.5
11.0
10.0 | 14.5
15.0
 | 12.5
13.5
 | 13.5
14.0
 | | 6
7
8
9 | 3.5
4.5
6.0
6.5
7.0 | 1.0
3.0
3.0
3.5
5.0 | 2.5
3.5
4.0
5.0
6.0 |

 |

 |

 | 10.5
11.0
11.5
13.5
15.5 | 8.5
7.5
9.0
11.0
12.5 | 9.5
9.0
10.5
12.0
14.0 | 18.0
19.0
18.5
18.0 | 15.5
16.5
16.0
15.5 | 16.5
18.0
17.0
16.5 | | 11
12
13
14
15 | 7.5
5.0
5.5
5.0
5.0 | 5.0
4.0
3.0
2.5
2.5 | 6.5
4.5
4.0
3.5
3.5 |

 |

 | | 15.5
14.5
15.5
17.5
18.0 | 13.0
13.0
13.0
14.5
16.0 | 14.5
13.5
14.0
16.0
17.0 | 18.0
18.0
17.5 | 16.0
17.0
16.0 | 17.0
17.5
17.0 | | 16
17
18
19
20 | 8.0
7.5
6.5
7.0
8.0 | 4.5
5.0
3.5
3.5
5.5 | 5.5
6.5
5.0
5.0
6.5 |

 |

 |

 | 18.0
20.0
22.0
22.5 | 16.0
17.0
18.0
18.5 | 17.0
18.5
20.0
20.5 | 18.5
18.0
15.0
14.5 | 16.5
14.5
13.5
13.0 | 17.5
16.0
14.0
13.5 | | 21
22
23
24
25 | 11.0
10.0
9.5
9.5 | 7.5
8.0
6.5
5.5 | 8.5
9.0
8.0
7.5 |

 |

 | |

14.5 |

12.5 |

13.5 | 14.0
15.0
16.5
18.5 | 12.5
12.5
13.5
15.0
17.0 | 13.5
14.0
15.0
17.0
18.5 | | 26
27
28
29
30
31 |

 |

 |

 |

10.0
11.5
11.5 | 7.5
9.0 |

8.5
10.5
11.0 | 14.0
15.0
14.5
14.0
13.5 | 11.5
12.0
14.0
13.0
12.0 | 12.5
13.5
14.0
13.5
12.5 |

22.0
23.5
24.5 | 19.5
20.5
22.0 | 20.5
22.0
23.0 | | MONTH | 11.0 | 0.5 | 5.3 | 11.5 | 7.5 | 10.0 | 22.5 | 7.5 | 13.7 | 24.5 | 12.5 | 16.7 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | MAX | MIN
AUGUST | MEAN | | MIN
SEPTEMBE | | | DAY 1 2 3 4 5 | MAX
25.0
24.5
23.5
22.5
24.0 | | MEAN 23.5 23.5 22.5 21.5 22.0 | 28.0
29.5
31.0
32.0
30.5 | | MEAN 26.5 27.5 29.0 30.0 29.5 | 32.0
33.0
33.0
31.5
30.0 | | MEAN 29.5 30.0 30.0 29.5 29.0 | | | | | 1
2
3
4 | 25.0
24.5
23.5
22.5 | JUNE 22.5 22.5 21.5 21.0 | 23.5
23.5
22.5
21.5 | 28.0
29.5
31.0
32.0 | JULY 24.5 25.5 27.5 28.0 | 26.5
27.5
29.0
30.0 | 32.0
33.0
33.0
31.5 | 27.0
27.0
27.0
28.0
27.5 | 29.5
30.0
30.0
29.5 | 21.5
21.5
25.0
27.5 | 20.0
19.5
20.0
23.0 | 20.5
20.5
22.5
25.0 | | 1
2
3
4
5
6
7
8
9 | 25.0
24.5
23.5
22.5
24.0
24.0
22.0
22.0
22.5 | JUNE 22.5 22.5 21.5 21.0 20.5 22.0 20.0 19.0 20.0 | 23.5
23.5
22.5
21.5
22.0
23.0
20.5
20.5
21.5 | 28.0
29.5
31.0
32.0
30.5 | JULY 24.5 25.5 27.5 28.0 27.5 26.0 24.0 | 26.5
27.5
29.0
30.0
29.5
27.0
25.5 | 32.0
33.0
33.0
31.5
30.0
29.0
27.0
27.0
28.0 | 27.0
27.0
28.0
27.5
28.0
25.5
23.0
22.5
22.0 | 29.5
30.0
30.0
29.5
29.0
27.5
25.0
24.5
25.0 | 21.5
21.5
25.0
27.5
26.0
26.5
26.5
26.5 | 20.0
19.5
20.0
23.0
23.0
21.5
21.0
21.5 | 20.5
20.5
22.5
25.0
24.5
24.0
23.5
24.0
24.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 25.0
24.5
23.5
22.5
24.0
22.0
22.0
22.5
24.5 | JUNE 22.5 22.5 21.0 20.5 22.0 20.0 20.0 20.0 21.5 22.5 24.5 22.5 19.5 | 23.5
23.5
22.5
21.5
22.0
23.0
20.5
20.5
21.5
23.0
24.5
25.0
24.0
21.0 | 28.0
29.5
31.0
32.0
30.5
28.0
27.0
 | JULY 24.5 25.5 27.5 28.0 27.5 26.0 24.0 | 26.5
27.5
29.0
30.0
29.5
27.0
25.5
 | 32.0
33.0
33.0
31.5
30.0
29.0
27.0
27.0
28.0
29.0
29.5
30.5
31.5
32.0 | 27.0
27.0
28.0
27.5
28.0
25.5
23.0
22.5
22.0
23.5
24.0
25.5
26.5
27.0 | 29.5
30.0
30.0
29.5
29.0
27.5
25.0
24.5
25.0
26.0
27.0
28.0
29.5 | 21.5
21.5
25.0
27.5
26.0
26.5
26.5
27.0
28.5
26.5
24.0
24.5
24.5 | 20.0
19.5
20.0
23.0
23.0
21.5
21.0
21.5
23.0
22.5
20.0
19.0
20.5 | 20.5
20.5
22.5
22.5
24.5
24.0
23.5
24.0
25.5
25.0
22.0
22.0
23.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 25.0
24.5
23.5
22.5
24.0
22.0
22.0
22.5
24.5
26.0
25.5
22.5
19.5 | JUNE 22.5 22.5 21.0 20.5 22.0 20.0 19.0 20.0 21.5 22.5 24.5 22.5 19.5 19.0 18.0 20.0 20.5 | 23.5
23.5
22.5
21.5
22.0
23.0
20.5
21.5
23.0
24.5
25.0
24.0
21.0
19.0 | 28.0
29.5
31.0
32.0
30.5
28.0
27.0

31.0 | JULY 24.5 25.5 27.5 28.0 27.5 26.0 24.0 27.0 | 26.5
27.5
29.0
30.0
29.5
27.0
25.5

29.0 | 32.0
33.0
33.0
31.5
30.0
29.0
27.0
28.0
29.0
29.5
30.5
31.5
32.0
31.5
31.5 | 27.0
27.0
28.0
27.5
28.0
25.5
23.0
22.5
22.0
23.5
24.0
25.5
26.5
27.0
27.0
27.0 | 29.5
30.0
30.0
29.5
29.0
27.5
25.0
24.5
25.0
26.0
27.0
28.0
29.5
29.5
29.5 | 21.5
21.5
25.0
27.5
26.0
26.5
26.5
27.0
28.5
24.0
24.5
24.5
24.5
24.5
25.0
25.0
24.5 | 20.0
19.5
20.0
23.0
23.0
21.5
21.0
21.5
23.0
22.5
20.0
19.0
20.5
23.0
22.5
23.0 | 20.5
20.5
22.5
22.5
24.5
24.0
23.5
24.0
25.5
25.0
22.0
22.0
22.0
23.5
24.0
23.5
23.0
23.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 25.0
24.0
22.5
24.0
22.0
22.0
22.5
24.5
26.0
25.5
22.5
21.0
22.5
23.5
23.5
23.5
23.5
27.5
28.0
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5 | JUNE 22.5 22.5 21.0 20.5 21.0 20.0 20.0 21.5 22.5 24.5 22.5 19.5 19.0 20.0 20.5 22.5 24.5 22.5 24.5 22.5 24.5 22.5 24.5 22.5 24.5 22.5 24.5 22.5 24.5 22.5 24.5 22.5 24.5 22.5 24.5 22.5 24.0 24.0 25.0 26.0 | 23.5
23.5
22.5
21.5
22.0
20.5
20.5
21.5
23.0
24.5
25.0
24.0
21.0
19.0
19.5
21.5
21.5
21.5
22.5
22.5
22.0
24.0
24.0
21.5
22.5
22.5
22.5
22.5
22.5
22.5
22.5 |
28.0
29.5
31.0
32.0
30.5
28.0
27.0

31.0
30.0
30.5
32.0
29.0
27.5
26.0
29.0
29.0
31.0 | JULY 24.5 25.5 27.5 28.0 27.5 26.0 24.0 27.0 26.5 26.5 26.5 26.5 24.0 27.5 24.0 24.0 26.5 24.0 26.5 24.0 | 26.5
27.5
29.0
30.0
29.5
27.0
25.5

29.0
28.5
29.5
28.0
28.5
29.5
24.5
24.5
26.0
28.5
29.5 | 32.0
33.0
33.0
31.5
30.0
29.0
27.0
28.0
29.0
29.5
31.5
32.0
31.5
31.5
29.5
29.5
29.5
29.5 | 27.0
27.0
27.5
28.0
25.5
23.0
22.5
22.0
23.5
24.0
25.5
27.0
27.0
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5 | 29.5
30.0
30.0
29.5
29.0
27.5
25.0
26.0
27.0
28.0
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5 | 21.5
21.5
25.0
27.5
26.0
26.5
26.5
27.0
28.5
24.5
24.5
24.5
24.5
25.0
25.0
25.0
25.0
25.0
25.0
25.0
25 | 20.0
19.5
20.0
23.0
23.0
21.5
21.0
21.5
23.0
22.5
20.0
19.0
22.5
23.0
22.5
23.0
22.5
23.0
22.5
23.0
22.5
23.0
21.5
23.0 | 20.5
20.5
20.5
22.5
22.5
24.0
23.5
24.0
25.5
25.0
22.0
22.0
23.0
23.5
24.0
23.5
24.0
23.5
24.0
23.5
21.0
24.0
23.5
23.0
23.5
24.0
23.5
23.0
23.5
23.0
23.5
24.0
23.5
23.0
23.5
24.0
23.5
23.5
24.0
25.5
25.0
26.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 25.0
24.5
23.5
22.5
24.0
22.0
22.0
22.5
24.5
26.0
26.0
25.5
22.5
19.5
21.0
22.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5 | JUNE 22.5 22.5 21.0 20.5 22.0 20.0 19.0 20.0 21.5 22.5 24.5 22.5 19.0 18.0 20.0 20.5 21.0 22.0 23.0 24.0 25.0 26.0 26.5 27.0 25.5 24.0 | 23.5
23.5
23.5
21.5
22.0
23.0
20.5
21.5
23.0
24.5
25.0
24.0
21.0
19.0
19.5
21.5
22.5
22.5
24.5
22.5
24.5
22.5
22.5
22 | 28.0
29.5
31.0
32.0
30.5
28.0
27.0

31.0
30.0
30.5
32.0
29.0
27.5
26.0
25.0
29.0
31.0 | JULY 24.5 25.5 28.0 27.5 28.0 27.5 26.0 24.0 27.0 26.5 26.5 26.5 26.5 26.5 25.0 24.0 23.5 24.0 26.5 | 26.5
27.5
29.0
30.0
29.5
27.0
25.5

29.0
28.5
28.0
28.5
29.5
27.5
26.0
24.5
24.5
24.5
24.5
26.0
28.5 | 32.0
33.0
31.5
30.0
29.0
27.0
28.0
29.0
29.5
31.5
32.0
31.5
31.5
32.0
31.5
32.0
31.5
32.0 | 27.0
27.0
28.0
27.5
28.0
25.5
23.0
23.5
22.0
23.5
24.0
25.5
27.0
27.0
27.5
27.5
27.5
27.5
27.5
27.5
24.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27 | 29.5
30.0
29.5
29.0
27.5
25.0
26.0
27.0
28.0
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5 | 21.5
21.5
25.0
27.5
26.0
26.5
26.5
27.0
28.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24 | 20.0
19.5
20.0
23.0
23.0
21.5
21.0
21.5
23.0
22.5
20.0
19.0
22.5
23.0
22.5
23.0
22.5
23.0
22.5
23.0
22.0
21.5
23.0 | 20.5
20.5
22.5
22.5
25.0
24.5
24.0
23.5
24.0
25.5
25.0
22.0
23.0
23.5
23.0
24.0
23.5
23.0
24.0
23.5
23.0
24.0 | # 01472104 SCHUYLKILL RIVER AT VINCENT DAM AT LINFIELD, PA--Continued OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|---|--|---|---|---|---|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4 |

 |

 |

 |

 |

 |

 | 10.1
10.2
10.2
10.9 | 9.8
9.8
9.7
10.1 | 9.9
10
9.9
10.5 | 9.5
10.1
 | 8.9
9.4
 | 9.2
9.8
 | | 5
6
7
8 | | | | | | | 11.3
11.6
11.8
11.4 | 9.6
10.1
10.4
10.1 | 10.4
10.8
10.9
10.7 |
8.5
8.2 |
7.9
7.3 |
8.1
7.7 | | 9
10 | | | | | | | 10.9 | 9.8 | 10.3 | 7.7
8.4 | 7.1
6.8 | 7.2
7.6 | | 11
12
13
14
15 | | | |

 | | | 10.4
10.6
11.1
8.8 | 8.8
8.8
8.4
7.1 | 9.6
9.6
9.6
8.1 | 8.7
8.4
8.0
 | 7.4
7.0
6.5
 | 8.1
7.9
7.2
 | | 16
17
18
19
20 | |

 |

 |

 |

 |

 | 8.5
9.9
9.3
9.1 | 7.1
7.8
8.5
8.4 | 7.9
9.2
8.9
8.8 | 8.3
7.7
8.5
8.9 | 7.7
7.4
7.4
8.2 | 7.8
7.6
8.1
8.6 | | 21
22
23
24
25 |

 |

 |

 |

 |

 |

 |

9.1 |

8.3 |

8.7 | 8.9
8.8
8.8
8.4
8.6 | 8.5
8.1
8.1
7.6
7.5 | 8.7
8.4
8.4
8.1
8.0 | | 26
27
28
29
30
31 |

 |

 | |

10.9
10.6
10.2 |

10.5
9.9
9.5 |

10.8
10.3
9.9 | 10.4
10.6
9.7
8.6
9.5 | 8.8
9.0
8.2
7.8
8.5 | 9.5
9.8
8.6
8.1
9.2 |

8.6
8.6
8.1 |

8.2
7.9
7.5 |

8.4
8.3
7.8 | | MONTH | | | | 10.9 | 9.5 | 10.3 | 11.8 | 7.1 | 9.5 | 10.1 | 6.5 | 8.1 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | MAX | MIN
AUGUST | MEAN | | MIN
SEPTEMBE | | | DAY 1 2 3 4 5 | 7.9
7.8
8.1
8.0
7.9 | | 7.6
7.6
7.6
7.9
7.9 | MAX
6.8
6.7
6.5
6.3
6.7 | | MEAN 6.6 6.5 6.2 6.1 6.2 | MAX | | MEAN | | | | | 1
2
3
4 | 7.9
7.8
8.1
8.0 | 7.2
7.4
7.7
7.8 | 7.6
7.6
7.9
7.9 | 6.8
6.7
6.5
6.3 | JULY 6.5 6.3 5.9 5.8 | 6.6
6.5
6.2
6.1 | | AUGUST | |

 | SEPTEMBE

 |

 | | 1
2
3
4
5
6
7
8
9 | 7.9
7.8
8.1
8.0
7.9
7.5
7.2
7.1
7.2 | 7.2
7.4
7.7
7.8
7.5
7.1
6.3
6.7
6.6 | 7.6
7.6
7.9
7.9
7.7
7.3
6.7
6.8
6.9 | 6.8
6.7
6.5
6.3
6.7
7.1
7.4 | 6.5
6.3
5.9
5.8
5.7
6.1
6.5 | 6.6
6.5
6.2
6.1
6.2
6.6
6.9 |

 | AUGUST |

 | | SEPTEMBE |

 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 7.9
7.8
8.1
8.0
7.9
7.5
7.2
6.9
6.6
6.6
6.7
6.9 | 7.2
7.4
7.7
7.8
7.5
7.1
6.3
6.6
6.5
5.9
5.6
6.2
6.3 | 7.6
7.6
7.9
7.9
7.7
7.3
6.7
6.9
6.7
6.4
6.1
6.4
6.6 | 6.8
6.7
6.5
6.3
6.7
7.1
7.4 | JULY 6.5 6.3 5.9 5.8 5.7 6.1 6.5 | 6.6
6.5
6.2
6.1
6.2
6.6
6.9 | ====
====
====
====
====
==== | AUGUST | | | SEPTEMBE | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 7.9
7.8
8.1
8.0
7.9
7.5
7.2
6.9
6.6
6.6
6.7
6.9
7.2
7.4
7.4
7.3 | 7.2
7.4
7.7
7.8
7.5
7.1
6.3
6.6
6.5
5.9
6.6
6.3
6.8
7.1
7.2
6.7 | 7.6
7.6
7.9
7.9
7.7
7.3
6.7
6.8
6.9
6.7
6.4
6.4
6.6
7.0
7.3
7.3
7.1 | 6.8
6.7
6.5
6.3
6.7
7.1
7.4
 | JULY 6.5 6.3 5.9 5.8 5.7 6.1 6.5 | 6.6
6.5
6.2
6.1
6.2
6.6
6.9 | | AUGUST | | | SEPTEMBE | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 7.9
7.8
8.1
8.0
7.9
7.5
7.2
6.9
6.6
6.6
6.7
7.2
7.4
7.4
7.3
7.3
7.3 | 7.24
7.47
7.8
7.5
7.1
6.37
6.65
5.9
6.65
5.9
6.2
6.3
6.8
7.1
7.20
6.8
6.8
6.9
6.6
6.4 | 7.6
7.6
7.9
7.9
7.7
7.3
6.7
6.9
6.7
6.4
6.6
7.0
7.3
7.3
7.1
7.0
7.2
7.2
7.2
7.1
6.9 | 6.8
6.7
6.5
6.3
6.7
7.1
7.4
 | JULY 6.5 6.3 5.9 5.8 5.7 6.1 6.5 | 6.6
6.5
6.2
6.1
6.2
6.6
6.9
 | | AUGUST | | | SEPTEMBE | | #### 01472157 FRENCH CREEK NEAR PHOENIXVILLE, PA (National Water-Quality Assessment Station) **LOCATION.**--Lat 40°09′05", long 75°36′06", Chester County, Hydrologic Unit 02040203, on right bank 70 ft downstream from two-span county bridge on French Creek Road, 4.5 mi northwest of Phoenixville, and 7.3 mi upstream from mouth. **DRAINAGE AREA**.--59.1 mi². #### WATER-DISCHARGE RECORDS **PERIOD OF RECORD.**--October 1968 to current year. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 160 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Nov. 7, 1968, nonrecording gage at site 70 ft
upstream at same datum. **REMARKS.**--Records good except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. Satellite telemetry at station. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 750 ft³/s and maximum (*): | Date
May 13 | Tim
224 | e ft | harge
³ /s
771 | Gage Height
(ft)
*6.69 | t | | Date
No other | Time
r peak gre | | scharge
ft ³ /s
aan base | Gage Height
(ft)
discharge. | | |----------------------------------|---|---|---|---|---|---|---|---|--|--|--|--| | | | | DISCHAF | RGE, CUBIC F | EET PER SE | | TER YEAR OC
AN VALUES | TOBER 2001 | TO SEPT | EMBER 20 | 02 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 19
18
17
16
15 | 18
17
18
18 | 17
16
16
14
14 | e16
e17
e18
e19
e19 | 59
52
37
e30
e28 | 18
18
149
65
38 | 49
43
39
51
39 | 51
54
130
58
43 | 28
25
23
22
22 | 19
17
16
16 | 8.9
9.1
9.2
9.5 | 16
29
19
14 | | 6
7
8
9
10 | e14
e14
e13
e13
e13 | 15
16
16
16
15 | 13
13
14
39
23 | e20
e50
e70
e50
e35 | e26
e23
e22
e21
e23 | 32
29
27
26
29 | 35
32
31
31
33 | 38
34
31
68
65 | 36
103
41
31
28 | 14
13
11
13
13 | 10
9.4
9.2
8.9
8.8 | 10
10
9.9
9.8
9.5 | | 11
12
13
14
15 | e12
e11
e11
e20
e30 | 16
16
17
15
16 | 17
16
16
20
31 | e90
85
43
33
29 | e26
e23
e21
e20
e19 | 25
23
32
42
32 | 30
28
29
31
31 | 40
36
174
418
109 | 23
23
23
48
56 | 13
12
12
12
14 | 8.8
8.7
8.7
8.5
8.2 | 8.5
7.6
7.5
7.8
8.4 | | 16
17
18
19
20 | 20
18
18
17
18 | 16
16
16
15
16 | 19
17
33
29
19 | 27
25
24
22
e24 | 21
22
20
19
20 | 29
27
72
77
261 | 30
26
25
24
23 | 69
55
223
119
72 | 37
29
27
34
29 | 13
11
10
11 | 8.0
8.0
8.0
7.8
7.7 | 15
13
11
9.6
9.3 | | 21
22
23
24
25 | 18
18
16
16
17 | 16
16
16
14
19 | 16
15
15
20
21 | e23
23
25
167
114 | 23
22
20
19
19 | 182
78
56
49
42 | 23
38
39
28
28 | 59
52
48
44
39 | 25
22
20
19
18 | 10
10
10
10 | 8.1
8.7
9.2
14
25 | 9.3
9.1
9.1
8.6
8.3 | | 26
27
28
29
30
31 | 18
17
17
19
18 | 41
22
18
16
16 | 17
e21
e22
18
e17
e16 | 51
38
33
30
29
54 | 19
20
20
 | 41
111
62
48
43
42 | 37
28
134
119
57 | 36
36
37
34
32
29 | 17
18
41
26
20 | 10
9.9
11
10
9.5
9.0 | 16
12
11
37
28
16 | 9.5
67
80
32
20 | | MAX
MIN
CFSM | 519
16.7
30
11
0.28
0.33 | 520
17.3
41
14
0.29
0.33 | 594
19.2
39
13
0.32
0.37 | 1303
42.0
167
16
0.71
0.82 | 694
24.8
59
19
0.42
0.44 | 1805
58.2
261
18
0.99
1.14 | 1191
39.7
134
23
0.67
0.75 | 2333
75.3
418
29
1.27
1.47 | 914
30.5
103
17
0.52
0.58 | 376.4
12.1
19
9.0
0.21
0.24 | 361.4
11.7
37
7.7
0.20
0.23 | 488.8
16.3
80
7.5
0.28
0.31 | | STATISTIC | S OF MOI | NTHLY MEA | N DATA F | OR WATER Y | EARS 1969 | 9 - 2002, | BY WATER | YEAR (WY) | | | | | | MAX
(WY)
MIN | 47.9
180
1997
16.7
2002 | 68.6
166
1973
17.3
2002 | 96.7
328
1997
19.2
2002 | 107
394
1979
13.7
1981 | 121
266
1984
24.8
2002 | 143
350
1994
40.5
1981 | 134
306
1983
35.6
1985 | 104
250
1989
31.9
1969 | 75.5
353
1972
22.2
1999 | 58.2
258
1984
11.1
1999 | 38.9
110
1971
11.7
2002 | 47.7
214
1999
14.1
1980 | e Estimated. # 01472157 FRENCH CREEK NEAR PHOENIXVILLE, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1969 - 2002 | |--------------------------|------------------------|---------------------|----------------------------| | ANNUAL TOTAL | 22432 | 11167.6 | | | ANNUAL MEAN | 61.5 | 30.6 | 86.6 | | HIGHEST ANNUAL MEAN | | | 155 1984 | | LOWEST ANNUAL MEAN | | | 30.6 2002 | | HIGHEST DAILY MEAN | 670 Mar 30 | 418 May 14 | 4530 Jun 22 1972 | | LOWEST DAILY MEAN | e 11 Oct 12 | 7.5 Sep 13 | 7.1 Aug 7 1999 | | ANNUAL SEVEN-DAY MINIMUM | a 12 Oct 7 | 8.0 Aug 15 | 7.3 Aug 2 1999 | | MAXIMUM PEAK FLOW | | 771 May 13 | b 11200 Jun 22 1972 | | MAXIMUM PEAK STAGE | | 6.69 May 13 | 13.66 Jun 22 1972 | | INSTANTANEOUS LOW FLOW | | 7.2 Sep 12 | 6.9 Aug 8 1999 | | ANNUAL RUNOFF (CFSM) | 1.04 | 0.52 | 1.47 | | ANNUAL RUNOFF (INCHES) | 14.12 | 7.03 | <u> 19.91</u> | | 10 PERCENT EXCEEDS | 126 | 56 | 166 | | 50 PERCENT EXCEEDS | 39 | 20 | 54 | | 90 PERCENT EXCEEDS | 16 | 9.6 | 20 | $\begin{array}{l} \textbf{a} \ \ \text{Computed using estimated daily discharges.} \\ \textbf{b} \ \ \text{From rating curve extended above 2,500 ft}^3/s, \ on \ basis of slope-area measurement of peak flow.} \\ \textbf{e} \ \ \text{Estimated.} \end{array}$ ## 01472157 FRENCH CREEK NEAR PHOENIXVILLE, PA--Continued (National Water-Quality Assessment Station) # WATER-QUALITY RECORDS PERIOD OF RECORD.--Water year 1950 to current year. PERIOD OF DAILY RECORD.-WATER TEMPERATURE: November 1998 to April 1999, June 1999 to August 1999, June 2000 to September 2001. # WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER
(00028 | | INST NG CUBI E FEE E PER | SE, C. OXYGE CT DIS C SOLV DND (MG/ | - (STAN
ED ARD
L) UNIT | E CIF D CON D- DUC ANC S) (µS/ | IC
- TEM
T- AT
E WA
CM) (DI | IPER- I
TURE :
TER
EG C) | ALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVEI
(MG/L
AS MG) | SIUM,
DIS-
SOLVED
(MG/L
AS K) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC WATER UNFLTRD IT FIELD (MG/L AS CACO3) (00419) | |----------------|--------|---|---|--|--|--|--|---|---|---|--|---|---|--| | OCT 2001
16 | 1315 | 80020 | 1028 | 20 | 10.2 | 7.6 | 17 | 8 14 | .5 | 18.0 | 5.44 | 2.12 | 8.33 | 52 | | | Date | | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) |
SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
NITRIT
DIS- | PHOSE PHASE | S-
TE, B
-
ED S
/L (
P) A | | IRON, DIS- SOLVED (µG/L AS FE) 01046) | | | | | OCT 20 | 01 | 13 2 | 14 4 | 12 7 | < 04 | 43 | F 00 | · - 0 | 2 | 20 | 36 | | | # 01472157 FRENCH CREEK NEAR PHOENIXVILLE, PA--Continued # BIOLOGICAL DATA BENTHIC MACROINVERTEBRATES $\textbf{REMARKS}.\text{--Samples were collected using a Hess sampler with a mesh size of 500 } \mu\text{m}. \ \ Each sample covered a total area of 3.2 } m^2.$ | Date | 10/16/01 | |----------------------------------|----------| | Benthic Macroinvertebrate | Count | | Nematoda (NEMATODES) | 110 | | Nemertea (PROBOSAS WORMS) | | | Enopla | | | Hoplonemertea | | | Tetrastemmatidae | | | <u>Prostoma</u> sp | 2 | | Mollusca | | | Gastropoda (SNAILS) | | | Basommatophora | | | Ancylidae | | | <u>Ferrissia</u> sp | 53 | | Lymnaeidae | | | Fossaria sp | 5 | | <u>Lymnaea</u> sp | 3 | | Planorbidae | | | <u>Gyraulus</u> sp | 3 | | Bivalvia (CLAMS) | | | Veneroida | | | Sphaeriidae | 7 | | Annelida | | | Oligochaeta (AQUATIC EARTHWORMS) | 13 | | Arthropoda | | | Acariformes | | | Hydrachnidia (WATER MITES) | 57 | | Insecta | | | Ephemeroptera (MAYFLIES) | | | Baetidae | | | <u>Baetis</u> sp | 103 | | <u>Pseudocloeon</u> sp | 11 | | Caenidae | | | <u>Caenis</u> sp | 8 | | Ephemerellidae | | | Eurylophella sp | 4 | | <u>Serratella</u> sp | 112 | | Heptageniidae | | | Epeorus sp | 55 | | <u>Stenacron</u> sp | 2 | | <u>Stenonema</u> sp | 409 | | Isonychiidae | | | <u>Isonychia</u> sp | 152 | | Odonata | | | Coenagrionidae (DAMSELFLIES) | | | Argia sp | 7 | | Gomphidae (DRAGONFLIES) | 7 | | Plecoptera (STONEFLIES) | | | Perlidae | | | <u>Acroneuria</u> sp | 7 | | <u>Paragnetina</u> sp | 6 | | Taeniopterygidae | | | <u>Taeniopteryx</u> sp | 6 | | | | # 01472157 FRENCH CREEK NEAR PHOENIXVILLE, PA--Continued # BIOLOGICAL DATA BENTHIC MACROINVERTEBRATES--Continued | Date | 10/16/0 | |---|---------| | Benthic Macroinvertebrate | Count | | Megaloptera | | | Corydalidae (FISHFLIES AND DOBSONFLIES) | | | Nigronia sp | 4 | | Sialidae (ALDERFLIES) | | | <u>Siali</u> s sp | 1 | | Trichoptera (CADDISFLIES) | | | Apataniidae | | | <u>Apatania</u> sp | 52 | | Brachycentridae | | | <u>Micrasema</u> sp | 255 | | Glossosomatidae | | | <u>Culoptila</u> sp | 14 | | <u>Glossosoma</u> sp | 19 | | Helicopsychidae | | | <u>Helicopsyche</u> sp | 28 | | Hydropsychidae | | | <u>Cheumatopsyche</u> sp | 243 | | <u>Hydropsyche</u> sp | 107 | | Macrostemum sp | 4 | | Hydroptilidae | | | <u>Leucotrichia</u> sp | 108 | | Lepidostomatidae | | | <u>Lepidostoma</u> sp | 10 | | Leptoceridae | | | <u>Oecetis</u> sp | 4 | | Philopotamidae | | | Chimarra sp | 86 | | Polycentropodidae | | | Nyctiophylax sp | 3 | | Polycentropus sp | 5 | | Psychomyiidae | | | <u>Psychomyia</u> sp | 19 | | Lepidoptera | | | Pyralididae (MOTHS) | | | Petrophila sp | 9 | | Coleoptera (BEETLES) | | | Elmidae (RIFFLE BEETLES) | | | Optioservus sp | 151 | | <u>Oulimnius</u> sp | 19 | | <u>Promoresia</u> sp | 20 | | <u>Stenelmis</u> sp | 16 | | Psephenidae (WATER PENNIES) | | | Ectopria sp | 4 | | <u>Psephenus</u> sp | 18 | | Diptera (TRUE FLIES) | | | Chironomidae (MIDGES) | 52 | | Empididae (DANCE FLIES) | | | <u>Hemerodromia</u> sp | 3 | | Simuliidae (BLACK FLIES) | | | <u>Simulium</u> sp | 11 | | Tipulidae (CRANE FLIES) | | | Antocha sp | 9 | | | | | | | | Total Organisms | 2416 | | | | Total Taxa 51 4.9 .25 # SCHUYLKILL RIVER BASIN ## 01472157 FRENCH CREEK NEAR PHOENIXVILLE, PA--Continued **REMARKS.**--These samples were collected as part of the Delaware River Basin National Water-Quality Assessment Program (DELR NAWQA). For the definition of the type of quality-control data listed under SAMPLE TYPE, refer to "Quality-Control Data" in the "Introduction." #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | | WAIEK-C | UALITID | AIA, W | MIEK IE | AK O | CIOBE | K 2001 1C | SEP | EWIDEK | 2002 | | | | | |------------------|--|---------------------------------------|--|--|---|--|--|------------------------------------|---|--|----------------------------------|--|---|---|-------------------------------------|---|--| | DATE | TIME | | SAMPLE
TYPE | | CHA
IN
CU
F
F
SE | RGE,
IST.
IBIC
PET
PER
COND | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
00025) | SOI
(PI
CI
SAI
ATI | IS-
LVED
ER-
ENT
FUR-
ION) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | WA
WH
FI
(ST
A
UN | OLE
ELD
AND-
RD
ITS) (| SPE-
CIFIC
CON-
DUCT-
ANCE
(MS/CM)
00095) | AT
A
(DE | PER-
URE
IR
GG C)
020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | | NOV
07 | 1050 | ENV | IRONMENTA | L | | 16 | 758 | 1: | 12 | 13.1 | 7 | .8 | 173 | 17 | .0 | 8.3 | 51 | | DEC
06 | 1030 | ENV | IRONMENTA | L | | 13 | 759 | 1 | 06 | 12.3 | 7 | .7 | 185 | 20 | .5 | 9.2 | 49 | | JAN
17 | 1010 | ENV | IRONMENTA | L | | 25 | 754 | 1 | 00 | 13.5 | 7 | .6 | 181 | 9 | .0 | 2.6 | 38 | | MAR
05 | 1030 | ENV | IRONMENTA | L | | 38 | 765 | 1 | 09 | 15.2 | 7 | .5 | 159 | 9 | .0 | 2.0 | 30 | | APR
11
MAY | 0900 | ENV | IRONMENTA | L | | 31 | 769 | 1 | 08 | 12.1 | 7 | .7 | 176 | 18 | .0 | 10.8 | 43 | | 15
15 | 0930
0931 | | IRONMENTA
IT REPLIC | | | 12 | 757
 | | 02 | 10.9 | | . 4 | 129 | | .0 | 12.2 | 27
28 | | JUN
11
JUL | 1000 | ENV | IRONMENTA | L | | 25 | 755 | 1 | 09 | 9.8 | 7 | .7 | 173 | 27 | .5 | 20.2 | 42 | | 11
SEP | 1010 | ENV | IRONMENTA | L | | 13 | 759 | 1 | 01 | 9.2 | 8 | .0 | 177 | 22 | .0 | 19.8 | 47 | | 03
03 | <i>1049</i>
1050 | | <i>LD BLANK</i>
IRONMENTA | L | |
19 |
757 | | 03 | 9.5 | | .8 |
193 | | .5 |
18.8 | 45 | | DATE | BICA
BONA
WAT
DIS
FIH
MG/I
HCC
(004 | ATE
FER
IT
ELD
L AS
D3 | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO
GEN,
AMMONI
DIS-
SOLVE
(MG/L
AS N)
(00608 | GE A NO2+ DI D SOL (MG AS | N,
NO3
S-
VED
/L
N) | NITR
GEN
NITRI
DIS
SOLV
(MG/
AS N | TE PHO
TE PHO
DISED SOLVED (MO
L (MO | | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665 | CHAF
SU
PEN
(T/I | NT,
IS-
RGE,
JS-
NDED
DAY) | SED:
MEN'
SUS-
PENI
(MG | T,
-
DED
/L) | | | NOV
07
DEC | 62 | 2 | 12.4 | 12.1 | .18 | <.04 | | 39 | <.00 | 8 < | .02 | .014 | - | - | <1. | 0 | | | 06
JAN | 59 | 9 | 12.3 | 13.3 | .25 | <.04 | | 94 | <.00 | 8 < | .02 | .016 | | .13 | 3. | 6 | | | 17
MAR | 46 | 5 | 16.6 | 16.0 | .22 | <.04 | 1. | 54 | <.00 | 8 < | .02 | .018 | - | | <1. | 0 | | | 05
APR | 37 | 7 | 14.6 | 15.5 | .37 | <.04 | 1. | 11 | E.00 | 5 E | .01 | .041 | | . 33 | 3.: | 2 | | | 11
MAY | 52 | 2 | 14.0 | 13.7 | .23 | <.04 | 1. | 02 | .00 | 6 E | .01 | .023 | = | | | _ | | | 15
15
JUN | 33
34 | | 9.38
9.12 | 12.0
11.9 | .60
.61 | E.03
E.03 | | 92
91 | E.00
E.00 | | .02
.02 | .084 | | . 5 | 15
14 | | | | JUL | 51 | L | 13.6 | 12.3 | .33 | E.02 | 1. | 14 | E.00 | 7 | .03 | .051 | | . 26 | 3. | 8 | | | 11
SEP | 57 | 7 | 12.6 | 11.6 | .22 | <.04 | | 58 | <.00 | 8 E | .01 | .034 | | .11 | 3. | 0 | | .68 <.008 .02 .043 55 SEP 03... 03... 13.2 20.4 .31 < .04 ## 01472157 FRENCH CREEK NEAR PHOENIXVILLE, PA--Continued # WATER-COLUMN PESTICIDE ANALYSES **REMARKS**.--Selected samples were analyzed for pesticides with laboratory schedule 2001 (listed in its entirety, with laboratory reporting levels, on page 179). Only pesticides identified by the analyses in one or more surface-water samples are listed in the following table. ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DATE | TIME | SAMP
TYP | | | ACETO-
CHLOR,
WATER
FLTRD
REC
(µG/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(µG/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(µG/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(39632) | BEN-
FLUR-
ALIN
WAT FLD
0.7 μ
GF, REC
(μG/L)
(82673) | CAR-
BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82680) | CHLOR-
PYRIFOS
DIS-
SOLVED
(µG/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(04041) | DCPA
WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82682) | |---|--|---
--|--|---|--|--|---|---|--|--|---|---| | NOV
07 | 1050 | ENVIRONM | IENTAT. | | <.004 | <.002 | <.005 | E.006 | <.010 | <.041 | <.005 | <.018 | <.003 | | DEC
06 | 1030 | ENVIRONM | | | <.004 | <.002 | <.005 | E.006 | <.010 | <.041 | <.005 | <.018 | <.003 | | JAN | | | | | | | | | | | | | | | 17
MAR_ | 1010 | ENVIRONM | | | <.006 | <.004 | <.005 | .010 | <.010 | <.041 | <.005 | <.018 | <.003 | | 05
APR | 1030 | ENVIRONM | IENTAL | | <.006 | <.004 | <.005 | .010 | <.010 | <.041 | <.005 | <.018 | <.003 | | 11
MAY | 0900 | ENVIRONM | IENTAL | | <.004 | <.002 | <.005 | .012 | <.010 | <.041 | <.005 | <.018 | <.003 | | 15
JUN | 0930 | ENVIRONM | IENTAL | | <.006 | < .004 | <.005 | 1.33 | <.010 | <.041 | <.005 | <.018 | <.003 | | 11
JUL | 1000 | ENVIRONM | IENTAL | | <.006 | .005 | <.005 | .284 | <.010 | <.041 | <.005 | <.018 | <.003 | | 11 | 1010 | ENVIRONM | IENTAL | | <.006 | < .004 | <.005 | .034 | <.010 | <.041 | <.005 | <.018 | <.003 | | 03
03 | <i>1049</i>
1050 | FIELD BL
ENVIRONM | | | <.006
<.006 | <.004
<.004 | <.005
<.005 | <.007
.013 | <.010
<.010 | <.041
<.041 | <.005
<.005 | <.018
<.018 | <.003
<.003 | | | | | | | | | | | | | | | | | DATE | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(µG/L)
(39572) | EPTC
WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82668) | LINDANE
DIS-
SOLVED
(µG/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(μG/L)
(39532) | METHYL
AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µG/L)
(82686) | METO-
LACHLOR
WATER
DISSOLV
(µG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630) | NAPROP-
AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82684) | PENDI-
METH-
ALIN
WAT FLT
0.7 µ
GF, REC
(µG/L)
(82683) | PRO-
METON,
WATER,
DISS,
REC
(µG/L)
(04037) | PRO-
PANIL
WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82679) | | DATE NOV 07 | ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L) | AZINON,
DIS-
SOLVED
(µG/L) | WATER
FLTRD
0.7 µ
GF, REC
(µG/L) | DIS-
SOLVED
(µG/L) | URON WATER FLTRD 0.7 µ GF, REC (µG/L) | THION,
DIS-
SOLVED
(µG/L) | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µG/L) | LACHLOR
WATER
DISSOLV
(µG/L) | BUZIN
SENCOR
WATER
DISSOLV
(µG/L) | AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µG/L) | METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μG/L) | METON,
WATER,
DISS,
REC
(µG/L) | PANIL
WATER
FLTRD
0.7 µ
GF, REC
(µG/L) | | NOV | ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(04040) | AZINON,
DIS-
SOLVED
(µG/L)
(39572) | WATER
FLTRD
0.7 μ
GF, REC
(μG/L)
(82668) | DIS-
SOLVED
(µG/L)
(39341) | URON WATER FLTRD 0.7 µ GF, REC (µG/L) (82666) | THION,
DIS-
SOLVED
(µG/L)
(39532) | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µG/L)
(82686) | LACHLOR
WATER
DISSOLV
(µG/L)
(39415) | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630) | AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82684) | METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μG/L)
(82683) | METON,
WATER,
DISS,
REC
(µG/L)
(04037) | PANIL
WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82679) | | NOV
07
DEC
06
JAN
17 | ATRAZINE,
WATER,
DISS,
REC
(µG/L)
(04040) | AZINON,
DIS-
SOLVED
(µG/L)
(39572) | WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82668) | DIS-
SOLVED
(µG/L)
(39341) | URON WATER FLTRD 0.7 μ GF, REC (μG/L) (82666) <.035 | THION,
DIS-
SOLVED
(µG/L)
(39532) | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µG/L)
(82686) | LACHLOR
WATER
DISSOLV
(µG/L)
(39415) | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630) | AMIDE
WATER
FLTRD
0.7 μ
GF, REC
(μG/L)
(82684) | METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μG/L)
(82683) | METON,
WATER,
DISS,
REC
(µG/L)
(04037) | PANIL
WATER
FLTRD
0.7 μ
GF, REC
(μG/L)
(82679) | | NOV
07
DEC
06
JAN
17
MAR
05 | ATRAZINE,
WATER,
DISS,
REC
(µG/L)
(04040)
E.022 | AZINON,
DIS-
SOLVED
(µG/L)
(39572)
<.005 | WATER
FLTRD
0.7 μ
GF, REC
(μG/L)
(82668)
<.002 | DIS-
SOLVED
(µG/L)
(39341)
<.004 | URON WATER FLTRD 0.7 μ GF, REC (μG/L) (82666) <.035 <.035 | THION,
DIS-
SOLVED
(µG/L)
(39532)
<.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μG/L)
(82686)
<.050 | LACHLOR
WATER
DISSOLV
(µG/L)
(39415)
E.004 | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630)
<.006 | AMIDE
WATER
FLTRD
0.7 μ
GF, REC
(μG/L)
(82684)
<.007 | METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μG/L)
(82683)
<.010 | METON,
WATER,
DISS,
REC
(µG/L)
(04037)
<.01 | PANIL
WATER
FLTRD
0.7 μ
GF, REC
(μG/L)
(82679)
<.011 | | NOV
07
DEC
06
JAN
17 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
E.022
E.007 | AZINON,
DIS-
SOLVED
(μG/L)
(39572)
<.005
<.005 | WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82668)
<.002
<.002 | DIS-
SOLVED (µG/L)
(39341)
<.004
<.004 | URON WATER FLITED 0.7 µ GF, REC (µG/L) (82666) <.035 <.035 | THION, DIS-
SOLVED (µG/L) (39532)
<.027
<.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μG/L)
(82686)
<.050
<.050 | LACHLOR WATER DISSOLV (µG/L) (39415) E.004 E.003 <.013 | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630)
<.006
<.006 | AMIDE
WATER
FLTRD
0.7 μ
GF, REC
(μG/L)
(82684)
<.007
<.007 | METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μG/L)
(82683)
<.010
<.010 | METON,
WATER,
DISS,
REC
(µG/L)
(04037)
<.01
<.01 | PANIL WATER FLTRD 0.7 µ GF, REC (µG/L) (82679) <.011 <.011 | | NOV
07
DEC
06
JAN
17
MAR
05 | ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(04040)
E.022
E.007
E.018 | AZINON,
DIS-
SOLVED
(μG/L)
(39572)
<.005
<.005
<.005 | WATER
FLIRD
0.7 µ
GF, REC
(µG/L)
(82668)
<.002
<.002
<.002 | DIS-
SOLVED (µG/L)
(39341)
<.004
<.004
<.004 | URON WATER FLITRD 0.7 µ GF, REC (µG/L) (82666) <.035 <.035 <.035 <.035 <.035 | THION, DIS-
SOLVED (µG/L) (39532) <.027 <.027 <.027 <.027 | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µG/L)
(82686)
<.050
<.050
<.050 | LACHLOR WATER DISSOLV (µG/L) (39415) E.004 E.003 <.013 E.004 | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630)
<.006
<.006
<.006 | AMIDE WATER FLITRD 0.7 µ GF, REC (µG/L) (82684) < .007 < .007 < .007 < .007 < .007 | METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μG/L)
(82683)
<.010
<.010
<.022 | METON,
WATER,
DISS,
REC
(μG/L)
(04037)
<.01
<.01
<.01 | PANIL WATER FLTRD 0.7 µ GF, REC (µG/L) (82679) <.011 <.011 <.011 <.011 | | NOV
07
DEC
06
JAN
17
MAR
05
APR
11
MAY
15
JUN | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
E.022
E.007
E.018
E.015
E.009 | AZINON,
DIS-
SOLVED
(μG/L)
(39572)
<.005
<.005
<.005
<.005
<.005 | WATER
FLTRD 0.7 µ
GF, REC
(µG/L)
(82668)
<.002
<.002
<.002
<.002
<.002
<.002 | DIS-
SOLVED (μG/L)
(39341)
<.004
<.004
<.004
<.004
<.004
<.004 | URON WATER FLITED 0.7 µ GF, REC (µG/L) (82666) <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µG/L) (39532) <.027 <.027 <.027 <.027 <.027 <.027 | AZIN-PHOS WAT FLT 0.7 µ GF, REC (µG/L) (82686) <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 | LACHLOR WATER DISSOLV (µG/L) (39415) E.004 E.003 <.013 E.004 <.013 | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630)
<.006
<.006
<.006
<.006
<.006 | AMIDE WATER FLTRD 0.7 µ GF, REC (µG/L) (82684) < .007 < .007 < .007 < .007 < .007 < .007 | METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(µG/L)
(82683)
<.010
<.010
<.022
<.022
<.022 | METON,
WATER,
DISS,
REC
(μG/L)
(04037)
<.01
<.01
<.01
<.01
<.01 | PANIL WATER FLTRD 0.7 µ GF, REC (µG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 | | NOV
07
DEC
06
JAN
17
MAR
05
APR
11
MAY
15 | ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(04040)
E.022
E.007
E.018
E.015 | AZINON,
DIS-
SOLVED
(μG/L)
(39572)
<.005
<.005
<.005
<.005 | WATER FLTRD 0.7 µ GF, REC (µG/L) (82668) <.002 <.002 <.002 <.002 <.002 <.002 | DIS-
SOLVED (μG/L)
(39341)
<.004
<.004
<.004
<.004
<.004 | URON WATER FLITRD 0.7 µ GF, REC (µG/L) (82666) <.035 <.035 <.035 <.035 <.035 | THION, DIS-
SOLVED (µG/L)
(39532)
<.027
<.027
<.027
<.027 | AZIN-PHOS WAT FLT 0.7 µ GF, REC (µG/L) (82686) < .050 < .050 < .050 < .050 < .050 | LACHLOR WATER DISSOLV (µG/L) (39415) E.004 E.003 <.013 E.004 <.013 | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630)
<.006
<.006
<.006
<.006 | AMIDE WATER FLITRD 0.7 µ GF, REC (µG/L) (82684) < .007 < .007 < .007 < .007 < .007 | METH- ALIN WAT FLT 0.7 μ GF, REC (μG/L) (82683) <.010 <.010 <.022 <.022 <.010 | METON, WATER, DISS, REC (µG/L) (04037) <.01 <.01 <.01 <.01 <.01 | PANIL WATER FLTRD 0.7 µ GF, REC (µG/L) (82679) <.011 <.011 <.011 <.011 <.011 | # 01472157 FRENCH CREEK NEAR PHOENIXVILLE, PA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DATE | WATER,
DISS,
REC
(µG/L) | FLTRD
0.7 μ | WATER
FLTRD
0.7 µ
GF, REC
(µG/L) | |-----------|----------------------------------|----------------|--| | NOV | | | | | 07 | E.006 | <.02 | <.034 | | DEC
06 | E.005 | <.02 | <.034 | | JAN | 2.005 | | 1.001 | | 17 | .053 | <.02 | <.034 | | MAR
05 | .011 | <.02 | <.034 | | APR | .011 | | | | 11 | .296 | <.02 | <.034 | | MAY
15 | .022 | <.02 | <.034 | | JUN | .022 | 1.02 | V.034 | | 11 | .302 | <.02 | < .040 | | JUL | 0.5.5 | | 004 | | 11
SEP | .055 | <.02 | <.034 | | 03 | <.005 | <.02 | <.034 | | 03 | .020 | < .02 | < .034 | | | | | | ## 01472198 PERKIOMEN CREEK AT EAST GREENVILLE, PA LOCATION.--Lat 40°23'38", long 75°30'57", Montgomery County, Hydrologic Unit 02040203, on right bank 100 ft upstream from bridge on Church Road, 0.9 mi upstream from Molasses Creek, and 1.0 mi southwest of East Greenville. **DRAINAGE AREA**.--38.0 mi². PERIOD OF RECORD.--October 1981 to current year. Discharge REVISED RECORD.--WDR PA-98-1: 1982-97(P). GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 288.50 ft above National Geodetic Vertical Datum of 1929. $\label{eq:REMARKS} \textbf{REMARKS}. - Records fair except those for estimated daily discharges, and those greater than 1,500 ft^3/s, which are poor. Several measurements of water temperature were made during the year. Satellite and landline telemetry at station.$ Gage Height PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,000 ft³/s and maximum (*): Gage Height | | | | | narge | Gage neig | ,mt | | | | | Jischarge | Gage neig | ıπι | |---------|---------|-------|-----------------|---------|------------|-------------|-----------|-------------|-------|------------|--------------------|-----------|-------| | Date | | Time | ft ³ | 5/S | (ft) | | | Date | 7 | Γime | ft ³ /s | (ft) | | | May 1 | L3 2 | 2045 | *4, | 070 | *6.10 | | | No other | peak | greater | than base | discharge | ٠. | | | | | -, | | | | | | - | 2 | | 3 | DISCHA | ARGE CURIC | FEET PER SI | FCOND WA | TER YEAR OC | TORER | 2001 TO SE | PTEMBER 20 | 002 | | | | | | | DISCIII | MGL, CODIC | TELTTERS | | EAN VALUES | TOBLK | 2001 10 51 | I ILMBER 20 | 302 | | | | | | | | | | DAILI MI | EAN VALUES | DAY | OCT | | VOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 15 | | 7.7 | 13 | e10 | 52 | 14 | 40 | 62 | 38 | 28 | 11 | 38 | | 2 | 15 | | 7.7
7.9 | 12 | e10 | 53 | 14 | 30 | 105 | 30 | | | 34 | | 3 | 14 | | 7.9
8.8 | 11 | e9.0 | 37 | 81 | 30 | 90 | 26 | | | 15 | | 4 | 13 | | 8.6 | 11 | e10 | 30 | 40 | 31 | 59 | 26 | | 12 | 13 | | 5 | 13 | | | 10 | e11 | 25 | e20 | 25 | 51 | 27 | | 11 | 11 | | 5 | 13 | , | 8.5 | 10 | eII | 25 | e20 | 25 | 21 | 21 | 21 | 11 | 11 | | 6 | 13 | | 8.2 | 10 | 13 | 23 | 22 | 24 | 44 | 63 | 20 | 16 | 10 | | 7 | 12 | | 8.4 | 11 | 21 | 24 | 22 | 22 | 41 | 150 | | 11 | 10 | | 8 | 11 | | 8.2 | 12 | 18 | 22 | 20 | 21 | 35 | 50 | | 10 | 10 | | 9 | 11 | | 8.9 | 39 | 16 | 21 | 19 | 22 | 52 | 38 | | 9.7 | 9.5 | | 10 | 11 | | 8.9 | 17 | 17 | 20 | 20 | 25 | 45 | 32 | | 9.7 | 9.4 | | 10 | 11 | • | 0.9 | 1/ | 1/ | 20 | 20 | 25 | 45 | 32 | 19 | 9.1 | 9.4 | | 11 | 11 | | 8.9 | 14 | 32 | 23 | 17 | 21 | 33 | 29 | 17 | 9.6 | 8.6 | | 12 | 11 | | 8.5 | 13 | 41 | 19 | 17 | 20 | 44 | 66 | | | 8.0 | | 13 | 11 | | 8.7 | 13 | 30 | 18 | 20 | 22 | 963 | 75 | | 9.4 | 8.1 | | 14 | 10 | | 8.8 | 23 | 24 | e14 | 20 | 27 | 655 | 71 | | | 8.5 | | 15 | 17 | | 8.9 | 29 | e21 | e16 | 18 | 60 | 158 | 62 | | 9.2 | 10 | | 13 | 1/ | , | 5.9 | 23 | 621 | 610 | 10 | 00 | 130 | 02 | 1.5 | 9.2 | 10 | | 16 | 11 | | 9.1 | 17 | 24 | 18 | 18 | 39 | 108 | 48 | 16 | 9.6 | 25 | | 17 | 12 | | 9.0 | 16 | 21 | 17 | 17 | 31 | 88 | 38 | | | 11 | | 18 | 9.9 | | 8.9 | 47 | 20 | 16 | 49 | 25 | 299 | 32 | | | 9.9 | | 19 | 9.3 | | 8.7 | 28 | 17 | 15 | 53 | 23 | 125 | 61 | | | 9.6 | | 20 | 9.4 | | 9.7 | 18 | 21 | 16 | 174 | 23 | 95 | 39 | | | 9.8 | | 20 | 2.4 | | J . / | 10 | 21 | 10 | 1/4 | 23 | 93 | 33 | 10 | 11 | 9.0 | | 21 | 8.9 | | 9.5 | 15 | 18 | 16 | 94 | 22 | 82 | 30 | 15 | 9.6 | 9.5 | | 22 | 8.7 | | 9.2 | 14 | 18 | 15 | 58 | 31 | 71 | 28 | | | 9.9 | | 23 | 8.3 | | 8.9 | 14 | 20 | 15 | 48 | 26 | 63 | 25 | | | 9.4 | | 24 | 8.5 | | 8.9 | 26 | 83 | 15 | 41 | 21 | 58 | 23 | | 12 | 9.3 | | 25 | 8.3 | 2 | | 18 | 70 | 14 | 33 | 26 | 53 | 23 | | | 9.0 | | 23 | 0.5 | 2 | 0 | 10 | 70 | 1.1 | 33 | 20 | 55 | 23 | 13 | 13 | ٥.0 | | 26 | 7.7 | 3' | 7 | 15 | 45 | 15 | 33 | 29 | 50 | 24 | 14 | 10 | 12 | | 27 | 8.0 | 1. | | 13 | 34 | 16 | 70 | 22 | 49 | 87 | | | 105 | | 28 | 8.0 | 1: | | e12 | 28 | 14 | 46 | 116 | 45 | 157 | | | 57 | | 29 | 7.9 | 1 | | e13 | 26 | | 39 | 127 | 42 | 44 | | | 21 | | 30 | 7.7 | 1: | | e11 | 25 | | 34 | 64 | 37 | 32 | | 16 | 15 | | 31 | 7.7 | | | e10 | 35 | | 30 | | 35 | | 12 | | | | 31 | , . , | | | CIO | 33 | | 30 | | 33 | | 12 | | | | TOTAL | 329.3 | 31 | 5.8 | 525 | 788.0 | 599 | 1201 | 1045 | 3737 | 1474 | 543 | 351.0 | 525.5 | | MEAN | 10.6 | | 0.5 | 16.9 | 25.4 | 21.4 | 38.7 | 34.8 | 121 | 49.1 | | | 17.5 | | MAX | 17 | _ | 37 | 47 | 83 | 53 | 174 | 127 | 963 | 157 | | | 105 | | MIN | 7.7 | | 7.7 | 10 | 9.0 | 14 | 14 | 20 | 33 | 23 | | | 8.0 | | CFSM | 0.28 | | .28 | 0.45 | 0.67 | 0.56 | 1.02 | 0.92 | 3.17 | 1.29 | | | 0.46 | | IN. | 0.32 | | .31 | 0.51 | 0.77 | 0.59 | 1.18 | 1.02 | 3.66 | 1.44 | | | 0.51 | | | 0.52 | 0 | | 0.51 | 0.,, | 0.55 | 1.10 | 1.02 | 3.00 | 1,11 | 0.55 | 0.51 | 3.31 | | | | | | | | | | | | | | | | | STATIST | CICS OF | MONTH | LY MEAN | DATA | FOR WATER | YEARS 198 | 2 - 2002, | BY WATER Y | EAR (| WY) | MEAN | 34.9 | | 8.6 | 66.7 | 68.4 | 73.2 | 97.0 | 93.6 | 73.8 | 47.0 | | | 32.8 | | MAX | 117 | | 100 | 246 | 223 | 138 | 273 | 213 | 160 | 121 | | | 93.1 | | (WY) | 1997 | | 993 | 1997 | 1996 | 1984 | 1994 | 1983 | 1989 | 1982 | | 1994 | 1999 | | MIN | 10.6 | | 0.5 | 14.7 | 25.4 | 21.4 | 34.5 | 24.9 | 35.0 | 18.5 | | | 13.4 | | (WY) | 2002 | 2 | 002 | 1999 | 2002 | 2002 | 1985 | 1985 | 1995 | 1999 | 1999 | 1995 | 1986 | | | | | | | | | | | | | | | | e Estimated. ## 01472198 PERKIOMEN CREEK AT EAST GREENVILLE, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1982 - 2002 | |--------------------------|------------------------|----------------------|---------------------------| | ANNUAL TOTAL | 17095.1 | 11433.6 | | | ANNUAL MEAN | 46.8 | 31.3 | 58.3 | | HIGHEST ANNUAL MEAN | | | 101 1984 | | LOWEST ANNUAL MEAN | | | 31.3 2002 | | HIGHEST DAILY MEAN | 620 Jul 26 | 963 May 13 | 2800 Jan 19 1996 | | LOWEST DAILY MEAN | 7.7 Oct 26 a | 7.7 Oct 26 a | 4.2 Aug 21 1985 | | ANNUAL SEVEN-DAY MINIMUM | 7.8 Oct 26 | 7.8 Oct 26 | 4.4 Aug 18 1985 | | MAXIMUM PEAK FLOW | | b 4070 May 13 | b 6740 Jun 25 1984 | | MAXIMUM PEAK STAGE | | 6.10 May 13 | 7.26 Jun 25 1984 | | INSTANTANEOUS LOW FLOW | | c 4.8 Dec 30 | 3.8 Sep 5 1985 | | ANNUAL RUNOFF (CFSM) | 1.23 | 0.82 | 1.54 | | ANNUAL RUNOFF (INCHES) | 16.74 | 11.19 | 20.86 | | 10 PERCENT EXCEEDS | 96 | 58 | 110 | | 50 PERCENT EXCEEDS | 31 | 17 | 35 | | 90 PERCENT EXCEEDS | 9.6 | 8.9 | 15 | a Also Oct. 30, 31, Nov. 1. b From rating curve extended above 1,500 ft³/s on basis of contracted-opening measurement at gage height 6.53 ft and Flood Insurance Study of Montgomery County. c Result of freeze-up. ## 01472199 WEST BRANCH PERKIOMEN CREEK AT HILLEGASS, PA LOCATION.--Lat 40°22'26", long 75°31'22", Montgomery County, Hydrologic Unit 02040203, on left bank 0.3 mi downstream from bridge on private road off Heffner Road, and 0.5 mi north of Hillegass. **DRAINAGE AREA**.--23.0 mi². PERIOD OF RECORD.--October 1981 to current year. Prior to October 1992, published as "Northwest Branch". **REVISED RECORDS**: WDR PA-01-1: 1982-85, 1987, 1989, 1990, 1993-96 (P). GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 290.00 ft above National Geodetic Vertical Datum of 1929. **REMARKS.**--Records fair except those above $560 \text{ ft}^3/\text{s}$, which are poor. Several measurements of water temperature were made during the year. Satellite and landline telemetry at station. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 800 ft³/s and maximum (*): | | | | Discharge | Gage Heig | ht | | | | | Discharge | Gage Heigh | t | |----------|------------|----------|--------------------|-------------|------------|------------|---------------------------|----------|------------|--------------------|------------|------------| | Date | | Γime | ft ³ /s | (ft) | | | Date | | ime | ft ³ /s | (ft) | | | May 1 | 3 2 | 315 | *2,130 | *5.54 | | | No othe | r peak | greater | than base | discharge. | | | | | | DISCH | ARGE, CUBIC | FEET PER S | | TER YEAR OO
EAN VALUES | | 2001 TO SE | EPTEMBER 20 | 002 | | | DAY | OCT | NO | V DEC | . JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 9.4 | 6. | | | 36 | 7.0 | 26 | 44 | 26 | | 5.8 | 16 | | 2 | 9.0 | 6. | | | 38 | 7.1 | 17 | 74 | 21 | | 5.6 | 20 | | 3
4 | 8.5 | 6.
6. | | | 20
17 | 66 | 17
18 | 59
37 | 18
18 | | 5.7
5.9 | 7.8
 | 5 | 7.8 | 6. | | | 15 | 25
13 | 14 | 31 | 19 | | 5.8 | 6.6
5.9 | | | | | | | | | | | | | | | | 6 | 7.7 | 6. | | | 13 | 11 | 12 | 26 | 48 | | 6.1 | 5.5 | | 7 | 7.6 | 6. | | | 12 | 11 | 11 | 23 | 93 | | 5.7 | 5.3 | | 8
9 | 7.2
7.0 | 6.
6. | | 10
9.0 | 12 | 10
9.6 | 11
11 | 19
33 | 35
28 | | 5.3 | 5.2 | | 10 | 7.0 | 6. | | 9.0 | 10
10 | 10 | 15 | 33 | 23 | | 5.1
5.0 | 5.1
5.1 | | 10 | | 0. | 1 11 | 9.0 | 10 | 10 | 15 | 31 | 23 | 0.7 | 5.0 | 5.1 | | 11 | 7.4 | 6. | | | 11 | 9.0 | 11 | 19 | 19 | | 4.9 | 4.7 | | 12 | 7.4 | 6. | | | 9.9 | 8.7 | 11 | 28 | 19 | | 5.0 | 4.4 | | 13 | 7.3 | 6. | | | 9.5 | 10 | 11 | 571 | 28 | | 4.9 | 4.3 | | 14 | 6.9 | 6. | | 13 | e8.0 | 10 | 15 | 414 | 34 | | 4.8 | 4.3 | | 15 | 13 | 6. | 3 20 | 12 | e8.0 | 9.4 | 54 | 96 | 36 | 8.1 | 4.7 | 5.0 | | 16 | 8.8 | 6. | | 13 | 9.0 | 9.2 | 26 | 65 | 28 | | 4.8 | 10 | | 17 | 8.9 | 6. | | | 8.8 | 8.8 | 16 | 55 | 19 | | 4.8 | 6.4 | | 18 | 8.1 | 6. | | 11 | 8.1 | 36 | 13 | 183 | 17 | | 4.5 | 5.3 | | 19 | 7.0 | 6. | | 9.1 | 7.8 | 40 | 12 | 76 | 24 | | 4.2 | 5.1 | | 20 | 7.0 | 7. | 0 11 | 11 | 8.2 | 141 | 12 | 58 | 18 | 8.3 | 5.1 | 5.0 | | 21 | 6.8 | 7. | | | 8.4 | 77 | 11 | 51 | 16 | | 5.0 | 4.8 | | 22 | 6.5 | 7. | | | 7.9 | 42 | 19 | 47 | 15 | | 4.8 | 4.7 | | 23 | 6.5 | 6. | | | 7.6 | 31 | 17 | 43 | 14 | | 5.2 | 4.9 | | 24
25 | 6.6 | 6. | 9 13
11 | 59
50 | 7.3
7.3 | 25
20 | 12
14 | 40
37 | 14
13 | | 6.0 | 4.8 | | 45 | 6.4 | 12 | 11 | 50 | 7.3 | 20 | 14 | 3 / | 13 | 7.7 | 7.9 | 4.7 | | 26 | 6.1 | 25 | 8.8 | | 7.4 | 21 | 18 | 35 | 14 | | 5.7 | 5.2 | | 27 | 6.0 | 9. | | | 7.9 | 58 | 12 | 35 | 22 | | 5.1 | 51 | | 28 | 6.1 | 8. | 1 8.0 | | 7.4 | 31 | 99 | 33 | 99 | | 5.2 | 34 | | 29
30 | 6.0
6.2 | 7.
8. | | | | 23
19 | 105
47 | 31
30 | 20
14 | | 12
8.5 | 9.8
7.6 | | 31 | 6.3 | 8. | | | | 17 | 47 | 28 | | | 6.2 | 7.6 | | 31 | 0.3 | | - 0.7 | | | 17 | | 20 | | 3.9 | 0.2 | | | TOTAL | 230.9 | 224. | | | 332.5 | 815.8 | 687 | 2352 | 812 | | 175.3 | 268.5 | | MEAN | 7.45 | 7.4 | | | 11.9 | 26.3 | 22.9 | 75.9 | 27.1 | | 5.65 | 8.95 | | MAX | 13 | | 5 29 | | _38 | 141 | 105 | 571 | 99 | | 12 | 51 | | MIN | 6.0 | 6. | | | 7.3 | 7.0 | 11 | 19 | 13 | | 4.2 | 4.3 | | CFSM | 0.32 | 0.3 | | | 0.52 | 1.14 | 1.00 | 3.30 | 1.18 | | 0.25 | 0.39 | | IN. | 0.37 | 0.3 | 6 0.53 | 0.77 | 0.54 | 1.32 | 1.11 | 3.80 | 1.31 | 0.41 | 0.28 | 0.43 | | STATIST | ICS OF | MONTHLY | MEAN DATA | FOR WATER | YEARS 198 | 32 - 2002, | BY WATER | YEAR (W | TY) | | | | | MEAN | 20.6 | 30. | 9 44.7 | 43.4 | 46.4 | 62.0 | 59.1 | 47.4 | 29.7 | 21.7 | 15.3 | 18.6 | | MAX | 66.9 | 60. | | | 93.8 | 171 | 146 | 114 | 83.7 | 7 99.0 | 35.3 | 52.5 | | (WY) | 1997 | 199 | | | 1984 | 1994 | 1983 | 1989 | 1982 | | 1994 | 1999 | | MIN | 7.45 | 7.4 | | | 11.9 | 23.4 | 16.4 | 22.9 | 11.0 | | 5.65 | 5.47 | | (WY) | 2002 | 200 | | | 2002 | 1985 | 1985 | 1995 | 1999 | | 2002 | 1983 | | - E-4 | | | | | | | | | | | | | e Estimated. # 01472199 WEST BRANCH PERKIOMEN CREEK AT HILLEGASS, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1982 - 2002 | |--------------------------|------------------------|----------------------|---------------------------| | ANNUAL TOTAL | 10127.0 | 6953.8 | | | ANNUAL MEAN | 27.7 | 19.1 | 36.6 | | HIGHEST ANNUAL MEAN | | | 69.5 1984 | | LOWEST ANNUAL MEAN | | | 19.1 2002 | | HIGHEST DAILY MEAN | 264 Mar 30 | 571 May 13 | 1760 Jan 19 1996 | | LOWEST DAILY MEAN | 6.0 Oct 27 a | 4.2 Aug 19 | 3.0 Aug 7 1999 | | ANNUAL SEVEN-DAY MINIMUM | 6.1 Nov 8 | 4.7 Aug 13 | 3.2 Aug 1 1999 | | MAXIMUM PEAK FLOW | | b 2130 May 13 | b 3270 Jan 19 1996 | | MAXIMUM PEAK STAGE | | 5.54 May 13 | 6.34 Jan 19 1996 | | INSTANTANEOUS LOW FLOW | | c 3.4 Dec 30 | c 2.6 Dec 31 1998 | | ANNUAL RUNOFF (CFSM) | 1.21 | 0.83 | 1.59 | | ANNUAL RUNOFF (INCHES) | 16.38 | 11.25 | 21.62 | | 10 PERCENT EXCEEDS | 59 | 36 | 71 | | 50 PERCENT EXCEEDS | 17 | 9.2 | 22 | | 90 PERCENT EXCEEDS | 7.0 | 5.4 | 7.8 | ^{a Also Oct. 29, Nov. 12. b From rating curve extended above 560 ft³/s on basis of contracted-opening measurement at gage height 5.51 ft. c Result of freeze-up.} ## 01472620 EAST BRANCH PERKIOMEN CREEK NEAR DUBLIN, PA LOCATION.--Lat 40°24'14", long 75°14'05", Bucks County, Hydrologic Unit 02040203, on right bank 40 ft downstream from bridge on Bucks Road, 4.5 mi northeast of Perkasie, and 5.0 mi southeast of Quakertown. **DRAINAGE AREA**.--4.05 mi², not including distributary. PERIOD OF RECORD.--October 1983 to current year. REVISED RECORD.--WDR PA-99-1: 1984, 1985, 1989, 1993, 1994, 1996, 1997 (M). GAGE.--Water-stage recorder, crest-stage gage and concrete control. Datum of gage is 338.14 ft (revised) above National Geodetic Vertical Datum of 1929. REMARKS.--No estimated daily discharges. Records good except those below 10 ft³/s, which are poor. Diversion since August 1989 from Delaware River at Point Pleasant to Bradshaw Reservoir (Geddes Creek Basin). Pumpage from reservoir enters the stream about 0.5 mi upstream of gage. Pumpage into the creek was equivalent to an annual mean discharge of 41.5 ft³/s. See station 01472618, Distributary from Bradshaw Reservoir, for pumpage data. Peak flows are unregulated. Several measurements of water temperature were made during the year. Satellite and landline telemetry at station. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 350 ft³/s and maximum (*): | Date | Time | Dis | scharge
ft ³ /s | Gage Height (ft) | | | Date | Time | | ischarge
ft ³ /s | Gage Height
(ft) | i. | |----------------------------------|----------------------------------|----------------------------|----------------------------------|----------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|----------------------------|----------------------------------|----------------------------------|------------------------------------| | May 13 | 11me
1915 | | 117/S
1562 | (It)
*4.55 | | | May 14 | 0000 | | 451 | (It)
4.05 | | | nay 15 | 1713 | | | | | | - | | | | | | | | | | DISCHA | RGE, CUBIC FE | ET PER SE | ECOND, WATI
DAILY MEA | | OBER 2001 | TO SEP | TEMBER 20 | 02 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 62
62
62
62
62 | 60
57
61
60
60 | 58
58
58
58
58 | 44
50
52
66
66 | 25
20
17
17
16 | 60
60
51
19
17 | 18
16
17
17
16 | 36
44
37
32
32 | 62
62
62
62
62 | 62
62
62
62 | 62
56
58
63
64 | 61
62
60
60 | | 6
7
8
9
10 | 62
62
62
62
62 | 60
60
60
60 | 58
58
58
58
58 | 66
64
56
52
59 | 16
16
16
15 | 17
16
16
16
16 | 16
15
15
15
35 | 31
31
51
64
64 | 68
71
74
74
74 | 63
64
64
63 | 64
63
63
63 | 60
60
60
60 | | 11
12
13
14
15 | 63
64
64
64 | 60
60
60
60 | 58
48
38
38
33 | 66
65
63
60
32 | 17
16
15
15 | 15
15
17
17
16 | 56
56
56
59
64 | 62
59
139
71
27 | 74
74
74
72
66 | 63
63
60
61
62 | 62
62
62
62
62 | 60
60
60
47
55 | | 16
17
18
19
20 | 64
63
48
45
62 | 58
58
58
58 | 33
30
31
30
30 | 28
28
27
58
58 | 15
15
15
15
49 | 16
15
33
22
77 | 64
62
62
62
62 | 30
29
51
32
29 | 64
64
64
63 | 62
62
62
52
50 | 62
62
62
62
58 | 62
61
37
11
0.22 | | 21
22
23
24
25 | 62
59
62
64
63 | 58
58
58
58
58 | 30
31
31
33
32 | 58
57
53
61
35 | 64
60
60
60 | 30
20
17
14
12 | 64
65
64
64
38 | 28
28
28
28
56 | 62
62
62
62
62 | 64
64
63
51
50 | 62
62
62
62
62 | 0.09
0.06
0.04
0.00
26 | | 26
27
28
29
30
31 | 62
64
64
64
62
60 | 58
58
58
58
58 | 31
46
62
62
62
51 | 30
29
29
28
29
22 | 60
60
 | 13
34
17
16
16 | 32
33
83
41
36 | 64
64
62
62
62 | 62
67
68
64
64 | 64
64
63
62
62
62 | 62
61
61
62
62
61 | 61
68
65
61
61 | | | 1907
61.5
64
45 | 1768
58.9
61
57 | 1420
45.8
62
30 | 1491
48.1
66
22 | 844
30.1
64
15 | 736
23.7
77
12 | 1303
43.4
83
15 | 1497
48.3
139
27 | 1985
66.2
74
62 | 1893
61.1
64
50 | 1913
61.7
64
56 | 1398.41
46.6
68
0.00 | ## 01472620 EAST BRANCH PERKIOMEN CREEK NEAR DUBLIN, PA--Continued | STATIS | TICS OF N | MONTHLY MEA | N DATA I | FOR WATER | YEARS 1990 | - 2002, | BY WATER | YEAR (WY) | (SINC | E REGULATION | [) | | |--------|------------|-------------|----------|-----------|------------|---------|-----------|-----------|-------|--------------|------|--------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 54.4 | 42.3 | 33.0 | 26.8 | 21.1 | 28.1 | 27.3 | 46.8 | 55.9 | 58.2 | 59.8 | 58.0 | | MAX | 61.8 | 60.3 | 57.9 | 48.1 | 30.1 | 43.2 | 43.4 | 66.9 | 69.6 | 67.0 | 65.1 | 72.5 | | (WY) | 2001 | 1999 | 1999 | 2002 | 2002 | 1993 | 2002 | 2001 | 2001 | 2001 | 2000 | 1999 | | MIN | 23.8 | 12.8 | 14.5 | 17.8 | 12.3 | 17.2 | 16.4 | 32.2 | 34.8 | 44.5 | 54.2 | 46.6 | | (WY) | 1990 | 1991 | 1995 | 1993 | 1991 | 1991 | 1992 | 1996 | 1992 | 1990 | 1995 | 2002 | | SUMMAR | Y STATIST | rics | FOR | 2001 CAL | ENDAR YEAR | F | OR 2002 W | ATER YEAR | | WATER YEARS | 1990 | - 2002 | | ANNUAL | TOTAL | | | 18362 | | | 18155.4 | 1 | | | |
 | ANNUAL | MEAN | | | 50. | 3 | | 49.7 | | | 42.8 | | | | HIGHES | T ANNUAL | MEAN | | | | | | | | 50.3 | | 1999 | | LOWEST | ANNUAL N | MEAN | | | | | | | | 35.7 | | 1990 | | HEALTE | m DATES/ N | ALC: N. D. | | 116 | T 1 C | | 120 | M 12 | | F 0.0 | 0 1 | C 1000 | | ANNUAL MEAN | 50.3 | | 49.7 | | 42.8 | | |--------------------------|-------------|---------|---------------|--------|---------------|-------------| | HIGHEST ANNUAL MEAN | | | | | 50.3 | 1999 | | LOWEST ANNUAL MEAN | | | | | 35.7 | 1990 | | HIGHEST DAILY MEAN | 116 | Jun 16 | 139 | May 13 | 528 | Sep 16 1999 | | LOWEST DAILY MEAN | e 14 | Jan 3-7 | b 0.00 | Sep 24 | b 0.00 | Sep 24 2002 | | ANNUAL SEVEN-DAY MINIMUM | a 14 | Jan 1 | 5.3 | Sep 19 | 2.5 | Apr 17 1990 | | MAXIMUM PEAK FLOW | | | 562 | May 13 | c 1860 | Sep 16 1999 | | MAXIMUM PEAK STAGE | | | 4.55 | May 13 | 8.57 | Sep 16 1999 | | 10 PERCENT EXCEEDS | 68 | | 64 | | 64 | | | 50 PERCENT EXCEEDS | 62 | | 60 | | 44 | | | 90 PERCENT EXCEEDS | 19 | | 16 | | 14 | | | | | | | | | | | | | | | | | | | STATISTIC | S OF | MONTHLY I | MEAN DATA | FOR WATER | YEARS 19 | 84 - 1989, | BY WATER | R YEAR (WY) | (PRIOR | TO REGULA | ATION) | | |-----------|------|-----------|-----------|-----------|----------|------------|----------|-------------|--------|-----------|--------|------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 1.19 | 10.1 | 8.67 | 5.60 | 11.8 | 8.00 | 7.61 | 9.15 | 3.18 | 5.25 | 2.89 | 6.55 | | MAX | 2.56 | 14.7 | 20.9 | 9.16 | 19.1 | 15.7 | 17.2 | 21.0 | 12.5 | 20.9 | 15.6 | 25.7 | | (WY) | 1986 | 1986 | 1984 | 1986 | 1984 | 1984 | 1984 | 1984 | 1989 | 1984 | 1989 | 1989 | | MIN | .14 | 1.92 | 1.96 | 2.61 | 4.26 | 2.21 | .91 | .41 | .090 | .13 | .025 | .027 | | (WV) | 1987 | 1985 | 1989 | 1985 | 1987 | 1985 | 1985 | 1986 | 1987 | 1985 | 1987 | 1986 | | SUMMARY STATISTICS | WATER YEARS 1 | 984 - 1989 | |--------------------------|---------------|-------------| | ANNUAL MEAN | 6.63 | | | HIGHEST ANNUAL MEAN | 11.7 | 1984 | | LOWEST ANNUAL MEAN | 3.60 | 1985 | | HIGHEST DAILY MEAN | 418 | Sep 20 1989 | | LOWEST DAILY MEAN | .00 | Jul 20 1985 | | ANNUAL SEVEN-DAY MINIMUM | .00 | Sep 14 1985 | | MAXIMUM PEAK FLOW | c 1790 | Jul 7 1984 | | MAXIMUM PEAK STAGE | 8.41 | Jul 7 1984 | | ANNUAL RUNOFF (CFSM) | 1.50 | | | ANNUAL RUNOFF (INCHES) | 20.42 | | | 10 PERCENT EXCEEDS | 13 | | | 50 PERCENT EXCEEDS | 1.2 | | | 90 PERCENT EXCEEDS | . 06 | | - a Computed using estimated daily discharges. b Result of no pumpage from the Delaware River diversion. c From rating curve extended above 1,300 ft³/s. e Estimated. #### 01472810 EAST BRANCH PERKIOMEN CREEK NEAR SCHWENKSVILLE, PA LOCATION.--Lat 40°15'31", long 75°25'45", Montgomery County, Hydrologic Unit 02040203, on left bank 600 ft upstream from Bergey's Mill bridge, and 2.0 mi east of Schwenksville. **DRAINAGE AREA**.--58.7 mi², not including distributary. Discharge PERIOD OF RECORD.--January 1991 to current year. REVISED RECORD.--WDR PA-96-1: 1993-95(P). WDR PA-99-1: 1996, 1997 (M). Gage Height GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 150 ft above National Geodetic Vertical Datum of 1929, from topographic map. **REMARKS**.--Records fair except those for estimated daily discharges, which are poor. Diversion since August 1989 from Delaware River at Point Pleasant to Bradshaw Reservoir (Geddes Creek Basin). Pumpage from reservoir enters stream about 19 mi upstream of gage. Pumpage into the creek was equivalent to an annual mean discharge of 41.5 ft³/s. See station 01472618, Distributary from Bradshaw Reservoir, for pumpage data. Peak flows are unregulated. Several measurements of water temperature were made during the year. Satellite and landline telemetry at station. Gage Height Discharge PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 2,500 ft³/s and maximum (*): | Date | Tir | ne | ft ³ /s | (ft) | | | Date | Ti | me | ft ³ /s | (ft) | | |-------------|-------------|-------------|--------------------|-------------|-------------|-------------|-----------------------------|-------------|-------------|--------------------|-------------------|-------------| | May 14 | 01 | 00 * | 2,780 | *6.98 | | | No other | peak g | greater | than bas | se discharg | e. | | | | | | | | | | | | | | | | | | | DISCHA | ARGE, CUBIC | FEET PER | | ATER YEAR OC
IEAN VALUES | TOBER 2 | 001 TO SE | PTEMBER | 2002 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JT. | UL AUG | SEP | | 1 | 68 | 66 | 61 | e67 | 78 | 63 | 77 | 130 | 78 | | 73 64 | | | 2
3 | 68
67 | 64
65 | 61
61 | e68 | 90
56 | 64
199 | 65 | 234 | 75
74 | | 71 66
70 73 | | | 4 | 67 | 64 | 61 | e73
e76 | 50 | 86 | 62
78 | 338
132 | 75 | | 70 73
69 66 | | | 5 | 67 | 66 | 62 | e81 | 44 | 54 | 60 | 101 | 74 | | 68 66 | | | 6 | 67 | 64 | 62 | e82 | 44 | 46 | 54 | 86 | 94 | | 67 67 | | | 7 | 67 | 65 | 62 | e81 | 40 | 43 | 50 | 78 | 262 | | 68 64 | | | 8 | 67
67 | 65
64 | 65
85 | e81
82 | 40 | 39
38 | 48
47 | 72
120 | 93
93 | | 68 64
68 66 | | | 9
10 | 67 | 65 | 69 | 82 | 37
35 | 42 | 48 | 112 | 82 | | 70 65 | | | 11 | 67 | 66 | 65 | e106 | 38 | 39 | 78 | 95 | 79 | | 67 63 | | | 12 | 67 | 67 | 63 | 148 | 37 | 37 | 82 | 94 | 77 | | 67 64 | | | 13
14 | 67
67 | 68 | 48 | 104
84 | 35
33 | 44
54 | 83
83 | 501 | 89
103 | | 67 64
65 63 | | | 15 | 71 | 68
69 | 51
52 | 68 | 32 | 45 | 87 | 1080
190 | 114 | | 68 63 | | | 16 | 68 | 67 | 42 | 51 | 32 | 41 | 85 | 119 | 89 | | 66 63 | 78 | | 17 | 67 | 64 | 41 | 46 | 32 | 40 | 83 | 95 | 82 | | 66 62 | | | 18 | 65 | 64 | 61 | 44 | 31 | 180 | 82 | 443 | 77 | | 67 62 | | | 19
20 | 46
56 | 65
68 | 49
41 | 51
76 | 31
35 | 173
760 | 81
81 | 192
126 | 79
78 | | 67 62
60 70 | | | | | | | | | | | | | | | | | 21
22 | 59
60 | 68
67 | 39
38 | 86
63 | 69
68 | 382
155 | 81
93 | 99
83 | 75
73 | | 65 64
67 64 | | | 23 | 56 | 65 | 38 | 63 | 65 | 106 | 88 | 76 | 73 | | 67 73 | | | 24 | 61 | 65 | 63 | 265 | 64 | 85 | 82 | 71 | 71 | | 70 68 | 3.6 | | 25 | 63 | 71 | 49 | 179 | 64 | 72 | 79 | 70 | 73 | ! | 50 72 | 3.5 | | 26 | 67 | 80 | 42 | 86 | 64 | 59 | 67 | 89 | 71 | | 65 66 | | | 27
28 | 68
68 | 63
62 | 44
e63 | 67
57 | 64
64 | 268
117 | 56
281 | 88
86 | 101
189 | | 67 66
67 66 | | | 29 | 69 | 62 | 76 | 53 | | 86 | 279 | 83 | 87 | | 67 96 | | | 30 | 69 | 63 | e75 | 50 | | 75 | 123 | 83 | 77 | | 66 73 | | | 31 | 66 | | e68 | 76 | | 70 | | 80 | | | 65 68 | | | TOTAL | 2019 | 1980 | 1757 | 2596 | 1372 | 3562 | 2643 | 5246 | 2757 | | | | | MEAN
MAX | 65.1
71 | 66.0
80 | 56.7
85 | 83.7
265 | 49.0
90 | 115
760 | 88.1
281 | 169
1080 | 91.9
262 | | .7 66.9
73 96 | | | MIN | 46 | 62 | 38 | 44 | 31 | 37 | 47 | 70 | 71 | | 50 62 | | | | | | | | | | | | | | | | | STATISTIC | S OF MO | ONTHLY M | EAN DATA | FOR WATER | YEARS 19 | 91 - 2002 | , BY WATER Y | ŒAR (W) | Y) | | | | | MEAN | 112 | 114 | 159 | 156 | 110 | 195 | 124 | 108 | 84.3 | | | | | MAX
(WY) | 287
1997 | 201
1994 | 405
1997 | 456
1996 | 183
2001 | 388
1994 | 230
1993 | 230
1998 | 137
2001 | | 07 159
96 1994 | 277
1999 | | MIN | 65.1 | 66.0 | 52.1 | 70.7 | 49.0 | 115 | 43.2 | 60.9 | 57.8 | | | 64.8 | | (WY) | 2002 | 2002 | 1996 | 1992 | 2002 | 2002 | 1992 | 1999 | 1993 | | | | | | | | | | | | | | | | | | e Estimated. # 01472810 EAST BRANCH PERKIOMEN CREEK NEAR SCHWENKSVILLE, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALEN | DAR YEAR | FOR 2002 WAT | ER YEAR | WATER YEARS | 1991 - 2002 | |--------------------------|----------------|-----------|--------------|-----------------|----------------|----------------------| | ANNUAL TOTAL | 38976 | | 30018.0 | | | | | ANNUAL MEAN | 107 | | 82.2 | | 121 | | | HIGHEST ANNUAL MEAN | | | | | 154 | 1996 | | LOWEST ANNUAL MEAN | | | | | 80.6 | 1992 | | HIGHEST DAILY MEAN | 1240 | Feb 10 | 1080 | May 14 | 6020 | Jan 19 1996 | | LOWEST DAILY MEAN | 38 | Dec 22,23 | 3.5 | Sep 25 a | 3.5 | Sep 25 2002 a | | ANNUAL SEVEN-DAY MINIMUM | 44 | Dec 17 | 11 | Sep 19 | 11 | Sep 19 2002 | | MAXIMUM PEAK FLOW | | | 2780 | May 14 | b 12300 | Sep 16 1999 | | MAXIMUM PEAK STAGE | | | 6.98 | May 14 | 14.03 | Sep 16 1999 | | 10 PERCENT EXCEEDS | 173 | | 102 | | 188 | | | 50 PERCENT EXCEEDS | 69 | | 67 | | 72 | | | 90 PERCENT EXCEEDS | 58 | | 43 | | 49 | | $[\]begin{array}{l} \textbf{a} \ \ Result \ of \ no \ pumpage \ from \ the \ Delaware \ River \ diversion. \\ \textbf{b} \ \ From \ rating \ curve \ extended \ above \ 2,840 \ ft^3/s \ on \ basis \ of \ contracted-opening \ measurement \ of \ peak \ flow. \end{array}$ #### 01473000 PERKIOMEN CREEK AT GRATERFORD, PA LOCATION.--Lat 40°13'46", long 75°27'07", Montgomery County, Hydrologic Unit 02040203, on left bank 1,650 ft upstream from highway bridge at Graterford, 0.5 mi upstream from Lodel Creek, and 2.5 mi north of Collegeville. DRAINAGE AREA --279 mi². **PERIOD OF RECORD.**—June 1914 to current year. Monthly discharge only for some periods, published in WSP 1302. Prior to October 1950, published as "at Graters Ford." **REVISED RECORDS.**—WSP 756: Drainage area. WSP 1171: 1935(M). WSP 1302: 1915-16, 1927-29. WSP 1382: 1932-33, 1935, 1937, 1942, 1947, 1948(M), 1949(P), 1950(M), 1951-52(P), WDR PA-91-1: 1989-90 (adjusted means and monthly runoff). GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 112.66 ft above National Geodetic Vertical Datum of 1929. June 1914, to Sept. 6, 1921, nonrecording gage at site 1,650 ft downstream at datum 3.29 ft lower. Sept. 7, 1921, to Sept. 13, 1927, nonrecording gage at present site and datum. REMARKS.--Records good except those for estimated daily discharges, which are poor. Some regulation since Dec. 21, 1956 by Green Lane Reservoir (station 01472200) 10.5 mi upstream.
Diversion from the Delaware River at Point Pleasant to Bradshaw Reservoir (Geddes Creek Basin) has been pumped from the reservoir to the East Branch Perkiomen Creek since August 1989. See station 01472618, Distributary from Bradshaw Reservoir, for pumpage data. Several measurements of water temperature were made during the year. Satellite and landline telemetry at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | DISCHAR | ов, совіс і | EET TEKS. | DAILY ME | EAN VALUE | | 01 10 321 11 | LIVIDER 2002 | | | |-------|------|------|---------|-------------|-----------|----------|-----------|-------|--------------|--------------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 125 | 126 | 130 | e90 | 260 | 135 | 255 | 481 | 172 | 159 | 102 | 134 | | 2 | 125 | 126 | 129 | e95 | 322 | 135 | 226 | 871 | 162 | 143 | 102 | 196 | | 3 | 120 | 125 | 126 | e100 | 228 | 602 | 205 | 1170 | 149 | 135 | 117 | 140 | | 4 | 121 | 129 | 127 | e105 | 187 | 336 | 263 | 458 | 141 | 128 | 105 | 122 | | 5 | 120 | 128 | 125 | e110 | e115 | 196 | 206 | 327 | 141 | 122 | 104 | 113 | | 6 | 123 | 128 | 124 | e115 | e140 | 162 | 182 | 268 | 194 | 116 | 103 | 108 | | 7 | 118 | 126 | 126 | e120 | 148 | 148 | 164 | 235 | 965 | 114 | 101 | 104 | | 8 | 114 | 126 | 131 | e125 | 146 | 136 | 150 | 212 | 322 | 113 | 101 | 103 | | 9 | 120 | 129 | 177 | e130 | 135 | 129 | 145 | 299 | 225 | 112 | 102 | 102 | | 10 | 120 | 131 | 163 | e140 | 128 | 132 | 157 | 332 | 190 | 115 | 101 | 102 | | 11 | 121 | 139 | 148 | e200 | 138 | 123 | 171 | 244 | 170 | 112 | 101 | 101 | | 12 | 122 | 136 | 133 | 377 | 136 | 115 | 168 | 220 | 166 | 111 | 101 | 101 | | 13 | 123 | 131 | 122 | 271 | 127 | 132 | 170 | 2060 | 269 | 110 | 100 | 104 | | 14 | 117 | 126 | 124 | 215 | 120 | 161 | 175 | 8360 | 271 | 109 | 100 | 106 | | 15 | 124 | 126 | 153 | 186 | 114 | 142 | 225 | 1170 | 389 | 110 | 100 | 95 | | 16 | 122 | 123 | 134 | 157 | 114 | 130 | 252 | 625 | 244 | 108 | 100 | 133 | | 17 | 117 | 123 | 122 | 141 | 112 | 124 | 202 | 439 | 198 | 107 | 108 | 124 | | 18 | 120 | 123 | 161 | 137 | 107 | 463 | 179 | 1950 | 173 | 107 | 108 | 109 | | 19 | 104 | 123 | 172 | e130 | 107 | 599 | 167 | 1040 | 181 | 107 | 107 | 82 | | 20 | 104 | 126 | 137 | e135 | 105 | 2120 | 167 | 547 | 188 | 105 | 122 | 62 | | 20 | 103 | 120 | 137 | e135 | 105 | 2120 | 107 | 54/ | 188 | 105 | 122 | 02 | | 21 | 115 | 122 | 119 | e140 | 148 | 1370 | 161 | 402 | 162 | 105 | 111 | 56 | | 22 | 117 | 127 | 111 | 154 | 147 | 495 | 184 | 328 | 148 | 110 | 106 | 49 | | 23 | 119 | 125 | 109 | 154 | 145 | 341 | 218 | 282 | 140 | 108 | 119 | 45 | | 24 | 124 | 123 | 143 | 613 | 143 | 286 | 176 | 251 | 137 | 114 | 119 | 45 | | 25 | 126 | 130 | 149 | 644 | 140 | 243 | 165 | 224 | 138 | 97 | 140 | 45 | | 26 | 126 | 180 | 128 | 302 | 139 | 208 | 187 | 224 | 131 | 101 | 117 | 67 | | 27 | 127 | 153 | e110 | 224 | 140 | 824 | 159 | 223 | 188 | 106 | 110 | 554 | | 28 | 125 | 136 | e115 | 190 | 136 | 434 | 998 | 212 | 784 | 107 | 108 | 515 | | 29 | 126 | 133 | e120 | 173 | | 295 | 1510 | 202 | 284 | 107 | 169 | 196 | | 30 | 128 | 130 | e105 | 164 | | 250 | 536 | 189 | 192 | 105 | 154 | 145 | | 31 | 127 | | e95 | 228 | | 221 | | 178 | | 104 | 124 | 143 | | | | | | | | | | | | | | | | TOTAL | 3739 | 3909 | 4068 | 6065 | 4126 | 11187 | 8123 | 24023 | 7214 | 3508 | 3462 | 3958 | | MEAN | 121 | 130 | 131 | 196 | 147 | 361 | 271 | 775 | 240 | 113 | 112 | 132 | | MAX | 128 | 180 | 177 | 644 | 322 | 2120 | 1510 | 8360 | 965 | 159 | 169 | 554 | | MIN | 103 | 122 | 95 | 90 | 105 | 115 | 145 | 178 | 131 | 97 | 100 | 45 | e Estimated. #### 01473000 PERKIOMEN CREEK AT GRATERFORD, PA--Continued STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1957 - 2002, BY WATER YEAR (WY) (SINCE REGULATION) | | | | | | | | | . , | | | • | | |---------|------------|-----------|-----------|-------------|------------|---------|----------------|-----------|-------|----------------|--------------|------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 212 | 360 | 517 | 553 | 597 | 763 | 625 | 429 | 264 | 202 | 155 | 227 | | MAX | 1059 | 1182 | 1869 | 2071 | 1241 | 2100 | 1759 | 1298 | 1330 | 1286 | 493 | 1163 | | (WY) | 1997 | 1973 | 1997 | 1979 | 1971 | 1994 | 1983 | 1989 | 1972 | 1984 | 1971 | 1971 | | MIN | 28.1 | 43.8 | 63.3 | 75.6 | 147 | 186 | 128 | 84.0 | 52.9 | 41.7 | 37.4 | 24.8 | | (WY) | 1958 | 1958 | 1966 | 1981 | 2002 | 1985 | 1985 | 1965 | 1965 | 1965 | 1957 | 1957 | | SUMMAR | Y STATIST | ics | FOR : | 2001 CALE | NDAR YEAR | F | OR 2002 WA | TER YEAR | | WATER YEARS | 1957 - | 2002 | | ANNUAL | TOTAL | | | 132762 | | | 83382 | | | | | | | ANNUAL | MEAN | | | 364 | | | 228 | | | 408 | | | | HIGHES' | T ANNUAL I | MEAN | | | | | | | | 767 | | 1984 | | | ANNUAL M | | | | | | | | | 165 | | 1965 | | | T DAILY M | | | 4200 | Mar 30 | | 8360 | May 14 | | 16600 | | 1993 | | | DAILY ME | | | e 95 | Dec 31 | | 45 | Sep 23-2 | 5 | 13 | Sep 1 | | | | SEVEN-DAY | | | 112 | Sep 12 | | 53 | Sep 20 | | 19 | Aug 31 | | | | M PEAK FLO | | | | | | a 19100 | May 14 | | a 35800 | Jun 22 | | | | M PEAK STA | | | | | | 12.52 | May 14 | | 17.08 | Jun 22 | 1972 | | | CENT EXCE | | | 817 | | | 327 | | | 824 | | | | | CENT EXCE | | | 164 | | | 133 | | | 180 | | | | 90 PER | CENT EXCE | EDS | | 118 | | | 104 | | | 61 | STATIS | TICS OF MO | ONTHLY ME | AN DATA F | OR WATER | YEARS 1915 | - 1956, | BY WATER | YEAR (WY) | (PRIO | R TO REGULAT | <u>ION</u>) | | | | | | | | | | | | | | | | | SIAI | ISIICS OF | MONIALI | MEAN DAIA | . FOR WAIER | I LEARS 19 | 15 - 1956, | DI WAIE | R IEAR (WI) | (PRIOR | IO REGUL | AIION) | | |------|-----------|---------|-----------|-------------|------------|------------|---------|-------------|--------|----------|--------|------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 192 | 345 | 445 | 504 | 641 | 771 | 513 | 346 | 213 | 274 | 261 | 177 | | MAX | 856 | 1119 | 1077 | 1336 | 1458 | 2193 | 1335 | 1395 | 976 | 1190 | 1378 | 869 | | (WY) | 1956 | 1933 | 1928 | 1915 | 1918 | 1936 | 1952 | 1948 | 1946 | 1919 | 1955 | 1934 | | MIN | 21.2 | 38.0 | 69.8 | 66.5 | 80.2 | 247 | 167 | 71.7 | 32.7 | 32.4 | 21.0 | 23.8 | | (WY) | 1942 | 1932 | 1923 | 1925 | 1934 | 1915 | 1946 | 1941 | 1921 | 1954 | 1930 | 1932 | | | | | | | | | | | | | | | | WATER YEARS | 1915 | 5 - | 1956 | |----------------|---|---|---| | 389 | | | | | 689 | | | 1956 | | 188 | | | 1931 | | 18600 | Jul | 9 | 1935 | | 3.8 | Jun | 25 | 1921 | | 5.2 | Jun | 22 | 1921 | | a 39900 | Jul | 9 | 1935 | | 18.26 | Jul | 9 | 1935 | | 4.7 | Oct | 4 | 1941 | | 1.40 | | | | | 18.96 | | | | | 800 | | | | | 166 | | | | | 42 | | | | | | 389
689
188
18600
3.8
5.2
a39900
18.26
4.7
1.40
18.96
800
166 | 389
689
188
18600 Jul
3.8 Jun
5.2 Jun
a39900 Jul
18.26 Jul
4.7 Oct
1.40
18.96
800
166 | 689 188 18600 Jul 9 3.8 Jun 25 5.2 Jun 22 a39900 Jul 9 18.26 Jul 9 4.7 Oct 4 1.40 18.96 800 166 | - a From rating curve extended above $14,000~{\rm ft^3/s}$ on basis of slope-area measurement at $32,000~{\rm ft^3/s}$, gage height $16.23~{\rm ft}$. e Estimated. #### 01473169 VALLEY CREEK AT PENNSYLVANIA TURNPIKE BRIDGE NEAR VALLEY FORGE, PA LOCATION.--Lat 40°04'45", long 75°27'40", Chester County, Hydrologic Unit 02040202, on right bank 100 ft upstream from Pennsylvania turnpike bridge, 0.9 mi downstream from Little Valley Creek, 2.2 mi upstream from mouth, and 1.0 mi south of Valley Forge. **DRAINAGE AREA**.--20.8 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1982 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 108.62 ft above National Geodetic Vertical Datum of 1929. **REMARKS.**—No estimated daily discharges. Records good. Several measurements of water temperature were made during the year. Satellite telemetry at station. Intermittent pumpage from quarry upstream. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 600 ft³/s and maximum (*): | | | | Di | ischarge | Gage Heigh | t | | | | | Discha | | Gage Height | | |--|--|------|---|---|---|---|---|---|--|---------------------------------|----------------------------|--|--|--| | Date | : | Time | | ft ³ /s | (ft) | | | Date | Γ | ime | ft ³ / | s | (ft) | | | June | 6 | 2100 | | *576 | *6.40 | | | (No | peaks | above | base | disc | harge.) | | | | | | | DISCHAI | RGE, CUBIC I | FEET PER S | | TER YEAR O | | 2001 TO S | EPTEM | IBER 20 | 002 | | | DAY | OCT | | NOV | DEC | JAN | FEB | MAR | APR | MAY | JU | N | JUL | AUG | SEP | | 1
2
3
4
5 | 12
11
10
10
9.9 | | 9.4
8.9
9.7
9.2
8.9 | 11
10
11
10 | 11
11
11
11
11 | 16
14
14
13
11 | 11
12
67
16
14 | 18
15
15
15 | 18
90
34
18
17 | 1
1
1 | 5
4
3
3 | 12
12
12
11
11 | 8.8
8.6
8.4
10
9.0 | 31
15
11
10
9.8 | |
6
7
8
9 | 11
10
10
9.7
9.9 | | 8.9
8.6
8.8
8.8
9.1 | 10
10
19
31
13 | 30
27
15
13
14 | 11
13
12
12
12 | 13
13
12
12
15 | 14
14
14
14
15 | 14
15
15
30
16 | 5
1
1 | 6
7
8
7
6 | 11
11
11
11
18 | 8.6
8.5
8.2
8.4
8.4 | 9.3
9.4
9.4
9.2
9.0 | | 11
12
13
14
15 | 9.9
9.8
9.9
9.3 | | 8.9
8.9
9.2
9.3
8.8 | 12
12
12
22
14 | 36
17
14
13 | 13
11
10
10 | 12
12
16
13
12 | 13
12
12
16
16 | 15
26
56
47
20 | 1
1
3 | 5
5
5
2
8 | 11
11
10
11 | 8.3
8.2
8.1
7.8
7.9 | 8.7
9.1
9.4
9.3 | | 16
17
18
19
20 | 9.9
9.8
9.4
9.2
9.5 | | 8.7
8.8
9.2
8.6
9.2 | 12
12
25
13
12 | 12
12
12
12
13 | 11
11
11
11
12 | 12
13
30
16
75 | 14
12
11
13
15 | 17
17
143
27
22 | 1
2
2 | 6
5
3
2
5 | 10
9.9
9.7
18
15 | 7.8
7.5
7.6
7.5
8.6 | 16
9.7
9.5
9.4
9.2 | | 21
22
23
24
25 | 9.1
9.1
8.8
9.0
9.1 | 2 | 8.7
9.2
9.2
9.2 | 12
11
11
25
13 | 12
13
14
76
22 | 16
12
11
11 | 27
18
16
16
15 | 14
23
14
13
15 | 19
18
18
17
16 | 1
1
1 | 4
4
3
6
4 | 10
10
9.7
10
9.8 | 7.6
7.7
9.7
15
14 | 9.2
9.0
9.0
8.9
9.0 | | 26
27
28
29
30
31 | 9.2
9.5
9.1
9.3
9.3 | - | 18
11
10
11
11 | 12
12
11
11
11 | 16
14
14
12
13
24 | 11
11

 | 20
50
18
17
16
17 | 14
13
48
18
18 | 16
17
16
15
15 | 3
2
1 | 3
0
4
4
3
- | 9.7
9.9
10
9.4
9.1
8.9 | 9.0
8.6
9.0
58
12
10 | 26
76
41
12
11 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 307.1
9.91
16
8.8
0.48
0.55 | | 03.2
10.1
26
8.6
0.49
0.54 | 421
13.6
31
10
0.65
0.75 | 538
17.4
76
11
0.83
0.96 | 333
11.9
16
10
0.57
0.60 | 626
20.2
75
11
0.97
1.12 | 473
15.8
48
11
0.76
0.85 | 839
27.1
143
14
1.30
1.50 | | 6
6
3
9 | 343.1
11.1
18
8.9
0.53
0.61 | 326.8
10.5
58
7.5
0.51
0.58 | 435.5
14.5
76
8.7
0.70
0.78 | | STATIST | CICS OF | MONT | HLY MI | EAN DATA I | FOR WATER | YEARS 198 | 3 - 2002, | BY WATER | YEAR (V | TY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 22.6
61.8
1997
9.91
2002 | 4 | 26.8
48.8
1987
10.1
2002 | 31.7
103
1997
12.7
1999 | 33.3
95.8
1996
16.8
1985 | 32.4
53.5
1984
11.9
2002 | 43.9
85.9
1994
17.9
1985 | 43.0
98.8
1983
15.8
2002 | 36.8
77.5
1984
19.5
1995 | 28.
49.
198
15.
199 | 9
4
1 | 26.2
53.1
1996
11.1
2002 | 22.5
36.6
1996
10.5
2002 | 28.1
95.5
1999
14.5
2002 | # 01473169 VALLEY CREEK AT PENNSYLVANIA TURNPIKE BRIDGE NEAR VALLEY FORGE, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1983 - 2002 | |--------------------------|------------------------|---------------------|----------------------------| | ANNUAL TOTAL | 9041.7 | 5562.7 | | | ANNUAL MEAN | 24.8 | 15.2 | 31.3 | | HIGHEST ANNUAL MEAN | | | 47.7 1996 | | LOWEST ANNUAL MEAN | | | 15.2 2002 | | HIGHEST DAILY MEAN | 282 Mar 30 | 143 May 18 | 2020 Sep 16 1999 | | LOWEST DAILY MEAN | 7.9 Sep 10 | 7.5 Aug 17 | 7.4 Jul 13 1999 | | ANNUAL SEVEN-DAY MINIMUM | 8.3 Sep 7 | 7.7 Aug 13 | 7.7 Aug 13 2002 | | MAXIMUM PEAK FLOW | | 576 Jun 6 | a 6280 Sep 16 1999 | | MAXIMUM PEAK STAGE | | 6.40 Jun 6 | b 14.75 Sep 16 1999 | | INSTANTANEOUS LOW FLOW | | 6.6 Aug 8 | 6.4 Jul 29 1999 | | ANNUAL RUNOFF (CFSM) | 1.19 | 0.73 | 1.50 | | ANNUAL RUNOFF (INCHES) | 16.17 | 9.95 | 20.44 | | 10 PERCENT EXCEEDS | 42 | 22 | 51 | | 50 PERCENT EXCEEDS | 18 | 12 | 23 | | 90 PERCENT EXCEEDS | 9.2 | 8.9 | 14 | $[\]begin{array}{ll} \textbf{a} & \text{From rating curve extended above 3,690 ft}^3\hspace{-0.5mm}/\text{s on basis of slope-area measurement of peak flow.} \\ \textbf{b} & \text{From outside highwater mark.} \end{array}$ # 01473169 VALLEY CREEK AT PENNSYLVANIA TURNPIKE BRIDGE NEAR VALLEY FORGE, PA--Continued # WATER-QUALITY RECORDS PERIOD OF RECORD.--Water year 1984, 1999 to current year. | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER
(00028 | | INST NG CUBI E FEE E PEE R) SECO | GE, C. OXYGE CT DIS C SOLV DND (MG/ | S- (STAN
YED ARD
'L) UNIT | E CIF: D CON: D- DUC' ANC: S) (µS/ | IC
- TEMPI
I- ATUI
E WATI
CM) (DEG | RE SOLV
ER (MG/
C) AS C | DIS ED SOLV L (MG/ | M, SIUM, - DIS- ED SOLVED L (MG/L G) AS K) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC WATER UNFLTRD IT FIELD (MG/L AS CACO3) (00419) | |----------------|--------|---|---|--|--|--|--|--|--|---|--|---|--| | OCT 2001
10 | 0830 | 80020 | 1028 | 10 | 11.0 | 8.3 | 685 | 9.0 | 55.2 | 31.6 | 3.31 | 34.3 | 207 | | | Date | | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | BORON,
DIS-
SOLVED
(µG/L
AS B)
(01020) | IRON, DIS- SOLVED (µG/L AS FE) (01046) | | | | | OCT 20 | | 67.9 | 6.9 | 28.6 | < . 04 | 1.78 | E.005 | E.01 | 60 | <10 | | | # 01473169 VALLEY CREEK AT PENNSYLVANIA TURNPIKE BRIDGE NEAR VALLEY FORGE, PA--Continued ### BIOLOGICAL DATA BENTHIC MACROINVERTEBRATES $\textbf{REMARKS}. \text{--Samples were collected using a Hess sampler with a mesh size of 500 } \mu\text{m}. \quad \text{Each sample covered a total area of 3.2 } m^2.$ | Date | 10/10/01 | |----------------------------------|----------| | Benthic Macroinvertebrate | Count | | Platyhelminthes | | | Turbellaria (FLATWORMS) | | | Tricladida | | | Planariidae | 44 | | Nematoda (NEMATODES) | 13 | | Nemertea (PROBOSAS WORMS) | | | Enopla | | | Hoplonemertea | | | Tetrastemmatidae | | | <u>Prostoma</u> sp | 22 | | Annelida | | | Oligochaeta (AQUATIC EARTHWORMS) | 4 | | Tubificida | | | Naididae | 47 | | Arthropoda | | | Acariformes | | | Hydrachnidia (WATER MITES) | 117 | | Crustacea | | | Amphipoda (SCUDS) | | | Gammaridae | | | <u>Gammarus</u> sp | 16 | | Insecta | | | Ephemeroptera (MAYFLIES) | | | Baetidae | | | <u>Baetis</u> sp | 25 | | Pseudocloeon sp | 3 | | Ephemerellidae | | | <u>Eurylophella</u> sp | 31 | | <u>Serratella</u> sp | 103 | | Plecoptera (STONEFLIES) | | | Taeniopterygidae | | | <u>Taeniopteryx</u> sp | 1 | | Trichoptera (CADDISFLIES) | | | Glossosomatidae | | | <u>Glossosoma</u> sp | 3 | | Hydropsychidae | | | <u>Cheumatopsyche</u> sp | 137 | | <u>Hydropsyche</u> sp | 450 | | Hydroptilidae | | | <u>Hydroptila</u> sp | 1 | | Philopotamidae | | | <u>Chimarra</u> sp | 24 | | | | # 01473169 VALLEY CREEK AT PENNSYLVANIA TURNPIKE BRIDGE NEAR VALLEY FORGE, PA--Continued # BIOLOGICAL DATA BENTHIC MACROINVERTEBRATES--Continued | Date | 10/10/01 | |-----------------------------|----------| | Benthic Macroinvertebrate | Count | | Coleoptera (BEETLES) | | | Elmidae (RIFFLE BEETLES) | | | Optioservus sp | 517 | | <u>Oulimnius</u> sp | 90 | | <u>Stenelmis</u> sp | 38 | | Psephenidae (WATER PENNIES) | | | <u>Psephenus</u> sp | 6 | | Diptera (TRUE FLIES) | | | Chironomidae (MIDGES) | 439 | | Empididae (DANCE FLIES) | | | <u>Hemerodromia</u> sp | 4 | | Simuliidae (BLACK FLIES) | | | Simulium sp | 64 | | Tipulidae (CRANE FLIES) | | | Antocha sp | 90 | | <u>Tipula</u> sp | 2 | | | | | Total organisms | 2291 | | Total number of taxa | 26 | #### 01473500 SCHUYLKILL RIVER AT NORRISTOWN, PA **LOCATION**.--Lat 40°06'40", long 75°20'25", Montgomery County, Hydrologic Unit 02040203, on left bank at Haws Avenue bridge leading to Barbadoes Island, 0.2 miles upstream from Stony Creek, 0.6 miles upstream from Norristown Dam. DRAINAGE AREA.--1.760 mi². **PERIOD OF RECORD.**—August 2001 to current year. October 1927 to May 1933 at site 0.6 mi downstream, at different datum. Annual maximums, October 1983 to September 1993 from crest-stage gage located 0.7 mi downstream at different datum. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is about 51 ft above National Geodetic Vertical Datum of 1929, from topographic map. Discharge Gage Height **REMARKS.**--Records good except for estimated daily discharges, which are fair. Several measurements of temperature were made during the year. Satellite and landline telemetry at station. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 23,000 ft³/s and maximum (*): Discharge Gage Height | | | Γ | Discharge | Gage Heigh | nt | | | | |
Dischar | ge | Gage Height | | |----------------------------------|--|---|---|--|--|--|---|---|--------------------------------------|----------------------|--|--|---| | Date | Ti | me | ft ³ /s | (ft) | | | Date | 7 | Гіте | ft ³ /s | | (ft) | | | May 14 | 08 | 30 * | 24,200 | *13.08 | | | No other | r peak | greater | than h | oase | discharge. | | | | | | DISCHA | ARGE, CUBIC | FEET PER SE | | TER YEAR OC
EAN VALUES | CTOBER | 2001 TO SI | ЕРТЕМВ | ER 20 | 002 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUI | N | JUL | AUG | SEP | | | 1100
1020
945
873
806 | 521
522
535
521
504 | 691
865
842
734
661 | 565
579
607
641
699 | 1640
1790
1640
1420
1320 | 715
705
2090
2190
e1630 | 2490
2480
2060
2030
1850 | 3740
3680
6510
4550
3660 | 1410
1280
1200
1120
1060 | 0 1
0
0 | 1180
1050
889
736
653 | 448
423
488
497
565 | 620
813
643
547
409 | | 6
7
8
9
10 | 782
764
750
726
728 | 503
513
521
500
503 | 670
653
717
1110
1140 | 766
1130
1070
906
837 | 1220
1220
1200
1130
1070 | e1260
1160
1100
1060
1040 | 1630
1510
1400
1350
1450 | 3150
2640
2260
2480
2850 | 160
457
298
201
159 | 0
0
0 | 605
552
534
532
606 | 460
437
346
313
303 | 355
348
361
375
371 | | 11
12
13
14
15 | 789
793
796
770
857 | 498
508
498
482
481 | 1090
935
887
949
1100 | 1220
1850
1380
1170
1050 | 1040
1090
1080
979
925 | 1180
1220
1180
1270
1200 | 1610
1470
1330
1320
1780 | 2290
1940
2910
16900
5870 | 129
117
120
200
228 | 0
0
0 | 536
524
465
454
455 | 298
279
271
252
234 | 395
393
390
391
476 | | | 1010
1130
971
957
835 | 489
546
554
558
565 | 1130
998
1120
1390
1410 | 966
920
892
868
871 | 887
874
853
837
807 | 1110
1070
1670
2550
4730 | 4490
3680
2990
2570
2260 | 3930
3120
6720
7060
4860 | 193(
155)
138(
151)
159(| 0
0
0 | 442
418
394
395
438 | 249
291
318
311
324 | 610
707
813
555
418 | | 21
22
23
24
25 | 709
701
678
657
567 | 553
557
555
537
630 | 1220
1120
1030
1170
1150 | 887
878
873
1900
3030 | 833
842
825
793
761 | 6480
4230
3380
2800
2430 | 2080
1980
2040
1720
1510 | 4310
3860
3340
2800
2400 | 140
121
107
109
97 | 0
0
0 | 428
371
345
440
451 | 428
300
281
399
863 | 388
406
441
448
742 | | 26
27
28
29
30
31 | 533
514
518
522
528
506 | 1020
1430
989
792
712 | 1050
912
782
773
721
632 | 2150
1860
1640
1480
1330
1580 | 727
727
719

 | 2170
3650
4430
3420
2890
2580 | 1520
1410
2480
5380
4240 | 2180
2060
1970
1760
1590
1470 | 83)
92)
282)
224)
146) | 9
0
0
0 | 455
392
376
470
508
466 | 611
376
325
813
930
554 | 597
2310
3080
2180
1280 | | MEAN
MAX
MIN
CFSM | 3835
769
1130
506
0.44
0.50 | 18097
603
1430
481
0.34
0.38 | 29652
957
1410
632
0.54
0.63 | 36595
1180
3030
565
0.67
0.77 | 29249
1045
1790
719
0.59
0.62 | 68590
2213
6480
705
1.26
1.45 | 66110
2204
5380
1320
1.25
1.40 | 118860
3834
16900
1470
2.18
2.51 | 4875
1621
457
831
0.91 | 5
0 1
6
2 (| 5560
534
1180
345
0.30
0.35 | 12987
419
930
234
0.24
0.27 | 21862
729
3080
348
0.41
0.46 | | STATISTIC | s of M | ONTHLY N | MEAN DATA | FOR WATER | YEARS 200 | 1 - 2002, | BY WATER | YEAR (| WY) | | | | | | MIN | 769
769
2002
769
2002 | 603
603
2002
603
2002 | 957
957
2002
957
2002 | 1180
1180
2002
1180
2002 | 1045
1045
2002
1045
2002 | 2213
2213
2002
2213
2002 | 2204
2204
2002
2204
2002 | 3834
3834
2002
3834
2002 | 162
162
200
162
200 | 5
2 2
5 | 534
534
2002
534
2002 | 419
419
2002
419
2002 | 890
1052
2001
729
2002 | e Estimated. # 01473500 SCHUYLKILL RIVER AT NORRISTOWN, PA | SUMMARY STATISTICS | FOR 2002 WATER YEAR | WATER YEARS 2001 - 2002 | |--------------------------|---------------------|-------------------------| | ANNUAL TOTAL | 491151 | | | ANNUAL MEAN | 1346 | 1346 | | HIGHEST ANNUAL MEAN | | 1346 2002 | | LOWEST ANNUAL MEAN | | 1346 2002 | | HIGHEST DAILY MEAN | 16900 May 14 | 16900 May 14 2002 | | LOWEST DAILY MEAN | 234 Aug 15 | 234 Aug 15 2002 | | ANNUAL SEVEN-DAY MINIMUM | 268 Aug 11 | 268 Aug 11 2002 | | MAXIMUM PEAK FLOW | 24200 May 14 | 24200 May 14 2002 | | MAXIMUM PEAK STAGE | 13.08 May 14 | 13.08 May 14 2002 | | ANNUAL RUNOFF (CFSM) | 0.76 | 0.76 | | ANNUAL RUNOFF (INCHES) | 10.38 | 10.39 | | 10 PERCENT EXCEEDS | 2810 | 2810 | | 50 PERCENT EXCEEDS | 929 | 929 | | 90 PERCENT EXCEEDS | 414 | 414 | #### 01473900 WISSAHICKON CREEK AT FORT WASHINGTON, PA (Pennsylvania Water-Quality Network Station) **LOCATION.**--Lat 40°07'26", long 75°13'13", Montgomery County, Hydrologic Unit 02040203, on left bank at downstream side of bridge on State Highway 73, 0.5 mi downstream from Sandy Run, and 1 mi south of Fort Washington. **DRAINAGE AREA**.--40.8 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--September 1961 to March 1969; June 2000 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 139.98 ft above National Geodetic Vertical Datum of 1929. From Sept. 1961 to Mar. 1969 gage at present site at datum 140.70 ft above National Geodetic Vertical Datum of 1929. REMARKS.--No estimated daily discharges. Records fair. Several measurements of temperature were made during the year. Satellite telemetry at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Sept. 16, 1999, reached a stage of 18.05 ft, from floodmarks, discharge about 14,300 ft³/s. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,300 ft³/s and maximum (*): | Date
May 18 | | ime
115 | Discharge
ft ³ /s
2,460 | Gage Height
(ft)
8.71 | | | Dat
June | | ime | scharge
ft ³ /s
2,950 | Gage Heigh
(ft)
*9.48 | nt | |----------------|--------------|--------------|--|-----------------------------|--------------|--------------|-------------------------|--------------|--------------|--|-----------------------------|--------------| | | | | DISCHA | ARGE, CUBIC F | EET PER S | | ATER YEAR
IEAN VALUI | | 2001 TO SEP | TEMBER 20 | 02 | | | DAY | OCT | NOV | DEC DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 23 | 16 | | 14 | 50 | 18 | 60 | 53 | 49 | 24 | 13 | 47 | | 2 | 17 | 16 | | 14 | 44 | 19 | 40 | 82 | 31 | 23 | 13 | 40 | | 3 | 15 | 18 | | 14 | 33 | 300 | 38 | 61 | 31 | 22 | 43 | 18 | | 4
5 | 14
14 | 15
15 | | 15
14 | 31
27 | 51
33 | 37
33 | 35
30 | 23
21 | 21
20 | 15
18 | 17
15 | | 5 | 14 | 13 | 10 | 14 | 21 | 33 | 33 | 30 | 21 | 20 | 18 | 1.5 | | 6 | 19 | 16 | 16 | 54 | 25 | 29 | 31 | 27 | 296 | 19 | 15 | 14 | | 7 | 13 | 16 | 16 | 88 | 28 | 26 | 30 | 24 | 419 | 18 | 13 | 13 | | 8 | 14 | 14 | 35 | 33 | 25 | 23 | 30 | 23 | 53 | 20 | 13 | 12 | | 9 | 13 | 15 | 87 | 21 | 22 | 23 | 28 | 112 | 41 | 23 | 12 | 13 | | 10 | 13 | 15 | 24 | 21 | 23 | 35 | 31 | 47 | 37 | 75 | 12 | 12 | | 1.1 | 1.0 | 1.5 | . 10 | 116 | 2.0 | 0.2 | 26 | 0.7 | 100 | 0.0 | 1.1 | 1.0 | | 11
12 | 13 | 15 | | 116 | 32 | 23
22 | 26 | 27 | 102 | 22
20 | 11 | 12 | | | 12
12 | 15
18 | | 54
27 | 23
22 | 34 | 29
32 | 53 | 70
51 | 19 | 11
11 | 11
12 | | 13
14 | 12 | 16 | | 20 | 20 | 34 | 32 | 187
171 | 158 | 19 | 11 | 14 | | 15 | 31 | 16 | | 20
17 | 20 | 25 | 36 | 53 | 73 | 19 | 11 | 17 | | 13 | 31 | 10 | , 55 | Ι, | 20 | 23 | 30 | 33 | 75 | 1.7 | 11 | Ι, | | 16 | 15 | 16 | 20 | 16 | 20 | 24 | 26 | 38 | 51 | 17 | 12 | 29 | | 17 | 15 | 16 | 20 | 16 | 19 | 24 | 24 | 32 | 43 | 16 | 12 | 15 | | 18 | 15 | 16 | 5 59 | 15 | 18 | 150 | 23 | 707 | 38 | 16 | 11 | 13 | | 19 | 15 | 16 | | 15 | 17 | 65 | 39 | 102 | 62 | 25 | 11 | 12 | | 20 | 15 | 19 | 20 | 17 | 16 | 390 | 30 | 65 | 39 | 26 | 14 | 12 | | 21 | 14 | 17 | 19 | 16 | 26 | 130 | 22 | 52 | 31 | 16 | 11 | 12 | | 22 | 14 | 16 | | 17 | 18 | 65 | 45 | 44 | 29 | 15 | 11 | 12 | | 23 | 15 | 14 | | 19 | 18 | 52 | 26 | 40 | 27 | 19 | 12 | 12 | | 24 | 15 | 14 | | 223 | 18 | 44 | 21 | 37 | 28 | 27 | 20 | 12 | | 25 | 16 | 46 | | 72 | 19 | 38 | 30 | 32 | 26 | 17 | 19 | 11 | | | | | | | | | | | | | | | | 26
27 | 17
17 | 44 | | 39
31 | 18
18 | 39
149 | 30
20 | 34
33 | 28
62 | 15
16 | 13
12 | 31 | | | | | | | | | | | | | | 195 | | 28
29 | 16
17 | 17
17 | | 28
25 | 17 | 55
44 | 175
69 | 30
26 | 109
31 | 16
15 | 14
152 | 115
19 | | 30 | 17 | 17 | | 25
27 | | 44 | 42 | 25
25 | 25 | 14 | 24 | 19 | | 31 | 16 | | | 68 | | 46 | | 41 | | 13 | 16
| | | 31 | 10 | | 13 | 00 | | 40 | | 41 | | 13 | 10 | | | TOTAL | 484 | 541 | 805 | 1166 | 667 | 2049 | 1133 | 2323 | 2084 | 646 | 586 | 781 | | MEAN | 15.6 | 18.0 | 26.0 | 37.6 | 23.8 | 66.1 | 37.8 | 74.9 | 69.5 | 20.8 | 18.9 | 26.0 | | MAX | 31 | 46 | 87 | 223 | 50 | 390 | 175 | 707 | 419 | 75 | 152 | 195 | | MIN | 12 | 14 | | 14 | 16 | 18 | 20 | 23 | 21 | 13 | 11 | 11 | | CFSM | 0.38 | 0.44 | 0.64 | 0.92 | 0.58 | 1.62 | 0.93 | 1.84 | 1.70 | 0.51 | 0.46 | 0.64 | | IN. | 0.44 | 0.49 | 0.73 | 1.06 | 0.61 | 1.87 | 1.03 | 2.12 | 1.90 | 0.59 | 0.53 | 0.71 | | | | | | | | | | | | | | | | STATISTIC | S OF M | ONTHLY | MEAN DATA | FOR PERIOD | OF DAILY | RECORD, | BY WATER | YEAR (WY |) | | | | | MEAN | 21 2 | 28.9 | 42.0 | E0 4 | 69.8 | 04.0 | 60 1 | 50.8 | 54.9 | 26.5 | 30.7 | 27 6 | | MEAN | 21.2 | | | 58.4 | | 94.2 | 60.1 | | | | | 27.6 | | MAX | 55.7 | 58.4 | | 108 | 119 | 140 | 115 | 77.5 | 219 | 51.2 | 107 | 84.2 | | (WY) | 1967 | 1963 | | 1964 | 1966 | 1967 | 1962 | 1968 | 2001 | 1967 | 1967 | 2000 | | MIN | 7.45
1964 | 11.7
1966 | | 17.4 | 23.8
2002 | 61.6
1965 | 30.2 | 17.2
1963 | 10.9
1963 | 9.88 | 8.55
1964 | 11.3
1968 | | (WY) | 1904 | 1900 | 1966 | 1966 | 2002 | TAOP | 1963 | 1903 | 1903 | 1962 | 1904 | 1908 | # 01473900 WISSAHICKON CREEK AT FORT WASHINGTON, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | FOR PERIOD OF DAILY RECORD | |--------------------------|------------------------|-----------------------|----------------------------| | ANNUAL TOTAL | 25218 | 13265 | | | ANNUAL MEAN | 69.1 | 36.3 | 47.4 | | HIGHEST ANNUAL MEAN | | | 76.1 2001 | | LOWEST ANNUAL MEAN | | | 31.6 1965 | | HIGHEST DAILY MEAN | 2490 Jun 17 | 707 May 18 | 2490 Jun 17 2001 | | LOWEST DAILY MEAN | 12 Oct 12-14 | 11 Aug 11-15 a | 4.6 Jul 5 1963 | | ANNUAL SEVEN-DAY MINIMUM | 13 Oct 8 | 11 Aug 9 | 5.6 Jul 1 1963 | | MAXIMUM PEAK FLOW | | b 2950 Jun 7 | b 11000 Jun 17 2001 | | MAXIMUM PEAK STAGE | | 9.48 Jun 7 | c 16.30 Jun 17 2001 | | INSTANTANEOUS LOW FLOW | | 8.1 Aug 19,22 | 2.9 Sep 2 1963 | | ANNUAL RUNOFF (CFSM) | 1.69 | 0.89 | 1.16 | | ANNUAL RUNOFF (INCHES) | 22.99 | 12.09 | 15.80 | | 10 PERCENT EXCEEDS | 116 | 61 | 88 | | 50 PERCENT EXCEEDS | 30 | 20 | 24 | | 90 PERCENT EXCEEDS | 15 | 13 | 9.0 | ^{a Also Aug. 18, 19, 21, 22, Sept. 12, 25 b From rating curve extended above 1,860 ft³/s on basis of slope-area measurement at gage height 16.30 ft.} **c** From floodmark. # 01473900 WISSAHICKON CREEK AT FORT WASHINGTON, PA--Continued (Pennsylvania Water-Quality Network Station) # WATER-QUALITY RECORDS **PERIOD OF RECORD.**--April 2002 to current year. REMARKS.--Other data for the Water-Quality Network can be found on pages 410-425. COOPERATION.--Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection. | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
TOTAL
RECOV-
ERABLE
(MG/L
AS CA)
(00916) | MAGNE-
SIUM,
TOTAL
RECOV-
ERABLE
(MG/L
AS MG)
(00927) | ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | |-----------------------|---|--|---|---|---|--|--|---|--|--|--|--|--| | APR 2002
09
JUN | 1450 | 9813 | 27 | 30 | 17.0 | 8.8 | 769 | 15.2 | 200 | 47.6 | 18.9 | 102 | 66.7 | | 27 | 1320 | 9813 | 28 | 30 | 8.2 | 7.8 | 840 | 25.6 | 190 | 47.5 | 17.6 | 108 | 96.7 | | AUG
27 | 1320 | 9813 | 13 | 30 | 8.1 | 7.7 | 993 | 22.4 | 210 | 52.7 | 18.4 | 100 | 125 | | | | | | | | | | | | | | | | | Date | RESIDUE
AT 105
DEG. C,
DIS-
SOLVED
(MG/L)
(00515) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N)
(00620) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N)
(00615) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | PHOS-
PHORUS
ORTHO
TOTAL
(MG/L
AS P)
(70507) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | COPPER,
TOTAL
RECOV-
ERABLE
(µG/L
AS CU)
(01042) | IRON,
TOTAL
RECOV-
ERABLE
(µG/L
AS FE)
(01045) | LEAD,
TOTAL
RECOV-
ERABLE
(µG/L
AS PB)
(01051) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(µG/L
AS MN)
(01055) | | Date APR 2002 09 JUN | RESIDUE
AT 105
DEG. C,
DIS-
SOLVED
(MG/L) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | PHORUS
ORTHO
TOTAL
(MG/L
AS P) | PHORUS
TOTAL
(MG/L
AS P) | ORGANIC
TOTAL
(MG/L
AS C) | TOTAL
RECOV-
ERABLE
(µG/L
AS CU) | TOTAL
RECOV-
ERABLE
(µG/L
AS FE) | TOTAL
RECOV-
ERABLE
(µG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(µG/L
AS MN) | | APR 2002
09 | RESIDUE
AT 105
DEG. C,
DIS-
SOLVED
(MG/L)
(00515) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | GEN,
NITRATE
TOTAL
(MG/L
AS N)
(00620) | GEN,
NITRITE
TOTAL
(MG/L
AS N)
(00615) | GEN,
TOTAL
(MG/L
AS N)
(00600) | PHORUS
ORTHO
TOTAL
(MG/L
AS P)
(70507) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | ORGANIC
TOTAL
(MG/L
AS C)
(00680) | TOTAL
RECOV-
ERABLE
(µG/L
AS CU)
(01042) | TOTAL
RECOV-
ERABLE
(µG/L
AS FE)
(01045) | TOTAL
RECOV-
ERABLE
(µG/L
AS PB)
(01051) | NESE,
TOTAL
RECOV-
ERABLE
(µG/L
AS MN)
(01055) | | | NICKEL, | ZINC, | |----------|---------|---------| | | TOTAL | TOTAL | | | RECOV- | RECOV- | | | ERABLE | ERABLE | | Date | (µG/L | (µG/L | | | AS NI) | AS ZN) | | | (01067) | (01092) | | | | | | APR 2002 | | | | 09 | < 50 | 20 | | JUN | | | | 27 | < 50 | 20 | | AUG | | | | 27 | < 50 | 60 | | | | | Gage Height Discharge #### SCHUYLKILL RIVER BASIN #### 01474000 WISSAHICKON CREEK AT MOUTH, PHILADELPHIA, PA (Pennsylvania Water-Quality Network Station) **LOCATION**.--Lat 40°00'55", long 75°12'26", Philadelphia County, Hydrologic Unit 02040203, on left bank 100 ft upstream from dam at Ridge Avenue, 750 ft upstream from mouth, and 1,000 ft northwest of Gustine Lake in Philadelphia. **DRAINAGE AREA**.--64.0 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--June 1897 to September 1903, January 1905 to July 1906, October 1965 to current year. Prior to October 1965, records furnished by Department of Public Works, City of Philadelphia. Records for 1971-74 published in WDR PA-81-1. Prior to October 1965, published as "near Philadelphia". REVISED RECORDS.--WSP 1302: 1905: WDR PA-89-1: 1988. Discharge GAGE.--Water-stage recorder, crest-stage gage and concrete control. Datum of gage is 26.41 ft above National Geodetic Vertical Datum of 1929. Prior to October 1965, water-stage recorder at about same site and datum. **REMARKS.**—Records good except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. Satellite telemetry at station. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 2,000 ft³/s and maximum (*): Gage Height | | | | harge | Gage Height | | | | | | Discha | arge | Gage Height | | |--|---|--|---|---|--|---|---|--|-------------------------------------|-------------------|---|---|---| | Date | Tim | | $^{3}/_{\rm S}$ | (ft) | | | Date | | Time | ft ³ / | | (ft) | | | June 7 | 041 | 5 *2, | 040 | *4.81 | | | No other | peak | greater | than | base | discharge. | | | | | | DISCHA | RGE, CUBIC FE | EET PER SE | | ER YEAR OC
AN VALUES | ГОВЕR | 2001 TO S | EPTEM | IBER 20 | 002 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JU | N | JUL | AUG | SEP | | 1
2
3
4
5 | 51
39
33
31
29 | 28
28
32
42
32 | 25
28
26
26
27 |
39
28
25
28
29 | 57
54
48
46
45 | 35
42
415
70
46 | 63
46
47
48
48 | 72
114
97
58
53 | 6
5
4
4
5 | 1
6
5 | 42
40
40
42
39 | 21
20
43
35
28 | 62
82
35
27
26 | | 6
7
8
9
10 | 37
40
28
29
30 | 27
28
27
27
32 | 27
27
44
124
50 | 63
127
53
45
43 | 41
43
43
41
39 | 39
35
31
27
43 | 47
47
46
45
48 | 50
50
49
132
77 | 14
66
6
5 | 8
8
5 | 37
38
39
37
110 | 30
23
20
19 | 24
26
28
26
22 | | 11
12
13
14
15 | 28
27
31
33
60 | 34
32
28
30
28 | 39
31
32
44
54 | 102
84
52
48
40 | 49
40
38
34
33 | 31
26
32
46
31 | 48
52
55
54
56 | 79
e93
e309
286
73 | 4
13
6
16
10 | 3
0
8 | 40
34
35
38
38 | 19
18
17
17
16 | 21
20
19
21
35 | | 16
17
18
19
20 | 38
29
28
27
30 | 30
29
29
32
28 | 40
34
65
50
38 | 39
37
36
36
43 | 34
35
34
29
32 | 27
28
141
79
416 | 49
49
49
48
64 | 61
57
847
156
87 | 5
5
5
11
5 | 3
0
9 | 30
27
24
30
49 | 16
18
18
17
16 | 46
33
24
22
20 | | 21
22
23
24
25 | 31
31
25
25
29 | 34
30
32
32
67 | 30
29
30
93
52 | 40
43
42
261
101 | 44
39
33
33
32 | 185
67
59
55
53 | 52
70
55
48
52 | 72
65
61
58
56 | 4
4
4
5
4 | 5
5
7 | 34
27
25
41
33 | 19
18
16
73
52 | 23
23
23
19
20 | | 26
27
28
29
30
31 | 25
29
35
33
26
26 | 88
38
29
27
28 | 40
32
32
33
29
27 | 53
49
47
41
41
68 | 35
37
35

 | 58
191
66
55
54
62 | 58
50
226
104
59 | 55
58
55
51
50
49 | 4
7
17
4
4 | 3
3
9
4 | 26
28
34
33
25
23 | 22
18
17
280
48
30 | 42
310
172
45
36 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 993
32.0
60
25
0.50
0.58 | 1008
33.6
88
27
0.53
0.59 | 1258
40.6
124
25
0.63
0.73 | 1783
57.5
261
25
0.90
1.04 | 1103
39.4
57
29
0.62
0.64 | 2545
82.1
416
26
1.28
1.48 | 1783
59.4
226
45
0.93
1.04 | 3430
111
847
49
1.73
1.99 | 270
90.
66
4
1.4
1.5 | 2
8
1
1 | 1138
36.7
110
23
0.57
0.66 | 1023
33.0
280
16
0.52
0.59 | 1332
44.4
310
19
0.69
0.77 | | STATISTIC | CS OF MO | NTHLY MEA | N DATA | FOR WATER Y | EARS 1960 | 6 - 2002, | BY WATER Y | EAR (V | VY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 68.1
216
1997
23.1
1966 | 85.1
265
1973
17.7
1966 | 112
398
1997
22.7
1966 | 118
378
1979
24.3
1981 | 121
266
1979
37.0
1969 | 152
370
1994
40.7
1985 | 137
410
1983
41.3
1985 | 116
229
1984
50.8
1986 | 92.
30
200
32.
198 | 6
1
0 | 79.7
230
1975
23.7
1999 | 73.5
171
1973
19.8
1966 | 82.9
365
1999
23.0
1968 | e Estimated. # 01474000 WISSAHICKON CREEK AT MOUTH, PHILADELPHIA, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALEND | AR YEAR | FOR 2002 WAT | ER YEAR | WATER YEARS | 1966 - | 2002 | |--------------------------|-----------------|---------------|--------------|--------------------|----------------|--------|---------------| | ANNUAL TOTAL | 39298 | | 20103 | | | | | | ANNUAL MEAN | 108 | | 55.1 | | 103 | | | | HIGHEST ANNUAL MEAN | | | | | 169 | | 1996 | | LOWEST ANNUAL MEAN | | | | | 50.6 | | 1966 | | HIGHEST DAILY MEAN | 4550 | Jun 17 | 847 | May 18 | 5560 | Sep 16 | 1999 | | LOWEST DAILY MEAN | 25 | Oct 23,24,28a | 16 | Aug 15,16 b | 8.8 | Aug 30 | 1995 | | ANNUAL SEVEN-DAY MINIMUM | 27 | Dec 1 | 17 | Aug 14 | 12 | Aug 27 | | | MAXIMUM PEAK FLOW | | | 2040 | Jun 7 | c 19800 | Sep 16 | | | MAXIMUM PEAK STAGE | | | 4.81 | Jun 7 | d 11.50 | Sep 16 | | | INSTANTANEOUS LOW FLOW | | | 16 | Aug 12-20 f | 2.0 | Jul 18 | 1905 g | | ANNUAL RUNOFF (CFSM) | 1.68 | | 0.86 | | 1.61 | | | | ANNUAL RUNOFF (INCHES) | 22.84 | | 11.68 | | 21.87 | | | | 10 PERCENT EXCEEDS | 174 | | 80 | | 176 | | | | 50 PERCENT EXCEEDS | 63 | | 39 | | 59 | | | | 90 PERCENT EXCEEDS | 28 | | 24 | | 28 | | | a Also Dec. 1.b Also Aug. 20, 23. ^{c From rating curve extended above 4,000 ft³/s on basis of slope-area measurement at peak flow. d From floodmark. Maximum recorded 10.77 ft. f Also Aug. 23, 28. g Also July 19. Minimum observed is outside computed statistical period.} # 01474000 WISSAHICKON CREEK AT MOUTH, PHILADELPHIA, PA--Continued (Pennsylvania Water-Quality Network Station) # WATER-QUALITY RECORDS **PERIOD OF RECORD**.--April 2002 to current year. **REMARKS**.--Other data for the Water-Quality Network can be found on pages 410-425. **COOPERATION.**—Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection. | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
TOTAL
RECOV-
ERABLE
(MG/L
AS CA)
(00916) | MAGNE-
SIUM,
TOTAL
RECOV-
ERABLE
(MG/L
AS MG)
(00927) | ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | |-----------------------|---|--|---|---|---|--|--|---|--|--|--|--|---| | APR 2002 | 1.520 | 0012 | 4.6 | 2.0 | 12 5 | 0 0 | 505 | 0.0 | 000 | 45.5 | 04.2 | 120 | 54.4 | | 08
JUN | 1530 | 9813 | 46 | 30 | 13.5 | 8.3 | 707 | 9.2 | 220 | 47.7 | 24.3 | 130 | 54.4 | | 13
AUG | 1510 | 9813 | 57 | 30 | 8.9 | 7.7 | 393 | 22.0 | 120 | 26.6 | 11.7 | 68 | 36.7 | | 15 | 1310 | 9813 | 16 | 30 | 8.2 | 8.0 | 758 | 26.0 | 210 | 46.3 | 22.9 | 128 | 66.5 | | Date | RESIDUE
AT 105
DEG. C,
DIS-
SOLVED
(MG/L)
(00515) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N)
(00620) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N)
(00615) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | PHOS-PHORUS ORTHO TOTAL (MG/L AS P) (70507) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | COPPER,
TOTAL
RECOV-
ERABLE
(µG/L
AS CU)
(01042) | IRON,
TOTAL
RECOV-
ERABLE
(µG/L
AS FE)
(01045) | LEAD,
TOTAL
RECOV-
ERABLE
(µG/L
AS PB)
(01051) | MANGA -
NESE,
TOTAL
RECOV-
ERABLE
(µG/L
AS MN)
(01055) | | APR 2002
08
JUN | 474 | 2 | <.020 | 5.91 | <.040 | 6.5 | .72 | .750 | 3.6 | <10 | 120 | <1.0 | 20 | | 13 | 286 | 4 | .110 | 2.83 | < .040 | 3.7 | .52 | .510 | 5.6 | 70 | 350 | <1.0 | 30 | | AUG
15 | 474 | 10 | .140 | 5.57 | <.200 | 5.6 | .91 | 1.09 | 3.7 | <10 | 220 | 1.1 | 40 | | | | | | | | | | | | | | | | | Date | TOTAL
RECOV-
ERABLE
(µG/L | TOTAL
RECOVERABLE
(µG/L | |-----------------------|------------------------------------|-------------------------------| | | AS NI)
(01067) | | | APR 2002
08
JUN | <50 | 10 | | 13
AUG | <50 | 30 | | 15 | <50 | 20 | #### 01474500 SCHUYLKILL RIVER AT PHILADELPHIA, PA (National Water-Quality Assessment Station) **LOCATION**.--Lat 39°58'04", long 75°11'20", Philadelphia County, Hydrologic Unit 02040203, on right bank 150 ft upstream from Fairmount Dam, 1,500 ft upstream from bridge on Spring Garden Street in Philadelphia, and 8.7 mi upstream from mouth. **DRAINAGE AREA**.--1,893 mi². **PERIOD OF RECORD.**—October 1931 to current year. Records for January 1898 to December 1912, published in WSP 35, 48, 65, 82, 97, 125, 166, 202, 214, 261, 301, and 381 have been found to be unreliable and should not be used. REVISED RECORDS.--WSP 756: Drainage area. WSP 1302: 1936(M). WSP 1432: 1945. See also PERIOD OF RECORD. GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 5.74 ft above National Geodetic Vertical Datum of 1929. Prior to Nov. 25, 1956, water-stage recorder at site on right bank just upstream from Fairmount Dam at same datum. Nov. 26, 1956, to Oct. 6, 1966, water-stage recorder at site on left
bank 40 ft upstream from Fairmount Dam at same datum. REMARKS.--No estimated daily discharges. Records good. Flow regulated by Still Creek Reservoir (station 01469200) since February 1933, Blue Marsh Lake (station 01470870) since April 1979, Green Lane Reservoir (station 01472200) since December 1956 and to some extent by Lake Ontelaunee. Daily mean discharges do not include diversion above station by city of Philadelphia for municipal water supply. Satellite and landline telemetry at station. COOPERATION .-- Records of diversion provided by Philadelphia Water Department. Discharge Gage Height **EXTREMES OUTSIDE PERIOD OF RECORD.**—Flood of Oct. 4, 1869 reached a stage of 17.0 ft, discharge, about 135,000 ft³/s. Flood of Mar. 1, 1902 reached a stage of 14.8 ft, discharge, about 98,000 ft³/s. Discharge Gage Height PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 18,000 ft³/s and maximum (*): | | | | Discharge | Gage Heigh | ht | | | |] | Discharge | Gage Height | , | |-------------|--------------|-----------|--------------------|-------------|--------------|--------------|---------------------------|--------------|--------------|--------------------|-------------|--------------| | Date | | Гime | ft ³ /s | (ft) | | | Date | 7 | Гіте | ft ³ /s | (ft) | | | May 1 | L4 1 | L030 | *28,400 | *9.75 | | | No othe | r peak | greater | than base | discharge. | | | | | | DISCH | ARGE, CUBIC | FEET PER S | | TER YEAR OG
EAN VALUES | CTOBER | 2001 TO SE | EPTEMBER 20 | 002 | | | DAY | OCT | NO | V DEC | JAN | FEB | MAR | APR | MAY | JUL | JUL | AUG | SEP | | 1 | 1040 | 42 | 2 601 | 476 | 1630 | 631 | 2710 | 4220 | 1550 | 1330 | 243 | 755 | | 2 | 889 | 42 | | | 1720 | 613 | 2630 | 4220 | 1420 | | 185 | 928 | | 3 | 795 | 48 | | | 1610 | 2330 | 2210 | 6960 | 1380 | | 203 | 740 | | 4 | 746 | 47 | | | 1420 | 2330 | 2080 | 5260 | 1250 | | 246 | 550 | | 5 | 657 | 49 | 6 616 | 609 | 1250 | 1710 | 1920 | 4170 | 1270 | 698 | 458 | 404 | | 6 | 706 | 41 | | | 1170 | 1280 | 1650 | 3620 | 1470 | | 277 | 295 | | 7 | 650 | 45 | | | 1160 | 1120 | 1560 | 3110 | 5530 | | 236 | 282 | | 8
9 | 664
588 | 43
42 | | | 1110
1050 | 983
1010 | 1490
1390 | 2630
2830 | 3490
2290 | | 275
183 | 247
307 | | 10 | 578 | 41 | | | 1000 | 1030 | 1450 | 3250 | 1880 | | 166 | 214 | | 11 | 664 | 46 | 2 1070 | 1100 | 1040 | 1060 | 1560 | 2700 | 1500 | 552 | 153 | 218 | | 12 | 682 | 49 | 5 895 | 1880 | 954 | 1220 | 1510 | 2280 | 1420 | | 236 | 214 | | 13 | 729 | 43 | | | 1040 | 1140 | 1310 | 3070 | 1310 | | 161 | 213 | | 14 | 689 | 39 | | | 902 | 1230 | 1350 | 18400 | 2110 | | 144 | 181 | | 15 | 878 | 41 | 2 1090 | 1000 | 828 | 1160 | 1590 | 6830 | 2550 | 529 | 115 | 314 | | 16 | 851 | 36 | | | 828 | 1030 | 4460 | 4530 | 2100 | | 84 | 526 | | 17 | 1070 | 45 | | | 827 | 1030 | 4060 | 3550 | 1770 | | 79 | 566 | | 18
19 | 875
777 | 49
54 | | | 814
774 | 1620
2720 | 3310 | 7430
7940 | 1530 | | 120 | 701 | | 20 | 787 | 52 | | | 735 | 4290 | 2800
2460 | 5450 | 1860
1750 | | 259
191 | 476
256 | | | | | | | | | | | | | | | | 21 | 616 | 50 | | | 799 | 7640 | 2240 | 4700 | 1530 | | 280 | 201 | | 22
23 | 654
582 | 43
52 | | | 751
734 | 4710
3700 | 2270
2260 | 4280
3730 | 1300
1170 | | 234
135 | 220
342 | | 24 | 592 | 45 | | | 724 | 3070 | 2000 | 3160 | 1220 | | 362 | 271 | | 25 | 548 | 63 | | | 740 | 2670 | 1780 | 2680 | 1230 | | 751 | 505 | | 26 | 426 | 101 | 0 1100 | 2190 | 676 | 2350 | 1760 | 2450 | 881 | | 755 | 541 | | 27 | 418 | 138 | | | 688 | 3860 | 1660 | 2280 | 920 | | 367 | 2030 | | 28 | 468 | 103 | | | 671 | 4780 | 2510 | 2200 | 2720 | | 270 | 3330 | | 29
30 | 495
457 | 78
65 | | | | 3740
3120 | 5940
4870 | 1960
1760 | 2500
1640 | | 1120
947 | 2330
1510 | | 31 | 428 | | | | | 2810 | | 1620 | 1040 | | 613 | | | TOTAL | 20999 | 1641 | 6 28870 | 36240 | 27645 | 71987 | 70790 | 133210 | 54541 | 16953 | 9848 | 19667 | | MEAN | 677.4 | 547. | | | 987.3 | 2322 | 2360 | 4297 | 1818 | | 317.7 | 655.6 | | MAX | 1070 | 138 | | | 1720 | 7640 | 5940 | 18400 | 5530 | | 1120 | 3330 | | MIN | 418 | 36 | | | 671 | 613 | 1310 | 1620 | 881 | | 79 | 181 | | (†) | 191 | 19 | 190 | 204 | 198 | 184 | 176 | 180 | 196 | 5 221 | 228 | 206 | | STATIST | CICS OF | MONTHLY | MEAN DATA | FOR WATER | YEARS 193 | 32 - 2002, | BY WATER | YEAR (V | VY) | | | | | MEAN | 1398 | 228 | | | 3610 | 4844 | 4232 | 3127 | 2114 | | 1365 | 1425 | | MAX | 5624 | 627 | | | 8136 | 13320 | 11620 | 9943 | 11640 | | 7980 | 5300 | | (WY)
MIN | 1997
89.4 | 197
22 | | | 1939
647 | 1936
1552 | 1983
1237 | 1989
693 | 1972
261 | | 1933
140 | 1999
117 | | (WY) | 1942 | 193 | | | 1934 | 1981 | 1985 | 1965 | 1965 | | 1966 | 1932 | | (** ± / | 1712 | 1). | | 1701 | 1001 | 1701 | 1703 | 1703 | 1700 | . 1,000 | 1,00 | 1,02 | [†] Diversion for municipal supply of City of Philadelphia, equivalent in cubic feet per second. # 01474500 SCHUYLKILL RIVER AT PHILADELPHIA, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALEN | NDAR YEAR | FOR 2002 WAT | ER YEAR | WATER YEARS | 1932 - 2002 | |--------------------------|----------------|-----------|--------------|---------|-----------------|---------------------| | ANNUAL TOTAL | 771730 | | 507166 | | | | | ANNUAL MEAN | 2114 | | 1389 | | 2702 | | | HIGHEST ANNUAL MEAN | | | | | 4791 | 1984 | | LOWEST ANNUAL MEAN | | | | | 1014 | 1965 | | HIGHEST DAILY MEAN | 12200 | Mar 30 | 18400 | May 14 | 93400 | Jun 23 1972 | | LOWEST DAILY MEAN | 368 | Nov 16 | 79 | Aug 17 | 0.60 | Sep 2 1966 | | ANNUAL SEVEN-DAY MINIMUM | 426 | Nov 10 | 134 | Aug 12 | 24 | Sep 28 1941 | | MAXIMUM PEAK FLOW | | | 28400 | May 14 | a 103000 | Jun 23 1972 | | MAXIMUM PEAK STAGE | | | 9.75 | May 14 | 14.65 | Jun 23 1972 | | INSTANTANEOUS LOW FLOW | | | 54 | Aug 16 | 0.00 | Sep 2 1966 b | | 10 PERCENT EXCEEDS | 4610 | | 3090 | | 5780 | | | 50 PERCENT EXCEEDS | 1290 | | 889 | | 1660 | | | 90 PERCENT EXCEEDS | 495 | | 302 | | 434 | | $[\]begin{array}{ll} \textbf{a} & \text{From rating curve extended above 92,000 ft}^3/s. \\ \textbf{b} & \text{No flow over dam at times.} \end{array}$ #### 01474500 SCHUYLKILL RIVER AT PHILADELPHIA, PA--Continued (National Water-Quality Assessment Station) #### WATER-QUALITY RECORDS PERIOD OF RECORD.--October 1998, revised, to current year. 41.8 55.2 98 99 13... JUL 08... SEP 05... 56.4 75.2 .55 .49 .10 .09 3.31 3.23 .055 .043 .33 .45 .37 .47 5.8 4.3 12__ 3.3 3.1 PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: September 1998 to April 1999, July 1999 to September 1999. WATER TEMPERATURE: September 1998 to September 2001. REMARKS.--These samples were collected as part of the Delaware River Basin National Water-Quality Assessment Program (NAWQA). For the definition of the type of quality-control data listed under SAMPLE TYPE refer to "Quality-Control Data" in the "Introduction." | | | | | WAIEK-(| QUALITI D | AIA, W | AIEK IE | AK OC | TODER | . 2001 10 | SEPII | EMDEK | 2002 | | | | | |------------------|--|---------------------------------------|--|--|---|--|---|--|--|---|--|--|--|---|---|--------------------------------------|--| | DATE | TIME | | SAMPLE
TYPE | | CHA
IN
CU
F
F
SE | IS-
RGE,
ST.
BIC
EET
ER
COND
061) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYG
DI
SOL
(PE
CE
SAT
ATI
(003 | S-
VED
R- C
NT
UR-
ON) | DXYGEN,
DIS-
SOLVED
(MG/L)
00300) | PH
WAT
WHO
FIE
(STA
AR
UNI
(004 | ER
LE
LD
ND-
D
TS) (| SPE-
CIFIC
CON-
DUCT-
ANCE
µS/CM) | TEMPE
ATUR
AIR
(DEG
(0002 | RE
R
C) | TEMPER-
ATURE
WATER
(DEG C) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | | NOV
13 | 1130 | ENV | IRONMENTA | L | 5 | 19 | 773 | 9 | 5 | 10.9 | 7. | 9 | 607 | 14.5 | 5 | 9.8 | 106 | | DEC
12 | 1150 | ENV | IRONMENTA | L | 9 | 86 | 770 | 9 | 6 | 11.1 | 7. | 9 | 491 | 12.3 | 3 | 9.0 | 95 | | JAN
15 | 1140 | ENV | IRONMENTA | L | 11 | 20 | 762 | 10 | 1 | 13.3 | 7. | 8 | 558 | 8.0 |) | 3.8 | 78 | | FEB 04 | 1200 | | IRONMENTA | | | 90 | 752 | 10 | | 13.5 | 7. | | 482 | 5.0 | | 5.4 | 71 | | MAR
07 | 1130 | | IRONMENTA | | | 30 | 766 | 10 | | 13.3 | 7. | | 432 | 20.2 | | 7.0 | 72 | | APR 08 | 1050 | | IRONMENTA | | | 70 | 772 | 10 | - | 12.2 | 7. | | 374 | 12.0 | | 11.0 | 59 | | MAY | | | | .ш | | | | | | | | | 3/4 | | | | | | 16
16 | <i>1209</i>
1210 | | <i>LD BLANK</i>
IRONMENTA | L | | 20 | 755 | 10 | | 10.3 | 7. | | 266 | | | 15.4 | 53 | | JUN
13 | 1130 | | IRONMENTA | | | 10 | 756 | | 0 | 7.3 | 7. | | 389 | 29.0 | | 25.2 | == | | 13
JUL | 1131 | SPL | IT REPLIC | 'ATE | | | | - | - | | - | - | | | - | | | | 08
SEP | 1050 | ENV | IRONMENTA | L | 6 | 48 | 764 | 8 | 4 | 6.6 | 7. | 8 | 458 | 31.0 |) | 27.6 | 81 | | 05 | 1140 | ENV | IRONMENTA | L | 5 | 19 | 761 | 9 | 0 | 7.7 | 7. | 8 | 535 | 27.0 |) | 23.2 | 81 | | DATE | BICA
BONA
WAT
DIS
FIE
MG/I
HCC
(004 | ATE
FER
IT
ELD
L AS
D3 |
CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO
GEN,
AMMONI
DIS-
SOLVE
(MG/I
AS N) | , GE
IA NO2+
- DI
ED SOI
L (MG
) AS | S-
VED
J/L
N) | NITRO
GEN,
NITRIT
DIS-
SOLVE
(MG/I
AS N) | PHO E PHA DIS D SOLV (MG AS | TE,
S-
YED
S/L
P) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665 | CHAR
SU
PEN
(T/D | TT,
SS-
SGE,
IS-
IDED
DAY) | SEDI-
MENT,
SUS-
PENDE
(MG/I
80154 | ED | | | NOV
13
DEC | 13 | 30 | 66.5 | 78.6 | .73 | .14 | 4. | 32 | .057 | | 51 | .55 | 1 | . 4 | 1.0 | | | | 12 | 11 | L7 | 49.3 | 68.4 | .59 | .12 | 2 3. | 80 | .075 | | 41 | .45 | 96 | .6 | 36 | | | | JAN
15 | 9 | 95 | 83.2 | 51.4 | .68 | .18 | 3 3. | 17 | .084 | | 24 | .28 | 9 | .7 | 3.2 | | | | FEB
04 | 8 | 37 | 63.3 | 48.5 | .67 | . 23 | 3 3. | 78 | .122 | ٠. | 26 | .31 | 8 | .9 | 2.2 | | | | MAR
07 | 8 | 39 | 46.7 | 47.6 | .81 | . 09 | 9 2. | 77 | .061 | | 23 | .27 | 21 | .9 | 6.6 | | | | APR
08 | 7 | 72 | 38.8 | 44.5 | . 47 | .16 | 5 2. | 97 | .052 | ٠. | 22 | . 25 | 15 | .3 | 3.6 | | | | MAY
16 | | | <.30 | <.1 | <.10 | < . 0 4 | 4 <. | 05 | <.008 | <. | 02 | <.004 | ! - | - | | | | | 16
JUN
13 | | 54 | 19.3
32.5 | 30.9
48.9 | .68
.62 | .12 | | 06
10 | .035 | | 10
27 | .172 | | | 21
12 | | | | 13 | | | 22.2 | 40.7 | .02 | . 1. | , ,, | ± 0 | .005 | | 21 | 1 | 4 / | . 4 | | | | #### 01474500 SCHUYLKILL RIVER AT PHILADELPHIA, PA--Continued # WATER-COLUMN PESTICIDE ANALYSES **REMARKS**.--Selected samples were analyzed for pesticides with laboratory schedule 2001 (listed in its entirety, with laboratory reporting levels, on page 179). Only pesticides identified by the analyses in one or more surface-water samples are listed in the following table. | DATE | TIME | SAMF
TYF | | | ACETO-
CHLOR,
WATER
FLTRD
REC
(µG/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(µG/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(µG/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(39632) | BEN-
FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µG/L)
(82673) | CAR-
BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82680) | CHLOR-
PYRIFOS
DIS-
SOLVED
(µG/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(04041) | DCPA
WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82682) | |--|--|---|--|---|---|--|---|---|--|---|---|--|--| | NOV | | | | | | | | | | | | | | | 13
DEC | 1130 | ENVIRONM | IENTAL | | <.004 | <.002 | <.005 | .037 | <.010 | <.041 | <.005 | <.018 | <.003 | | 12
JAN | 1150 | ENVIRONM | IENTAL | | <.004 | <.002 | <.005 | .035 | <.010 | <.041 | <.005 | <.018 | <.003 | | 15 | 1140 | ENVIRONM | IENTAL | | <.006 | < .004 | <.005 | .025 | <.010 | <.041 | <.005 | <.018 | <.003 | | FEB
04
MAR | 1200 | ENVIRONM | IENTAL | | <.006 | < .004 | <.005 | .041 | <.010 | E.006 | <.005 | <.018 | <.003 | | 07 | 1130 | ENVIRONM | IENTAL | | <.006 | < .004 | <.005 | .026 | <.010 | <.041 | <.005 | <.018 | <.003 | | APR
08 | 1050 | ENVIRONM | IENTAL | | <.006 | <.004 | <.005 | .021 | <.010 | E.004 | <.005 | <.018 | <.003 | | MAY
16 | 1210 | ENVIRONM | IENTAL | | .046 | .017 | <.005 | .556 | <.010 | E.033 | E.005 | .019 | <.003 | | JUN
13
13 | 1130
1131 | ENVIRONM
SPLIT RE | | | .035 | <.015
<.015 | <.005
<.005 | .557
.563 | <.010
<.010 | E.008
E.007 | <.005
<.005 | <.018 | <.003
<.003 | | JUL | | SFHII KE | FDICALE | | | | 1.003 | .505 | V.010 | E.007 | | V.010 | | | 08
SEP | 1050 | ENVIRONM | IENTAL | | .024 | < .004 | <.005 | .341 | <.010 | <.041 | <.005 | E.006 | <.003 | | 05 | 1140 | ENVIRONM | IENTAL | | <.006 | < .004 | <.005 | .092 | <.010 | E.007 | <.005 | <.018 | <.003 | | | | | | | | | | | | | | | | | DATE | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(µG/L)
(39572) | EPTC
WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82668) | LINDANE
DIS-
SOLVED
(µG/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(µG/L)
(39532) | METHYL
AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µG/L)
(82686) | METO-
LACHLOR
WATER
DISSOLV
(µG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630) | NAPROP-
AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82684) | PENDI-
METH-
ALIN
WAT FLT
0.7 µ
GF, REC
(µG/L)
(82683) | PRO-
METON,
WATER,
DISS,
REC
(µG/L)
(04037) | PRO-
PANIL
WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82679) | | NOV
13 | ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L) | AZINON,
DIS-
SOLVED
(µG/L) | WATER
FLTRD
0.7 µ
GF, REC
(µG/L) | DIS-
SOLVED
(µG/L) | URON WATER FLTRD 0.7 µ GF, REC (µG/L) | THION,
DIS-
SOLVED
(µG/L) | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µG/L) | LACHLOR
WATER
DISSOLV
(µG/L) | BUZIN
SENCOR
WATER
DISSOLV
(µG/L) | AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µG/L) | METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μG/L) | METON,
WATER,
DISS,
REC
(µG/L) | PANIL WATER FLTRD 0.7 µ GF, REC (µG/L) | | NOV
13
DEC | ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(04040) | AZINON,
DIS-
SOLVED
(µG/L)
(39572) | WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82668) | DIS-
SOLVED
(µG/L)
(39341) | URON WATER FLTRD 0.7 μ GF, REC (μG/L) (82666) | THION,
DIS-
SOLVED
(µG/L)
(39532) | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μG/L)
(82686) | LACHLOR
WATER
DISSOLV
(µG/L)
(39415) | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630) | AMIDE
WATER
FLTRD
0.7 μ
GF, REC
(μG/L)
(82684)
<.007 | METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μG/L)
(82683) | METON,
WATER,
DISS,
REC
(µG/L)
(04037) | PANIL
WATER
FLTRD
0.7 μ
GF, REC
(μG/L)
(82679) | | NOV
13
DEC
12
JAN | ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(04040)
E.033 | AZINON,
DIS-
SOLVED
(µG/L)
(39572)
<.005 | WATER
FLTRD
0.7 μ
GF,
REC
(μG/L)
(82668)
<.002 | DIS-
SOLVED
(µG/L)
(39341)
<.004 | URON WATER FLITRD 0.7 μ GF, REC (μG/L) (82666) <.035 | THION,
DIS-
SOLVED
(µG/L)
(39532)
<.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μG/L)
(82686)
<.050 | LACHLOR
WATER
DISSOLV
(µG/L)
(39415)
E.011 | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630)
<.006 | AMIDE
WATER
FLTRD
0.7 μ
GF, REC
(μG/L)
(82684)
<.007 | METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μG/L)
(82683)
<.010 | METON,
WATER,
DISS,
REC
(µG/L)
(04037)
<.01 | PANIL
WATER
FLTRD
0.7 μ
GF, REC
(μG/L)
(82679)
<.011 | | NOV
13
DEC
12 | ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(04040) | AZINON,
DIS-
SOLVED
(µG/L)
(39572) | WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82668) | DIS-
SOLVED
(µG/L)
(39341) | URON WATER FLTRD 0.7 μ GF, REC (μG/L) (82666) | THION,
DIS-
SOLVED
(µG/L)
(39532) | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μG/L)
(82686) | LACHLOR
WATER
DISSOLV
(µG/L)
(39415) | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630) | AMIDE
WATER
FLTRD
0.7 μ
GF, REC
(μG/L)
(82684)
<.007 | METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μG/L)
(82683) | METON,
WATER,
DISS,
REC
(µG/L)
(04037) | PANIL
WATER
FLTRD
0.7 μ
GF, REC
(μG/L)
(82679) | | NOV
13
DEC
12
JAN
15
FEB
04 | ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(04040)
E.033 | AZINON,
DIS-
SOLVED
(µG/L)
(39572)
<.005 | WATER
FLTRD
0.7 μ
GF, REC
(μG/L)
(82668)
<.002 | DIS-
SOLVED
(µG/L)
(39341)
<.004 | URON WATER FLITRD 0.7 μ GF, REC (μG/L) (82666) <.035 | THION,
DIS-
SOLVED
(µG/L)
(39532)
<.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μG/L)
(82686)
<.050 | LACHLOR
WATER
DISSOLV
(µG/L)
(39415)
E.011 | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630)
<.006 | AMIDE
WATER
FLTRD
0.7 μ
GF, REC
(μG/L)
(82684)
<.007 | METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μG/L)
(82683)
<.010 | METON,
WATER,
DISS,
REC
(µG/L)
(04037)
<.01 | PANIL
WATER
FLTRD
0.7 μ
GF, REC
(μG/L)
(82679)
<.011 | | NOV
13
DEC
12
JAN
15
FEB | ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(04040)
E.033
E.025 | AZINON,
DIS-
SOLVED
(μG/L)
(39572)
<.005
.006
<.005 | WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82668)
<.002
<.002 | DIS-
SOLVED (µG/L) (39341)
<.004
<.004 | URON WATER FLTRD 0.7 µ GF, REC (µG/L) (82666) <.035 <.035 | THION,
DIS-
SOLVED
(μG/L)
(39532)
<.027
<.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μG/L)
(82686)
<.050
<.050 | LACHLOR WATER DISSOLV (µG/L) (39415) E.011 .014 E.012 | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630)
<.006
<.006 | AMIDE
WATER
FLTRD
0.7 μ
GF, REC
(μG/L)
(82684)
<.007
<.007 | METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μG/L)
(82683)
<.010
<.010 | METON,
WATER,
DISS,
REC
(µG/L)
(04037)
<.01
.02 | PANIL WATER FLTRD 0.7 µ GF, REC (µG/L) (82679) <.011 <.011 | | NOV
13
DEC
12
JAN
15
FEB
04
MAR
07
APR
08 | ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(04040)
E.033
E.025
E.020 | AZINON,
DIS-
SOLVED
(μG/L)
(39572)
<.005
.006
<.005 | WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82668)
<.002
<.002
<.002 | DIS-
SOLVED (µG/L) (39341)
<.004
<.004
<.004 | URON WATER FLTRD 0.7 µ GF, REC (µG/L) (82666) <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µG/L) (39532) <.027 <.027 <.027 <.027 | AZIN-PHOS WAT FLT 0.7 µ GF, REC (µG/L) (82686) < .050 < .050 < .050 | LACHLOR WATER DISSOLV (µG/L) (39415) E.011 .014 E.012 .021 | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630)
<.006
<.006
<.006 | AMIDE WATER FLTRD 0.7 µ GF, REC (µG/L) (82684) < .007 < .007 < .007 | METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μG/L)
(82683)
<.010
<.010
<.022
<.022 | METON,
WATER,
DISS,
REC
(μG/L)
(04037)
<.01
.02
E.01 | PANIL WATER FLTRD 0.7 µ GF, REC (µG/L) (82679) <.011 <.011 <.011 | | NOV
13
DEC
12
JAN
15
FEB
04
MAR
07
APR
08
MAY
16 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
E.033
E.025
E.025
E.020 | AZINON, DIS- SOLVED (µG/L) (39572) <.005 .006 <.005 <.005 E.004 | WATER
FLIRD
0.7 µ
GF, REC
(µG/L)
(82668)
<.002
<.002
<.002
<.002 | DIS-
SOLVED (µG/L) (39341)
<.004
<.004
<.004
<.004
<.004 | URON WATER FLITED 0.7 µ GF, REC (µG/L) (82666) <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µG/L) (39532) <.027 <.027 <.027 <.027 <.027 | AZIN-PHOS WAT FLT 0.7 µ GF, REC (µG/L) (82686) <.050 <.050 <.050 <.050 <.050 | LACHLOR WATER DISSOLV (µG/L) (39415) E.011 .014 E.012 .021 | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630)
<.006
<.006
<.006
<.006 | AMIDE WATER FLTRD 0.7 µ GF, REC (µG/L) (82684) <.007 <.007 <.007 <.007 | METH- ALIN WAT FLT 0.7 µ GF, REC (µG/L) (82683) <.010 <.010 <.022 <.022 <.022 | METON,
WATER,
DISS,
REC
(μG/L)
(04037)
<.01
.02
E.01
.02
<.02 | PANIL WATER FLTRD 0.7 µ GF, REC (µG/L) (82679) <.011 <.011 <.011 <.011 <.011 | | NOV
13
DEC
12
JAN
15
FEB
04
MAR
07
APR
08
MAY
16
JUN
13 | ATRA-
ZINE,
WATER,
DISS,
REC
(µG/L)
(04040)
E.033
E.025
E.020
E.045
E.026 | AZINON, DIS- SOLVED (μG/L) (39572) <.005 .006 <.005 <.005 <.005 <.005 | WATER
FLIRD
0.7 µ
GF, REC
(µg/L)
(82668)
<.002
<.002
<.002
<.002
<.002 | DIS-
SOLVED (μG/L)
(39341)
<.004
<.004
<.004
<.004
<.004
<.004 | URON WATER FLTRD 0.7 µ GF, REC (µG/L) (82666) <.035 <.035 <.035 <.035 <.035 | THION,
DIS-
SOLVED
(μG/L)
(39532)
<.027
<.027
<.027
<.027
<.027 | AZIN-PHOS WAT FLT 0.7 µ GF, REC (µG/L) (82686) <.050 <.050 <.050 <.050 <.050 <.050 <.050 | LACHLOR WATER DISSOLV (µG/L) (39415) E.011 .014 E.012 .021 E.012 .014 | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630)
<.006
<.006
<.006
<.006
<.006 | AMIDE WATER FLITRD 0.7 µ GF, REC (µG/L) (82684) < .007 < .007 < .007 < .007 < .007 | METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(µG/L)
(82683)
<.010
<.010
<.022
<.022
<.022
<.022 | METON,
WATER,
DISS,
REC
(μG/L)
(04037)
<.01
.02
E.01
.02
<.02 | PANIL WATER FLTRD 0.7 µ GF, REC (µG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 <.011 | | NOV
13 DEC
12 JAN
15 FEB
04 MAR
07 APR
08 MAY
16 JUN
13 | ATRA-
ZINE,
WATER,
DISS,
REC
(μG/L)
(04040)
E.033
E.025
E.020
E.045
E.013
E.045
E.045 | AZINON, DIS- SOLVED (μG/L) (39572) <.005 .006 <.005 <.005 <.005 .001 .001 .009 | WATER FLIRD 0.7 µ GF, REC (µg/L) (82668) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | DIS-
SOLVED (μG/L) (39341)
<.004
<.004
<.004
<.004
<.004
<.004
<.004
<.004 | URON WATER FLITED 0.7 µ GF, REC (µG/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µG/L) (39532) <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 | AZIN-PHOS WAT FLT 0.7 µ GF, REC (µG/L) (82686) < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 | LACHLOR WATER DISSOLV (µG/L) (39415) E.011 .014 E.012 .021 E.012 .014 .165 | BUZIN
SENCOR
WATER
DISSOLV
(µG/L)
(82630)
<.006
<.006
<.006
<.006
<.006
<.006 | AMIDE WATER FLTRD 0.7 µ GF, REC (µG/L) (82684) <.007 <.007 <.007 <.007 <.007 <.007 <.007 | METH- ALIN WAT FLT 0.7 µ GF, REC (µG/L) (82683) <.010 <.010 <.022 <.022 <.022 <.022 E.018 <.022 | METON,
WATER,
DISS,
REC
(μG/L)
(04037)
<.01
.02
E.01
.02
<.02
E.01
.04 | PANIL WATER FLTRD 0.7 µ GF, REC (µG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011
<.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | # 01474500 SCHUYLKILL RIVER AT PHILADELPHIA, PA--Continued | DATE | WATER,
DISS,
REC
(µG/L) | TEBU-
THIURON
WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82670) | BACIL
WATER
FLTRD
0.7 µ
GF, REC
(µG/L) | | |-----------|----------------------------------|---|---|--| | NOV | | | | | | 13 | .015 | E.02 | <.034 | | | DEC
12 | .015 | <.02 | <.034 | | | JAN
15 | .007 | <.02 | <.034 | | | FEB | .007 | <.02 | <.034 | | | 04 | .015 | E.01 | <.034 | | | MAR
07 | .007 | <.02 | <.034 | | | APR | | | | | | 08
MAY | .010 | <.02 | <.034 | | | 16 | .042 | E.01 | <.034 | | | JUN
13 | 037 | E.01 | - 034 | | | 13 | .036 | E.01 | <.034 | | | JUL
08 | .052 | <.02 | <.034 | | | SEP | .052 | <.UZ | <.U34 | | | 05 | .026 | .02 | <.034 | | #### LAKES AND RESERVOIRS IN SCHUYLKILL RIVER BASIN **01469200 STILL CREEK RESERVOIR.**—Lat 40°51'25", long 75°59'30", Schuylkill County, Hydrologic Unit 02040106, at dam on Still Creek, 1.0 mi upstream from mouth, and 2.3 mi north of Hometown. DRAINAGE AREA, 7.19 mi². PERIOD OF RECORD, January 1933 to current year. GAGE, nonrecording gage. Datum of gage is sea level (levels by Panther Valley Water Co.). REMARKS.--Reservoir formed by earthfill dam with ungated concrete spillway at elevation 1,182.00 ft. Storage began February 1933. Capacity at elevation 1,182.00 ft is 8,290 acre-ft. Reservoir is used for municipal water supply. Figures given herein represent total contents. Regulation by valves on pipe through dam. COOPERATION.--Records provided by the borough of Tamaqua. EXTREMES FOR PERIOD OF RECORD.—Maximum contents, 8,570 acre-ft, Oct. 15, 1955, elevation, 1,182.92 ft, but may have been greater during 1950 or 1951 water years; minimum contents (after first filling), 588 acre-ft, Dec. 8, 1944, elevation, 1,136.70 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 8,340 acre-ft, Mar. 27, elevation, 1,182.2 ft; minimum contents, 7,190 acre-ft, Sept. 30, elevation, 1,178.0 ft. 01470870 BLUE MARSH LAKE.--Lat 40°22'45", long 76°01'59", Berks County, Hydrologic Unit 02040203, at dam on Tulpehocken Creek, 0.8 mi upstream from gaging station on Tulpehocken Creek (station 01470960), 1.0 mi northeast of Blue Marsh, 1.9 mi upstream from Rebers Bridge, and 5.1 mi southeast of Bernville. DRAINAGE AREA, 175 mi². PERIOD OF RECORD, April 1979 to current year. GAGE, water-stage recorder (U.S. Army Corps of Engineers datum). REMARKS.--Lake formed by earthfill dam with ungated concrete spillway at elevation 307.00 ft. Storage began April 23, 1979. Capacity at elevation 307.00 ft is 50,000 acre-ft. Dead storage is 3,000 acre-ft. Lake is used for flood control, water supply, and recreation. Figures herein represent total contents. Satellite telemetry at station. COOPERATION.--Records provided by U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.—Maximum contents, 39,480 acre-ft, Apr. 17, 1983, elevation, 301.65 ft; minimum contents (after first filling), 13,150 acre ft, Mar. 18, 1004, elevation, 270,88 ft. first filling), 13,150 acre-ft, Mar. 18, 1994, elevation, 279.88 ft. EXTREMES FOR CURRENT YEAR.—Maximum contents, 24,410 acre-ft, May 20, elevation, 291.29 ft; minimum contents, 16,830 acre-ft, Nov. 25, elevation, 284.17 ft. 01472200 GREEN LANE RESERVOIR.--Lat 40°20'30", long 75°28'45", Montgomery County, Hydrologic Unit 02040203, at dam on Perkiomen Creek, 0.4 mi west of Green Lane, and 2.1 mi upstream from Unami Creek. DRAINAGE AREA, 70.9 mi². PERIOD OF RECORD, December 1956 to current year. GAGE, water-stage recorder. Datum of gage is sea level (levels by Philadelphia Suburban Water Co.). RÉMARKS.--Reservoir formed by concrete, gravity-type dam with ungated spillway at elevation 286.00 ft. Storage began December 21, 1956. Capacity at elevation 286.00 ft is 13,430 acre-ft. Reservoir is used for municipal water supply. Figures given herein represent total contents. Regulation by valves on pipe through dam. COOPERATION.--Records provided by Philadelphia Suburban Water Co. EXTRÉMES FOR PÉRIOD OF RECORD.--Maximum contents, 17,030 acre-ft, June 23, 1972, elevation, 290.05 ft; minimum contents (after first filling), 1,270 acre-ft, Aug. 25, 1957, elevation, 251.60 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 14,550 acre-ft, May 14, elevation, 287.26 ft; minimum contents, 9,930 acre-ft, Jan. 11, elevation, 281.28 ft. 01472618 DISTRIBUTARY FROM BRADSHAW RESERVOIR.--Lat 40°24′50″, long 75°13′13″, Bucks County, Hydrologic Unit 02040203, about 0.5 mi upstream from station 01472620, East Branch Perkiomen Creek near Dublin, Pa. PERIOD OF RECORD, October 1994 to current year. REMARKS.--Water from the Delaware River near Point Pleasant is diverted to Bradshaw Reservoir located in Geddes Run Basin on Tohickon Creek, a tributary to the Delaware River, for consumptive use by the Philadelphia Electric Company. Figures in this table represent the equivalent monthly mean streamflow, in cubic feet per second, diverted from Bradshaw Reservoir to the East Branch Perkiomen Creek. COOPERATION.--Records provided by Philadelphia Electric Company. # ${\bf Lakes\ and\ Reservoirs\ in\ Schuylkill\ River\ Basin-}. Continued$ | | EET ABOVE SEA I | | Change in | | a . | Changein | |-----------------------------------|-----------------------|-----------------|---------------------------------------|------------------|-----------------|---------------------------------------| | | Elovetion | Contents | contents | Dlavati | Contents | contents | | Date | Elevation
(feet) | (acre-
feet) | (equivalent
in ft ³ /s) | Elevation (feet) | (acre-
feet) | (equivalent
in ft ³ /s) | | | | | | | | | | | 01469200 Sti | II Creek Re | <u>eservoir</u> | 014708 | 70 Blue Mars | <u>h Lake</u> | | ept. 30 | 1,182.0 | 8,290 | | 289.56 | 22,390 | | | Oct. 31 | 1,181.8 | 8,230 | -1.0 | 284.98 | 17,600 | -77.9 | | Nov. 30 | 1,181.8 | 8,230 | 0 | 284.85 | 17,480 | -2.0 | | Dec. 31 | 1,182.1 | 8,320 | +1.5 | 285.08 | 17,700 | +3.4 | | CAL YR 2001 | | | 0 | | | -0.1 | | an. 31 | 1,182.1 | 8,320 | 0 | 285.07 | 17,690 | -0.2 | | Feb. 29 | 1,182.1 | 8,320 | 0 | 285.12 | 17,740 | +0.9 | | Mar. 31 | 1,182.2 | 8,340 | +0.3 | 289.01 | 21,780 | +65.7 | | Apr. 30 | 1,182.2 | 8,340 | 0 | 290.83 | 23,860 | +35.0 | | May 31 | 1,182.1 | 8,320 | -0.3 | 290.09 | 23,000 | -14.0 | | une 30 | 1,182.1 | 8,320 | 0 | 290.30 | 23,240 | +4.0 | | uly 31 | 1,181.7 | 8,210 | -1.8 | 289.97 | 22,860 | -6.2 | | Aug. 31 | 1,181.2 | 8,070 | -2.3 | 289.29 | 22,090 | -12.5 | | Sept. 30 | 1,178.0 | 7,190 | -14.8 | 288.37 | 21,080 | -17.0 | | WTR YR 2002 | | | -1.5 | | | -1.8 | | VIK IK 2002 | | | 1.0 | | | 1.0 | | | 01472200 Gre | an I ana P | eservoir | | | | | | | | | | | | | Sept. 30 | | 12,590 | | | | | | Oct. 31 | | 11,540 | -17.1 | | | | | Nov. 30 | | 10,530 | -17.0 | | | | | Dec. 31 | 281.67 | 10,170 | -5.9 | | | | | CAL YR 2001 | | | -4.5 | | | | | an. 31 | 282.58 | 10,760 | +9.6 | | | | | Feb. 29 | | 10,930 | +3.1 | | | | | Mar. 31 | | 13,430 | +40.7 | | | | | Apr. 30 | | 13,550 | +2.0 | | | | | | | | -2.0 | | | | | May 31 | | 13,430 | | | | | | une 30 | | 13,430 | 0 | | | | | uly 31 | | 12,680 | -12.2 | | | | | Aug. 31 | | 11,290 | -22.6 | | | | | Sept. 30 | 283.31 | 11,260 | -0.5 | | | | | WTR YR 2002 | | | -1.8 | | | | | | Monthly Mean | | | | | | | | Discharge | | | | | | | | (equivalent | | | | | | | Date | in ft ³ /s | | | | | | | | | | | | | | | 01472618 Distributary from Bradsh | naw Reservoir | | | | | | | Oct 2001 | 60.2 | | | | | | | Nov | 57.6 | | | | | | | Dec | 43.4 | | | | | | | an 2002 | 44.7 | | | | | | | | 25.9 | | | | | | | eb | 14.3 | | | | | | | | ± | | | | | | | Mar | 41.0 | | | | | | | Лаг
Арг | 41.9 | | | | | | | Mar | 38.8 | | | | | | | Mar Apr
May une | 38.8
60.1 | | | | | | | Mar Apr May une uly | 38.8
60.1
60.4 | | | | | | | MarApr
May | 38.8
60.1 | | | | | | #### 01474703 DELAWARE RIVER AT FORT MIFFLIN AT PHILADELPHIA, PA LOCATION.--Lat 39°52'45", long 75°12'11", Philadelphia County, Hydrologic Unit 02040202, on right bank at outer end of L-shaped pier at Fort Mifflin, 0.4 mi downstream from mouth of Schuylkill River, and at Philadelphia. **DRAINAGE AREA**.--10,000 mi², approximately. PERIOD OF RECORD.--Water years 1970-76, 1981 to current year. #### PERIOD OF DAILY RECORD.-- SPECIFIC CONDUCTANCE: July 1970 to December 1971, February 1981 to November 1999, November 2001 to current year. WATER TEMPERATURE: June 1972 to June 1976, February 1981 to November 1999, November 2001 to current year. INSTRUMENTATION.--Water-quality monitor July 1970 to June 1976 and since Feb. 1981. Satellite telemetry at station. **REMARKS.**--Specific conductance and water temperature records rated good. Interruptions in the record were due to malfunctions of the recording or monitoring instruments. #### EXTREMES FOR PERIOD OF DAILY RECORD.-- SPECIFIC CONDUCTANCE: Maximum, 1,340 microsiemens, Aug. 11, 1999; minimum, 90 microsiemens, Apr. 11, 17, 19, 29, 1983, Apr. 29, 1984. WATER TEMPERATURE: Maximum, 31.0°C, Aug. 4-6, 13, 1975; minimum, 0.5°C, Feb. 5, 1981, Jan. 11, 13, 14, 1999. #### EXTREMES FOR CURRENT YEAR.-- SPECIFIC CONDUCTANCE: Maximum, 1,320 microsiemens, Sept. 26; minimum, 162 microsiemens, May 22. WATER TEMPERATURE: Maximum, 29.0°C, Aug. 4; minimum, 3.0°C, Jan. 8-15, 19, 20. #### SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25° CELSIUS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DAY | MAX | MIN | MEAN | | | |-------|-----|---------|------|-----|---------|------|-----|----------|------|-----|---------|------|--|--| | | | OCTOBER | | 1 | OVEMBER | ı | I | DECEMBER | | | JANUARY | | | | | 1 | | | | |
| | 713 | 554 | 608 | 410 | 361 | 385 | | | | 2 | | | | | | | 795 | 514 | 601 | 418 | 367 | 385 | | | | 3 | | | | | | | | | | 424 | 374 | 389 | | | | 4 | | | | | | | 671 | 533 | 582 | 449 | 379 | 400 | | | | 5 | | | | | | | 649 | 522 | 567 | 443 | 370 | 401 | | | | 6 | | | | | | | 688 | 522 | 578 | 418 | 375 | 393 | | | | 7 | | | | 539 | 449 | 476 | 690 | 525 | 571 | 418 | 379 | 400 | | | | 8 | | | | 593 | 450 | 485 | 694 | 524 | 577 | 462 | 367 | 401 | | | | 9 | | | | 581 | 460 | 494 | 647 | 523 | 589 | 424 | 375 | 393 | | | | 10 | | | | 588 | 444 | 502 | 671 | 531 | 573 | 407 | 373 | 387 | | | | 11 | | | | 571 | 466 | 499 | 661 | 510 | 568 | 434 | 371 | 390 | | | | 12 | | | | 611 | 468 | 510 | 683 | 511 | 556 | 421 | 375 | 395 | | | | 13 | | | | 611 | 469 | 513 | 875 | 501 | 575 | 437 | 362 | 400 | | | | 14 | | | | 650 | 474 | 521 | 657 | 516 | 561 | 424 | 370 | 395 | | | | 15 | | | | 653 | 480 | 532 | 621 | 486 | 544 | 450 | 380 | 397 | | | | 16 | | | | 730 | 496 | 560 | 707 | 487 | 542 | 471 | 385 | 409 | | | | 17 | | | | 824 | 503 | 581 | 855 | 495 | 598 | 468 | 359 | 399 | | | | 18 | | | | 793 | 520 | 597 | 766 | 561 | 648 | 449 | 388 | 406 | | | | 19 | | | | 722 | 533 | 586 | | | | 426 | 374 | 399 | | | | 20 | | | | 679 | 537 | 584 | | | | 450 | 377 | 407 | | | | 21 | | | | 750 | 520 | 582 | 538 | 415 | 468 | 449 | 389 | 422 | | | | 22 | | | | 728 | 543 | 610 | 504 | 414 | 448 | 484 | 400 | 427 | | | | 23 | | | | 748 | 550 | 611 | 495 | 416 | 445 | 439 | 394 | 416 | | | | 24 | | | | 796 | 553 | 624 | 480 | 408 | 443 | 441 | 394 | 420 | | | | 25 | | | | 848 | 574 | 633 | 451 | 384 | 422 | 568 | 406 | 471 | | | | 26 | | | | 742 | 577 | 635 | 436 | 384 | 411 | 497 | 420 | 448 | | | | 27 | | | | 727 | 562 | 612 | 455 | 386 | 410 | 526 | 425 | 451 | | | | 28 | | | | 723 | 546 | 610 | 439 | 372 | 400 | 501 | 412 | 444 | | | | 29 | | | | 866 | 558 | 611 | 430 | 373 | 392 | 501 | 420 | 445 | | | | 30 | | | | 759 | 562 | 619 | 424 | 366 | 388 | 483 | 424 | 443 | | | | 31 | | | | | | | 404 | 369 | 384 | 469 | 418 | 436 | | | | MONTH | | | | 866 | 444 | 566 | 875 | 366 | 516 | 568 | 359 | 411 | | | # 01474703 DELAWARE RIVER AT FORT MIFFLIN AT PHILADELPHIA, PA--Continued SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25° CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |--|---|--|--|--|---|---|---|--|--|---|---|--| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 493
500
446
451
488 | 413
412
391
384
380 | 434
439
406
404
410 | 356
345
514
518
498 | 323
310
310
337
327 | 332
324
359
414
360 | 297
298

295 | 243
246

221 | 263
261

253 | 290
256
306
361
334 | 216
209
218
219
199 | 246
224
256
265
238 | | 6
7
8
9
10 | 426
426
425
422
407 | 379
377
377
377
363 | 394
390
389
389
384 | 361
398
348
365
452 | 316
314
310
307
298 | 335
339
321
321
340 | 281
270
279
279
300 | 218
222
220
225
219 | 245
242
243
242
244 | 260
256
245
246
240 | 200
183
188
192
191 | 228
220
215
215
210 | | 11
12
13
14
15 | 477
403
420
403
376 | 370
365
366
345
345 | 398
383
384
372
365 | 384
352
339
358
369 | 304
305
296
305
299 | 327
317
313
318
319 | 290
318
307
319
332 | 227
225
221
223
227 | 240
252
246
247
261 | 240
243
267
322
221 | 193
190
202
169
166 | 212
214
219
246
184 | | 16
17
18
19
20 | 370
419
419
357
369 | 341
341
337
318
322 | 357
357
351
344
340 | 395
342
436
468
468 | 302
303
303
304
316 | 328
317
334
365
361 | 361
319
304
265
248 | 232
233
230
227
218 | 281
270
257
243
233 | 193
247
286
286
267 | 172
184
187
182
176 | 185
199
232
228
219 | | 21
22
23
24
25 | 391
403
377
386
349 | 322
308
328
320
315 | 347
348
342
336
332 | 476
389
313
290
298 | 320
258
257
245
269 | 392
322
288
276
280 | 239
242
245
265
299 | 214
221
222
223
232 | 229
233
234
241
245 | 252
263
254
268
274 | 173
162
177
177
175 | 211
213
207
213
216 | | 26
27
28
29
30
31 | 354
380
386
 | 326
321
326
 | 336
337
342
 | 305
349
342
337
333
312 | 269
273
278
265
264
255 | 284
303
310
295
291
272 | 301
263
264
346
323 | 234
220
224
211
211 | 257
241
242
267
260 | 261
253
233
246
234
226 | 184
180
186
186
179
176 | 210
205
204
204
202
196 | | MONTH | 500 | 308 | | 518 | | | | | 249 | | | 217 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | | MIN
SEPTEMBE | | | DAY 1 2 3 4 5 | 226
228 | | | | JULY | | | AUGUST | 303
315
310
316
316 | s | EPTEMBE | | | 1
2
3
4
5 | 226
228
258
243
240 | JUNE
183
186 | 200
200
207
211
209 | | JULY
226
296
228
229
230 | 269
316
263
240
240 | 316
346
323
330
332 | 284
303
297
306
298 | | 663
569
602
581
581 | 482
479
459
458
461 | 533
513
505
504 | | 1
2
3
4
5
6
7
8
9 | 226
228
258
243
240
246
315
350
325
296 | 183 186 188 187 193 198 208 206 185 176 | 200
200
207
211
209
219
240
256
229
206 | 335
342
338
269
259 | 226
296
228
229
230
228
228
228
230
227
231 | 269
316
263
240
240
237
236
236
236
239 | 316
346
323
330
332 | 284
303
297
306
298 | 303
315
310
316
316
323
328
338
340
354 | 663
569
602
581
581
569
637
642
867
886 | 482
479
459
458
461
447
455
455
464
470 | 533
513
505
504
492
493
503
512
540 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 226
228
258
243
240
246
315
350
325
296
272
245
267
265 | JUNE 183 186 188 187 193 198 208 206 185 176 185 182 174 187 | 200
200
207
211
209
219
240
256
229
206
204
201
207 | 335
342
338
269
259
254
253
249
269
269
262
253 | JULY 226 296 228 229 230 228 228 228 230 227 231 233 236 235 | 269
316
263
240
240
237
236
236
236
239
242
243
241 | 316
346
323
330
332
343
350
356
361
383
426
437
432
419 | 284
303
297
306
298
313
314
325
316
333
340
343
340
343
350 | 303
315
310
316
316
323
328
338
340
354
363
371
377
380 | 663
569
602
581
581
569
637
642
867
886
758
850
788 | 482
479
458
461
447
455
455
464
470
482
494
516
537 | 533
513
505
504
492
493
503
512
540
562
588
580
620
621 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 226
228
258
243
240
246
315
350
325
296
272
245
267
265
261
249
285
324 | JUNE 183 186 188 187 193 198 208 206 185 176 185 182 174 187 183 181 183 178 | 200
200
207
211
209
219
240
256
229
206
204
201
207
207
206
205
204
217
214 | 335
342
338
269
259
254
253
249
269
262
253
 | JULY 226 296 228 229 230 228 228 230 227 231 233 236 235 | 269 316 263 240 240 237 236 236 239 242 243 241 |
316
346
323
330
332
343
350
356
361
383
426
437
432
419
446
450
481
560
535 | 284
303
297
306
298
313
314
325
316
333
340
343
346
350
356 | 303
315
310
316
316
323
328
338
340
354
363
371
377
380
391
401
412
428
442 | 663
569
602
581
581
569
637
642
867
886
758
850
788
850
788
866 | 482
479
455
461
447
455
464
470
482
494
516
537
550
552
554
566 | 533
513
505
504
492
493
503
512
540
562
588
580
621
632
631
640
660
676 | | 1
2
3
4
5
6
7
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 226
228
258
243
240
246
315
350
325
296
272
245
267
265
261
249
285
324
372 | JUNE 183 186 188 187 193 198 208 206 185 176 185 182 174 187 183 181 183 170 187 | 200
200
207
211
209
219
240
256
229
206
201
201
207
207
206
205
204
217
214
246
222
216
217
223 | 335
342
338
269
259
254
253
249
269
262
253
 | JULY 226 296 228 229 230 228 228 230 227 231 233 236 235 | 269 316 263 240 240 237 236 236 239 242 243 241 | 316
346
323
330
332
343
350
356
361
383
426
437
432
419
446
450
481
560
535
570
602
609
621 | 284
303
297
306
298
313
314
325
316
333
340
343
346
350
356
369
378
386
394
413
426
435
440
450 | 303
315
310
316
316
323
328
3340
354
363
371
377
380
391
401
412
428
442
458
479
492
493
515 | 663
569
602
581
581
569
637
642
867
886
758
758
850
788
866
811
908
908
951
1080 | 482
479
455
461
447
455
464
470
482
494
516
537
550
552
554
661
670 | 533
513
505
504
492
493
503
512
540
562
588
580
621
632
631
640
660
6676
691
719
728
749
774 | # 01474703 DELAWARE RIVER AT FORT MIFFLIN AT PHILADELPHIA, PA--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|--|---|---|--|---|---|--|--
---|--|---|--| | | | OCTOBER | | | NOVEMBE | R | | DECEMBE | R | | JANUARY | | | 1
2 | | | | | | | 13.0
12.5 | 12.5
12.0 | 12.5
12.5 | 5.5
5.0 | 5.0
4.5 | 5.0
5.0 | | 3
4 | | | | | | | 12.5 | 12.0 | 12.5 | 5.0
4.5 | 4.0 | 4.5
4.5 | | 5 | | | | | | | 12.5 | 12.0 | 12.5 | 4.5 | 4.0 | 4.5 | | 6
7 | | | | 14.0 | 13.5 | 14.0 | 12.5
12.5 | 12.0
12.5 | 12.5
12.5 | 4.5
4.5 | 4.0 | 4.0 | | 8
9 | | | | 14.0 | 13.5 | 14.0
13.5 | 12.5
12.5 | 12.0 | 12.0
12.0 | 4.0 | 3.0 | 3.5 | | 10 | | | | 14.0
13.5 | 13.5
13.0 | 13.5 | 12.0 | 11.5
11.5 | 11.5 | 4.0 | 3.0 | 3.5
3.5 | | 11 | | | | 13.5 | 13.0 | 13.0 | 12.0 | 11.5 | 11.5 | 4.0 | 3.0 | 3.5 | | 12
13 | | | | 13.0
12.5 | 12.5
12.5 | 12.5
12.5 | 11.5
11.5 | 11.0
11.0 | 11.5
11.5 | 4.0
4.0 | 3.0
3.0 | 3.5
3.5 | | 14
15 | | | | 12.5
13.0 | 12.0
12.0 | 12.5
12.5 | 11.5
11.5 | 11.0
11.0 | 11.5
11.0 | 4.0
4.0 | 3.0
3.0 | 3.5
3.5 | | 16 | | | | 12.5 | 12.0 | 12.5 | 11.0 | 10.5 | 10.5 | 4.0 | 3.5 | 4.0 | | 17
18 | | | | 12.5
12.5 | 12.0
12.0 | 12.5
12.0 | 11.0
11.0 | 10.5
10.0 | 10.5
10.5 | 4.0
4.0 | 3.5
3.5 | 4.0
4.0 | | 19
20 | | | | 12.5
12.5 | 12.0
12.0 | 12.0
12.0 | | | | 4.0 | 3.0
3.0 | 3.5
3.5 | | 21 | | | | 12.0 | 11.5 | 12.0 | 9.5 | 8.5 | 9.0 | 3.5 | 3.5 | 3.5 | | 22
23 | | | | 12.0
12.0 | 11.5
11.5 | 11.5
11.5 | 9.0 | 8.5 | 9.0 | 4.0
4.0 | 3.5 | 3.5 | | 24
25 | | | | 12.0
12.0 | 11.5
11.5 | 11.5
12.0 | 9.0
8.5 | 8.5 | 8.5 | 4.0
4.5 | 3.5
4.0 | 4.0 | | 26 | | | | 12.0 | 12.0 | 12.0 | 8.0 | 7.5 | 8.0 | 4.5 | 4.0 | 4.0 | | 27 | | | | 12.0 | 11.5 | 12.0 | 7.5 | 7.0 | 7.5 | 4.5 | 4.0 | 4.0 | | 28
29 | | | | 12.5
12.5 | 12.0
12.0 | 12.0
12.0 | 7.0
7.0 | 6.5
6.0 | 7.0
6.5 | 5.0
5.0 | 4.0
4.5 | 4.5
4.5 | | 30
31 | | | | 13.0 | 12.0 | 12.5 | 6.5
6.0 | 5.5
5.0 | 6.0
5.5 | 5.5
5.5 | 5.0
5.0 | 5.0
5.5 | | MONTH | | | | 14.0 | 11.5 | 12.4 | 13.0 | 5.0 | 10.1 | 5.5 | 3.0 | 4.0 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | | MIN
FEBRUARY | | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | 1 | 6.5 | FEBRUARY | 5.5 | 6.5 | MARCH
6.0 | 6.0 | 10.0 | APRIL
9.0 | 9.5 | 16.5 | MAY
15.5 | 16.0 | | 1
2
3 | 6.5
6.5
6.0 | FEBRUARY 5.5 5.5 5.0 | 5.5
5.5
5.5 | 6.5
6.5
8.0 | MARCH 6.0 6.0 6.0 | 6.0
6.0
7.0 | 10.0
10.5
 | 9.0
9.0
 | 9.5
10.0
 | 16.5
16.0
15.5 | MAY
15.5
15.0
15.0 | 16.0
15.5
15.0 | | 1
2 | 6.5
6.5 | FEBRUARY 5.5 5.5 | 5.5
5.5 | 6.5
6.5 | MARCH 6.0 6.0 | 6.0
6.0 | 10.0
10.5 | APRIL 9.0 9.0 | 9.5
10.0 | 16.5
16.0 | MAY 15.5 15.0 | 16.0
15.5 | | 1
2
3
4
5 | 6.5
6.5
6.0
6.0
5.5 | 5.5
5.5
5.0
5.0
5.0 | 5.5
5.5
5.5
5.0
5.0 | 6.5
6.5
8.0
8.5
8.0 | MARCH 6.0 6.0 6.0 6.5 6.5 | 6.0
6.0
7.0
7.5
6.5 | 10.0
10.5

11.5 | 9.0
9.0
9.0

10.0 | 9.5
10.0

10.5 | 16.5
16.0
15.5
16.0
16.0 | MAY
15.5
15.0
15.0
14.5
14.5 | 16.0
15.5
15.0
15.0
15.0 | | 1
2
3
4
5 | 6.5
6.5
6.0
6.0
6.0
5.5
5.0 | 5.5
5.5
5.0
5.0
5.0
4.5
4.5
4.5 | 5.5
5.5
5.5
5.0
5.0
5.0 | 6.5
6.5
8.0
8.5
8.0
7.0
8.0
7.5 | MARCH 6.0 6.0 6.0 6.5 6.5 6.5 | 6.0
6.0
7.0
7.5
6.5
7.0
7.0 | 10.0
10.5

11.5
11.0
11.0 | 9.0
9.0

10.0
10.0
10.0
10.0 | 9.5
10.0

10.5
10.5
10.5 | 16.5
16.0
15.5
16.0
16.0
16.5 | MAY
15.5
15.0
15.0
14.5
14.5
14.5 | 16.0
15.5
15.0
15.0
15.0 | | 1
2
3
4
5 | 6.5
6.5
6.0
6.0
6.0 | 5.5
5.5
5.0
5.0
5.0
4.5
4.5 | 5.5
5.5
5.5
5.5
5.0
5.0 | 6.5
6.5
8.0
8.5
8.0 | MARCH 6.0 6.0 6.0 6.5 6.5 | 6.0
6.0
7.0
7.5
6.5
7.0 | 10.0
10.5

11.5
11.0
11.0 | 9.0
9.0
9.0

10.0 | 9.5
10.0

10.5
10.5 | 16.5
16.0
15.5
16.0
16.0 | MAY
15.5
15.0
15.0
14.5
14.5 | 16.0
15.5
15.0
15.0
15.0 | | 1
2
3
4
5
6
7
8
9
10 | 6.5
6.5
6.0
6.0
6.0
5.5
5.0
5.5
5.5 | 5.5
5.5
5.0
5.0
5.0
4.5
4.5
4.5
4.5
5.0 | 5.5
5.5
5.5
5.0
5.0
5.0
5.0
5.0 | 6.5
6.5
8.0
8.5
8.0
7.0
8.0
7.5
8.0 | 6.0
6.0
6.5
6.5
6.5
7.0 | 6.0
6.0
7.0
7.5
6.5
7.0
7.5
8.0 | 10.0
10.5

11.5
11.0
11.0
11.5
12.0
12.5 | 9.0
9.0
9.0

10.0
10.0
10.0
10.5
11.0 | 9.5
10.0

10.5
10.5
10.5
11.0
11.5 | 16.5
16.0
15.5
16.0
16.0
16.5
17.5 | MAY 15.5 15.0 15.0 14.5 14.5 14.5 14.5 15.0 15.5 15.5 | 16.0
15.5
15.0
15.0
15.0
15.5
16.0
16.0 | | 1
2
3
4
5
6
7
8
9
10 | 6.5
6.5
6.0
6.0
5.5
5.0
5.5
5.5
6.5
5.5 | 5.5
5.5
5.0
5.0
5.0
4.5
4.5
4.5
5.0
5.0 | 5.55
5.55
5.00
5.00
5.00
5.00
5.00 | 6.5
6.5
8.0
8.5
8.0
7.0
8.0
7.5
8.0 | MARCH 6.0 6.0 6.5 6.5 6.5 7.0 7.5 7.5 | 6.0
6.0
7.5
6.5
7.0
7.5
8.0
7.5
7.5 | 10.0
10.5

11.5
11.0
11.0
11.5
12.0
12.5
13.0
12.5 | 9.0
9.0
9.0

10.0
10.0
10.0
10.5
11.5
11.5 | 9.5
10.0

10.5
10.5
10.5
11.0
11.5
12.0
12.0 | 16.5
16.0
15.5
16.0
16.0
16.5
17.0
16.5
17.5
17.5 | MAY 15.5 15.0 15.0 14.5 14.5 14.5 15.0 15.5 16.0 16.0 16.5 | 16.0
15.5
15.0
15.0
15.0
15.5
16.0
16.0
16.0
16.5
16.5 | | 1
2
3
4
5
6
7
8
9
10 | 6.5
6.5
6.0
6.0
5.5
5.0
5.5
6.0 | 5.5
5.5
5.0
5.0
5.0
4.5
4.5
4.5
5.0 | 5.55
5.55
5.00
5.00
5.00
5.00
5.00 | 6.5
6.5
8.0
8.5
8.0
7.0
8.0
7.5
8.0 | 6.0
6.0
6.5
6.5
6.5
7.0
7.5 | 6.0
6.0
7.5
6.5
7.0
7.5
8.0 | 10.0
10.5

11.5
11.0
11.0
11.5
12.0
12.5 | 9.0
9.0
9.0

10.0
10.0
10.0
10.5
11.0 | 9.5
10.0

10.5
10.5
10.5
11.0
11.5 | 16.5
16.0
15.5
16.0
16.0
16.5
17.0
16.5
17.5 | MAY 15.5 15.0 15.0 14.5 14.5 14.5 14.5 15.0 15.5 16.0 16.0 | 16.0
15.5
15.0
15.0
15.0
15.0
16.0
16.0
16.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 6.55
6.00
6.00
5.00
5.55
5.55
6.55
5.55
5 | 5.5
5.5
5.0
5.0
5.0
4.5
4.5
4.5
5.0
5.0
4.5
4.5
4.5
4.5
4.5 | 5.55.55
5.00
5.00
5.00
5.00
5.00
5.00
5 | 6.5
6.5
8.0
8.5
8.0
7.0
8.0
7.5
8.0
8.0
7.5
8.0
9.0 | MARCH 6.0 6.0 6.5 6.5 6.5 7.0 7.5 7.5 8.0 | 6.0
6.0
7.5
6.5
7.0
7.5
8.0
7.5
8.0
7.5
8.5
9.0 | 10.0
10.5

11.5
11.0
11.0
11.5
12.0
12.5
13.0
12.5
13.5
14.5 | 9.0
9.0
9.0
10.0
10.0
10.0
10.5
11.5
11.5
12.0
12.5
13.0 | 9.5
10.0

10.5
10.5
10.5
11.0
11.5
12.0
12.0
12.5
13.0
13.5 | 16.5
16.0
15.5
16.0
16.0
16.5
17.0
16.5
17.5
17.5
17.5
18.0
18.5
16.5 | MAY 15.5 15.0 15.0 14.5 14.5 14.5 15.0 15.5 15.5 16.0 16.0 16.5 15.0 15.5 | 16.0
15.5
15.0
15.0
15.0
15.5
16.0
16.0
16.5
17.0
16.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 6.5
6.5
6.0
6.0
5.5
5.0
5.5
5.5
5.5
5.5
5.5 | 5.5
5.5
5.0
5.0
5.0
4.5
4.5
4.5
4.5
5.0
5.0
4.5
4.5
4.5
4.5
4.5 | 5.5
5.5
5.5
5.0
5.0
5.0
5.0
5.0
5.0
5.0 | 6.5
6.5
8.0
8.5
8.0
7.0
8.0
7.5
8.0
8.0
9.0 | MARCH 6.0 6.0 6.5 6.5 6.5 7.0 7.5 7.5 7.5 8.0 | 6.0
6.0
7.5
6.5
7.0
7.0
7.5
8.0
7.5
8.0
8.5 | 10.0
10.5

11.5
11.0
11.0
11.5
12.0
12.5
13.0
12.5
13.0
13.5
14.5 | 9.0
9.0
9.0

10.0
10.0
10.0
10.5
11.5
11.5
12.0
12.5
13.0 | 9.5
10.0

10.5
10.5
10.5
11.0
11.5
12.0
12.5
13.0
13.5 | 16.5
16.0
15.5
16.0
16.0
16.5
17.0
16.5
17.5
17.5
18.0
18.5 | MAY 15.5 15.0 15.0 14.5 14.5 14.5 15.0 15.5 15.0 16.0 16.5 15.0 | 16.0
15.5
15.0
15.0
15.0
15.5
16.0
16.0
16.5
17.0
17.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 66.00 50.055 05555
65555 5555 | 5.5
5.5
5.0
5.0
5.0
4.5
4.5
4.5
5.0
5.0
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5 | 5.5.5.5.0 0.0.0.0 5.0.0.0 0.0.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0
5.0.0 5. | 6.5
6.5
8.0
8.5
8.0
7.0
8.0
7.5
8.0
7.5
8.0
9.0
9.0
9.5
9.0
9.5 | MARCH 6.0 6.0 6.5 6.5 6.5 7.0 7.5 7.5 8.0 8.5 8.5 8.5 | 6.0
6.0
7.5
6.5
7.0
7.5
8.0
7.5
8.5
9.0
8.5
9.0 | 10.0
10.5

11.5
11.0
11.0
11.5
12.0
12.5
13.0
12.5
13.5
14.5 | 9.0
9.0

10.0
10.0
10.0
10.5
11.5
11.5
12.0
12.5
13.0
13.5
14.5
15.5 | 9.5
10.0

10.5
10.5
10.5
11.0
11.5
12.0
12.0
12.5
13.0
13.5
14.5
15.5
16.5 | 16.5
16.0
15.5
16.0
16.0
16.5
17.0
16.5
17.5
17.5
18.0
18.5
16.5 | MAY 15.5 15.0 15.0 14.5 14.5 14.5 15.0 15.5 15.5 16.0 16.0 15.5 15.0 16.5 15.0 | 16.0
15.5
15.0
15.0
15.0
16.5
16.5
16.5
17.0
16.5
16.5
17.0
16.5
16.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 6.5
6.0
6.0
6.0
5.0
5.5
5.5
6.5
5.5
5.5
5.5
5.5
6.0 | 5.5
5.5
5.0
5.0
5.0
4.5
4.5
4.5
5.0
5.0
4.5
4.5
4.5
4.5
4.5
5.0
4.5
4.5
4.5 | 5.5.5.5.0
5.00000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.00000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.0000
5.00 | 6.5
6.5
8.0
8.0
7.0
8.0
7.5
8.0
9.0
9.0
9.5
10.0 | MARCH 6.0 6.0 6.5 6.5 6.5 7.0 7.5 7.5 7.5 8.0 8.5 8.5 8.5 | 6.0
6.0
7.5
6.5
7.0
7.5
8.0
7.5
8.0
7.5
8.0
9.0
9.0 | 10.0
10.5

11.5
11.0
11.0
11.5
12.0
12.5
13.0
12.5
13.0
14.5
14.5 | 9.0
9.0
9.0
10.0
10.0
10.0
10.5
11.5
12.0
12.5
13.5
14.5
15.5
16.0
16.5 | 9.5
10.0

10.5
10.5
10.5
11.0
11.5
12.0
12.5
13.0
12.5
13.5
14.5
16.5
16.5 | 16.5
16.0
15.5
16.0
16.0
16.5
17.0
16.5
17.5
18.0
18.5
16.5
17.0
17.0
17.0
16.5 | MAY 15.5 15.0 15.0 14.5 14.5 14.5 15.0 15.5 15.0 16.0 16.5 15.0 15.5 15.0 15.5 | 16.0
15.5
15.0
15.0
15.0
15.5
16.0
16.0
16.5
17.0
17.0
16.5
16.5
16.5
16.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 6.55
6.00
5.50
6.00
5.50
5.55
6.55
5.55
6.55
5.55
6.00
6.00 | 5.5
5.5
5.0
5.0
5.0
4.5
4.5
4.5
5.0
5.0
4.5
4.5
4.5
4.5
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5 | 5.5.5.5.0 0.00.00 5.00.00 5.5.5.5.5.5.5. | 6.5
6.5
8.0
8.5
8.0
7.0
8.0
7.5
8.0
8.0
7.5
8.0
9.0
9.0
9.5
9.0
9.5
10.0
10.0 | MARCH 6.0 6.0 6.5 6.5 6.5 7.0 7.5 7.5 8.0 8.5 8.5 8.5 8.5 8.7 7.5 | 6.0
6.0
7.5
6.5
6.5
7.0
7.5
8.0
7.5
8.5
9.0
9.0
9.0
9.0 | 10.0
10.5

11.5
11.0
11.0
11.5
12.0
12.5
13.0
12.5
13.0
14.5
14.5 | 9.0
9.0
9.0

10.0
10.0
10.0
10.5
11.5
12.0
11.5
12.5
13.0
13.5
14.5
16.5
16.5 | 9.5
10.0

10.5
10.5
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.5
16.5
16.5
17.0 | 16.5
16.0
15.5
16.0
16.0
16.5
17.0
16.5
17.5
17.5
18.0
18.5
16.5
17.0
17.0
17.0
17.0
16.5 | MAY 15.5 15.0 15.0 14.5 14.5 14.5 15.0 16.0 16.0 16.5 15.0 16.0 15.5 15.0 16.0 15.5 15.0 16.0 15.5 15.0 16.0 15.5 | 16.0
15.5
15.0
15.0
15.0
15.5
16.0
16.0
16.5
17.0
17.0
16.5
16.5
16.5
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | .55.000 .500.55 .55.50 .55.50 .0.50 | FEBRUARY 5.5 5.0 5.0 5.0 4.55 4.55 4.55 5.0 5.0 4.55 4.55 | 55555
55555
55555
55555
55555
55555
5555 | 6.5
6.5
8.0
8.5
8.0
7.0
8.0
7.5
8.0
8.0
7.5
8.0
9.0
9.0
9.5
9.0
9.5
10.0
10.0
8.5 | MARCH 6.0 6.0 6.5 6.5 6.5 7.0 7.5 7.5 8.0 8.5 8.5 8.5 8.7 7.5 7.0 | 6.0
6.0
7.5
6.5
7.0
7.5
8.0
7.5
8.5
9.0
9.0
9.0
9.0
8.0
8.0 | 10.0
10.5

11.5
11.0
11.0
11.5
12.0
12.5
13.0
12.5
13.5
14.5
16.5
17.0
17.5
18.0 | 9.0
9.0
9.0
10.0
10.0
10.0
10.5
11.5
12.5
13.0
13.5
14.5
15.5
16.5
16.5
16.5 | 9.5
10.0

10.5
10.5
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.5
15.5
16.5
17.0
17.0
17.0
17.0
16.5 | 16.5
16.0
15.5
16.0
16.0
16.5
17.0
16.5
17.5
17.5
17.5
17.5
17.5
17.5
18.5
16.5 | MAY 15.5 15.0 15.0 14.5 14.5 14.5 15.0 15.5 15.5 16.0 16.5 15.0 15.0 15.5 16.0 16.5 15.0 15.5 16.0 15.5 16.0 15.5 | 16.0
15.5
15.0
15.0
15.0
16.0
16.5
16.5
17.0
16.5
16.5
17.0
16.5
16.5
17.0
16.5
16.5
17.0
16.5 | |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 6.5.0
6.00
6.00
5.00
5.5.5
6.5.5
6.5.5
6.5.5
6.6.6
6.6.5 | 5.5
5.0
5.0
5.0
4.5
4.5
5.0
5.0
4.5
4.5
4.5
4.5
5.0
4.5
5.0
5.0
5.0
5.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6 | 5.5.5.5.0 0.000.0 5.000.0 5.5.5.5.5 5.000.0 5. | 6.5
6.5
8.0
8.5
8.0
7.0
8.0
7.5
8.0
9.0
9.0
9.5
10.0
10.0
8.5
8.0 | MARCH 6.0 6.0 6.5 6.5 6.5 7.5 7.5 7.5 7.5 8.5 8.5 8.5 8.7 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7 | 6.0
6.0
7.5
6.5
7.0
7.5
8.0
7.5
8.5
9.0
9.0
9.0
9.0
8.0
8.0
8.0 | 10.0
10.5

11.5
11.0
11.0
11.5
12.0
12.5
13.0
12.5
13.0
17.5
14.5
16.5
17.0
17.5
17.5
18.0
17.5
17.5
17.5
17.5 | 9.0
9.0
9.0
10.0
10.0
10.0
10.5
11.0
11.5
12.0
12.5
13.5
14.5
16.5
16.5
16.5
16.5 | 9.5
10.0

10.5
10.5
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.5
16.5
16.5
17.0
17.0
17.0
16.5
16.5 | 16.5
16.0
15.5
16.0
16.0
16.5
17.0
16.5
17.5
18.0
18.5
16.5
17.0
17.0
17.0
16.5
15.5 | MAY 15.5 15.0 15.0 14.5 14.5 14.5 15.0 15.5 15.0 16.0 16.5 15.0 15.5 15.0 16.0 15.5 15.0 16.0 15.5 15.0 16.0 16.0 | 16.0
15.5
15.0
15.0
15.0
15.0
16.0
16.0
16.5
17.0
16.5
16.5
16.5
16.5
16.5
16.5
16.5
16.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27 | .55.000 .500.55 0.55.50 0.05.05 0.55.55 0.55.55 0.05.55 0.55.55 0.05 0.05 | 5.55.0 5.0 4.55.0 4.55.0 4.55.0 4.55.0 4.55.0 4.55.0 4.55.0 4.55.0 6.5 6.0 6.5 | 5.5.5.5.0 0.0.0.0 5.0.0.0.0 5.5.5.5.5 5.5.5.5 5.5.5.5 5.6.6.6.6 6.5.5 5.5.5 5.5.5 5.6.6.6.6 | 6.5
6.5
8.0
8.5
8.0
7.5
8.0
7.5
8.0
9.0
9.5
9.0
9.5
10.0
10.0
8.5
8.0 | MARCH 6.0 6.0 6.5 6.5 6.5 7.5 7.5 7.5 8.0 8.5 8.5 8.5 8.5 8.7 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7 | 6.0
6.0
7.5
6.5
7.0
7.5
8.0
7.5
8.5
9.0
9.0
9.0
8.0
8.0
8.0
8.0
8.0 | 10.0
10.5

11.5
11.0
11.0
11.5
12.0
12.5
13.0
12.5
13.0
12.5
14.5
16.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17 | 9.0
9.0
9.0
10.0
10.0
10.0
10.5
11.5
12.5
13.0
13.5
14.5
15.5
16.0
16.5
16.5
16.0
16.0
16.0 | 9.5
10.0

10.5
10.5
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.5
16.5
16.5
17.0
17.0
17.0
16.5
16.5 | 16.5
16.0
15.5
16.0
16.0
16.5
17.5
17.5
17.5
17.5
17.5
18.5
16.5
17.0
17.0
17.0
16.5
17.0 | MAY 15.5 15.0 14.5 14.5 14.5 14.5 15.0 15.5 15.0 16.0 16.0 15.5 15.0 16.0 15.5 16.0 16.0 15.5 16.0 16.0 16.0 16.5 15.0 16.0 16.5 16.0 16.5 16.0 16.5 | 16.0
15.5
15.0
15.0
15.0
15.5
16.0
16.0
16.5
17.0
16.5
16.5
17.0
16.5
16.5
16.5
16.5
16.5
16.5
16.5
16.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | .55.000 .500.55 .55.50 .05.05 .55.55 .66666 .7666 | FEBRUARY 5.5 5.0 5.0 5.0 4.55 4.55 4.55 4.55 4. |
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
5555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
5555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
5555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
55555
5555 | 6.5
6.5
8.0
8.5
8.0
7.0
8.0
7.5
8.0
9.0
9.0
9.0
9.5
9.0
9.5
10.0
10.0
8.5
8.0
8.5
8.0 | MARCH 6.0 6.0 6.5 6.5 6.5 7.0 7.5 7.5 8.0 8.5 8.5 8.5 8.5 8.7 7.5 7.5 8.0 7.5 7.5 8.0 | 6.0
6.0
7.5
6.5
7.0
7.5
8.0
7.5
8.5
9.0
9.0
9.0
9.0
8.0
8.0
8.0
8.5 | 10.0
10.5

11.5
11.0
11.0
11.5
12.0
12.5
13.0
13.5
14.5
16.5
17.0
17.5
18.0
17.5
18.0
17.5
17.5
18.0 | 9.0
9.0
10.0
10.0
10.0
10.5
11.5
12.5
13.0
13.5
14.5
16.5
16.5
16.5
16.5
16.0
16.0
16.0
16.0 | 9.5
10.0

10.5
10.5
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.5
16.5
16.5
17.0
17.0
17.0
17.0
16.5
16.5 | 16.5
16.0
15.5
16.0
16.0
16.5
17.0
16.5
17.5
18.5
16.5
17.0
17.0
17.0
17.0
17.0
15.5
15.5
15.5 | MAY 15.5 15.0 15.0 14.5 14.5 14.5 15.0 15.5 15.5 16.0 16.5 15.0 15.5 16.0 16.5 15.0 16.0 16.5 15.0 16.0 17.5 | 16.0
15.5
15.0
15.0
15.0
16.0
16.0
16.5
16.5
17.0
16.5
16.5
17.0
15.0
15.0
15.0
15.0
15.0 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | .55.000 .50055 0.5550 0.5050 0.505 0.5555 5.555 666666 7666 | 5.55.00
5.00
5.00
5.00
5.00
5.00
5.00
5 | 555550 000000 500000 000005 500000 5500
555555 55555 55555 566666 6666 | 6.5
6.5
8.0
8.5
8.0
7.0
8.0
7.5
8.0
9.0
9.0
9.5
10.0
10.0
8.5
8.0
8.0 | MARCH 6.0 6.0 6.5 6.5 6.5 7.5 7.5 7.5 8.0 8.55 8.5 8.5 8.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7 | 6.0
6.0
7.5
6.5
7.0
7.5
8.0
7.5
8.5
9.0
9.0
9.0
8.0
8.0
8.0
8.0
8.0 | 10.0
10.5

11.5
11.0
11.0
11.5
12.0
12.5
13.0
12.5
13.0
17.5
17.0
17.5
17.5
17.5
17.5
18.0
17.5
17.5
17.5
18.0 | 9.0
9.0
10.0
10.0
10.0
10.0
11.5
11.5
12.0
13.5
14.5
15.5
16.0
16.5
16.5
16.0
16.0
16.0 | 9.5
10.0

10.5
10.5
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.5
15.5
16.5
17.0
17.0
17.0
16.5
16.5
16.5 | 16.5
16.0
15.5
16.0
16.0
16.5
17.0
16.5
17.5
18.0
18.5
16.5
17.0
17.0
16.5
15.5
15.5
15.0
16.5
17.0 | MAY 15.5 15.0 15.0 14.5 14.5 14.5 15.0 15.5 15.0 16.0 16.5 15.0 15.5 15.0 16.0 15.5 15.0 16.0 16.0 16.0 16.0 16.0 17.0 | 16.0
15.5
15.0
15.0
15.0
15.5
16.0
16.5
17.0
16.5
16.5
16.5
16.5
16.5
16.5
16.5
16.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
20
20
20
20
20
20
20
20
20
20
20
20
20 | .55.000 .500.55 0.55.50 0.05.05 0.55.55 0.05 0.05 | 5.55.00 5.00 4.55.00 5.00 4.55.00 4.55.00 4.55.00 5.55.55.50 6.00 6.0 | 5.5.5.5.0 0.0.0.0 5.5.0.0.0.0 5.5.0.0.0.0 | 6.5
6.5
8.0
8.0
7.0
8.0
7.5
8.0
9.0
9.0
9.5
9.0
9.5
10.0
10.0
8.5
8.0
8.0
9.0
9.0
9.0
9.5
10.0
10.0
8.5
8.0 | MARCH 6.0 6.0 6.5 6.5 6.5 7.5 7.5 7.5 8.0 8.5 8.5 8.5 8.5 7.5 7.5 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 | 6.0
6.0
7.5
6.5
7.0
7.5
8.0
7.5
8.5
9.0
9.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8 | 10.0
10.5

11.5
11.0
11.0
11.5
12.0
12.5
13.0
12.5
14.5
16.5
17.0
17.5
18.0
17.5
17.0
17.5
17.0
17.5
17.0
17.5
17.0
17.5
17.0
17.5
17.0
17.5
17.0
17.5
17.0
17.5
17.0
17.5
17.0
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5 | 9.0
9.0
10.0
10.0
10.0
10.0
11.5
11.5
12.5
13.0
13.5
14.5
16.5
16.5
16.0
16.5
16.0
16.0
16.0
16.0 |
9.5
10.0

10.5
10.5
10.5
11.0
11.5
12.0
12.5
13.5
14.5
16.5
16.5
17.0
17.0
17.0
16.5
16.5
16.5 | 16.5
16.0
15.5
16.0
16.0
16.5
17.5
17.5
17.5
17.5
18.0
17.0
17.0
17.0
16.5
15.5
16.5
17.0 | MAY 15.5 15.0 14.5 14.5 14.5 14.5 15.0 15.5 15.0 16.0 16.0 15.5 15.0 15.0 15.5 16.0 17.0 16.0 17.5 18.0 | 16.0
15.5
15.0
15.0
15.0
15.5
16.0
16.0
16.5
17.0
16.5
16.5
17.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15 | # 01474703 DELAWARE RIVER AT FORT MIFFLIN AT PHILADELPHIA, PA--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1 | 20.0 | 19.0 | 19.5 | 26.5 | 25.0 | 26.0 | 28.0 | 27.5 | 27.5 | 25.0 | 24.5 | 25.0 | | 2 | 20.5 | 19.5 | 20.0 | 26.5 | 25.5 | 26.0 | 28.5 | 28.0 | 28.0 | 24.5 | 24.0 | 24.5 | | 3 | 21.0 | 20.0 | 20.5 | 27.0 | 26.0 | 26.5 | 28.5 | 28.0 | 28.0 | 24.5 | 24.0 | 24.5 | | 4 | 21.5 | 20.5 | 21.0 | 27.5 | 26.5 | 27.0 | 29.0 | 28.0 | 28.5 | 25.0 | 24.5 | 24.5 | | 5 | 22.5 | 21.0 | 21.5 | 27.5 | 27.0 | 27.5 | 28.5 | 28.0 | 28.5 | 25.0 | 24.0 | 24.5 | | 6 | 23.0 | 21.5 | 22.0 | 27.0 | 26.5 | 27.0 | 28.5 | 28.0 | 28.0 | 25.0 | 24.0 | 24.5 | | 7 | 23.5 | 22.0 | 22.5 | 27.0 | 26.5 | 26.5 | 28.0 | 27.5 | 27.5 | 25.0 | 24.0 | 24.5 | | 8 | 23.0 | 21.5 | 22.5 | 27.0 | 26.5 | 26.5 | 27.5 | 27.0 | 27.0 | 25.0 | 24.0 | 24.5 | | 9 | 23.0 | 22.0 | 22.0 | 27.0 | 26.5 | 26.5 | 27.5 | 26.5 | 27.0 | 25.0 | 24.5 | 24.5 | | 10 | 23.5 | 22.0 | 22.5 | 27.0 | 26.5 | 26.5 | 27.5 | 26.5 | 27.0 | 25.0 | 24.5 | 25.0 | | 11 | 23.5 | 22.5 | 23.0 | 26.5 | 26.0 | 26.5 | 27.5 | 26.5 | 27.0 | 25.0 | 24.5 | 25.0 | | 12 | 23.5 | 22.5 | 23.0 | 27.0 | 26.0 | 26.5 | 27.5 | 26.5 | 27.0 | 24.5 | 24.0 | 24.5 | | 13 | 23.0 | 22.5 | 23.0 | 26.5 | 25.5 | 26.0 | 28.0 | 27.0 | 27.5 | 24.5 | 24.0 | 24.0 | | 14 | 22.5 | 22.0 | 22.5 | 26.5 | 26.0 | 26.0 | 28.0 | 27.0 | 27.5 | 24.5 | 24.0 | 24.0 | | 15 | 22.5 | 22.0 | 22.0 | 26.5 | 26.0 | 26.0 | 28.0 | 27.5 | 27.5 | 24.5 | 24.0 | 24.0 | | 16 | 22.5 | 21.5 | 22.0 | 26.5 | 26.0 | 26.5 | 28.0 | 27.5 | 28.0 | 24.5 | 24.0 | 24.0 | | 17 | 22.5 | 21.5 | 22.0 | 26.5 | 26.0 | 26.5 | 28.5 | 27.5 | 28.0 | 24.5 | 24.0 | 24.0 | | 18 | 22.5 | 21.5 | 22.0 | 27.0 | 26.5 | 26.5 | 28.5 | 28.0 | 28.0 | 24.5 | 24.0 | 24.0 | | 19 | 23.0 | 22.0 | 22.5 | 27.0 | 26.5 | 27.0 | 28.5 | 28.0 | 28.5 | 24.5 | 24.0 | 24.0 | | 20 | 23.5 | 22.0 | 22.5 | 27.5 | 27.0 | 27.0 | 28.5 | 28.0 | 28.5 | 24.5 | 24.0 | 24.0 | | 21 | 23.5 | 22.5 | 22.5 | 27.5 | 27.0 | 27.0 | 29.0 | 28.0 | 28.5 | 24.5 | 24.0 | 24.5 | | 22 | 23.5 | 22.5 | 23.0 | 27.5 | 27.0 | 27.0 | 28.5 | 28.0 | 28.0 | 24.5 | 24.0 | 24.5 | | 23 | 23.5 | 22.5 | 23.0 | 28.0 | 27.0 | 27.5 | 28.0 | 27.5 | 28.0 | 24.5 | 24.0 | 24.5 | | 24 | 24.0 | 23.0 | 23.5 | 27.5 | 27.0 | 27.0 | 27.5 | 27.5 | 27.5 | 24.5 | 24.0 | 24.0 | | 25 | 24.5 | 23.5 | 24.0 | 27.0 | 26.5 | 27.0 | 28.0 | 27.5 | 27.5 | 24.0 | 23.5 | 24.0 | | 26
27
28
29
30
31 | 25.0
25.5
26.0
26.0
26.5 | 24.0
24.5
24.5
25.0
25.0 | 24.5
25.0
25.0
25.5
25.5 | 27.0
26.5
27.0
27.5
27.5 | 26.0
26.0
26.0
26.5
27.0 | 26.5
26.5
26.5
27.0
27.0 | 28.0
27.5
27.5
26.5
26.0
26.0 | 27.5
27.0
26.5
26.0
25.5
25.0 | 27.5
27.5
27.0
26.5
26.0
25.5 | 24.0
23.5
23.5
23.0
23.0 | 23.0
23.0
23.0
22.5
22.5 | 23.5
23.0
23.0
23.0
22.5 | | MONTH | 26.5 | 19.0 | 22.7 | 28.0 | 25.0 | 26.7 | 29.0 | 25.0 | 27.5 | 25.0 | 22.5 | 24.1 | | YEAR | 29.0 | 3.0 | 15.7 | | | | | | | | | | #### 01475850 CRUM CREEK NEAR NEWTOWN SQUARE, PA LOCATION.--Lat 39°58'35", long 75°26'13", Delaware County, Hydrologic Unit 02040202, at Castle Rock bridge on State Highway 3, 0.6 mi upstream from Preston Run, 0.8 mi upstream from Springton Reservoir, and 2.0 mi west of Newtown Square. DRAINAGE AREA.--15.8 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.—October 1981 to current year. Occasional low-flow measurements, water years 1932, 1949, 1970-1977, and annual maximum 1977-1981. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 207.75 ft above National Geodetic Vertical Datum of 1929. **REMARKS**.--Records fair except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. Satellite and landline telemetry at station. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 600 ft³/s and maximum (*): | Date
May 18 | | ime
030 | Discharge
ft ³ /s
*487 | Gage Heigh (ft) *5.21 | | ECOND WA | | peaks | ime
above ba | | | | |--|---|--|--|--|--|--|--|---|--|--|---|--| | | | | DISCHA | KKGE, CUBIC | PEET FER 5. | | EAN VALUE | | 2001 TO SEF | TEMBER 20 | 02 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 5.5
5.1
4.5
4.0
4.2 | 3.5
3.6
4.2
4.4
3.9 | 6.0
5.5
5.4
5.4 | 5.1
5.1
5.3
5.3
5.9 | 14
12
9.1
8.5
7.3 | 5.3
6.7
84
17
11 | 16
12
12
11
9.9 | 15
53
40
15
12 | 8.7
8.0
7.3
7.6 | 5.3
5.0
4.6
4.4
4.2 | 2.4
2.3
2.6
2.6
2.2 | 15
11
4.8
3.7
3.1 | | 6
7
8
9
10 | 4.9
4.0
3.3
3.4
3.7 | 3.7
3.9
3.9
3.9 | 5.4
5.4
8.4
20
8.5 | 13
29
13
9.7
9.7 | 6.9
7.4
7.2
6.7
6.9 | 10
9.6
8.6
8.5 | 9.6
9.2
9.2
9.0
9.7 | 11
10
9.5
15 | 17
40
11
8.8
8.2 | 3.8
3.8
3.9
5.0
9.4 | 2.1
2.0
1.8
1.6
1.5 | 2.7
2.4
2.2
2.2
2.3 | | 11
12
13
14
15 | 3.9
3.8
3.6
3.7
7.4 | 4.1
3.9
3.9
4.3
4.5 | 7.8
7.0
7.7
11
11 | 38
19
11
8.6
8.6 | 8.7
6.9
6.7
5.9
6.2 | 8.8
8.4
11
11
9.4 | 8.4
9.6
10
11
15 | 9.3
12
39
24
14 | 7.4
7.0
6.9
17
12 | 4.6
3.7
3.4
4.0
4.2 | 1.5
1.4
1.4
1.4 | 2.4
2.7
2.6
3.2
3.6 | | 16
17
18
19
20 | 4.1
3.6
3.4
3.7
3.6 | 4.4
4.1
3.9
3.9
4.6 | 7.2
7.0
17
9.8
7.5 | 7.5
7.2
6.9
e6.5
e7.5 | 6.4
6.2
5.8
5.7
6.1 | 9.1
9.3
28
17
75 | 10
9.3
8.3
8.5 | 11
10
149
27
17 | 9.0
10
13
18
11 | 3.5
3.0
2.9
11
13 | 1.2
1.2
1.1
1.1 | 4.7
4.3
3.5
3.1
2.8 | | 21
22
23
24
25 | 3.7
3.5
3.4
3.4
3.2 | 4.3
3.9
3.9
4.0
9.0 | 7.6
6.9
6.6
17
9.4 | e7.0
e7.0
e8.0
56
22 | 8.6
6.4
6.1
5.8
5.4 | 31
16
13
12
11 | 8.8
16
11
8.7
9.7 | 14
12
12
11
10 | 7.8
6.8
6.4
6.3
6.2 | 4.5
4.0
3.9
3.9
3.5 | 1.2
1.1
1.2
3.6
7.5 | 2.7
2.7
2.6
2.4
2.2 | | 26
27
28
29
30
31 | 3.1
3.0
3.2
3.2
3.6
3.3 | 18
7.8
6.6
6.4
6.1 | 7.6
6.6
6.2
6.4
5.6
5.2 | 11
9.2
8.2
7.8
8.1 | 5.7
5.7
5.4
 | 12
52
16
13
12 | 11
8.4
42
18
12 | 9.6
10
11
9.6
9.1
8.7 | 5.8
12
17
6.9
5.6 | 3.2
3.3
3.8
3.5
3.0
2.6 | 2.7
2.0
2.3
22
6.0
3.5 | 6.4
40
28
5.9
3.9 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 120.0
3.87
7.4
3.0
0.24
0.28 | 150.5
5.02
18
3.5
0.32
0.35 | 253.5
8.18
20
5.2
0.52
0.60 | 384.2
12.4
56
5.1
0.78
0.90 | 199.7
7.13
14
5.4
0.45
0.47 | 560.7
18.1
84
5.3
1.14
1.32 | 354.3
11.8
42
8.3
0.75
0.83 | 621.8
20.1
149
8.7
1.27
1.46 | 320.7
10.7
40
5.6
0.68
0.76 | 141.9
4.58
13
2.6
0.29
0.33 | 87.3
2.82
22
1.1
0.18
0.21 | 179.1
5.97
40
2.2
0.38
0.42 | | | | | | FOR WATER | | | | | | | . | | | MEAN
MAX
(WY)
MIN
(WY) | 14.3
53.4
1997
3.87
2002 | 19.6
37.3
1987
5.02
2002 | 25.1
92.6
1997
4.63
1999 | 26.6
63.0
1996
7.45
1985 | 27.2
42.7
1984
7.13
2002 | 36.7
95.0
1994
11.7
1985 | 32.3
76.8
1983
9.45
1985 | 25.4
58.9
1984
13.2
1999 | 18.4
43.8
1982
5.85
1985 | 15.3
36.2
1989
4.02
1999 | 11.5
24.3
1996
2.82
2002 | 15.0
74.6
1999
4.53
1998 | e Estimated. # 01475850 CRUM CREEK NEAR NEWTOWN SQUARE, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1982 - 2002 | |--------------------------|------------------------|---------------------
----------------------------| | ANNUAL TOTAL | 6470.3 | 3373.7 | | | ANNUAL MEAN | 17.7 | 9.24 | 22.3 | | HIGHEST ANNUAL MEAN | | | 34.7 1984 | | LOWEST ANNUAL MEAN | | | 9.24 2002 | | HIGHEST DAILY MEAN | 236 Mar 30 | 149 May 18 | 1610 Sep 16 1999 | | LOWEST DAILY MEAN | 3.0 Sep 13 a | 1.1 Aug 18,19,22 | 0.64 Aug 8 1991 | | ANNUAL SEVEN-DAY MINIMUM | 3.2 Oct 23 | 1.2 Aug 16 | 1.2 Aug 16 2002 | | MAXIMUM PEAK FLOW | | 487 May 18 | b 4250 Sep 16 1999 | | MAXIMUM PEAK STAGE | | 5.21 May 18 | c 11.99 Sep 16 1999 | | ANNUAL RUNOFF (CFSM) | 1.12 | 0.59 | 1.41 | | ANNUAL RUNOFF (INCHES) | 15.23 | 7.94 | 19.13 | | 10 PERCENT EXCEEDS | 34 | 16 | 38 | | 50 PERCENT EXCEEDS | 10 | 6.8 | 15 | | 90 PERCENT EXCEEDS | 3.8 | 2.7 | 5.6 | $[\]begin{array}{l} \textbf{a} \ \ Also \ Oct. \ 27. \\ \textbf{b} \ \ From \ rating \ curve \ extended \ above \ 1,300 \ ft^3/s \ on \ basis \ of \ slope-area \ measurement \ at \ peak \ flow. \\ \textbf{c} \ \ From \ outside \ floodmark. \end{array}$ # 01475850 CRUM CREEK NEAR NEWTOWN SQUARE, PA--Continued # WATER-QUALITY RECORDS **PERIOD OF RECORD.**--Water years 1975, 1999 to current year. | Date | LY
SA
Time (
NU | GENCY
ANA-
YZING
AMPLE
(CODE
JMBER) | AGENCY
COL-
LECTIN
SAMPLE
(CODE
NUMBER
(00027 | INST G CUBI FEE PER SECO | E, . C OXYGE T DIS SOLV ND (MG/ | - (STAN
ED ARD
L) UNIT | E CIF D CON D DUC ANC (\$\mu\$) (\mu\$S) | IC
- TEN
T- A
E W
CM) (D | MPER-
TURE
ATER
EG C) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVEI
(MG/L
AS MG) | SIUM,
DIS-
SOLVED
(MG/L | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC WATER UNFLTRD IT FIELD (MG/L AS CACO3) (00419) | |----------------|--------------------------|--|---|--|--|--|--|---|---------------------------------|---|--|--|---|--| | OCT 2001
16 | 0930 8 | 30020 | 1028 | 4.1 | 9.2 | 7.2 | 24 | 0 : | 12.0 | 20.4 | 9.25 | 2.88 | 9.86 | 56 | | | Date | R
D
S
(
A | HLO-
HDE,
HS-
HOLVED
MG/L
SCL) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO
GEN
NITRI
DIS-
SOLVI
(MG/I
AS N | PH
FE PH
DI
D SOL
M | S-
LVED S
MG/L (
S P) A | | IRON,
DIS-
SOLVED
(μ G/L
AS FE)
01046) | | | | | OCT 2001
16 | 2 | 6.0 | 17.8 | 14.0 | <.04 | .94 | <.008 | 3 <. | 02 | 20 | 111 | | | # 01475850 CRUM CREEK NEAR NEWTOWN SQUARE, PA--Continued # BIOLOGICAL DATA BENTHIC MACROINVERTEBRATES **REMARKS.**--Samples were collected using a Hess sampler with a mesh size of 500 μ m. Each sample covered a total area of 3.2 m². | Date | 10/16/01 | |---------------------------------------|----------| | Benthic Macroinvertebrate | Count | | Platyhelminthes | | | Turbellaria (FLATWORMS) | | | Tricladida | | | Planariidae | 19 | | Nematoda (NEMATODES) | 45 | | Nemertea (PROBOSAS WORMS) | | | Enopla | | | Hoplonemertea | | | Tetrastemmatidae | | | <u>Prostoma</u> sp | 6 | | Mollusca | | | Gastropoda (SNAILS) | | | Basommatophora | | | Ancylidae | | | <u>Ferrissia</u> sp | 34 | | Planorbidae | | | <u>Gyraulus</u> sp | 1 | | Annelida | | | Oligochaeta (AQUATIC EARTHWORMS) | 9 | | Arthropoda | | | Acariformes | | | Hydrachnidia (WATER MITES) | 92 | | Insecta | | | Ephemeroptera (MAYFLIES) | | | Baetidae | | | <u>Baetis</u> sp | 43 | | <u>Pseudocloeon</u> sp | 4 | | Ephemerellidae | | | <u>Eurylophella</u> sp | 1 | | <u>Serratella</u> sp | 7 | | Heptageniidae | | | <u>Stenonema</u> sp | 16 | | Isonychiidae | | | <u>Isonychia</u> sp | 49 | | Leptohyphidae | | | <u>Tricorythodes</u> sp | 2 | | Odonata (DRAGONFLIES AND DAMSELFLIES) | | | Coenagrionidae | | | <u>Argia</u> sp | 1 | | Gomphidae | | | Stylogomphus sp | 2 | | Plecoptera (STONEFLIES) | | | Perlidae | | | <u>Acroneuria</u> sp | 12 | | <u>Agnetina</u> sp | 1 | # 01475850 CRUM CREEK NEAR NEWTOWN SQUARE, PA--Continued # BIOLOGICAL DATA BENTHIC MACROINVERTEBRATES--Continued | Date | 10/16/0 | |---|---------| | Benthic Macroinvertebrate | Count | | Megaloptera | | | Corydalidae (FISHFLIES AND DOBSONFLIES) | | | <u>Corydalus</u> sp | 7 | | Trichoptera (CADDISFLIES) | | | Glossosomatidae | | | <u>Glossosoma</u> sp | 3 | | Hydropsychidae | | | <u>Cheumatopsyche</u> sp | 153 | | <u>Hydropsyche</u> sp | 556 | | Hydroptilidae | | | <u>Hydroptila</u> sp | 14 | | <u>Leucotrichia</u> sp | 6 | | Philopotamidae | | | <u>Chimarra</u> sp | 171 | | <u>Dolophilodes</u> sp | 3 | | Psychomyiidae | | | <u>Psychomyia</u> sp | 3 | | Lepidoptera | | | Pyralididae (MOTHS) | | | <u>Petrophila</u> sp | 3 | | Coleoptera (BEETLES) | | | Elmidae (RIFFLE BEETLES) | | | <u>Optioservus</u> sp | 43 | | <u>Oulimnius</u> sp | 62 | | <u>Stenelmis</u> sp | 91 | | Psephenidae (WATER PENNIES) | | | <u>Psephenus</u> sp | 4 | | Diptera (TRUE FLIES) | | | Chironomidae (MIDGES) | 407 | | Empididae (DANCE FLIES) | | | <u>Hemerodromia</u> sp | 3 | | Simuliidae (BLACK FLIES) | | | Simulium sp | 6 | | Tipulidae (CRANE FLIES) | | | <u>Antocha</u> sp | 18 | | | | | Total organisms | 1897 | | Total number of taxa | 36 | #### RIDLEY CREEK BASIN #### 01476480 RIDLEY CREEK AT MEDIA, PA **LOCATION**.--Lat 39°54′58", long 75°24′13", Delaware County, Hydrologic Unit 02040202, on right bank 400 ft downstream from bridge on U.S. Highway 1 (Baltimore Pike) at Media. **DRAINAGE AREA**.--30.5 mi². PERIOD OF RECORD. --October 1986 to September 1995, October 1995 to December 1996 (fragmentary), January 1997 to current year. REVISED RECORDS.--WDR PA-94-1: 1987, 1991, 1992 adjusted monthly and yearly summaries. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 110 ft above National Geodetic Vertical Datum of 1929, from topographic map. **REMARKS**.--Records fair except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. Diversion during entire period of record by Philadelphia Suburban Water Company (formerly Media Water Company). Satellite telemetry at station. COOPERATION .-- Records of diversion provided by Philadelphia Suburban Water Company. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 650 ft³/s and maximum (*): | Date
May 1 | | D
me
330 | ischarge
ft ³ /s
*539 | Gage Height
(ft)
*5.12 | | | Date
(No | | Гime | Discharge
ft ³ /s
base dis | Gage Heig
(ft)
charge.) | ght | |------------------------------------|--|--------------------------------------|--|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|---|-------------------------------|-------------------------------------| | | | | DISCHA | RGE, CUBIC F | EET PER S | | TER YEAR O
EAN VALUES | | 2001 TO SI | EPTEMBER 2 | 2002 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUI | N JUI | AUG | SEP | | 1
2
3
4
5 | 7.7
8.2
6.4
7.2
4.8 | 7.4
9.0
9.7
8.8
8.7 | 8.5
9.4
9.0
7.8
9.0 | e7.5
e7.3
e8.0
8.2
9.4 | 25
20
15
14
13 | 8.5
9.6
158
31
18 | 32
21
19
17
16 | 24
36
81
24
20 | 13
11
12
11 | 7.7
6.8
5.4
6.1 | 4.5
5.1
4.8 | 19
24
7.2
5.1
4.5 | | 6
7
8
9
10 | 6.8
6.7
5.1
4.6
4.6 | 7.8
8.3
6.9
7.7
7.9 | 9.6
9.6
13
33
13 | 22
51
22
15
15 | 12
13
12
11 | 15
14
13
12
18 | 15
15
14
15
16 | 18
17
15
18
20 | 29
75
19
15
13 | 4.3
4.8
7.1
6.0
7.2 | 4.8
4.6
3.9 | 4.8
4.5
4.3
4.7
5.2 | | 11
12
13
14
15 | 4.8
3.8
6.0
6.7 | e8.3
7.5
7.3
8.5
8.9 | 12
11
11
14
19 | 50
32
17
14
13 | 14
12
11
10 | 13
12
16
17
14 | 14
16
17
16
23 | 15
17
71
46
22 | 13
11
11
36
26 | 6.7
4.5
4.9
5.7 | 2.8
3.6
2.2 | 5.5
5.9
4.8
5.8
5.1 | | 16
17
18
19
20 | 7.7
5.2
5.0
5.1
6.8 | 8.7
8.2
8.3
8.2
8.5 | 11
9.7
27
16
11 | 13
13
13
13
15 | 11
10
9.8
9.4 | 13
14
46
29
124 | 16
14
13
15 | 19
17
231
55
31 | 17
13
18
19
13 | 5.8
4.5
5.6
6.7
23 | 0.57
1.2 | 6.4
5.6
4.8
4.1
4.6 | | 21
22
23
24
25 | 6.3
5.1
6.1
5.6
6.1 | 8.9
9.1
10
11
21 | 9.5
8.9
8.8
27
16 | 13
13
14
73
47 | 14
12
11
9.5
9.4 | 65
30
21
19
17 | 15
21
17
13
15 | 25
21
19
17
16 | 12
12
10
8.9
8.8 | | 3.2
3.6
6.9 | 6.5
4.9
5.1
5.1
4.5 | | 26
27
28
29
30
31 |
5.7
5.1
8.4
6.9
6.6
7.4 | 38
12
9.5
8.5
8.5 | 12
11
10
e9.0
e8.2
e7.7 | 21
17
15
14
14
30 | 9.5
9.4
8.8
 | 19
85
31
23
20
23 | 17
13
71
35
21 | 15
21
18
15
14 | 7.3
9.9
33
13
8.9 | 5 6.5
5.8
6.0
9 4.3 | 3.4
3.8
44
3 14 | 9.7
63
43
11
5.7 | | TOTAL
MEAN
MAX
MIN
(†) | 193.5
6.24
11
3.8
4.3 | 301.1
10.0
38
6.9
4.4 | 391.7
12.6
33
7.7
4.1 | 629.4
20.3
73
7.3
4.1 | 337.8
12.1
25
8.8
4.5 | 948.1
30.6
158
8.5
4.6 | 581
19.4
71
13
4.5 | 991
32.0
231
13
4.2 | 509.4
17.0
7.5
4.4 | 0 6.42
5 23
3 4.3 | 5.45
44
0.57 | 294.4
9.81
63
4.1
2.2 | | STATIST | ICS OF M | ONTHLY M | EAN DATA | FOR WATER Y | EARS 198 | 37 - 2002, | BY WATER | YEAR (V | VY) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 19.8
49.3
1990
6.24
2002 | 31.8
62.4
1987
10.0
2002 | 39.1
84.0
1987
8.14
1999 | 50.4
82.7
1990
20.3
2002 | 47.9
74.3
1988
12.1
2002 | 71.0
164
1994
30.6
2002 | 52.7
108
1993
19.4
2002 | 45.6
87.8
1989
23.1
1999 | 34.1
68.7
1989
11.7
1999 | 7 89.6
9 1989
7 6.42 | 46.3
1989
5.45 | 30.5
147
1999
8.42
1998 | [†] Diversion for municipal supply, equivalent in cubic feet per second. e Estimated. # RIDLEY CREEK BASIN # 01476480 RIDLEY CREEK AT MEDIA, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1987 - 2002 | |--------------------------|------------------------|---------------------|----------------------------| | ANNUAL TOTAL | 12396.7 | 5545.47 | | | ANNUAL MEAN | 34.0 | 15.2 | 39.3 | | HIGHEST ANNUAL MEAN | | | 57.6 1994 | | LOWEST ANNUAL MEAN | | | 15.2 2002 | | HIGHEST DAILY MEAN | 463 Mar 30 | 231 May 18 | 2860 Sep 16 1999 | | LOWEST DAILY MEAN | 3.8 Oct 12 | 0.57 Aug 17 | 0.57 Aug 17 2002 | | ANNUAL SEVEN-DAY MINIMUM | 5.1 Oct 7 | 1.6 Aug 14 | 1.6 Aug 14 2002 | | MAXIMUM PEAK FLOW | | 539 May 18 | a 8000 Sep 16 1999 | | MAXIMUM PEAK STAGE | | 5.12 May 18 | b 15.10 Sep 16 1999 | | 10 PERCENT EXCEEDS | 64 | 26 | 71 | | 50 PERCENT EXCEEDS | 24 | 11 | 26 | | 90 PERCENT EXCEEDS | 6.8 | 4.8 | 9.4 | $^{{\}bf a}\;$ From rating curve extended above 1,600 ft $^3\!/\!{\rm s}$ on basis of slope-area measurement of peak flow. ${\bf b}\;$ From floodmark. ### CHESTER CREEK BASIN ### 01477000 CHESTER CREEK NEAR CHESTER, PA LOCATION.--Lat 39°52'08", long 75°24'31", Delaware County, Hydrologic Unit 02040202, on right bank 30 ft downstream from bridge on Dutton Mill Road, and 3.0 mi northwest of Chester. **DRAINAGE AREA**.--61.1 mi². PERIOD OF RECORD.--August 1931 to current year. Monthly discharges only for some periods, published in WSP 1302. REVISED RECORDS.--WDR PA-72-1: 1971. GAGE.--Water-stage recorder. Datum of gage is 23.41 ft above Penn Central Railroad datum. Prior to June 27, 1966, water-stage recorder at site 50 ft upstream, and June 28, 1966, to Oct. 4, 1967, nonrecording gage 30 ft upstream and at gage, all at same datum. **REMARKS.**--Records fair except those for estimated daily discharges, which are poor. Diversion about 2.6 mi upstream into Ridley Creek basin (see station 01476480 Ridley Creek at Media) by Philadelphia Suburban Water Company. Diversion for the year was equivalent to a mean daily discharge of 3.2 ft³/s. Several measurements of water temperature were made during the year. Satellite and landline telemetry at station. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,400 ft³/s and maximum (*): | Date
May 18 | Tir
11 | me ft | harge
³ /s
972 | Gage Heigh
(ft)
*5.29 | t | | Date
(No | Tim
peaks a | ne f | charge
ft ³ /s
se discl | Gage Height
(ft)
narge.) | | |----------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|-------------------------------------|--|-------------------------------------|-------------------------------------| | | | | DISCHA | RGE, CUBIC F | FEET PER SE | | TER YEAR C
EAN VALUES | | 01 TO SEPT | EMBER 20 | 02 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 31
28
26
24
23 | 22
25
26
25
25 | 28
26
26
27
26 | e25
e25
e25
e25
e24 | 55
48
40
38
36 | 32
33
316
70
48 | 83
57
52
49
44 | 57
71
84
42
36 | 34
29
27
27
26 | 24
22
22
20
17 | 6.7
6.8
6.5
8.2
7.7 | 55
71
32
23
19 | | 6
7
8
9
10 | 25
24
23
24
24 | 24
25
25
24
22 | 25
26
30
73
37 | 52
121
53
39
37 | 35
36
36
34
35 | 45
42
40
39
51 | 44
42
43
42
45 | 35
35
34
39
40 | 44
148
52
39
35 | 16
15
13
17
27 | 7.1
6.5
6.3
6.0
5.9 | 15
13
15
13 | | 11
12
13
14
15 | 24
24
22
23
45 | 23
24
24
24
23 | 35
34
35
44
47 | 97
60
41
36
35 | 42
35
34
33 | 39
38
48
50
43 | 40
44
47
45
56 | 32
38
126
82
47 | 30
32
29
115
77 | 20
15
12
15
19 | 5.8
6.0
6.7
6.2
6.6 | 12
11
12
13
17 | | 16
17
18
19
20 | 25
20
18
18
17 | 25
23
24
24
27 | 33
32
67
41
33 | 34
34
34
34
37 | 34
33
32
32
33 | 38
38
112
69
251 | 43
39
36
35
44 | 40
35
385
104
66 | 63
40
45
41
46 | 16
12
12
15
14 | 7.2
6.2
6.2
6.5 | 25
18
14
13 | | 21
22
23
24
25 | 18
19
20
19
20 | 28
24
23
24
48 | 32
30
30
75
41 | 35
35
38
127
81 | 43
35
33
33
33 | 126
69
56
49
46 | 35
51
42
35
39 | 57
53
48
45
40 | 32
27
30
29
28 | 15
13
11
17
16 | 9.5
6.7
6.7
20
64 | 12
12
11
9.9 | | 26
27
28
29
30
31 | 22
20
21
21
25
24 | 88
34
30
29
29 | 33
31
e30
e28
e27
e26 | 45
40
38
37
36
64 | 33
32
 | 47
167
68
55
49
54 | 46
35
165
72
49 | 37
53
46
40
36
34 | 24
27
79
34
26 | 10
11
14
14
13
7.9 | 18
13
12
158
48
27 | 22
156
84
28
21 | | TOTAL
MEAN
MAX
MIN | 717
23.1
45
17 | 841
28.0
88
22 | 1108
35.7
75
25 | 1444
46.6
127
24 | 1009
36.0
55
32 | 2228
71.9
316
32 | 1499
50.0
165
35 | 1917
61.8
385
32 | 1315
43.8
148
24 | 484.9
15.6
27
7.9 | 518.0
16.7
158
5.8 | 783.9
26.1
156
9.9 | | STATISTIC | S OF M | ONTHLY MEA | N DATA 1 | FOR WATER | ZEARS 193 | 2 - 2002, | BY WATER | YEAR (WY) | 1 | | | | | MAX
(WY)
MIN | 55.6
234
1980
13.7
1942 | 76.8
233
1951
18.2
1932 | 89.9
328
1997
24.3
1932 | 104
326
1979
23.4
1981 | 114
326
1979
36.0
2002 | 142
627
1994
53.1
1981 | 127
413
1980
41.9
1963 | 101
224
1983
34.8
1942 | 76.6
176
1982
28.3
1966 | 67.7
254
1975
15.6
2002 | 61.3
217
1955
13.7
1966 | 67.0
543
1971
10.4
1932 | e Estimated. # CHESTER CREEK BASIN ### 01477000 CHESTER CREEK NEAR CHESTER, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALEN | DAR YEAR | FOR 2002 WAT | ER YEAR | WATER YEARS | 1932 - 2002 | |--------------------------|----------------|----------|--------------|---------|----------------|-------------| | ANNUAL TOTAL | 26097 | | 13864.8 | | | | | ANNUAL MEAN | 71.5 | | 38.0 | | 90.1 | | | HIGHEST ANNUAL MEAN | | | | | 168 | 1979 | | LOWEST ANNUAL MEAN | | | | | 38.0 | 2002 | | HIGHEST DAILY MEAN | 965 | Mar 30 | 385 | May 18 | 6510 | Sep 13 1971 | | LOWEST DAILY MEAN | 17 | Oct 20 | 5.8 | Aug 11 | 5.8 | Aug 11 2002 | | ANNUAL SEVEN-DAY MINIMUM | 18 | Oct 18 | 6.1 | Aug 8 | 6.1 | Aug 8 2002 | | MAXIMUM PEAK FLOW | | | 972 | May 18 | a 21000 | Sep 13 1971 | | MAXIMUM PEAK STAGE | | | 5.29 | May 18 | b 24.59 | Sep 13 1971 | | INSTANTANEOUS LOW FLOW | | | 4.5 | Aug 17 | 0.30 | Aug 7 1934 | | 10 PERCENT EXCEEDS | 134 | | 64 | | 154 | | | 50 PERCENT EXCEEDS | 50 | | 32 | | 60 | | | 90 PERCENT EXCEEDS | 23 | | 12 | | 27 | | a From rating curve extended above 2,400 ft³/s on basis of contracted-opening measurement at 9,400 ft³/s, at gage height 13.57 ft, and slope-area measurement of peak flow. b From floodmark. ### 01477050 DELAWARE RIVER AT CHESTER, PA LOCATION.--Lat 39°50'33", long 75°21'28", Delaware County, Hydrologic Unit 02040202, in the pumping house of Kimberly-Clark Paper Company at **DRAINAGE AREA**.--10,300 mi², approximately. PERIOD OF RECORD.--December 1961 to current year. ### PERIOD OF DAILY RECORD.-- SPECIFIC CONDUCTANCE: October 1963 to current year. pH: January 1968 to current year. WATER TEMPERATURES: December 1961 to current year. DISSOLVED OXYGEN: December 1961 to current year. INSTRUMENTATION.--Water-quality monitor since December 1961. Probes interfaced with a data collection platform since the 1986 water year. REMARKS.--Specific conductance, pH, and water temperature records rated good. Dissolved oxygen record rated fair. Data collection for pH and dissolved oxygen discontinued during winter months. Specific
conductance and water temperature data collected for the entire year. Other interruptions in the record were due to malfunctions of the instrumentation. Prior to April 1981 sampling site located at auxiliary tidal-gaging station at the end of Reynolds Aluminum Company pier, 0.5 mi downstream from Chester Creek in Chester (latitude 39°50'12", longitude 75°22'00"). ### EXTREMES FOR PERIOD OF DAILY RECORD.-- SPECIFIC CONDUCTANCE: Maximum, 5,900 microsiemens, Oct. 7, 1965; minimum, 103 microsiemens, June 2, 1984, Apr. 9, 1987. pH: Maximum, 8.7, Sept. 13, 14, 1971, Oct. 16, 1979; minimum, 5.5, Dec. 10, 11, 1969. WATER TEMPERATURE: Maximum, 33.0°C, July 21, 1977, Aug. 3, 1999; minimum, 0.0°C, many days during winters. DISSOLVED OXYGEN: Maximum, 16.3 mg/L, Mar. 28, 1993; minimum, 0.0 mg/L, on many days. ### EXTREMES FOR CURRENT YEAR.-- SPECIFIC CONDUCTANCE: Maximum, 4,390 microsiemens, Sept. 26; minimum, 171 microsiemens, May 22. WATER TEMPERATURE: Maximum, 30.0°C, Aug. 5; minimum, 4.0°C, Jan. 19-22. SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25° CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |-------|--------------|------------|------------|--------------|------------|--------------|--------------|--------------|--------------|------|---------|------| | | | OCTOBER | ! | : | NOVEMBER | ! | : | DECEMBER | ! | | JANUARY | | | 1 | 1120
1110 | 522
524 | 784
746 | 1700
1680 | 779
800 | 1140
1130 | 2420
2440 | 1160
1160 | 1640
1600 | | | | | 2 | 937 | 524 | 685 | 1610 | 800 | 1130 | 2570 | 1180 | 1600 | | | | | 4 | 827 | 497 | 654 | 1940 | 816 | 1180 | 2370 | | | | | | | 5 | 843 | 497 | 649 | 1520 | 795 | 1140 | | | | | | | | 6 | 841 | 483 | 630 | 1800 | 795 | 1160 | 2200 | 1130 | 1540 | | | | | 7 | 745 | 461 | 587 | 1840 | 846 | 1220 | 2180 | 1100 | 1510 | | | | | 8 | 725 | 459 | 574 | 2140 | 844 | 1300 | 2360 | 1090 | 1580 | 1070 | 565 | 752 | | 9 | 1180 | 463 | 671 | 1920 | 829 | 1260 | 2190 | 1060 | 1540 | 1070 | 561 | 743 | | 10 | 1020 | 503 | 677 | 2090 | 910 | 1320 | 2330 | 1100 | 1570 | 932 | 545 | 690 | | 11 | 1170 | 494 | 697 | 1850 | 851 | 1210 | 2170 | 624 | 1470 | 1230 | 560 | 759 | | 12 | 1410 | 505 | 757 | 2060 | 953 | 1370 | 2290 | 1060 | 1510 | 973 | 577 | 723 | | 13 | 1470 | 541 | 823 | 2140 | 963 | 1380 | 2660 | 1120 | 1640 | 984 | 556 | 707 | | 14 | 1480 | 564 | 938 | 2100 | 981 | 1390 | 2270 | 1110 | 1530 | 784 | 513 | 630 | | 15 | 2100 | 669 | 1060 | 2260 | 973 | 1400 | 2040 | 982 | 1390 | 963 | 518 | 646 | | 16 | 1440 | 609 | 982 | 2420 | 1040 | 1510 | 2250 | 1010 | 1420 | 891 | 522 | 670 | | 17 | 1390 | 604 | 960 | 2560 | 1110 | 1590 | 2470 | 1040 | 1500 | 1030 | 523 | 692 | | 18 | 1110 | 572 | 815 | 2700 | 1170 | 1700 | 2060 | 941 | 1340 | | | | | 19 | 1550 | 630 | 936 | 2420 | 1150 | 1610 | 1860 | 961 | 1310 | 960 | 519 | 679 | | 20 | 1430 | 644 | 953 | 2110 | 1150 | 1560 | 1720 | 910 | 1240 | 1090 | 542 | 734 | | 21 | 1540 | 668 | 994 | 2540 | 1120 | 1620 | 1260 | 733 | 982 | 981 | 544 | 729 | | 22 | 1450 | 681 | 986 | 2470 | 1200 | 1660 | 1440 | 706 | 1010 | 837 | 532 | 646 | | 23 | 1680 | 708 | 1050 | 2560 | 1160 | 1660 | 1440 | 748 | 1060 | 897 | 511 | 652 | | 24 | 1720 | 759 | 1140 | 2550 | 1200 | 1750 | 1290 | 730 | 969 | 1100 | 526 | 706 | | 25 | 1470 | 751 | 1100 | 2640 | 1240 | 1780 | 1150 | 657 | 874 | | | | | 26 | 1380 | 762 | 1040 | 2400 | 1180 | 1650 | 1200 | 632 | 859 | 842 | 517 | 649 | | 27 | 1300 | 682 | 958 | 2320 | 1220 | 1680 | 1310 | 632 | 872 | 795 | 502 | 605 | | 28 | 1580 | 678 | 1000 | 2320 | 1210 | 1640 | 1160 | 624 | 812 | | | | | 29 | 1680 | 753 | 1130 | 2580 | 1190 | 1680 | 1150 | 574 | 763 | | | | | 30 | 1510 | 743 | 1070 | 2430 | 1240 | 1710 | 1080 | 567 | 732 | 984 | 516 | 676 | | 31 | 1740 | 797 | 1170 | | | | 935 | 554 | 701 | 1150 | 513 | 711 | | MONTH | 2100 | 459 | 878 | 2700 | 779 | 1450 | 2660 | 554 | 1260 | 1230 | 502 | 690 | # 01477050 DELAWARE RIVER AT CHESTER, PA--Continued SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25° CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|--|---|--|---|--|--|--|---|---|--|--|--| | | : | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 1260
696
693
688
582 | 518
511
490
465
436 | 742
593
580
556
499 | 494
530
1000
484
420 | 365
370
362
347
341 | 420
435
501
402
381 | 277
268
268
260
257 | 254
250
251
250
248 | 267
260
259
254
253 | |

 |

 | | 6
7
8
9
10 | 585
573
601
579
578 | 443
432
434
432
421 | 509
492
497
487
480 | 420
399
408
422
419 | 343
342
344
348
341 | 382
370
375
378
366 | 256
254
258
253
249 | 244
243
242
240
234 | 251
250
249
247
239 |

 |

 |

 | | 11
12
13
14
15 | 568
716
542
494
486 | 409
424
408
406
400 | 459
484
460
447
439 | 368
384
394
395
394 | 330
338
338
336
338 | 349
359
365
365
362 | 249
249
248
244
243 | 229
234
236
233
231 | 240
242
242
240
237 |

 |

 |

 | | 16
17
18
19
20 | 462
459
442
492
502 | 397
387
383
394
389 | 427
423
411
437
431 | 375
366
375
378
376 | 327
329
328
325
316 | 350
346
349
348
352 | 242
238
239
245
247 | 229
229
231
234
237 | 236
233
234
240
242 |

 |

 |

 | | 21
22
23
24
25 | 469
469
448
461
512 | 385
376
371
366
368 | 418
417
407
408
419 |
353
328
331
327
322 | 316
316
323
307
295 | 331
323
325
320
313 | 244
246
245
243
245 | 237
239
239
235
236 | 242
242
242
240
241 | 193
181

179
182 | 181
171

172
174 | 187
177

175
178 | | 26
27
28
29
30
31 | 558
513
480
 | 367
364
365
 | 430
422
411
 | 321
320
304
300
292
284 | 291
288
281
282
274
264 | 310
304
294
290
284
276 | 247
245
246
241
240 | 239
236
235
232
232 | 243
241
240
236
236 | 184
184
186
188
194
199 | 176
178
179
179
183
186 | 181
180
182
184
187
190 | | MONTH | 1260 | 364 | 471 | 1000 | 264 | 352 | 277 | 229 | 244 | 199 | 171 | 182 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | MAX | MIN
AUGUST | MEAN | | MIN
SEPTEMBE | | | DAY 1 2 3 4 5 | 194
191
205
205
201 | | 188
186
186
191
195 | 247
230
229
231
234 | | MEAN 223 223 223 225 227 | 878
948
855
935
1000 | | 568
599
591
574
593 | | | | | 1
2
3
4 | 194
191
205
205 | JUNE 185 182 182 188 | 188
186
186
191 | 247
230
229
231 | JULY 215 217 218 220 | 223
223
223
225 | 878
948
855
935 | 376
395
403
397 | 568
599
591
574 | 2750
2390
2300
2360 | 1040
853
955
998 | 1690
1370
1400
1410 | | 1
2
3
4
5
6
7
8
9 | 194
191
205
205
201
200
208
209
212 | 185
182
182
188
190
191
191
194
199 | 188
186
186
191
195
194
200
203
205 | 247
230
229
231
234
239
241
239
251 | 215
217
218
220
222
224
224
228
230 | 223
223
223
225
227
231
235
234
239 | 878
948
855
935
1000
1200
1590
1630 | 376
395
403
397
406
401
414
439
467 | 568
599
591
574
593
594
687
795
850 | 2750
2390
2300
2360
2390
2340
2610
2660
2850 | 1040
853
955
998
970
926
1030
1060
1120 | 1690
1370
1400
1410
1440
1470
1610
1680
1800 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 194
191
205
205
201
200
208
209
212
209
199
192
190
196 | JUNE 185 182 188 190 191 191 194 199 183 178 176 179 182 | 188
186
186
191
195
194
200
203
205
199
189
184
184 | 247
230
229
231
234
239
241
239
251
242
254
250
252
258 | JULY 215 217 218 220 222 224 224 228 230 232 239 240 243 248 | 223
223
223
225
227
231
235
234
239
237
243
244
247
253 | 878
948
855
935
1000
1200
1200
1590
1630
1720 | 376
395
403
397
406
401
414
439
467
507
567
600
617
660 | 568
599
591
574
593
594
687
795
850
916
969
1040
1060
1100 | 2750
2390
2300
2360
2390
2340
2610
2660
2850
3350
3380
3390
3370
3320 | 1040
853
955
998
970
926
1030
1060
1120
1210
1370
1260
1430
1470 | 1690
1370
1400
1410
1410
1440
1470
1610
1680
1800
1980
2100
2040
2170
2140 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 194
191
205
205
201
200
208
209
212
209
199
192
190
196
197
197
197
197 | JUNE 185 182 188 190 191 191 194 199 183 178 176 179 182 187 186 185 184 | 188
186
186
191
195
194
200
203
205
199
189
184
188
191 | 247
230
229
231
234
239
241
239
251
242
254
250
252
258
272
282
341
389
449 | JULY 215 217 218 220 222 224 224 228 230 232 239 240 243 248 252 251 256 257 261 | 223
223
223
225
227
231
235
234
239
237
243
244
247
253
260
262
280
299
308 | 878 948 855 935 1000 1200 1200 1590 1630 1720 1550 1580 1620 1770 1930 | 376
395
403
397
406
401
414
439
467
507
567
600
617
660
695 | 568
599
591
574
593
594
687
795
850
916
1040
1100
1130 | 2750
2390
2390
2360
2390
2340
2610
2660
2850
3350
3390
3370
3320
3390
3380
3610
3770
3790 | \$EPTEMBE 1040 853 955 998 970 926 1030 1060 1120 1210 1370 1260 1430 1470 1490 1540 1590 1640 1720 | 1690
1370
1400
1410
1410
1440
1470
1610
1680
1800
1980
2100
2040
2170
2140
2190
2180
2270
2390
2470 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 194
191
205
205
201
208
209
212
209
199
192
190
196
197
197
197
197
191
192
192 | 185 182 188 190 191 191 194 199 183 178 176 179 182 187 186 185 184 185 | 188
186
186
191
195
194
200
203
205
199
184
188
191
191
191
188
188
188
190
190
192
194 | 247
230
229
231
234
239
241
239
251
242
254
250
252
258
272
282
341
389
449
526
610
548
462 | JULY 215 217 218 220 222 224 224 228 230 232 239 240 243 248 252 251 256 257 261 255 268 277 285 | 223
223
223
225
227
231
235
234
239
237
243
244
247
253
260
262
280
299
308
317 | 878 948 855 935 1000 1200 1200 1590 1630 1720 1550 1580 1620 1720 1870 1930 2580 2640 2570 2610 2740 | 376
395
403
397
406
401
414
439
467
507
567
600
617
660
695
740

970
1050
1090
976
1190 | 568
599
591
574
593
594
687
795
850
916
969
1040
1130
1150

1500 | 2750
2390
2390
2360
2390
2360
2390
2610
2660
2850
3250
3380
3390
3370
3320
3390
3610
3770
3790
3920 | \$\begin{align*} \$1040 & 853 & 955 & 998 & 970 & 926 & 1030 & 1120 & 1210 & 1370 & 1430 & 1470 & 1490 & 1540 & 1590 & 1640 & 1720 & 1740 & 1750 & 1860 & 1830 & 1830 & 1830 & 1833 & 1830 & 1853 & 1860 & 1830 & 1830 & 1833 & 100 & 1830 & 1830 & 100 & 1830 & 100 | 1690
1370
1400
1410
1440
1410
1610
1680
1800
1980
2100
2040
2170
2140
2190
2180
2270
2390
2470
2510
2470
2510
2470
2570 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 194
191
205
205
201
200
208
209
212
209
192
190
196
197
197
197
197
199
199
192
192
192
192
193
199
192
192
192
193
194
195
195
195
195
195
195
195
195
195
195 | 185 182 188 190 191 191 194 199 183 178 176 187 186 187 188 190 191 197 202 204 205 209 | 188
186
186
191
195
194
200
203
205
199
184
188
191
191
191
188
188
190
190
192
194
196 | 247 230 229 231 234 239 241 239 251 242 254 250 252 282 341 389 49 526 526 610 548 462 714 778 766 713 698 722 | 215
217
218
220
222
224
224
228
230
232
239
240
243
248
252
251
256
257
261
255
267
277
285
277
285
277
287
303 | 223
223
223
223
225
227
231
235
234
239
237
243
244
253
260
262
280
299
308
317
350
372
366
359
427
446
468
473
498
518 | 878 948 855 935 1000 1200 1200 1590 1630 1720 1550 1580 1620 1720 1870 1930 2580 2640 2570 2610 2740 2750 2480 2250 2620
2410 2140 | 376
395
403
397
406
401
414
439
467
507
567
660
695
740

970
1050
1090
976
1120
1090
1060
1040
976 | 568
599
591
574
593
594
687
795
850
916
969
1040
1130
1150

1500
1640
1590
1770
1690 | 2750
2390
2390
2360
2390
2360
2390
2610
2650
3250
3380
3390
3370
3320
3390
3610
3770
3790
3920
3660
3710
3680
4390
3910
2940
2950
3150 | \$\begin{align*} \$1040 & 853 & 955 & 998 & 970 & 926 & 1030 & 1060 & 1120 & 1210 & 1370 & 1260 & 1430 & 1470 & 1490 & 1540 & 1750 & 1860 & 1870 & 1880 & 1870 & 1890 & 1430 & 1450 & 1850 & 1870 & 1890 & 14350 & 1350 & 1390 & 1350 & 1390 & 1350 & 1390 & 1350 & 1390 & 1350 & 1390 & 1350 & 1390 & 10.55 & 1390 & 1350 & 1390 & 10.55 & 1390 & 10.55 | 1690
1370
1400
1410
1410
1440
1470
1610
1680
1800
1980
2100
2040
2170
2140
2190
2180
2270
2390
2470
2510
2470
2510
2510
2610
2860
2740
2150
1980
2000 | # 01477050 DELAWARE RIVER AT CHESTER, PA--Continued PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN I | MEDIAN | MAX | MIN I | MEDIAN | MAX | MIN I | MEDIAN | MAX | MIN | MEDIAN | |---|--------------|----------------------|--|----------------------|-------------------|--------------------------------------|--|--|---|--|-------------------|---| | | | OCTOBER | | | NOVEMBER | | I | DECEMBER | | | JANUAR | Y | | 1 2 | 7.4
7.3 | 7.2
7.1 | 7.3
7.2 | 7.4
7.4 | 7.2
7.2 | 7.3
7.3 | 7.1
7.1 | 6.9
7.0 | 7.0
7.0 | | | | | 3 | 7.3 | 7.1 | 7.2 | 7.3 | 7.1 | 7.2 | | | | | | | | 4
5 | 7.2
7.2 | 7.1
7.0 | 7.2
7.1 | 7.3
7.3 | 7.1
7.2 | 7.2
7.2 | 6
7 | 7.2
7.3 | 7.1
7.1 | 7.2
7.2 | 7.3
7.3 | 7.2
7.2 | 7.2
7.3 | | | | | | | | 8 | 7.3 | 7.2 | 7.2 | 7.4 | 7.2 | 7.3 | | | | | | | | 9
10 | $7.4 \\ 7.4$ | 7.2
7.2 | 7.3
7.3 | 7.4
7.4 | 7.2
7.3 | 7.3
7.3 | | | | | | | | 10 | | | | | | | | | | | | | | 11
12 | 7.3
7.3 | 7.2
7.2 | 7.3
7.2 | 7.4
7.4 | 7.3
7.3 | 7.3
7.3 | | | | | | | | 13 | 7.3 | 7.1 | 7.2 | 7.4 | 7.3 | 7.3 | | | | | | | | 14 | 7.3 | 7.1 | 7.2 | 7.4 | 7.3 | 7.3 | | | | | | | | 15 | 7.3 | 7.1 | 7.2 | 7.4 | 7.2 | 7.3 | | | | | | | | 16 | 7.3 | 7.1 | 7.2 | 7.3 | 7.2 | 7.3 | | | | | | | | 17
18 | 7.3
7.3 | 7.2
7.2 | 7.2
7.3 | 7.3
7.4 | 7.2
7.2 | 7.2
7.3 | | | | | | | | 19 | 7.4 | 7.2 | 7.3 | 7.3 | 7.2 | 7.3 | | | | | | | | 20 | 7.3 | 7.2 | 7.2 | 7.4 | 7.2 | 7.3 | | | | | | | | 21 | 7.3 | 7.1 | 7.2 | 7.4 | 7.2 | 7.3 | | | | | | | | 22 | 7.3 | 7.1 | 7.2 | 7.4 | 7.2 | 7.3 | | | | | | | | 23
24 | 7.3
7.2 | 7.1
7.1 | 7.2
7.2 | 7.4
7.3 | 7.2
7.2 | 7.3
7.3 | | | | | | | | 25 | 7.3 | 7.1 | 7.2 | 7.3 | 7.2 | 7.3 | | | | | | | | 26 | 7.4 | 7.2 | 7.2 | 7.3 | 7.1 | 7.2 | | | | | | | | 27 | 7.4 | 7.3 | 7.3 | 7.2 | 7.1 | 7.2 | | | | | | | | 28
29 | 7.5
7.5 | 7.3
7.3 | 7.4
7.4 | 7.2
7.2 | 7.0
7.0 | 7.1
7.1 | | | | | | | | 30 | 7.5 | 7.3 | 7.3 | 7.1 | 7.0 | 7.0 | | | | | | | | 31 | 7.4 | 7.3 | 7.4 | | | | | | | | | | | MAX | 7.5 | 7.3 | 7.4 | 7.4 | 7.3 | 7.3 | 7.1 | 7.0 | 7.0 | | | | | MIN | 7.2 | 7.0 | 7.1 | 7.1 | 7.0 | 7.0 | 7.1 | 6.9 | 7.0 | DAV | MλΥ | MTN I | MEDIAN | мач | MTN I | MEDIAN | млу | MIN | MEDIAN | MAY | MTN | MEDIAN | | DAY | MAX | | MEDIAN | MAX | | MEDIAN | MAX | | MEDIAN | MAX | MIN | MEDIAN | | DAY | | MIN 1 | | MAX | MIN I | MEDIAN | MAX | MIN I | MEDIAN | MAX | MIN
MAY | MEDIAN | | 1 | | FEBRUARY | | | MARCH | | 7.3 | APRIL 7.1 | 7.2 | | MAY | | | 1
2 | 1 | FEBRUARY | | | MARCH | | 7.3
7.3 | 7.1
7.2 | 7.2
7.2 | | MAY | | | 1
2
3
4 |

 | FEBRUARY

 |

 | | MARCH

 |

 | 7.3
7.3
7.3
7.3 | 7.1
7.2
7.1
7.1 | 7.2
7.2
7.2
7.2 | | MAY

 |

 | | 1
2
3 |

 | FEBRUARY

 |
 | | MARCH

 | | 7.3
7.3
7.3 | 7.1
7.2
7.1 | 7.2
7.2
7.2 |
 | MAY

 |
 | | 1
2
3
4
5 |

 | FEBRUARY |

 | | MARCH | | 7.3
7.3
7.3
7.3
7.3 | 7.1
7.2
7.1
7.1
7.1
7.1 | 7.2
7.2
7.2
7.2
7.3 |

 | MAY | | | 1
2
3
4
5
6
7 |

 | FEBRUARY |

 |

 | MARCH | ===
===
===
=== | 7.3
7.3
7.3
7.3
7.3
7.3 | 7.1
7.2
7.1
7.1
7.1
7.1
7.2
7.1 | 7.2
7.2
7.2
7.2
7.3
7.3 |

 | MAY | | | 1
2
3
4
5 |

 | FEBRUARY |

 | | MARCH | | 7.3
7.3
7.3
7.3
7.3 | 7.1
7.2
7.1
7.1
7.1
7.1 | 7.2
7.2
7.2
7.2
7.3 |

 | MAY | | | 1
2
3
4
5
6
7
8 | | FEBRUARY | |

 | MARCH | === | 7.3
7.3
7.3
7.3
7.3
7.3
7.3 | 7.1
7.2
7.1
7.1
7.1
7.1
7.2
7.1 | 7.2
7.2
7.2
7.2
7.3
7.3
7.2 |

 | MAY | | | 1
2
3
4
5
6
7
8
9 | | FEBRUARY |

 |

 | MARCH | | 7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.2 | 7.1
7.2
7.1
7.1
7.1
7.1
7.2
7.1 | 7.2
7.2
7.2
7.2
7.3
7.3
7.2
7.2 |

 | MAY |

 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | | MARCH | | 7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.2
7.1 | 7.1
7.2
7.1
7.1
7.1
7.1
7.2
7.1
6.9
6.8
7.0 | 7.2
7.2
7.2
7.2
7.3
7.3
7.2
7.2
7.0
7.0 | | MAY | | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | ====================================== | | MARCH | | 7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.2
7.1 | 7.1
7.2
7.1
7.1
7.1
7.2
7.1
7.2
7.1
6.9
6.8
7.0
6.9 | 7.2
7.2
7.2
7.2
7.3
7.3
7.2
7.2
7.2
7.0
7.0 | | MAY | | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | |

 | MARCH | | 7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.2
7.1 | 7.1
7.2
7.1
7.1
7.1
7.1
7.2
7.1
6.9
6.8
7.0 | 7.2
7.2
7.2
7.2
7.3
7.3
7.2
7.2
7.0
7.0 |

 | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | | MARCH | | 7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.2
7.1
7.1
7.0
7.0 | 7.1
7.2
7.1
7.1
7.1
7.2
7.1
7.2
7.1
6.9
6.8
7.0
6.9
6.8
6.9 | 7.2
7.2
7.2
7.2
7.3
7.3
7.2
7.2
7.0
7.0
7.1
6.9
6.9 | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | | MARCH | | 7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.2
7.1
7.1
7.0
7.0
7.0 | 7.1
7.2
7.1
7.1
7.1
7.2
7.1
7.2
7.1
6.9
6.8
7.0
6.9
6.8
6.9 | 7.2
7.2
7.2
7.2
7.3
7.3
7.2
7.2
7.0
7.0
7.1
6.9
6.9
6.9
6.9 | |
MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | | MARCH | | 7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.2
7.1
7.1
7.0
7.0
7.0
7.0 | 7.1
7.2
7.1
7.1
7.1
7.2
7.1
7.2
7.1
6.9
6.8
7.0
6.9
6.8
6.9
6.7
6.5 | 7.2
7.2
7.2
7.2
7.3
7.3
7.2
7.2
7.0
7.0
7.1
6.9
6.9
6.9
6.8 | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | | MARCH | | 7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.2
7.1
7.1
7.0
7.0
7.0 | 7.1
7.2
7.1
7.1
7.1
7.2
7.1
7.2
7.1
6.9
6.8
7.0
6.9
6.8
6.9 | 7.2
7.2
7.2
7.2
7.3
7.3
7.2
7.2
7.0
7.0
7.1
6.9
6.9
6.9
6.9 | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | | FEBRUARY | | | MARCH | | 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.1 7.1 7.1 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 7.1
7.2
7.1
7.1
7.1
7.2
7.1
7.2
7.1
6.9
6.8
6.9
6.7
6.5
6.7
6.8 | 7.2
7.2
7.2
7.2
7.3
7.3
7.2
7.2
7.0
7.1
6.9
6.9
6.9
6.8
6.8
6.9 | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | | MARCH | | 7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.2
7.1
7.1
7.0
7.0
7.0
7.0
7.0 | 7.1
7.2
7.1
7.1
7.1
7.2
7.1
7.2
7.1
6.9
6.8
7.0
6.9
6.8
6.9
6.7
6.5
6.7 | 7.2
7.2
7.2
7.2
7.3
7.3
7.2
7.2
7.0
7.1
6.9
6.9
6.9
6.8
6.9 | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | | FEBRUARY | | | MARCH | | 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.1 7.1 7.1 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.1 | 7.1
7.2
7.1
7.1
7.1
7.2
7.1
7.2
7.1
6.9
6.8
6.9
6.7
6.5
6.7
6.8
6.9 | 7.2
7.2
7.2
7.2
7.3
7.3
7.2
7.2
7.0
7.1
6.9
6.9
6.9
6.9
6.9
6.9
7.0 | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
20
21
22 | | FEBRUARY | | | MARCH | | 7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.2
7.1
7.1
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 7.1
7.2
7.1
7.1
7.1
7.2
7.1
7.2
7.1
6.9
6.8
7.0
6.9
6.8
6.9
6.5
6.7
6.5
6.7
6.9 | 7.2
7.2
7.2
7.2
7.3
7.3
7.2
7.2
7.0
7.1
6.9
6.9
6.9
6.8
6.8
6.9
6.9 | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | | FEBRUARY | | | MARCH | | 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.1 7.1 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 | 7.1
7.2
7.1
7.1
7.1
7.2
7.1
7.2
7.1
6.9
6.8
6.9
6.7
6.8
6.9
6.7
6.9
6.9
6.9
6.9 | 7.2
7.2
7.2
7.2
7.3
7.3
7.2
7.2
7.0
7.1
6.9
6.9
6.9
6.9
6.9
6.9
7.0
7.0
7.0 | 7.1
7.1 | MAY |

7.1
7.0
6.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | | FEBRUARY | | | MARCH | | 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.2 7.1 7.1 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | APRIL 7.1 7.2 7.1 7.1 7.2 7.1 7.2 7.1 6.9 6.8 7.0 6.9 6.8 6.9 6.7 6.5 6.7 6.8 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 | 7.2
7.2
7.2
7.2
7.3
7.3
7.2
7.0
7.0
7.1
6.9
6.9
6.9
6.9
6.9
6.9
7.0
7.0
7.0
7.0 |

7.1
7.1
7.0 | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27
28
28
28
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | | FEBRUARY | | | MARCH | | 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.1 7.1 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 7.1
7.2
7.1
7.1
7.1
7.2
7.1
6.9
6.8
6.9
6.7
6.5
6.7
6.9
6.9
6.9
6.9
6.9
6.9
6.9 | 7.2
7.2
7.2
7.2
7.3
7.3
7.2
7.0
7.1
6.9
6.9
6.8
6.9
6.9
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 |

7.1
7.1
7.0
7.1 | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | | FEBRUARY | | | MARCH |

 | 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.2 7.1 7.1 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | APRIL 7.1 7.2 7.1 7.1 7.2 7.1 7.2 7.1 6.9 6.8 7.0 6.9 6.8 6.9 6.7 6.5 6.7 6.8 6.9 6.9 6.9 6.9 6.9 6.8 6.9 | 7.2
7.2
7.2
7.2
7.3
7.3
7.2
7.0
7.0
7.1
6.9
6.9
6.9
6.9
6.9
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 |

7.1
7.1
7.0
7.0
7.0
6.9 | MAY | 7.1
7.0
6.9
7.0
6.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27
28
28
28
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | | FEBRUARY | | | MARCH | | 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.1 7.1 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 7.1
7.2
7.1
7.1
7.1
7.2
7.1
6.9
6.8
6.9
6.7
6.5
6.7
6.9
6.9
6.9
6.9
6.9
6.9
6.9 | 7.2
7.2
7.2
7.2
7.3
7.3
7.2
7.0
7.1
6.9
6.9
6.8
6.9
6.9
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 |

7.1
7.1
7.0
7.1 | MAY |

7.1
7.0
6.9
7.0
6.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
31
31
31
31
31
31
31
31
31
31
31
31 | | FEBRUARY | | | MARCH |

 | 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.2 7.1 7.1 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 7.1
7.1
7.1
7.1
7.1
7.2
7.1
6.9
6.8
7.0
6.8
6.9
6.7
6.5
6.7
6.5
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9 | 7.2
7.2
7.2
7.2
7.3
7.3
7.2
7.0
7.0
7.0
6.9
6.9
6.9
6.9
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 7.1
7.0
7.0
7.0
7.0
7.0 | MAY | 7.1
7.0
6.9
7.0
7.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | | FEBRUARY | | | MARCH |

 | 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.1 7.1 7.1 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 7.1
7.2
7.1
7.1
7.1
7.2
7.1
6.9
6.8
7.0
6.8
6.9
6.7
6.5
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9 | 7.2
7.2
7.2
7.3
7.3
7.2
7.0
7.1
6.9
6.9
6.9
6.9
6.9
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 7.1
7.0
7.0
6.9
7.0 | MAY | 7.1
7.0
6.9
7.0
6.9 | ### 01477050 DELAWARE RIVER AT CHESTER, PA--Continued PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEDIAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--|---------------------------------|---------------------------------|---------------------------------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMB | ER | | 1
2
3
4
5 | 7.0
7.0
7.1
7.1
7.1 | 6.9
6.9
7.0
7.0
7.0 | 7.0
6.9
7.1
7.1 | 6.9
7.0
6.9
6.8
6.9 | 6.8
6.7
6.6
6.7 | 6.9
6.9
6.8
6.8 | 7.0
6.9
7.0
7.0 | 6.7
6.7
6.8
6.8 | 6.8
6.9
6.9
6.9 | 7.5
7.5
7.4
7.4
7.3 | 7.3
7.2
7.2
7.2
7.1 | 7.4
7.4
7.3
7.3 | | 6
7
8
9
10 | 7.1
7.1
7.0
7.0
7.0 | 7.0
7.0
7.0
7.0
6.8 | 7.0
7.1
7.0
7.0
6.9 | 6.9
6.9
6.9
6.9 | 6.7
6.8
6.8
6.8 | 6.8
6.9
6.9 | 7.1
7.2
7.2
7.2
7.2 | 6.9
7.0
7.0
7.0
7.0 | 7.0
7.1
7.1
7.1
7.1 | 7.3
7.3
7.2
7.2
7.2 | 7.1
7.1
7.0
7.0
7.0 | 7.2
7.2
7.1
7.1 | | 11
12
13
14
15 | 6.9
6.9
6.8
6.8 | 6.8
6.7
6.8
6.8 | 6.8
6.8
6.8
6.8 | 7.0
7.1
7.1
7.0
6.9 | 6.9
6.9
6.8
6.8 | 6.9
7.0
7.0
6.9
6.8 | 7.2
7.2
7.2
7.1
7.1 | 7.0
7.0
7.0
6.9
7.0 | 7.1
7.1
7.1
7.0
7.1 | 7.2
7.2
7.3
7.3 | 7.0
7.1
7.2
7.2
7.2 | 7.1
7.2
7.2
7.2
7.2 | | 16
17
18
19
20 | 6.9
6.8
6.8
6.8 | 6.8
6.6
6.6
6.6 | 6.8
6.7
6.7 | 6.9
7.0
7.0
6.9
7.0
| 6.7
6.8
6.8
6.8 | 6.8
6.9
6.8
6.8 | 7.1

7.3 | 7.0

7.1 | 7.1

7.2 | 7.3
7.3
7.4
7.3
7.3 | 7.1
7.2
7.1
7.1 | 7.3
7.2
7.2
7.2
7.2 | | 21
22
23
24
25 | 6.8
6.7
6.8
6.8 | 6.7
6.6
6.7
6.7 | 6.7
6.7
6.7
6.7 | 7.0
7.0
7.0
7.0
7.1 | 6.8
6.9
6.9
7.0 | 6.9
6.9
6.9
7.0 | 7.3
7.3
7.3
7.2
7.2 | 7.1
7.2
7.0
7.1
7.0 | 7.2
7.2
7.2
7.1
7.1 | 7.2
7.2
7.2
7.3
7.3 | 7.1
7.1
7.1
7.2
7.2 | 7.2
7.2
7.2
7.2
7.2 | | 26
27
28
29
30
31 | 6.8
6.8
6.8
6.9 | 6.6
6.7
6.7
6.7 | 6.7
6.7
6.7
6.8
6.8 | 7.2
7.2
7.1
7.0
7.0 | 7.0
6.9
6.9
6.8
6.8 | 7.1
7.0
7.0
6.9
6.9 | 7.2
7.2
7.2
7.3
7.3
7.4 | 7.0
7.0
7.0
7.2
7.2
7.2 | 7.1
7.1
7.1
7.2
7.2
7.2 | 7.4
7.4
7.4
7.4
7.4 | 7.2
7.2
7.2
7.2
7.2 | 7.3
7.3
7.3
7.3
7.3 | | MAX
MIN | 7.1
6.7 | 7.0
6.6 | 7.1
6.7 | 7.2
6.8 | 7.0
6.6 | 7.1
6.8 | 7.4
6.9 | 7.2
6.7 | 7.2
6.8 | 7.5
7.2 | 7.3
7.0 | 7.4
7.1 | ### WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAY MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN OCTOBER NOVEMBER DECEMBER JANUARY 20.0 15.5 21.0 20.5 15.5 15.0 14.0 13.5 14.0 1 20.5 20.0 20.5 16.0 15.5 13.5 13.5 ---15.5 14.0 ___ ___ 3 21.0 20.0 20.5 16.0 15.5 16.0 13.5 13.0 13.5 ___ 21.5 16.0 ---4 20.5 21.0 15.5 15.5 ------------21.0 ___ 6 21.5 20.5 21.0 15.0 15.0 13.5 13.0 13.5 ---14.5 ---13.0 12.5 20.5 19.5 20.0 15.0 14.5 14.5 13.5 13.5 19.0 4 5 8 5.0 5.0 19 5 19.0 15.0 14.5 14.5 13 5 13.0 19.0 19.0 15.0 12.5 18.5 14.0 13.0 5.0 14.5 12.5 4.5 4.5 10 19.0 18.5 18.5 14.5 14.0 14.0 12.5 12.0 12.0 5.0 4.5 5.5 5.0 11 19.5 18.5 19.0 14.0 13.5 13.5 12.5 12.0 12.0 4.5 12 13 19.0 19.5 12.5 12.5 12.0 12.0 12.0 19.5 18.5 13.5 13.0 13.0 5.0 4.5 5.0 20.0 18.5 13.0 12.5 13.0 5.0 4.5 5.0 14 20.0 19.0 19.5 13.0 12.5 12.0 12.0 5.0 13.0 15 20.0 19.0 19.5 13.0 12.5 13.0 12.0 11.5 12.0 5.0 4.5 5.0 5.0 16 19.5 19.0 19.0 13.5 13.0 13.0 11.5 11.0 11.5 5.0 17 18 19.0 18.0 18.0 17.5 18.5 18.0 13.5 13.0 13.0 13.0 12.5 11.5 11.0 11.0 11.5 5.0 4.5 5.0 4.5 4.5 18.0 11.0 11.0 20 18.0 17.5 17 5 13.0 12.5 13.0 11.0 10.0 10.5 4.5 4.0 4.5 21 18.0 17.5 12.5 12.0 12.5 10.0 9.5 10.0 4.5 4.0 4.5 22 23 18.5 18.5 17.5 18.0 18.0 18.0 12.0 12.0 12.0 11.5 12.0 12.0 10.0 9.5 9.5 9.5 5.0 4.5 4.0 4.5 4.5 24 10.0 5.0 5.0 4.5 25 19.0 18.5 18.5 12.5 12.0 12.5 9.5 9.0 9.0 26 18.5 18.0 13.0 12.5 9.0 8.5 8.5 5.0 5.0 27 28 17.5 16.5 16.5 15.5 17.0 16.0 13.0 13.5 12.5 12.5 13.0 13.0 8.5 8.0 7.5 8.0 7.5 5.5 5.0 5.5 ---29 16.5 15.5 16.0 13.5 13.0 7.5 7.5 7.0 30 16 0 15.5 16 0 14.0 13.0 13.5 6 5 7 0 6 0 5 5 5 5 15.5 6.0 6.0 15.5 15.5 6.5 6.5 6.0 5.5 MONTH 21 5 15 5 18 6 14 0 6 0 10 8 6 0 4 0 4 9 16 0 11 5 13 6 # 01477050 DELAWARE RIVER AT CHESTER, PA--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|--|--|--|--|--| | | | FEBRUAR | Y | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 6.5
6.0
6.0
6.0
5.5 | 5.5
5.5
5.5
5.0
5.0 | 6.0
6.0
5.5
5.5 | 7.0
7.0
7.5
7.5
7.5 | 6.5
6.5
7.0
7.0
6.5 | 7.0
7.0
7.5
7.0
7.0 | 10.5
11.0
11.5
11.0
10.5 | 10.0
10.0
10.5
10.5 | 10.0
10.5
11.0
10.5
10.5 | |

 |

 | | 6
7
8
9
10 | 5.0
5.0
5.5
5.5
6.0 | 5.0
5.0
5.0
5.0 | 5.0
5.0
5.0
5.5 | 8.0
8.0
8.5
9.0
9.0 | 6.5
7.0
7.0
7.5
8.5 | 7.0
7.5
8.0
8.5
8.5 | 10.5
11.0
11.5
12.0
12.5 | 10.0
10.0
10.5
11.0
11.5 | 10.5
10.5
11.0
11.5
12.0 | |

 |

 | | 11
12
13
14
15 | 6.0
6.0
6.0
6.0 | 5.5
5.5
5.5
5.0
5.5 | 6.0
5.5
5.5
5.5
5.5 | 9.0
9.0
9.0
9.5
10.5 | 8.0
8.0
8.0
8.5
9.0 | 8.5
8.5
8.5
9.0
9.5 | 13.0
12.5
13.5
14.0
15.0 | 12.0
12.0
12.5
13.0
13.5 | 12.5
12.5
12.5
13.5
14.0 | |

 |

 | | 16
17
18
19
20 | 6.0
6.0
6.5
6.5 | 5.5
5.5
5.5
5.5
6.0 | 6.0
6.0
5.5
6.0 | 10.0
10.0
9.5
9.5
9.5 | 9.5
9.0
9.0
9.0 | 9.5
9.5
9.0
9.0 | 16.0
16.5
17.0
17.5
18.0 | 14.0
15.0
15.5
16.0
17.0 | 15.0
15.5
16.5
17.0
17.5 | |

 |

 | | 21
22
23
24
25 | 7.0
7.5
7.5
7.5
7.5 | 6.5
6.5
6.5
7.0 | 6.5
7.0
7.0
7.0
7.0 | 10.0
10.0
9.5
9.0
8.5 | 9.0
9.0
8.5
8.0 | 9.5
9.0
9.0
8.5
8.5 | 18.0
17.0
16.5
17.0
16.5 | 17.0
16.5
16.0
16.0 | 17.5
17.0
16.5
16.5 | 16.5
16.5

17.5
18.0 | 15.5
15.5

16.0
17.0 | 16.0
16.0

16.5
17.0 | | 26
27
28
29
30
31 | 8.0
8.0
7.5
 | 7.0
7.5
6.5
 | 7.5
7.5
7.0
 | 8.5
9.0
9.5
10.0
10.5
10.0 | 8.0
8.5
8.5
9.0
9.5
9.5 | 8.5
8.5
9.0
9.5
10.0 | 16.5
16.5
17.0
16.5
16.5 | 15.5
15.5
16.0
16.0 | 16.0
16.5
16.5
16.0 | 18.0
18.5
19.0
20.0
20.0
20.5 | 17.0
17.5
18.0
18.5
19.0
19.5 | 17.5
18.0
18.0
19.0
19.5
20.0 | | MONTH | 8.0 | 5.0 | 6.0 | 10.5 | 6.5 | 8.6 | 18.0 | 10.0 | 14.0 | 20.5 | 15.5 | 17.8 | | DAY | MAX | MIN | MEAN | | _ | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | | | 1
2
3
4
5 | 21.0
21.0
21.0
21.5
22.0 | 20.0
20.5
20.5
20.5
21.0 | 20.0
20.5
20.5
21.0
21.5 | 27.0
28.0
28.0
29.0
29.0 | 26.5
26.5
27.0
27.5
28.0 | 26.5
27.0
27.5
28.0
28.5 | 29.0
29.5
29.5
29.5
30.0 | 28.0
28.5
28.5
29.0
29.0 | 28.5
29.0
29.0
29.0
29.5 | 25.5
24.5
25.0
25.5
25.5 | 24.5
24.0
24.0
24.5
24.5 | 25.0
24.5
24.5
25.0
25.0 | | 6
7
8
9
10 | 23.0
22.5
22.5
23.0
24.0 | 21.5
22.0
21.5
22.0
22.5 | 22.0
22.0
22.0
22.5
23.0 | 28.5
28.0
28.0
28.5
28.0 | 27.5
27.0
27.0
27.0
27.5 | 28.0
27.5
27.5
27.5
27.5 | 29.5
28.5
28.0
28.0
28.0 | 28.5
27.5
27.0
27.0
27.0 | 29.0
28.0
27.5
27.5
27.5 | 25.5
25.5
25.5
26.0
26.5 | 24.5
24.5
24.5
25.0
25.0 | 25.0
25.0
25.0
25.5
25.5 | | 11
12
13
14
15 | 24.5
24.5
24.0
23.5
23.0 | 23.0
23.5
23.5
22.5
22.0 | 23.5
24.0
24.0
23.0
22.5 | 27.5
27.5
27.0
27.0
27.5 | 26.5
26.5
26.5
26.5
26.5 | 27.0
27.0
27.0
26.5
27.0 | 28.0
28.5
29.0
29.0
29.0 | 27.0
27.5
27.5
28.0
28.0 | 27.5
27.5
28.0
28.5
28.5 | 26.5
25.0
25.0
25.0
25.0 | 25.0
25.0
24.5
24.5
24.5 | 25.5
25.0
25.0
25.0
25.0 | | 16
17
18
19
20 | 23.0
23.0
23.0
23.5
24.0 | 22.0
22.5
22.5
22.5
23.0 | 22.5
22.5
23.0
23.0
23.5 | 27.5
27.5
28.0
28.5
28.5 | 26.5
26.5
27.0
27.5
27.5 | 27.0
27.0
27.5
28.0
28.0 | 29.0

29.5 | 28.5

29.0 | 29.0

29.0 | 25.5
25.5
25.5
25.5
25.5 | 24.5
24.5
24.5
24.5
24.5 | 25.0
25.0
25.0
25.0
25.0 | | 21
22
23
24
25 | 24.5
25.0
25.5
25.5
26.5 | 23.5
23.5
24.0
24.5
25.0 | 23.5
24.0
24.5
25.0
25.5 | 29.0
29.0
29.0
28.5
28.0 | 27.5
28.0
28.0
28.0
27.5 | 28.0
28.0
28.5
28.0
27.5 | 29.5
29.5
29.0
28.5
28.5 | 28.5
28.5
28.5
28.0
28.0 | 29.0
29.0
28.5
28.5
28.0 | 25.5
25.5
25.5
25.0
24.5 | 24.5
25.0
25.0
24.5
24.0 | 25.0
25.0
25.0
24.5
24.5 | | 26
27
28
29
30
31 | 26.5
27.0
26.5
26.5
27.0 | 25.5
26.0
26.0
26.0
26.0 | 26.0
26.5
26.5
26.0
26.5 | 27.5
27.0
28.0
28.5
28.5
28.5 | 26.5
26.5
27.0
27.5
27.5 | 27.0
26.5
27.0
27.5
28.0
28.0 | 28.5
28.5
28.0
27.0
26.0
26.0 | 28.0
28.0
27.0
26.0
25.5
25.5 | 28.0
28.0
27.5
26.5
26.0
25.5 | 24.0
23.5
23.5
23.5
23.5 | 23.5
23.0
23.0
23.0
23.0 | 24.0
23.0
23.0
23.0
23.0 | | MONTH
YEAR | 27.0
30.0 | 20.0 | 23.4 | 29.0 | 26.0 | 27.5 | 30.0 | 25.5 | 28.1 | 26.5 | 23.0 | 24.7 | # 01477050 DELAWARE RIVER AT CHESTER, PA--Continued OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|------------|------------------------|------------|--|-------------------|------------|--
---|---|---|--------------------|---| | | | OCTOBER | | | NOVEMBER | | | DECEMBER | | | JANUARY | | | 1 | 6.6
6.5 | 5.5
5.9 | 6.2 | 8.0
7.9 | 7.2 | 7.6 | 8.4 | 7.5 | 7.9 | | | | | 2 | 6.6 | 5.8 | 6.2
6.2 | 7.9 | 7.1
7.1 | 7.6
7.5 | 8.4 | 7.4 | 7.8 | | | | | 4
5 | 6.7
6.6 | 5.7
5.6 | 6.1
6.1 | 7.9
7.8 | 7.0
7.1 | 7.4
7.4 | 6
7 | 6.6
6.7 | 5.9
6.1 | 6.3
6.4 | 7.9
7.9 | 7.2
7.2 | 7.5
7.7 | | | | | | | | 8 | 7.1 | 6.4 | 6.7 | 8.0 | 7.1 | 7.6 | | | | | | | | 9
10 | 7.2
7.3 | 6.6
6.6 | 6.9
6.9 | 8.0
8.1 | 7.2
7.4 | 7.6
7.7 | 11
12 | 7.3
7.5 | 6.6
6.6 | 6.9
6.9 | 8.3
8.3 | 7.6
7.9 | 7.9
8.1 | | | | | | | | 13 | 7.4 | 6.5 | 6.8 | 8.4 | 7.9 | 8.1 | | | | | | | | 14
15 | 7.4
7.3 | 6.2
6.6 | 6.9
6.9 | 8.4
8.5 | 8.0
8.0 | 8.2
8.2 | 16
17 | 7.4
7.5 | 6.3
6.8 | 6.8
7.1 | 8.5
8.7 | 7.9
7.9 | 8.2
8.3 | | | | | | | | 18 | 7.4 | 7.0 | 7.2 | 8.7 | 8.1 | 8.4 | | | | | | | | 19
20 | 7.5
7.5 | 6.9
6.6 | 7.2
7.2 | 8.6
8.7 | 8.0
8.1 | 8.3
8.4 | 21
22 | 7.7
7.3 | 6.7
6.5 | 7.2
7.0 | 8.9
8.8 | 8.2
8.3 | 8.5
8.6 | | | | | | | | 23 | 7.4 | 6.6 | 7.0 | 8.8 | 8.2 | 8.5 | | | | | | | | 24
25 | 7.4
7.3 | 6.2
6.4 | 6.9
6.9 | 8.8
9.0 | 8.2
8.2 | 8.5
8.6 | 26
27 | 7.8
8.0 | 6.5
7.1 | 7.2
7.5 | 8.9
8.8 | 8.2
7.9 | 8.5
8.3 | | | | | | | | 28 | 8.1 | 7.2 | 7.6 | 8.7 | 7.6 | 8.1 | | | | | | | | 29
30 | 8.2
8.2 | 6.8
6.7 | 7.7
7.6 | 8.6
8.7 | 7.7
7.5 | 8.1
8.1 | | | | | | | | 31 | 8.0 | 7.3 | 7.7 | | | | | | | | | | | MONTH | 8.2 | 5.5 | 6.9 | 9.0 | 7.0 | 8.1 | 8.4 | 7.4 | 7.8 | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
FEBRUARY | | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | DAY | MAX | | | MAX | | MEAN | | APRIL | MEAN
9.5 | MAX | | MEAN | | 1
2 | | FEBRUARY |
 | | MARCH | | 9.7
9.7 | APRIL 9.3 9.4 | 9.5
9.6 | | MAY
 | | | 1 | | FEBRUARY | | | MARCH | | 9.7
9.7
9.8 | 9.3
9.4
9.5 | 9.5
9.6
9.7 | | MAY | | | 1
2
3 | | FEBRUARY |

 | | MARCH

 | | 9.7
9.7 | APRIL 9.3 9.4 | 9.5
9.6 | | MAY

 | | | 1
2
3
4 |

 | FEBRUARY |

 | ==== | MARCH

 |

 | 9.7
9.7
9.8
9.8 | 9.3
9.4
9.5
9.6 | 9.5
9.6
9.7
9.7 | | MAY

 | | | 1
2
3
4
5 | | FEBRUARY | | ===
===
===
=== | MARCH | | 9.7
9.7
9.8
9.8
9.9 | 9.3
9.4
9.5
9.6
9.6 | 9.5
9.6
9.7
9.7
9.7 | ====
====
====
==== | MAY | | | 1
2
3
4
5 | | FEBRUARY | | | MARCH | | 9.7
9.7
9.8
9.8
9.9
10.0
10.0 | 9.3
9.4
9.5
9.6
9.6
9.7
9.8 | 9.5
9.6
9.7
9.7
9.7
9.8
9.8 | ====
====
==== | MAY | | | 1
2
3
4
5 | | FEBRUARY | | ===
===
=== | MARCH | | 9.7
9.7
9.8
9.8
9.9 | 9.3
9.4
9.5
9.6
9.6 | 9.5
9.6
9.7
9.7
9.7 | ==== | MAY | | | 1
2
3
4
5
6
7
8 | | FEBRUARY | |

 | MARCH | | 9.7
9.7
9.8
9.8
9.9
10.0
10.0
10.2 | 9.3
9.4
9.5
9.6
9.6
9.7
9.8
9.9 | 9.5
9.6
9.7
9.7
9.7
9.8
9.8
9.9 | ===
===
===
=== | MAY | | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | ====================================== | MARCH | | 9.7
9.7
9.8
9.8
9.9
10.0
10.2
10.2
10.2 | 9.3
9.4
9.5
9.6
9.6
9.7
9.8
9.9 | 9.5
9.6
9.7
9.7
9.7
9.8
9.8
9.9
10.0
10.1 | | MAY | | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | | MARCH | | 9.7
9.7
9.8
9.8
9.9
10.0
10.0
10.2
10.2
10.2 | 9.3
9.4
9.5
9.6
9.6
9.7
9.8
9.9
9.9 | 9.5
9.6
9.7
9.7
9.7
9.8
9.9
10.0
10.1
9.9
9.9 | | MAY | | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | ====================================== | MARCH | | 9.7
9.7
9.8
9.8
9.9
10.0
10.2
10.2
10.2 | 9.3
9.4
9.5
9.6
9.6
9.7
9.8
9.9 | 9.5
9.6
9.7
9.7
9.7
9.8
9.8
9.9
10.0
10.1 | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | | MARCH | | 9.7
9.7
9.8
9.8
9.9
10.0
10.2
10.2
10.2
10.2
10.1
10.0
9.8
9.7
9.3 | 9.3
9.4
9.5
9.6
9.6
9.7
9.8
9.9
9.9 | 9.5
9.6
9.7
9.7
9.7
9.8
9.9
10.0
10.1
9.9
9.6
9.4 | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | ====================================== | MARCH | | 9.7
9.7
9.8
9.8
9.9
10.0
10.2
10.2
10.2
10.2
10.3
9.8
9.7
9.3 | 9.3
9.4
9.5
9.6
9.6
9.7
9.9
9.9
9.7
9.9 | 9.5
9.6
9.7
9.7
9.7
9.8
9.9
10.0
10.1
9.9
9.6
9.1
8.9 | | MAY | | | 1 2 3 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 | | FEBRUARY | | ====================================== | MARCH | | 9.7
9.7
9.8
9.8
9.9
10.0
10.2
10.2
10.2
10.1
10.0
9.8
9.7
9.3 | 9.3
9.4
9.5
9.6
9.6
9.7
9.8
9.9
9.9
9.7
9.4
9.2
8.9 | 9.5
9.6
9.7
9.7
9.7
9.8
9.8
9.9
10.1
9.9
9.6
9.1
8.9 | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | ====================================== | MARCH | | 9.7
9.7
9.8
9.8
9.9
10.0
10.2
10.2
10.2
10.2
10.3
9.8
9.7
9.3 | 9.3
9.4
9.5
9.6
9.6
9.7
9.9
9.9
9.7
9.9 | 9.5
9.6
9.7
9.7
9.7
9.8
9.9
10.0
10.1
9.9
9.6
9.1
8.9 | | MAY | | | 1 2 3 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 | | FEBRUARY | | | MARCH | | 9.7
9.7
9.8
9.8
9.9
10.0
10.2
10.2
10.2
10.1
10.0
9.8
9.7
9.3
9.1
8.6
8.4
8.0 | 9.3
9.4
9.5
9.6
9.6
9.7
9.8
9.9
9.9
9.7
9.4
9.2
8.3
7.9 | 9.5
9.6
9.7
9.7
9.7
9.8
9.8
9.0
10.1
9.9
9.6
9.4
9.1
8.9
8.4
8.5
8.2
7.8 | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | | FEBRUARY | | | MARCH | | 9.7
9.7
9.8
9.9
10.0
10.0
10.2
10.2
10.2
10.2
10.3
9.7
9.3
9.7
9.3
8.6
8.4
8.0
7.6
7.5 | 9.3
9.4
9.5
9.6
9.6
9.7
9.9
9.9
9.7
9.4
9.7
9.4
9.7
9.7
9.4
9.7 | 9.5
9.6
9.7
9.7
9.7
9.8
9.9
10.0
10.1
9.9
9.6
9.1
8.9
8.4
8.5
27.8 |

 | MAY | | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | | FEBRUARY | | | MARCH | | 9.7
9.7
9.8
9.8
9.9
10.0
10.2
10.2
10.2
10.2
10.3
9.8
9.7
9.3
9.1
8.6
8.4
8.0
7.6
7.5
7.1 | 9.3
9.4
9.5
9.6
9.6
9.7
9.8
9.7
9.9
9.7
9.4
9.2
8.3
7.9
8.3
7.9
6.6 | 9.5
9.6
9.7
9.7
9.8
9.8
9.0
10.1
9.9
9.6
9.1
8.9
8.5
8.2
7.5
2
6.9 |

7.9 | MAY |

7.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | | FEBRUARY | | | MARCH | | 9.7
9.7
9.8
9.9
10.0
10.0
10.2
10.2
10.2
10.2
10.3
9.7
9.3
9.7
9.3
8.6
8.4
8.0
7.6
7.5 | 9.3
9.4
9.5
9.6
9.6
9.7
9.9
9.9
9.7
9.4
9.7
9.4
9.7
9.7
9.4
9.7 | 9.5
9.6
9.7
9.7
9.7
9.8
9.9
10.0
10.1
9.9
9.6
9.1
8.9
8.4
8.5
27.8 |

 | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | | FEBRUARY | | | MARCH | | 9.7
9.7
9.8
9.9
10.0
10.2
10.2
10.2
10.2
10.3
9.8
9.7
9.3
9.1
8.6
8.4
8.0
7.6
7.5
7.1
6.9
6.7 | 9.3
9.4
9.5
9.6
9.6
9.7
9.8
9.9
9.7
9.4
9.2
8.9
8.5
7.9
8.3
7.9
6.6
6.4 | 9.5
9.6
9.7
9.7
9.8
9.8
9.0
10.1
9.9
9.6
9.1
8.9
8.5
8.2
7.5
26.9
6.5 |

7.9
7.9 | MAY | 7.7
7.7
7.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | | FEBRUARY | | | MARCH | | 9.7
9.7
9.8
9.8
9.9
10.0
10.0
10.2
10.2
10.2
10.2
10.3
9.7
9.3
9.7
9.3
9.7
9.3
9.7
9.3 |
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.7
9.9
9.7
9.2
8.9
8.5
7.9
8.7
6.6
6.4
6.3
6.2 | 9.56
9.77
9.79
9.8
9.99
10.1
9.99
9.4
9.1
8.4
8.5
27.8
7.2
6.9
6.5
6.5
6.5 |

7.9
7.9

7.8
7.7 | MAY |

7.7
7.7
7.6
7.6 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | | FEBRUARY | | | MARCH | | 9.7
9.7
9.8
9.9
10.0
10.2
10.2
10.2
10.2
10.3
9.8
9.7
9.3
9.1
8.6
8.4
8.0
7.6
7.5
7.1
6.7
6.7
6.5
6.3 | 9.3
9.4
9.5
9.6
9.6
9.7
9.9
9.7
9.2
8.9
8.5
7.9
8.3
7.6
6.6
6.4
6.3
6.0 | 9.56
9.77
9.79
9.8
9.99
10.1
9.99
9.4
9.1
8.4
8.5
27
6.8
6.5
6.5
6.5
6.5 |

7.9
7.9
7.7
7.6
7.6 | MAY | 7.7
7.7
7.6
7.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | | FEBRUARY | |

 | MARCH | | 9.7
9.8
9.8
9.9
10.0
10.2
10.2
10.2
10.2
10.3
9.7
9.3
9.7
9.3
9.7
9.3
6.7
6.7
6.7
6.5
6.3
6.4
6.5 | 9.3
9.4
9.6
9.6
9.7
9.8
9.9
9.7
9.9
9.7
9.2
8.9
8.5
7.9
8.7
6.6
6.4
6.2
6.0
6.1 | 9.56
9.77
9.79
9.8
9.99
10.1
9.99
9.44
9.1
9.99
10.1
9.99
10.1
9.99
10.1
9.99
10.1
9.66
10.1
10.1
10.1
10.1
10.1
10.1
10.1
1 | 7.9
7.9
7.7
7.6
7.4
7.3 | MAY |

7.7
7.7

7.6
7.5
7.4
7.2
7.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | | FEBRUARY | |

9,8
9,7 | MARCH | | 9.7
9.8
9.8
9.9
10.0
10.2
10.2
10.2
10.1
10.0
9.8
9.7
9.3
9.7
9.3
9.7
9.3
6.7
6.7
6.5
6.3
6.4 | 9.3
9.4
9.6
9.6
9.7
9.8
9.9
9.9
9.9
9.7
9.2
8.9
7.6
7.3
6.7
6.6
6.4
6.3
6.2
6.0
6.0 | 9.56
9.77
9.79
9.77
9.88
9.99
10.01
9.99
9.41
9.94
9.11
9.99
9.45
8.28
7.29
6.85
6.5
6.32
6.2 | 7.9
7.9
7.6
7.6 | MAY | 7.7
7.7
7.6
7.6
7.5
7.1 | # 01477050 DELAWARE RIVER AT CHESTER, PA--Continued OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------| | | | JUNE | | | JULY | | | AUGUST | | 2 | EPTEMBE | R | | 1
2
3
4
5 | 7.6
7.7
7.7
7.6
7.5 | 7.0
7.1
7.2
7.1
7.3 | 7.3
7.4
7.4
7.4
7.4 | 4.9
5.0
4.9
4.9
5.1 | 4.3
4.4
4.2
4.0
3.9 | 4.6
4.7
4.6
4.5
4.5 | 5.5
5.5
5.4
5.3 | 4.3
4.3
4.3
4.0
4.3 | 5.0
4.9
4.9
4.7 | 6.8
6.8
6.8
6.6 | 6.0
6.0
6.0
5.9 | 6.4
6.4
6.3
6.1 | | 6
7
8
9
10 | 7.3
7.0
7.0
6.5
6.0 | 7.0
6.6
6.4
5.9 | 7.1
6.9
6.7
6.2
5.8 | 5.4
5.4
5.6
5.7
5.8 | 4.3
4.6
4.7
4.9
4.8 | 4.8
5.0
5.2
5.3
5.3 | 5.5
5.7
5.9
6.0
6.0 | 4.3
4.8
4.8
4.8
4.8 | 4.9
5.3
5.4
5.5 | 6.6
6.6
6.4
6.4
6.2 | 5.5
5.5
5.4
5.2 | 6.1
6.0
6.0
5.8 | | 11
12
13
14
15 | 5.8
5.8
5.7
5.8
5.9 | 5.5
5.4
5.4
5.5
5.4 | 5.6
5.6
5.5
5.7
5.6 | 5.9
6.0
5.9
5.8
5.6 | 4.9
5.0
5.0
4.8
4.8 | 5.4
5.5
5.5
5.3
5.2 | 5.9
5.9
5.6
5.6 | 5.1
4.9
4.8
4.7
4.9 | 5.5
5.4
5.2
5.2
5.3 | 6.1
6.3
6.5
6.4
6.5 | 5.4
5.6
5.7
5.8
5.7 | 5.8
5.9
6.1
6.1
6.2 | | 16
17
18
19
20 | 5.7
5.7
5.5
5.4
5.2 | 5.3
5.3
5.1
4.9
4.6 | 5.5
5.5
5.3
5.1
4.8 | 5.6
6.0
5.9
5.7
5.9 | 4.8
4.8
5.0
4.7
4.5 | 5.2
5.3
5.4
5.2
5.0 | 5.7

5.7 | 5.0

4.8 | 5.3

5.3 | 6.5
6.5
6.4
6.4 | 5.9
5.8
5.6
5.6 | 6.2
6.1
6.2
6.0
6.0 | | 21
22
23
24
25 | 4.7
4.7
4.8
5.0 | 4.4
4.2
4.3
4.5
4.4 | 4.5
4.4
4.6
4.7
4.7 | 5.5
5.5
5.5
5.8 | 4.2
4.4
4.7
4.7
5.0 | 4.9
5.0
5.2
5.2
5.5 | 5.7
5.7
5.8
5.7
5.5 | 4.9
5.0
4.8
5.0
4.7 | 5.4
5.4
5.3
5.3 | 6.3
6.3
6.2
6.3
6.4 | 5.5
5.4
5.6
5.6
5.8 | 5.9
5.9
6.0
6.0 | | 26
27
28
29
30
31 | 5.1
5.1
5.2
4.8
4.8 | 4.2
4.5
4.3
4.2
4.2 | 4.6
4.8
4.7
4.5
4.5 | 5.9
5.8
5.5
5.4
5.5 | 5.2
4.8
4.5
4.5
4.5 | 5.5
5.4
5.1
5.0
5.0
5.1 | 5.4
5.4
5.8
6.0
6.0 | 4.6
4.5
4.7
5.4
5.3 | 5.1
5.0
5.3
5.8
5.7
5.8 | 6.6
6.9
6.7
6.8
6.8 | 5.9
6.3
6.0
5.9
5.7 | 6.3
6.6
6.4
6.3
6.2 | | MONTH | 7.7 | 4.2 | 5.7 | 6.0 | 3.9 | 5.1 | 6.3 | 4.0 | 5.3 | 6.9 | 5.2 | 6.1 | ### 01478245 WHITE CLAY CREEK NEAR STRICKERSVILLE, PA (Pennsylvania Water-Quality Network Station) LOCATION.--Lat 39°44′51", long 75°46′15", Chester County, Hydrologic Unit 02040205, on right bank 0.1 mi downstream from West Branch White Clay Creek, in the White Clay Creek State Preserve, and 1.5 mi northeast of Strickersville. **DRAINAGE AREA**.--59.2 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--August 1996 to current year. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 120 ft above National Geodetic Vertical Datum of 1929, from topographic map. **REMARKS**.--Records good except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. Satellite telemetry at station. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 1,800 ft³/s and maximum (*): | Date
Mar. | | Time
1700 | Discharge
ft ³ /s
*457 | Gage Heigh
(ft)
*5.07 | | | | _ | | Discharge
ft ³ /s
base dis | | ight | |----------------------------------|----------------------------------|----------------------------|---|----------------------------------|----------------------------|-----------------------------------|-----------------------------|----------------------------------|----------------------------|---|------------------------------------|----------------------------| | | | | DISCHAR | GE, CUBIC FEE | T PER S | ECOND, WAT
DAILY ME | | | 2001 TO SEP | TEMBER 2002 | 2 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 28 | 26 | 28 | e20 | 50 | 28 | 69 | 43 | 25 | 19 | 9.2 | 24 | | 2 | 27 | 26 | 27 | e19 | 44 | 29 | 49 | 80 | 24 | 18 | 8.6 | 24 | | 3 | 26 | 27 | 27 | e19 | 38 | 204 | 46 | 70 | 22 | 17 | 8.4 | 15 | | 4 | 25 | 27 | 27 | e18 | 37 | 62 | 43 | 43 | 22 | 16 | 8.5 | 12 | | 5 | 24 | 26 | 27 | e18 | e34 | 44 | 41 | 39 | 22 | 16 | 8.1 | 10 | | 6 | 24 | 26 | 27 | 41 | e34 | 40 | 41 | 36 | 49 | 15 | 8.2 | 9.6 | | 7 | 24 | 25 | 27 | 88 | 34 | 38 | 39 | 35 | 106 | 14 | 7.2 | 9.2 | | 8 | 24 | 25 | 29 | 52 | 33 | 36 | 38 | 33 | 31 | 14 | 6.9 | 8.9 | | 9 | 24 | 25 | 46 | 42 | 32 | 35 | 39 | 33 | 28 | 14 | 7.2 | 8.8 | | 10 | 25 | 25 | 32 | 38 | 32 | 44 | 42 | 34 | 26 | 19 | 7.0 | 8.5 | | 11
12
13
14
15 | 26
25
25
25
35 | 25
24
24
25
25 | 35
33
32
38
42 | 132
69
46
39
37 | 35
32
31
30
30 | 35
34
47
45
38 | 38
38
39
38
39 | 30
35
56
55
35 | 25
24
25
75
40 | 14
13
13
15
16 | 6.6
6.4
6.2
5.7
5.4 | 8.5
8.0
8.7
9.2 | | 16 | 28 | 25 | 33 | 35 | 31 | 37 | 46 | 32 | 33 | 13 | 5.6 | 14 | | 17 | 28 | 24 | 32 | 34 | 30 | 35 | 38 | 30 | 27 | 12 | 7.1 | 12 | | 18 | 27 | 24 | 54 | 33 | 29 | 64 | 35 | 176 | 26 | 12 | 15 | 10 | | 19 | 27 | 24 | 39 | 33 | 29 | 52 | 40 | 66 | 32 | 12 | 7.6 | 9.5 | | 20 | 27 | 26 | 34 | e36 | 30 | 196 | 49 | 44 | 27 | 13 | 7.1 | 9.6 | | 21 | 27 | 25 | 31 | e34 | 35 | 112 | 37 | 38 | 24 | 12 | 6.7 | 9.4 | | 22 | 27 | 24 | 30 | 32 | 31 | 62 | 43 | 35 | 22 | 11 | 6.4 | 9.3 | | 23 | 27 | 24 | 30 | 35 | 30 | 50 | 38 | 33 | 21 | 11 | 6.4 | 9.1 | | 24 | 27 | 24 | 46 | 105 | 29 | 46 | 34 | 31 | 20 | 13 | 12 | 8.8 | | 25 | 26 | 45 | 37 | 79 | 29 | 43 | 35 | 29 | 41 | 13 | 25 | 8.7 | | 26
27
28
29
30
31 | 25
25
25
26
27
25 | 62
33
30
29
29 | 32
30
e27
e29
e26
e21 | 47
41
39
37
36
52 | 29
29
28
 | 43
155
64
52
48
51 | 35
32
148
68
44 | 29
30
30
29
27
26 | 23
21
30
21
19 | 11
12
13
12
11
9.7 | 11
9.4
9.6
60
20
12 | 13
60
41
17
13 | | TOTAL | 811 | 829 | 1008 | 1386 | 915 | 1869 | 1361 | 1342 | 931 | 423.7 | 330.5 | 418.8 | | MEAN | 26.2 | 27.6 | 32.5 | 44.7 | 32.7 | 60.3 | 45.4 | 43.3 | 31.0 | 13.7 | 10.7 | 14.0 | | MAX | 35 | 62 | 54 | 132 | 50 | 204 | 148 | 176 | 106 | 19 | 60 | 60 | |
MIN | 24 | 24 | 21 | 18 | 28 | 28 | 32 | 26 | 19 | 9.7 | 5.4 | 8.0 | | CFSM | 0.44 | 0.47 | 0.55 | 0.76 | 0.55 | 1.02 | 0.77 | 0.73 | 0.52 | 0.23 | 0.18 | 0.24 | | IN. | 0.51 | 0.52 | 0.63 | 0.87 | 0.57 | 1.17 | 0.86 | 0.84 | 0.59 | 0.27 | 0.21 | 0.26 | | | | | | OR WATER YEA | | | | | | | | | | MEAN | 54.0 | 54.1 | 86.0 | 84.7 | 86.3 | 121 | 89.8 | 68.0 | 49.1 | 33.5 | 38.6 | 67.7 | | MAX | 143 | 119 | 246 | 134 | 134 | 191 | 126 | 90.3 | 64.4 | 59.3 | 96.2 | 231 | | (WY) | 1997 | 1997 | 1997 | 1997 | 1997 | 2000 | 1997 | 1998 | 1998 | 2000 | 1996 | 1999 | | MIN | 25.8 | 27.6 | 26.6 | 44.7 | 32.7 | 60.3 | 45.4 | 43.3 | 27.7 | 13.7 | 10.7 | 14.0 | | (WY) | 1998 | 2002 | 1999 | 2002 | 2002 | 2002 | 2002 | 2002 | 1999 | 2002 | 2002 | 2002 | e Estimated. # 01478245 WHITE CLAY CREEK NEAR STRICKERSVILLE, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1996 - 2002 | |--------------------------|------------------------|---------------------|----------------------------| | ANNUAL TOTAL | 21340 | 11625.0 | | | ANNUAL MEAN | 58.5 | 31.8 | 68.3 | | HIGHEST ANNUAL MEAN | | | 105 1997 | | LOWEST ANNUAL MEAN | | | 31.8 2002 | | HIGHEST DAILY MEAN | 703 Mar 30 | 204 Mar 3 | 4930 Sep 16 1999 | | LOWEST DAILY MEAN | 18 Aug 8,9 | 5.4 Aug 15 | 5.4 Aug 15 2002 | | ANNUAL SEVEN-DAY MINIMUM | 20 Aug 3 | 6.1 Aug 10 | 6.1 Aug 10 2002 | | MAXIMUM PEAK FLOW | | 457 Mar 20 | a 14400 Sep 16 1999 | | MAXIMUM PEAK STAGE | | 5.07 Mar 20 | b 16.71 Sep 16 1999 | | INSTANTANEOUS LOW FLOW | | 5.0 Aug 15,16 | 5.0 Aug 15 2002 | | ANNUAL RUNOFF (CFSM) | 0.99 | 0.54 | 1.15 | | ANNUAL RUNOFF (INCHES) | 13.41 | 7.30 | 15.67 | | 10 PERCENT EXCEEDS | 97 | 49 | 121 | | 50 PERCENT EXCEEDS | 41 | 28 | 45 | | 90 PERCENT EXCEEDS | 24 | 9.5 | 21 | $[\]begin{array}{ll} \textbf{a} & \text{From rating curve extended above 1,180 ft}^3\!/\!s \text{ on basis of runoff comparison with nearby station.} \\ \textbf{b} & \text{From floodmark in gage.} \end{array}$ # 01478245 WHITE CLAY CREEK NEAR STRICKERSVILLE, PA--Continued (Pennsylvania Water-Quality Network Station) # WATER-QUALITY RECORDS **PERIOD OF RECORD**.--April 2002 to current year. **REMARKS**.--Other data for the Water-Quality Network can be found on pages 410-425. **COOPERATION.**—Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection. ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
TOTAL
RECOV-
ERABLE
(MG/L
AS CA)
(00916) | MAGNE-
SIUM,
TOTAL
RECOV-
ERABLE
(MG/L
AS MG)
(00927) | ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | |----------------|--|---|--|---|--|--|--|--|--|--|--|---|--| | APR 200: | | 9813 | 33 | 30 | 13.0 | 8.1 | 342 | 10.4 | 150 | 35.1 | 14.3 | 86 | 27.2 | | JUN
25 | 1210 | 9813 | 37 | 30 | 8.5 | 7.8 | 309 | 22.8 | 120 | 29.8 | 11.7 | 72 | 21.7 | | AUG
28 | 0935 | 9813 | 9.3 | 30 | 7.5 | 7.9 | 365 | 21.4 | 140 | 35.7 | 13.5 | 98 | 28.4 | | Date | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RESIDUE
AT 105
DEG. C,
DIS-
SOLVED
(MG/L)
(00515) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N)
(00620) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N)
(00615) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | ORTHO-PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | OXYGEN
DEMAND,
BIO-
CHEM-
ICAL,
5 DAY
(MG/L)
(00310) | OXYGEN
DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | | APR 200: | | 228 | 8 | .030 | 3.60 | <.010 | 3.7 | .095 | .150 | 2.5 | 3.0 | .6 | 10 | | JUN
25 | 29.3 | 88 | 108 | .030 | 3.58 | .070 | 4.5 | .113 | .310 | 7.5 | 7.3 | 2.6 | 23 | | AUG
28 | 32.7 | 294 | 2 | .060 | 2.23 | .010 | 2.4 | .111 | .170 | | 3.8 | .7 | <10 | | Date | FECAL
COLI-
FORM,
MFC MF,
WATER
(COL/
100 ML)
(31616) | ARSENIC DIS- SOLVED (µG/L AS AS) (01000) | ARSENIC
TOTAL
(µG/L
AS AS)
(01002) | CADMIUM DIS- SOLVED (µG/L AS CD) (01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µG/L
AS CD)
(01027) | CHRO-
MIUM,
HEXA-
VALENT,
DIS.
(µG/L
AS CR)
(01032) | CHRO-MIUM,
TOTAL
RECOV-ERABLE
(µG/L
AS CR) | COPPER,
DIS-
SOLVED
(µG/L
AS CU)
(01040) | COPPER,
TOTAL
RECOV-
ERABLE
(µG/L
AS CU)
(01042) | IRON, DIS- SOLVED (µG/L AS FE) (01046) | IRON,
TOTAL
RECOV-
ERABLE
(µG/L
AS FE)
(01045) | LEAD,
DIS-
SOLVED
(µG/L
AS PB)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µG/L
AS PB)
(01051) | | APR 200:
24 | | <4.0 | <4 | <.20 | <.2 | <1 | <4 | <4 | <4 | 70 | 190 | <1.0 | <1.0 | | JUN
25 | 260000 | <4.0 | <4 | <.20 | <.2 | <1 | <4 | <4 | 5.9 | 40 | 3220 | <1.0 | 2.8 | | AUG
28 | 280 | <4.0 | <4 | <.20 | <.2 | <1 | <4 | <4 | <4 | 40 | 180 | <1.0 | <1.0 | | | Date | MANGA-
NESE,
DIS-
SOLVED
(µG/L
AS MN)
(01056) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(µG/L
AS MN)
(01055) | MERCURY
DIS-
SOLVED
(µG/L
AS HG)
(71890) | MERCURY
TOTAL
RECOV-
ERABLE
(µG/L
AS HG)
(71900) | NICKEL,
DIS-
SOLVED
(µG/L
AS NI)
(01065) | NICKEL,
TOTAL
RECOV-
ERABLE
(µG/L
AS NI)
(01067) | SELE-
NIUM,
DIS-
SOLVED
(µG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(µG/L
AS AG)
(01075) | SILVER,
TOTAL
RECOV-
ERABLE
(µG/L
AS AG)
(01077) | ZINC,
DIS-
SOLVED
(µG/L
AS ZN)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µG/L
AS ZN)
(01092) | | | | APR 2002
24 | <2.0 | <2 | <.20 | <.2 | <4.0 | <4.0 | <7 | < . 4 | <.40 | <5.0 | <5.0 | | | | JUN
25 | 20 | 100 | <.20 | <.2 | <4.0 | <4.0 | <7 | < . 4 | < .40 | <5.0 | 10 | | | | AUG
28 | 40 | 50 | <.20 | <.2 | <4.0 | <4.0 | <7 | < . 4 | < .40 | 6.5 | <5.0 | | ### 01479676 RUNOFF TO UNNAMED TRIBUTARY TO WEST BRANCH RED CLAY CREEK AT KENNETT SQUARE, PA (New Garden Township, Chester County, Spray Irrigation Project) **LOCATION**.--Lat 39°50′52", long 75°43′42", Chester County, Hydrologic unit 02040205, 125 ft upstream from station 01479678, and 725 ft upstream from confluence with West Branch Red Clay Creek, at Kennett Square Borough. **DRAINAGE AREA**.--0.03 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--July 1999 to December 2001. (discontinued) GAGE.--Water-stage recorder. Elevation of gage is 335 ft above National Geodetic Vertical Datum of 1929, from topographic map. **REMARKS**.--Records poor. Other data for this project presented in tables on pages 426-435 and 472-496. | | DISCHARGE, CUBIC FEET PER SECOND, OCTOBER 2001 TO DECEMBER 2001
DAILY MEAN VALUES | | | | | | | | | | | | |-------|--|-------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 0.023 | 0.024 | 0.011 | | | | | | | | | | | 2 | 0.020 | 0.024 | 0.011 | | | | | | | | | | | 3 | 0.020 | 0.021 | 0.014 | | | | | | | | | | | 4 | 0.020 | 0.020 | 0.013 | | | | | | | | | | | 5 | 0.372 | 0.018 | 0.012 | | | | | | | | | | | 6 | 0.281 | 0.018 | 0.012 | | | | | | | | | | | 7 | 0.296 | 0.014 | 0.012 | | | | | | | | | | | 8 | 0.031 | 0.014 | 0.012 | | | | | | | | | | | 9 | 0.030 | 0.015 | 0.010 | | | | | | | | | | | 10 | 0.029 | 0.013 | 0.009 | | | | | | | | | | | 11 | 0.029 | 0.014 | 0.013 | | | | | | | | | | | 12 | 0.029 | 0.014 | 0.015 | | | | | | | | | | | 13 | 0.160 | 0.014 | 0.017 | | | | | | | | | | | 14 | 0.034 | 0.020 | 0.019 | | | | | | | | | | | 15 | 0.036 | 0.014 | 0.017 | | | | | | | | | | | 16 | 0.026 | 0.014 | 0.017 | | | | | | | | | | | 17 | 0.023 | 0.014 | 0.014 | | | | | | | | | | | 18 | 0.021 | 0.012 | 0.016 | | | | | | | | | | | 19 | 0.020 | 0.011 | 0.020 | | | | | | | | | | | 20 | 0.017 | 0.013 | 0.008 | | | | | | | | | | | 21 | 0.021 | 0.014 | 0.008 | | | | | | | | | | | 22 | 0.020 | 0.014 | 0.008 | | | | | | | | | | | 23 | 0.021 | 0.014 | 0.008 | | | | | | | | | | | 24 | 0.019 | 0.012 | 0.012 | | | | | | | | | | | 25 | 0.016 | 0.023 | 0.011 | | |
 | | | | | | | 26 | 0.014 | 0.014 | 0.011 | | | | | | | | | | | 27 | 0.016 | 0.014 | e0.010 | | | | | | | | | | | 28 | 0.017 | 0.012 | 0.013 | | | | | | | | | | | 29 | 0.021 | 0.011 | 0.011 | | | | | | | | | | | 30 | 0.018 | 0.013 | e0.008 | | | | | | | | | | | 31 | 0.021 | | e0.008 | | | | | | | | | | | TOTAL | 1.721 | 0.462 | 0.380 | | | | | | | | | | | MEAN | 0.056 | 0.015 | 0.012 | | | | | | | | | | | MAX | 0.372 | 0.024 | 0.020 | | | | | | | | | | | MTN | 0.072 | 0.021 | 0.020 | | | | | | | | | | | STATIS | TICS OF M | ONTHLY ME | AN DATA | FOR PERIOD | OF DAILY | RECORD, | BY WATER | YEAR (WY) | | | | | |---------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | MEAN
MAX | 0.038 | 0.022 | 0.027 | 0.038 | 0.046 | 0.042 | 0.030 | 0.035
0.056 | 0.038 | 0.042
0.065 | 0.027
0.050 | 0.056 | | (WY)
MIN
(WY) | 2002
0.027
2001 | 2000
0.013
2002 | 2000
0.012
2002 | 2001
0.028
2000 | 2000
0.032
2001 | 2000
0.020
2001 | 2000
0.010
2001 | 2000
0.014
2001 | 2000
0.024
2001 | 2000
0.019
2001 | 2000
0.005
1999 | 1999
0.027
2001 | e Estimated. # 01479676 RUNOFF TO UNNAMED TRIBUTARY TO WEST BRANCH RED CLAY CREEK AT KENNETT SQUARE, PA--Continued (New Garden Township, Chester County, Spray Irrigation Project) | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR PERIOD OF DAILY RECORD | |--------------------------|---------------------------|----------------------------| | ANNUAL TOTAL | 9.309 | | | ANNUAL MEAN | 0.026 | 0.036 | | HIGHEST ANNUAL MEAN | | 0.047 2000 | | LOWEST ANNUAL MEAN | | 0.025 2001 | | HIGHEST DAILY MEAN | 0.580 Jan 19 | 2.3 Sep 16 1999 | | LOWEST DAILY MEAN | e 0.005 Jan 2,9,15 | 0.000 Jul 7 1999 | | ANNUAL SEVEN-DAY MINIMUM | a 0.01 Jan 9 | 0.00 Jul 7 1999 | | MAXIMUM PEAK FLOW | | 13 Sep 16 1999 | | MAXIMUM PEAK STAGE | | 2.54 Sep 16 1999 | | INSTANTANEOUS LOW FLOW | | 0.00 Jul 6 1999 | | 10 PERCENT EXCEEDS | 0.03 | 0.06 | | 50 PERCENT EXCEEDS | 0.01 | 0.02 | | 90 PERCENT EXCEEDS | 0.01 | 0.01 | a Computed using estimated daily discharges. e Estimated. ### 01479676 RUNOFF TO UNNAMED TRIBUTARY TO WEST BRANCH RED CLAY CREEK AT KENNETT SQUARE, PA--Continued (New Garden Township, Chester County, Spray Irrigation Project) ### WATER-QUALITY RECORDS PERIOD OF RECORD.--June 1999 to December 2001. (discontinued) INSTRUMENTATION.--Automatic pumping sampler for stormflow events since September 1999. Sample intakes are located in flume. REMARKS.-- Two types of samples are collected at this station. Grab samples are collected at the outlet of the flume. These are samples with one date in the table below. Samples with two dates are composited stormflow samples. Constituent values for stormflow water quality are for discharge-weighted composited samples; sample time is the composite start time, discharge is the mean for the composited period. Some values for dissolved phosphorus exceed values for total phosphorus and one value for dissolved ortho-phosphorus exceeds values for dissolved and total phosphorus. These results are within the limits of analytical precision and methods. Other data for this project are presented in tables on pages 426-435 and 472-496. | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | | FEET
PER
SECONI | INST. CUBIC FEET PER SECONI | RED-
UCTION
POTEN-
TIAL
O (MV) | DIS-
SOLVED
(MG/L) | (STAND-
ARD
UNITS) | ANCE (µS/CM) | |--------------------------------|---|---|---|--|---|---|--|---|--| | OCT 2001
05-05
11
OCT | 0917
1000 | 9813
9813 | 1028
1028 | .50 | .03 | | |
6.4 |
462 | | 13-13
25
NOV | 1045
0910 | 9813
9813 | 1028
1028 | .35 | .02 | |
5.1 | 7.0 | 430 | | 14
14
NOV | 0830
0840 | 9813
1028 | 1028
1028 | | .01 | | 7.8 | 6.7 | 414 | | 25-25
29
DEC | 1711
1210 | 9813
9813 | 1028
1028 | .08 | .01 | 230 | | 6.6 | 408 | | 06
06
12
27 | 0820
0821
1150
0810 | 9813
9813
9813
9813 | 1028
1028
1028
1028 |

 | .01
.01
.01 | | 7.4
7.4
9.5
9.7 | 6.8
6.8
7.0
6.9 | 401
401
396
395 | | Date | TEMPER-
ATURE
WATER
(DEG C)
(00010) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | BROMIDE
DIS-
SOLVED
(MG/L
AS BR)
(71870) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | | OCT 2001
05-05
11 | | | | | | | 87.8
50.9 | | | | OCT
13-13
25 |
13.6 | | | | | | 85.9
48.5 | | | | NOV
14
14 | 5.6 | | | | | | 49.2 | | | | NOV
25-25
29 | 12.3 | | | | | | 52.9
48.4 | | | | DEC
06
06
12
27 | 9.9
9.9
8.4
2.1 |

51.9
 |

13.4
 |

4.48 |

7.63 |

<.2
 | 47.7
47.8
49.3
47.7 |

<.20 |

9.76
 | # 01479676 RUNOFF TO UNNAMED TRIBUTARY TO WEST BRANCH RED CLAY CREEK AT KENNETT SQUARE, PA--Continued | Date | DIS-
SOLVED
(MG/L
AS SO4) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | AS N) | SOLVED
(MG/L
AS N) | DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | GEN,
TOTAL
(MG/L
AS N) | AS P) | |-----------------------------|------------------------------------|---|---|---|--|---|--|---------------------------------|------------------------------| | OCT 2001
05-05
11 | | | .440 | .460
<.020 | 4.5
.61 | 1.33 | .240 | 5.0
.61 | .700
.063 | | 13-13
25 | | | .440 | .450
<.020 | 3.2
.46 | | <.040
<.040 | 4.6 | .540
.058 | | NOV
14
14 | | | <.020 | <.020 | .64 | .43 | <.040 | .66
 | .030 | | NOV
25-25
29 | | | .110
<.020 | .110 | 2.1
.76 | | <.040
<.040 | 2.4 | .198
.031 | | DEC
06
06
12
27 |

27.2
 |

248
 | <.020 | <.020
<.020
<.020
<.020 | .88
.86
.80 | .58 | <.040
<.040
<.040
<.040 | .93
.90
.95 | .025
.030
.029
.026 | | Date | DIS-
SOLVE
(MG/
AS P | E, PHOS
PHORU
D TOTA
L (MG/1
) AS P | S DIS-
L SOLVE
L (MG/
) AS C | IC CARBOI
ORGAN
D TOTA
L (MG/I
) AS C | IC DIS
L SOLVI
L (µG/1
) AS A | , MONY
- DIS
ED SOLV
L (µG/
L) AS S | , ARSENI | ED SOLVE
L (µG,
S) AS E | D
/L
(A) | | OCT 2001
05-05
11 | .58 | | | 10.0 | | | | | | | OCT
13-13
25
NOV | .46 | | | | | | | | | | 14
14 | .02 | | | | | | | | | | NOV
25-25
29 | .19 | | | | | | | | | | DEC
06
06
12
27 | .02
.02
.02 | 6 .06
4 .03 | 0
8 2.2 | 2.1 |
39 |
<2 |
<4.0 |
91.8 | | # 01479676 RUNOFF TO UNNAMED TRIBUTARY TO WEST BRANCH RED CLAY CREEK AT KENNETT SQUARE, PA--Continued | Date | BORON,
DIS-
SOLVED
(µG/L
AS B)
(01020) | CADMIUM
DIS-
SOLVED
(µG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(µG/L
AS CR)
(01030) | COPPER,
DIS-
SOLVED
(µG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(µG/L
AS FE)
(01046) | IRON,
TOTAL
RECOV-
ERABLE
(µG/L
AS FE)
(01045) | LEAD,
DIS-
SOLVED
(µG/L
AS PB)
(01049) | LITHIUM
DIS-
SOLVED
(µG/L
AS LI)
(01130) | |---|---|---|--|---|--|--|---|--| | OCT 2001
05-05 | | | | | <20 | 620 | | | | 11
OCT | | | | | 20 | 30 | | | | 13-13 | | | | | | | | | | 25
NOV | | | | | | | | | | 14 | | | | | <20 | 80 | | | | 14
NOV | | | | | | | | | | 25-25 | | | | | 40 | 620 | | | | 29
DEC | | | | | 30 | 40 | | | | 06 | | | | | <20 | <20 | | | | 06 | | | | | <20 | <20 | | | | 12 | 200 | <.20 | < 4 | <4 | <20 | | <1.0 | <20 | | 27 | | | | | <20 | <20 | | | | | | | | | | | | | | Date | MANGA-
NESE,
DIS-
SOLVED
(µG/L
AS
MN)
(01056) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(µG/L
AS MN)
(01055) | MERCURY
DIS-
SOLVED
(µG/L
AS HG)
(71890) | NICKEL,
DIS-
SOLVED
(µG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(µG/L
AS SE)
(01145) | STRON-
TIUM,
DIS-
SOLVED
(µG/L
AS SR)
(01080) | ZINC,
DIS-
SOLVED
(µG/L
AS ZN)
(01090) | N15/N14
NO3
FRAC
WATER
FLTRD
0.45 μ
PER MIL
(82690) | | OCT 2001 | NESE,
DIS-
SOLVED
(µG/L
AS MN)
(01056) | NESE,
TOTAL
RECOV-
ERABLE
(µG/L
AS MN)
(01055) | DIS-
SOLVED
(µG/L
AS HG)
(71890) | DIS-
SOLVED
(µG/L
AS NI)
(01065) | NIUM,
DIS-
SOLVED
(µG/L
AS SE)
(01145) | TIUM,
DIS-
SOLVED
(µG/L
AS SR)
(01080) | DIS-
SOLVED
(µG/L
AS ZN)
(01090) | NO3
FRAC
WATER
FLTRD
0.45 μ
PER MIL
(82690) | | OCT 2001
05-05 | NESE,
DIS-
SOLVED
(µG/L
AS MN)
(01056) | NESE,
TOTAL
RECOV-
ERABLE
(µG/L
AS MN)
(01055) | DIS-
SOLVED
(µG/L
AS HG)
(71890) | DIS-
SOLVED
(µG/L
AS NI)
(01065) | NIUM,
DIS-
SOLVED
(µG/L
AS SE)
(01145) | TIUM,
DIS-
SOLVED
(µG/L
AS SR)
(01080) | DIS-
SOLVED
(µG/L
AS ZN)
(01090) | NO3
FRAC
WATER
FLITRD
0.45 μ
PER MIL
(82690) | | OCT 2001 | NESE,
DIS-
SOLVED
(µG/L
AS MN)
(01056) | NESE,
TOTAL
RECOV-
ERABLE
(µG/L
AS MN)
(01055) | DIS-
SOLVED
(µG/L
AS HG)
(71890) | DIS-
SOLVED
(µG/L
AS NI)
(01065) | NIUM,
DIS-
SOLVED
(µG/L
AS SE)
(01145) | TIUM,
DIS-
SOLVED
(µG/L
AS SR)
(01080) | DIS-
SOLVED
(µG/L
AS ZN)
(01090) | NO3
FRAC
WATER
FLTRD
0.45 μ
PER MIL
(82690) | | OCT 2001
05-05
11
OCT
13-13 | NESE,
DIS-
SOLVED
(µG/L
AS MN)
(01056) | NESE,
TOTAL
RECOV-
ERABLE
(µG/L
AS MN)
(01055) | DIS-
SOLVED
(µG/L
AS HG)
(71890) | DIS-
SOLVED
(µG/L
AS NI)
(01065) | NIUM,
DIS-
SOLVED
(µG/L
AS SE)
(01145) | TIUM,
DIS-
SOLVED
(µG/L
AS SR)
(01080) | DIS-
SOLVED
(µG/L
AS ZN)
(01090)
410
<10 | NO3
FRAC
WATER
FLITRD
0.45 μ
PER MIL
(82690) | | OCT 2001
05-05
11
OCT
13-13
25 | NESE,
DIS-
SOLVED
(µG/L
AS MN)
(01056) | NESE,
TOTAL
RECOV-
ERABLE
(µG/L
AS MN)
(01055) | DIS-
SOLVED
(µG/L
AS HG)
(71890) | DIS-
SOLVED
(µG/L
AS NI)
(01065) | NIUM,
DIS-
SOLVED
(µG/L
AS SE)
(01145) | TIUM,
DIS-
SOLVED
(µG/L
AS SR)
(01080) | DIS-
SOLVED
(µG/L
AS ZN)
(01090) | NO3
FRAC
WATER
FLITRD
0.45 μ
PER MIL
(82690) | | OCT 2001
05-05
11
OCT
13-13
25 | NESE,
DIS-
SOLVED
(μG/L
AS MN)
(01056)
<10
10 | NESE,
TOTAL
RECOV-
ERABLE
(μG/L
AS MN)
(01055) | DIS-
SOLVED
(µG/L
AS HG)
(71890) | DIS-
SOLVED
(µG/L
AS NI)
(01065) | NIUM,
DIS-
SOLVED
(µG/L
AS SE)
(01145) | TIUM,
DIS-
SOLVED
(µG/L
AS SR)
(01080) | DIS-
SOLVED
(µG/L
AS ZN)
(01090)
410
<10
20
<10 | NO3
FRAC
WATER
FLTRD
0.45 µ
PER MIL
(82690) | | OCT 2001
05-05
11
OCT
13-13
25 | NESE,
DIS-
SOLVED
(µG/L
AS MN)
(01056) | NESE,
TOTAL
RECOV-
ERABLE
(μG/L
AS MN)
(01055) | DIS-
SOLVED
(µG/L
AS HG)
(71890) | DIS-
SOLVED
(µG/L
AS NI)
(01065) | NIUM,
DIS-
SOLVED
(µG/L
AS SE)
(01145) | TIUM,
DIS-
SOLVED
(µG/L
AS SR)
(01080) | DIS-
SOLVED
(µG/L
AS ZN)
(01090)
410
<10 | NO3
FRAC
WATER
FLTRD
0.45 µ
PER MIL
(82690) | | OCT 2001
05-05
11
OCT
13-13
25
NOV
14
14 | NESE,
DIS-
SOLVED
(μG/L
AS MN)
(01056)
<10
10

<10
 | NESE,
TOTAL
RECOV-
ERABLE
(µG/L
AS MN)
(01055)
140
20

80
 | DIS-
SOLVED
(μG/L
AS HG)
(71890) | DIS-
SOLVED
(μG/L
AS NI)
(01065) | NIUM,
DIS-
SOLVED
(μG/L
AS SE)
(01145) | TIUM,
DIS-
SOLVED
(µG/L
AS SR)
(01080) | DIS-
SOLVED
(#G/L
AS ZN)
(01090)
410
<10
20
<10
<10 | NO3 FRAC WATER FLTRD 0.45 PER MIL (82690) 11.80 | | OCT 2001
05-05
11
OCT
13-13
25
NOV
14
14
NOV
25-25 | NESE,
DIS-
SOLVED
(μG/L
AS MN)
(01056)
<10
10

<10

<10 | NESE,
TOTAL
RECOV-
ERABLE
(µG/L
AS MN)
(01055)
140
20

80

230 | DIS-
SOLVED
(μG/L
AS HG)
(71890) | DIS-
SOLVED
(µG/L
AS NI)
(01065) | NIUM,
DIS-
SOLVED
(µG/L
AS SE)
(01145) | TIUM,
DIS-
SOLVED
(µG/L
AS SR)
(01080) | DIS-
SOLVED
(µG/L
AS ZN)
(01090)
410
<10
20
<10
<10
 | NO3
FRAC
WATER
FLTRD
0.45 µ
PER MIL
(82690) | | OCT 2001
05-05
11
OCT
13-13
25
NOV
14
14
NOV
25-25
29 | NESE,
DIS-
SOLVED
(μG/L
AS MN)
(01056)
<10
10

<10
 | NESE,
TOTAL
RECOV-
ERABLE
(µG/L
AS MN)
(01055)
140
20

80
 | DIS-
SOLVED
(μG/L
AS HG)
(71890) | DIS-
SOLVED
(μG/L
AS NI)
(01065) | NIUM,
DIS-
SOLVED
(μG/L
AS SE)
(01145) | TIUM,
DIS-
SOLVED
(µG/L
AS SR)
(01080) | DIS-
SOLVED
(#G/L
AS ZN)
(01090)
410
<10
20
<10
<10 | NO3 FRAC WATER FLTRD 0.45 PER MIL (82690) 11.80 | | OCT 2001
05-05
11
OCT
13-13
25
NOV
14
14
NOV
25-25 | NESE,
DIS-
SOLVED
(μG/L
AS MN)
(01056)
<10
10

<10

<10 | NESE,
TOTAL
RECOV-
ERABLE
(µG/L
AS MN)
(01055)
140
20

80

230 | DIS-
SOLVED
(μG/L
AS HG)
(71890) | DIS-
SOLVED
(µG/L
AS NI)
(01065) | NIUM,
DIS-
SOLVED
(µG/L
AS SE)
(01145) | TIUM,
DIS-
SOLVED
(µG/L
AS SR)
(01080) | DIS-
SOLVED
(µG/L
AS ZN)
(01090)
410
<10
20
<10
<10
 | NO3
FRAC
WATER
FLTRD
0.45 µ
PER MIL
(82690) | | OCT 2001
05-05
11
OCT
13-13
25
NOV
14
14
NOV
25-25
29 | NESE,
DIS-
SOLVED (μG/L
AS MN) (01056)
<10
10

<10

<10
<10
<10 | NESE,
TOTAL
RECOV-
ERABLE
(µG/L
AS MN)
(01055)
140
20

80

230
<10 | DIS-
SOLVED
(μG/L
AS HG)
(71890) | DIS-
SOLVED
(μG/L
AS NI)
(01065) | NIUM,
DIS-
SOLVED
(μG/L
AS SE)
(01145) | TIUM, DIS- SOLVED (µG/L AS SR) (01080) | DIS-
SOLVED
(#G/L
AS ZN)
(01090)
410
<10
20
<10
<10
 | NO3
FRAC
WATER
FLTRD
0.45 µ
PER MIL
(82690) | | OCT 2001
05-05
11
OCT
13-13
25
NOV
14
14
NOV
25-25
29
DEC
06 | NESE,
DIS-
SOLVED (μG/L
AS MN) (01056)
<10
10

<10

<10

<10
<10
<10 | NESE,
TOTAL
RECOV-
ERABLE
(µG/L
AS MN)
(01055)
140
20

80

230
<10 | DIS-
SOLVED
(μG/L
AS HG)
(71890) | DIS-
SOLVED
(µG/L
AS NI)
(01065) | NIUM,
DIS-
SOLVED
(µG/L
AS SE)
(01145) | TIUM, DIS- SOLVED (μG/L AS SR) (01080) | DIS-
SOLVED
(#G/L
AS ZN)
(01090)
410
<10
20
<10
<10

<10 | NO3
FRAC
WATER
FLTRD
0.45 \mu
PER MIL
(82690) | # 01479677 UNNAMED POND ABOVE UNNAMED TRIB. TO WEST BRANCH RED CLAY CREEK AT KENNETT SQUARE, PA (New Garden Township, Chester County, Spray Irrigation Project) LOCATION.--Lat 39°50'55", long 75°43'43", Chester County, Hydrologic unit 02040205. DRAINAGE AREA.--0.07 mi². 05... <.020 7.89 PERIOD OF RECORD.--May 1998 to December 2001. (discontinued) **REMARKS.**-- Depth intergrated samples collected with a grab sample prior to July 7, 1999 and by a peristaltic pump from July 29, 1999 to current year. Some values for "dissolved" parameters exceed values for the corresponding "total" parameter. These results are within the limits of analytical precision and methods. Other data for this project presented in tables on pages 426-435 and 472-496. ### WATER-QUALITY DATA, OCTOBER 2001 TO DECEMBER 2001 | Date | Time | SAMPLE | SAMPLE | DI:
SOL'
(MG | VED AR
/L) UNI | ER SI
LE CI
LD CO
ND- DO
D AM | JCT-
JCE
S/CM) (| WATER | SOL'
(MG | IUM SI
- DI
VED SOI
/L (MG
CA) AS | NE- POTA: UM, SIUI S- DIS- VED SOLV: L (MG/) MG) AS K 25) (0093: | M,
-
ED
L | |-----------------------|-----------------------|------------------------------------|--|--------------------------------|--|---|------------------------------------|---|--------------------------------------|---|--|--------------------| | OCT 2001
10
NOV | 1500 | 9813 | 1028 | 2. | 4 7. | 5 4 | 130 | 13.0 | 50. | 1 11. | 1 5.2 | 2 | | 08
DEC | 1100 | 9813 | 1028 | 9. | 5 7. | 4 4 | 146 | 10.4 | - | | | | | 05 | 1530 | 9813 | 1028 | 13. | 8 7. | 9 4 | 125 | 10.5 | 53. | 6 12. | 8 3.4 | 1 | | Date | DI
SOL
(M
AS | WA PIUM, UNF S- I VED FI IG/L (MG/ | T I
ELD SO
L AS (N | DIS-
DLVED
MG/L
B BR) | RIDE,
DIS-
SOLVED
(MG/L | DIS-
SOLVEI
(MG/L
AS F) | DIS-
SOLV
(MG/
AS
SIO2 | SUI
ED DI
L SC
(M | S-
DLVED
MG/L
SO4) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) |
AMMONIA
DIS-
SOLVED
(MG/L | | | OCT 2001
10 | 11 | .8 6 | 5 < | <.2 | 39.6 | <.20 | 11.4 | . 39 | 9.6 | 256 | .370 | | | NOV
08 | | 7 | 9 | | | | | | | | <.020 | | | DEC
05 | 1.0 | | | <.2 | 39.8 | <.20 | 14.6 | . 41 | . 4 | 298 | <.020 | | | 03 | 10 | . 1 / | , | | 39.0 | <.20 | 14.0 | 41 | | 290 | <.020 | | | Date | AMM
TC
(M
AS | EN, GIONIA DI
TAL SOL
G/L (M | TRO- (EN NIT S- I VED SO G/L (N N) AS | TRATE
DIS-
DLVED | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | GEN,
TOTAL
(MG/L
AS N) | PHORU
DIS | F PH
S PH
F DI
FED SOI
L (M | HATE,
IS-
LVED
MG/L
B P) | PHORUS
TOTAL | SOLVED
(MG/L
AS C) | | | OCT 2001
10
NOV | | 370 8 | .8 7. | . 38 | .100 | 9.4 | .022 | <. | 010 | .130 | 3.7 | | | 08 | <. | 020 9 | .2 7 | . 83 | .110 | 9.6 | .017 | <. | 010 | .060 | | | | DEC
05 | <. | 020 9 | .5 7. | . 89 | <.040 | 10 | .023 | <. | 010 | .070 | 2.6 | | <.040 10 .023 <.010 .070 2.6 # 01479677 UNNAMED POND ABOVE UNNAMED TRIB. TO WEST BRANCH RED CLAY CREEK AT KENNETT SQUARE, PA--Continued | Date | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | ALUM-
INUM,
DIS-
SOLVED
(µG/L
AS AL)
(01106) | ANTI-
MONY,
DIS-
SOLVED
(µG/L
AS SB)
(01095) | ARSENIC
DIS-
SOLVED
(µG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(µG/L
AS BA)
(01005) | BORON,
DIS-
SOLVED
(µG/L
AS B)
(01020) | CADMIUM
DIS-
SOLVED
(µG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(µG/L
AS CR)
(01030) | COPPER,
DIS-
SOLVED
(µG/L
AS CU)
(01040) | |--|--|--|--|---|---|---|--|---|---| | OCT 2001
10
NOV
08
DEC
05 | 3.8

2.8 | 16

17 | <2

<2 | <4.0

<4.0 | 79.6

77.4 | <200

<200 | <.20

<.20 | <4

<4 | <4

<4 | | Date | IRON,
DIS-
SOLVED
(µG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(µG/L
AS PB)
(01049) | LITHIUM
DIS-
SOLVED
(µG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(µG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(μG/L
AS HG)
(71890) | NICKEL,
DIS-
SOLVED
(µG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(µG/L
AS SE)
(01145) | STRON-
TIUM,
DIS-
SOLVED
(µG/L
AS SR)
(01080) | ZINC,
DIS-
SOLVED
(µG/L
AS ZN)
(01090) | | OCT 2001
10
NOV
08 | 40 | <1.0 | <20
 | 70
 | <.20 | <4.0 | <7
 | 170
 | <10 | | 05 | 20 | <1.0 | <20 | 80 | <.20 | <4.0 | <7 | 190 | <10 | # 01479678 UNNAMED TRIBUTARY TO WEST BRANCH RED CLAY CREEK AT KENNETT SQUARE, PA (New Garden Township, Chester County, Spray Irrigation Project) **LOCATION**.--Lat 39°50'56", long 75°43'41", Chester County, Hydrologic unit 02040205, on right bank 600 ft upstream of confluence with West Branch Red Clay Creek, downstream of pond (station 01479677), at Kennett Square Borough. **DRAINAGE AREA**.--0.07 mi². 1999 (WY) 1999 1999 2000 2001 2001 2001 1999 1999 1998 1998 1998 ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--April 1998 to December 2001. (discontinued) GAGE.--Water-stage recorder. Elevation of gage is 302.30 ft above sea level, from Global Positioning System. **REMARKS**.--Records poor. Monthly water-quality samples were collected during the year. Other data for this project presented in tables on pages 426-435 and 472-496. ### DISCHARGE, CUBIC FEET PER SECOND, OCTOBER 2001 TO DECEMBER 2001 DAILY MEAN VALUES DAY JUL OCT NOV DEC JAN FEB MAR APR MAY JUN AUG SEP 0.037 0.030 0.026 2 ---------------____ ---0.033 0.030 0.026 ------3 0.034 0.030 0.026 ___ ___ ---___ ___ ___ ___ ------4 0.033 0.030 0.026 ------___ ------------___ 5 0.423 0.030 ------------------0.026 ---------6 7 0.364 0.030 0.024 ---------___ ___ ---------0.030 ------------___ ---0.362 0.069 0.022 8 0.028 ---------___ ---___ ___ ---9 0.062 0.030 0.034 ---------------------------10 0.026 0.026 0.072 0.028 11 0.029 ------------------------12 0.059 0.026 0.030 13 0.181 0.028 0.028 ___ ___ ___ ___ ___ ___ ___ ___ ___ ------------------------14 0.061 0.033 0.031 ---15 0.136 0.030 0.028 0.030 16 0.092 0.026 ------------------------0.071 0.027 0.030 18 0.056 0.030 0.035 ___ ___ ___ ___ ___ ___ ___ ___ ___ ------------------------0.030 ---19 0.036 0.035 20 0.035 0.030 0.028 0.030 21 0.037 0.026 ------------------22 23 ------0.042 0.028 0.026 0.041 0.026 0.026 ___ ___ ___ ___ ___ ___ ___ ___ ___ 24 ---------0.026 ---------------0.034 ---25 0.041 0.048 0.028 26 0.035 0.033 0.026 27 28 ---------------0.035 0.027 ------___ ___ 0.034 0.026 0.026 ___ ___ ___ 0.026 29 ------------------------0.026 0.030 0.026 ___ ___ ------___ ___ ___ ___ 31 0.030 0.026 ---TOTAL 2.680 0.887 0.857 ------------0.030 ---------------MEAN 0.028 0.423 0.048 0.035 ---------------------MAX MIN 0.026 0.030 0.022 ___ ___ ___ ___ ___ ------------------0.39 ---------CFSM 1.24 0.46 1.42 0.47 IN. STATISTICS OF MONTHLY MEAN DATA FOR PERIOD OF DAILY RECORD, BY WATER YEAR (WY) 0.053 0.036 0.075 0.076 0.062 0.041 0.034 0.089 MEAN 0.059 0.083 0.103 0.045 0.086 0.054 0.092 0.090 0.14 0.12 0.11 0.089 0.076 MAX 0.12 0.096 0.22 (WY) 2002 2000 2001 2001 1999 2000 2000 2000 2001 2000 2000 1999 0.012 MIN 0.010 0.015 0.052 0.072 0.070 0.041 0.019 0.020 0.011 0.010 0.010 # 01479678 UNNAMED TRIBUTARY TO WEST BRANCH RED CLAY CREEK AT KENNETT SQUARE, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR PERIOD OF DAILY RECORD | |--------------------------|------------------------|----------------------------| | ANNUAL TOTAL | 21.215 | | | ANNUAL MEAN | 0.058 | 0.068 | | HIGHEST ANNUAL MEAN | | 0.084 2000 | | LOWEST ANNUAL MEAN | | 0.055 1999 | | HIGHEST DAILY MEAN | 1.3 Jan 30 | e 5.5 Sep 16 1999 | | LOWEST DAILY MEAN | e 0.008 Jan 2 | a 0.000 Aug 6 1998 | | ANNUAL SEVEN-DAY MINIMUM | b 0.01 Jan 9 | a 0.00 Jul 12 1999 | | MAXIMUM PEAK FLOW | | 27 Sep 16 1999 | | MAXIMUM PEAK STAGE | | c 1.82 Sep 16 1999 | | INSTANTANEOUS LOW FLOW | | 0.00 Jul 19 1999 | | ANNUAL RUNOFF (CFSM) | 0.83 | 0.97 | | ANNUAL RUNOFF (INCHES) | 11.27 | 13.20 | | 10 PERCENT EXCEEDS | 0.07 | 0.10 | | 50 PERCENT EXCEEDS | 0.04 | 0.04 | | 90 PERCENT EXCEEDS | 0.02 | 0.01 | OCTOBER 1, 2001 TO DECEMBER 31, 2001 ^{a First occurrence. b Computed using estimated daily discharges. c Maximum recorded. e Estimated.} ## 01479678 UNNAMED TRIBUTARY TO WEST BRANCH RED CLAY CREEK AT KENNETT SQUARE, PA--Continued (New Garden Township, Chester County, Spray Irrigation Project) # WATER-QUALITY RECORDS **REMARKS**.--Some values for "dissolved" parameters exceed values for the corresponding "total" parameter. These results are within the limits of analytical precision and methods. PERIOD OF RECORD.--May 1998 to December 2001. (discontinued) ### WATER-QUALITY DATA, OCTOBER 2001 TO DECEMBER 2001 | | | | | | (| | | | | | | |-----------------------|-----------------------------|---|---|---|--|--|--|--|------------------------------------|---|--| | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | AGENCY
COL-
LECTIN
SAMPLE
(CODE
NUMBER
(00027 | G OXYG | S- (STA
VED AR
/L) UNI | ER S LE C LD C ND- D D A TS) (µ | PE-
IFIC
ON-
UCT-
NCE
S/CM) | TEMPER
ATURE
WATER
(DEG (| SOL
(MG | SIUM SI
S- DI
VED SOI
S/L (MC
CA) AS | BNE- POTAS- LUM, SIUM, LS- DIS- LVED SOLVED G/L (MG/L MG) AS K) 225) (00935) | | OCT 2001
18 | 1300 | 9813 | 1028 | 2. | 4 7. | 5 | 437 | 11.7 | 52. | 3 12. | .1 5.14 | | NOV
08 | 1000 | 9813 | 1028 | 9. | 5 7. | 5 | 452 | 10.2 | _ | | | | DEC
06 | 1400 | 9813 | 1028 | 8. | 5 7. | 3 | 438 | 12.3 | 51. | 0 11. | .6 3.62 | | 00 | 1400 | 7013 | 1020 | 0. | <i>,</i> , . | 5 | 130 | 12.5 | 51. | 0 11. | .0 5.02 | | Date | DI
SOL
(M
AS | UM, UNE S- I VED FI G/L (MG, NA) CA | T
ELD
L AS | DIS-
SOLVED
(MG/L
AS BR) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVE
(MG/L
AS F) | DI
SO
D (M
A
SI | LVED
G/L
S
O2) A | DIS-
SOLVED
(MG/L
AS SO4) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | | | OCT 2001
18 | 11 | .3 | 19 | <.2 | 43.7 | <.20 | 12 | .6 | 35.9 | 316 | <.020 | | NOV
08 | | 8 | 32 | | | | | | | | <.020 | | DEC
06 | 9 | .88 | 4 | <.2 | 39.7 | <.20 | 13 | .6 | 40.0 | 308 | .020 | | Date | G:
AMM
TO
(M
AS | EN, CONIA DI
TAL SOI
G/L (N | TRO-
GEN N
SS-
LVED
IG/L
SN) | NITRO-
GEN,
IITRATE
DIS-
SOLVED
(MG/L
AS N)
00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO
GEN,
TOTAL
(MG/L
AS N)
(00600 | - PHO
D
SO
(M
AS | OS-
RUS
IS-
LVED S
G/L
P) | |
PHORUS
TOTAL
(MG/L
AS P) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | | OCT 2001
18
NOV | <. | 020 6 | 5.9 | 5.56 | <.040 | 7.1 | .0 | 48 | .021 | .050 | 3.5 | | 08
DEC | <. | 020 8 | 3.2 | 7.30 | <.040 | 8.1 | .0 | 35 | .023 | .040 | | | 06 | | 020 | .7 | 7.76 | <.040 | 9.3 | .0 | 23 | .015 | .030 | 2.9 | # 01479678 UNNAMED TRIBUTARY TO WEST BRANCH RED CLAY CREEK AT KENNETT SQUARE, PA--Continued | Date | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | ALUM-
INUM,
DIS-
SOLVED
(µG/L
AS AL)
(01106) | ANTI-
MONY,
DIS-
SOLVED
(µG/L
AS SB)
(01095) | ARSENIC
DIS-
SOLVED
(µG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(µG/L
AS BA)
(01005) | BORON,
DIS-
SOLVED
(µG/L
AS B)
(01020) | CADMIUM
DIS-
SOLVED
(µG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(µG/L
AS CR)
(01030) | COPPER,
DIS-
SOLVED
(µG/L
AS CU)
(01040) | |--|--|--|--|---|---|---|--|---|---| | OCT 2001
18
NOV
08
DEC
06 | 3.3

3.0 | 16

17 | <2

<2 | <4.0

<4.0 | 86.7

80.2 | <200

<200 | <.20

<.20 | <4

<4 | <4

<4 | | Date | IRON,
DIS-
SOLVED
(µG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(µG/L
AS PB)
(01049) | LITHIUM
DIS-
SOLVED
(µG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(µG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(μG/L
AS HG)
(71890) | NICKEL,
DIS-
SOLVED
(µG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(µG/L
AS SE)
(01145) | STRON-
TIUM,
DIS-
SOLVED
(µG/L
AS SR)
(01080) | ZINC,
DIS-
SOLVED
(µG/L
AS ZN)
(01090) | | OCT 2001
18
NOV
08 | 30 | <1.0 | 20 | 80 | <.20 | <4.0 | <7 | 180 | <10 | | DEC
06 | 20 | <1.0 | <20 | 40 | <.20 | <4.0 | <7 | 180 | <10 | ### 01479820 RED CLAY CREEK NEAR KENNETT SQUARE, PA (Pennsylvania Water-Quality Network Station) LOCATION.--Lat 39°49'00", long 75°41'31", Chester County, Hydrologic Unit 02040205, on left bank along SR 82 (Creek Road), and 3.0 mi south of the intersection of SR 82 and U.S. Highway 1 at Kennett Square. **DRAINAGE AREA**.--28.3 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--January 1988 to current year. Discharge GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 200 ft above National Geodetic Vertical Datum of 1929, from topographic map. **REMARKS.**--No estimated daily discharges. Records poor. Some regulation upstream of gage. Several measurements of water temperature were made during the year. Satellite telemetry at station. Discharge Gage Height PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 1,000 ft³/s and maximum (*): Gage Height | Date | Т | ime | ft ³ /s | Gage Heigi
(ft) | nt | | Date | Т | ime | Discharge
ft ³ /s | e Gage Hei
(ft) | ght | |------------------------------------|--------------------------------------|--------------------------------------|------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|--|----------------------| | June | 19 2 | 145 | *981 | *5.84 | | | (No | peaks | above | base d | ischarge.) | | | | | | DISCH | ARGE, CUBIC | FEET PER S | | TER YEAR O
EAN VALUES | | 2001 TO SI | ЕРТЕМВЕ | ER 2002 | | | DAY | OCT | NOV. | 7 DEC | JAN | FEB | MAR | APR | MAY | JUI | N C | JUL AUG | SEP | | 1
2
3
4
5 | 13
13
12
12
12 | 14
15
14
12
13 | 12
12
12
12 | 14
13
12 | 24
21
18
17
16 | 15
16
133
24
18 | 30
19
19
18
17 | 25
39
26
20
19 | 1'
1!
1!
14 | 5 17
5 17
4 19 | 7 7.7
7 8.2
5 7.9 | 14
11
9.3 | | 6
7
8
9
10 | 15
12
11
12
13 | 13
12
12
12 | 2 12
2 15
2 20 | 40
22
18 | 16
16
16
16 | 16
15
15
14
20 | 16
14
15
16
17 | 18
18
18
19 | 50
49
18
14 | 9 13
8 13
4 13 | 3 6.4
3 6.1
3 5.1 | 7.8
7.9
7.8 | | 11
12
13
14
15 | 13
14
15
14
23 | 11
11
11
12 | 17
17
2 23 | 30
21 | 19
16
16
15
16 | 16
16
27
27
24 | 17
19
18
17 | 17
19
42
30
20 | 11
14
18
58
31 | 4 12
8 11
8 15 | 2 5.1
1 5.0
5 4.7 | 11
10
7.1 | | 16
17
18
19
20 | 15
16
15
15
15 | 12
11
11
11
13 | 18
33
20 | 16 | 16
15
15
15
16 | 24
24
52
24
111 | 16
16
17
22
28 | 18
17
135
35
25 | 28
20
15
140
69 | 0 11
5 9
0 9 | 1 11
9.9 16
9.7 5.0 | 8.1
7.5
6.7 | | 21
22
23
24
25 | 14
15
16
16
16 | 12
11
11
11
30 | 17
16
34 | 17
19 | 22
16
15
15 | 43
25
20
20
19 | 15
24
18
17
24 | 22
20
19
19
19 | 2:
16
14
3:
4: | 6 9
4 8
2 13 | 8.7 5.7
9.1 6.0
8.7 6.4
3 10
9.8 10 | 5.0 | | 26
27
28
29
30
31 | 14
13
13
13
14 | 31
17
16
15
13 | 7 17
5 17
5 17
8 16 | 19
17
17
16
16
28 | 15
16
15
 | 20
79
25
21
19
22 | 24
20
86
31
24 | 18
19
20
18
18 | 22
29
31
20
11 | 9 9
5 9
0 11
7 8 | 3.0 29 | | | TOTAL
MEAN
MAX
MIN | 438
14.1
23
11 | 411
13.7
31 | 7 17.3
34 | 78 | 464
16.6
24
15 | 944
30.5
133
14 | 652
21.7
86
14 | 788
25.4
135
17 | 876
29.2
140 | 2 12
0 | 2.5 371.9
2.0 12.0
17 131
3.0 4.6 | 12.1
66 | | STATIST | ICS OF 1 | MONTHLY | MEAN DATA | FOR WATER | YEARS 198 | 88 - 2002, | BY WATER | YEAR (W | TY) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 26.6
75.5
1997
10.8
1995 | 31.0
61.3
1997
10.9
1999 | 128
1997
12.9 | 48.0
96.1
1996
22.0
1992 | 42.7
81.2
1994
16.6
2002 | 60.1
116
1994
30.5
2002 | 45.6
85.5
1993
21.7
2002 | 40.5
79.2
1989
21.7
1999 | 32.6
57.3
1996
16.0
1995 | 3 94
6 19
0 12 | 5.7 21.5 4.5 55.2 989 1996 2.0 5.84 995 1995 | 89.4
1999
8.83 | # 01479820 RED CLAY CREEK NEAR KENNETT SQUARE, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1988 - 2002 | |--------------------------|------------------------|---------------------|---------------------------| | ANNUAL TOTAL | 11193.4 | 6911.3 | | | ANNUAL MEAN | 30.7 | 18.9 | 37.2 | | HIGHEST ANNUAL MEAN | | | 52.0 1997 | | LOWEST ANNUAL MEAN | | | 18.9 2002 | | HIGHEST DAILY MEAN | 454 Mar 30 | 140 Jun 19 | 1820 Sep 16 1999 | | LOWEST DAILY MEAN | 8.9 Aug 9 | 4.6 Aug 26 | 0.86 Sep 3 1995 | | ANNUAL SEVEN-DAY MINIMUM | 11 Aug 3 | 5.2 Aug 8 | 1.1 Sep 2 1995 | | MAXIMUM PEAK FLOW | | 981 Jun 19 | a 4680 Sep 16 1999 | | MAXIMUM PEAK STAGE | | 5.84 Jun 19 | 10.04 Sep 16 1999 | | 10 PERCENT EXCEEDS | 54 | 29 | 59 | | 50 PERCENT EXCEEDS | 20 | 16 | 26 | | 90 PERCENT EXCEEDS | 12 | 8.0 | 12 | **a** From rating curve extended above 2,100 ft³/s. # CHRISTINA RIVER BASIN ### 01479820 RED CLAY CREEK NEAR KENNETT SQUARE, PA--Continued (Pennsylvania Water-Quality Network Station) # WATER-QUALITY RECORDS **PERIOD OF RECORD**.--April 2002 to current year. **REMARKS**.--Other data for the Water-Quality Network can be found on pages 410-425. **COOPERATION.**—Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection. ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
TOTAL
RECOV-
ERABLE
(MG/L
AS CA)
(00916) | MAGNE-
SIUM,
TOTAL
RECOV-
ERABLE
(MG/L
AS MG)
(00927) | ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | |-----------------------|--|---|---|---|--|--|---|---
--|--|--|---|--| | APR 2002
24 | 1340 | 9813 | 17 | 30 | 12.7 | 8.2 | 403 | 13.0 | 170 | 40.5 | 16.3 | 90 | 37.6 | | JUN
25 | 1420 | 9813 | 31 | 30 | 9.0 | 7.9 | 310 | 23.0 | 120 | 28.3 | 11.1 | 70 | 23.9 | | AUG 28 | 1115 | 9813 | 8.3 | 30 | 8.9 | 8.0 | 476 | 21.4 | 170 | 40.7 | 17.3 | 112 | 39.0 | | | SULFATE | RESIDUE
AT 105
DEG. C, | RESIDUE
TOTAL
AT 105
DEG. C, | NITRO-
GEN,
AMMONIA | NITRO-
GEN, | NITRO-
GEN,
NITRITE | NITRO-
GEN, | ORTHO-
PHOS-
PHATE,
DIS- | PHOS-
PHORUS | CARBON,
ORGANIC
DIS- | CARBON,
ORGANIC | OXYGEN
DEMAND,
BIO-
CHEM- | OXYGEN
DEMAND,
CHEM-
ICAL | | Date | SOLVED
(MG/L
AS SO4)
(00945) | DEG. C,
DIS-
SOLVED
(MG/L)
(00515) | SUS-
PENDED
(MG/L)
(00530) | TOTAL
(MG/L
AS N)
(00610) | TOTAL
(MG/L
AS N)
(00620) | TOTAL
(MG/L
AS N)
(00615) | TOTAL
(MG/L
AS N)
(00600) | SOLVED
(MG/L
AS P)
(00671) | TOTAL
(MG/L
AS P)
(00665) | SOLVED
(MG/L
AS C)
(00681) | TOTAL
(MG/L
AS C)
(00680) | ICAL,
5 DAY
(MG/L)
(00310) | (HIGH
LEVEL)
(MG/L)
(00340) | | APR 2002
24
JUN | 37.8 | 312 | 28 | .040 | 4.79 | .050 | 5.2 | .309 | .350 | 3.1 | 3.3 | 1.1 | <10 | | 25
AUG | 30.2 | 246 | 18 | .170 | 2.70 | .040 | 3.3 | .174 | .250 | 7.5 | 6.8 | 2.0 | 28 | | 28 | 40.5 | 710 | 12 | <.020 | 4.56 | <.010 | 5.1 | .645 | .670 | 3.4 | 3.6 | .5 | <10 | | Date | FECAL
COLI-
FORM,
MFC MF,
WATER
(COL/
100 ML)
(31616) | ARSENIC DIS- SOLVED (µG/L AS AS) (01000) | ARSENIC
TOTAL
(µG/L
AS AS)
(01002) | CADMIUM DIS- SOLVED (µG/L AS CD) (01025) | CADMIUM WATER UNFLTRD TOTAL (µG/L AS CD) (01027) | CHRO-
MIUM,
HEXA-
VALENT,
DIS.
(µG/L
AS CR)
(01032) | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(µG/L
AS CR)
(01034) | COPPER,
DIS-
SOLVED
(µG/L
AS CU)
(01040) | COPPER,
TOTAL
RECOV-
ERABLE
(µG/L
AS CU)
(01042) | IRON,
DIS-
SOLVED
(µG/L
AS FE)
(01046) | IRON, TOTAL RECOV- ERABLE (µG/L AS FE) (01045) | LEAD,
DIS-
SOLVED
(µG/L
AS PB)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µG/L
AS PB)
(01051) | | APR 2002
24
JUN | 180 | <4.0 | <4 | <.20 | <.2 | <1 | <4 | <4 | <4 | 50 | 170 | <1.0 | <1.0 | | 25 | 20000 | <4.0 | <4 | <.20 | <.2 | <1 | <4 | <4 | 7.3 | 80 | 1420 | <1.0 | 2.5 | | AUG
28 | 1000 | <4.0 | <4 | <.20 | <.2 | <1 | <4 | <4 | <4 | 30 | 150 | <1.0 | <1.0 | | | Date APR 200 24 JUN 25 AUG 28 | AS M
(0105
22
20
30 | , TOTA - RECO ED ERAB 'L (μG/ IN) AS M | ,
L MERCU
V- DIS
LE SOLV
'L (µG,
N) AS H | - RECO ED ERAB /L (µG G) AS H 0) (7190 <.2 | L NICKE V- DIS- LE SOLV /L (µG G) AS N 0) (0106 <4.0 | RECC
ED ERAE
/L (µC
I) AS N | AL NIUM DIS BLE SOLV S/L (µG NI) AS S NO (0114) <7 | i, SILVE
E- DIS
ED SOLV
E/L (µ0
EE) AS A | RECCO ERAB G/L (μ/L) AS A (5) (0107 < .40 | LL ZINC DIS SLE SOLV G/L (µ LG) AS Z (7) (0109 | - RECO
ED ERAB
G/L (μ
N) AS Z
0) (0109 | L
V-
LE
G/L
N) | # 01480300 WEST BRANCH BRANDYWINE CREEK NEAR HONEY BROOK, PA LOCATION.--Lat 40°04'22", long 75°51'40", Chester County, Hydrologic Unit 02040205, on right bank 100 ft upstream from bridge on SR 4007 at Birdell, 0.4 mi downstream from Two Log Run, and 3.0 mi southeast of Honey Brook. DRAINAGE AREA.--18.7 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--June 1960 to current year. REVISED RECORDS.--WDR PA-73-1: 1972(P). WDR PA-99-1: 1972, 1973, 1975, 1976, 1978, 1979, 1982, 1984, 1985, 1987-89, 1996, 1997 (P). GAGE.--Water-stage recorder and crest-stage gage. Prior to July 1990, water-stage recorder at site 130 ft downstream on right bank at same datum. Datum of gage is 591.20 ft above National Geodetic Vertical Datum of 1929. **REMARKS.**—Records fair, except those above 1,000 ft³/s, and those for estimated daily discharges, which are poor. Some regulation at low flow by pumpage from the Northwestern Chester County Wastewater Treatment plant. Several measurements of water temperature were made during the year. Satellite and landline telemetry at station. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 500 ft³/s and maximum (*): | Date
June | | Гіте
)145 | Discharge
ft ³ /s
*365 | Gage Heigh
(ft)
*5.12 | nt | | Date
(No | | | charge
ft ³ /s
se disch | Gage Height
(ft)
narge.) | | |--|---|--------------------------------------|---|--|--|--|--|--|--|---|--|--| | | | | DISCH | ARGE, CUBIC | FEET PER S | | TER YEAR (
EAN VALUE | | 001 TO SEPT | EMBER 200 |)2 | | | DAY | OCT | NOV | DEC DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 6.3
6.1
6.1
5.5
5.3 | 5.9
5.9
5.4
5.4 | 4.9
5.6
6.0 | e4.8
e5.0
5.4
5.3
5.0 | 15
11
8.3
8.3
6.8 | 4.8
4.7
49
13
8.2 | 16
11
12
15
11 | 11
56
54
14
11 | 7.2
6.3
6.4
6.4
7.1 | 5.6
5.2
4.7
4.5
4.6 | 1.8
2.2
3.2
6.2
3.2 | 5.0
5.7
3.7
2.8
2.4 | | 6
7
8
9
10 | 5.3
5.2
5.4
5.6
6.2 | 5.7
5.9
6.1
5.7 | 6.0
6.7 | 8.3
18
10
9.4 | 6.8
7.3
7.0
6.0
6.4 | 8.0
7.5
6.8
6.5
6.9 | 9.4
8.7
8.9
9.2 | 9.8
9.2
8.6
20
14 | 36
96
13
9.6
8.8 | 4.2
4.7
4.8
4.8
4.9 | 2.7
2.3
1.6
2.0
1.4 | 2.1
1.5
1.5
2.0
1.9 | | 11
12
13
14
15 | 5.8
5.6
5.1
5.1
7.6 | 5.25
5.26
6.35 | 7.0
7.2
7.2 | 97
22
13
10
9.5 | 7.5
6.4
6.2
5.6
5.9 | 6.1
6.3
10
9.4
7.6 | 8.6
8.4
8.5
9.9 | 8.8
11
60
85
19 | 8.1
7.8
7.8
20 | 4.4
3.5
4.0
4.5
4.9 | 1.4
1.8
1.6
1.2 | 1.9
1.7
1.7
1.4
2.0 | | 16
17
18
19
20 | 6.3
7.8
6.0
5.8
5.5 | 6.4
5.5
5.6
6.7 | 8.0
20
10 | 8.7
8.4
7.7
6.7
7.5 | 5.7
5.3
5.3
5.6 | 6.4
5.9
17
13
71 | 8.6
7.8
7.4
7.2
6.8 | 14
12
67
23
15 | 9.9
8.1
7.7
12
7.7 | 4.1
3.1
3.5
3.1
6.4 | 1.3
1.1
1.1
1.3
1.4 | 5.3
3.1
2.3
2.2
2.1 | | 21
22
23
24
25 | 5.2
6.2
6.2
5.7
5.9 | 7.1
6.3
6.9
6.3
14 | 6.1
6.1 | 7.2
7.3
10
97
26 | 5.9
5.3
4.7
4.5
5.1 | 30
15
11
10 | 6.7
12
8.8
7.3
8.3 | 13
11
11
9.8
8.5 | 7.1
6.1
5.6
6.0
6.1 | 3.6
3.8
3.7
4.6
3.3 | 1.0
1.0
1.6
3.1
6.4 | 1.5
1.4
2.2
2.1
2.0 | | 26
27
28
29
30
31 | 5.2
4.9
5.0
5.7
5.6
5.6 | 14
6.7
6.0
5.9
6.3 | 6.8
5.8
5.2 | 11
8.8
8.3
8.2
8.4 | 5.1
5.8
5.2
 | 11
33
15
13
11 | 8.4
6.4
40
24
12 | 8.5
9.4
11
8.9
8.6
8.4 | 5.7
6.2
13
5.9
5.6 | 3.5
3.0
3.8
4.0
2.9
2.5 | 2.7
2.2
2.3
6.1
4.2
2.1 | 3.2
19
27
5.4
4.3 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 178.8
5.77
7.8
4.9
0.31
0.36 | 197.7
6.59
14
5.2
0.35 | 7.88
20
4.9
0.42 | 482.9
15.6
97
4.8
0.83
0.96 | 183.3
6.55
15
4.5
0.35
0.36 | 438.1
14.1
71
4.7
0.76
0.87 | 329.1
11.0
40
6.4
0.59
0.65 | 630.5
20.3
85
8.4
1.09
1.25 | 366.2
12.2
96
5.6
0.65
0.73 | 128.2
4.14
6.4
2.5
0.22
0.26 | 72.6
2.34
6.4
1.0
0.13
0.14 | 120.4
4.01
27
1.4
0.21
0.24 | | | | | | FOR WATER | | | | | | 10.0 | 10.4 | 16.5 | | MEAN
MAX
(WY)
MIN
(WY) | 16.7
68.5
1997
5.74
1965 | 23.9
58.6
1973
6.59
2002 | 107
1997
7.65 | 34.8
136
1996
7.03
1981 | 36.6
85.1
1979
6.55
2002 | 41.0
110
1994
14.1
2002 | 32.5
83.8
1983
11.0
2002 | 25.6
74.6
1989
8.84
1963 | 22.4
96.6
1972
6.46
1963 | 19.9
106
1984
3.79
1963 | 12.4
25.8
1990
2.34
2002 | 16.7
63.1
1960
3.62
1964 | e Estimated. # 01480300 WEST BRANCH BRANDYWINE CREEK NEAR HONEY BROOK, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1960 - 2002 | |--------------------------|------------------------|---------------------|---------------------------| | ANNUAL TOTAL | 6424.9 | 3372.0 | | | ANNUAL MEAN | 17.6 | 9.24 | 25.8 | | HIGHEST ANNUAL MEAN | | | 46.3 1984 | | LOWEST ANNUAL MEAN | | | 9.24 2002 | | HIGHEST DAILY MEAN | 262 Jun 23 | 97 Jan 11,24 | 1400 Jun 22 1972 | | LOWEST DAILY MEAN | 3.7 Sep 16 | 1.0 Aug 21,22 | 1.0 Aug 21,22 2002 | | ANNUAL SEVEN-DAY MINIMUM | 4.1 Sep 13 | 1.2 Aug 16 | 1.2 Aug 16 2002 | | MAXIMUM PEAK FLOW | | 365 Jun 7 | a 3800 Jan 19 1996 | | MAXIMUM PEAK STAGE | | 5.12 Jun 7 | 11.62 Jan 19 1996 | | INSTANTANEOUS LOW FLOW | | 0.83 Aug 14,19,20 | 0.83 Aug 14 2002 b | | ANNUAL RUNOFF (CFSM) | 0.94 | 0.49 | 1.38 | | ANNUAL RUNOFF
(INCHES) | 12.78 | 6.71 | 18.73 | | 10 PERCENT EXCEEDS | 31 | 14 | 40 | | 50 PERCENT EXCEEDS | 9.9 | 6.3 | 15 | | 90 PERCENT EXCEEDS | 5.3 | 2.2 | 6.7 | $^{{\}bf a}$ From rating curve extended above 1,000 $ft^3\!/\!s$ on basis of runoff comparison with nearby stations. ${\bf b}$ Also Aug. 19, 20, 2002.r # 01480300 WEST BRANCH BRANDYWINE CREEK NEAR HONEY BROOK, PA--Continued # WATER-QUALITY RECORDS **PERIOD OF RECORD**.--Water year 1965 to current year. ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | AN
LYZ
SAM
Time (C
NUM | NCY AGENCY A- COL- ING LECTII PLE SAMPLI ODE (CODI BER) NUMBEI 028) (0002 | INST. NG CUBIC FEET PER R) SECON | E, C OXYGE C DIS SOLV ND (MG/ | - (STAN
ED ARD
L) UNIT | E CIF D CON D DUC ANC S) (µS/ | IC TEMPE F ATURE WATE CM) (DEG | RE SOLVI
ER (MG/I
C) AS C | DIS-
ED SOLVE
L (MG/L
A) AS MG | , SIUM, DIS- D SOLVED (MG/L AS K) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC WATER UNFLTRD IT FIELD (MG/L AS CACO3) (00419) | |----------------|------------------------------------|---|--|--|--|--|--|--|---|--|---|--| | OCT 2001
04 | 1215 80 | 020 1028 | 6.5 | 8.8 | 7.8 | 34 | 2 16.5 | 5 26.5 | 9.80 | 4.76 | 22.8 | 62 | | | Date | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | BORON,
DIS-
SOLVED
(µG/L
AS B)
(01020) | IRON, DIS- SOLVED (µG/L AS FE) (01046) | | | | | OCT 2001
04 | 34.1 | 12.8 | 25.9 | <.04 | 3.89 | .029 | .13 | 60 | 36 | | | # 01480300 WEST BRANCH BRANDYWINE CREEK NEAR HONEY BROOK, PA--Continued # BIOLOGICAL DATA BENTHIC MACROINVERTEBRATES **REMARKS.**--Samples were collected using a Hess sampler with a mesh size of 500 μ m. Each sample covered a total area of 3.2 m². | Date | 10/04/01 | |---------------------------------------|----------| | Benthic Macroinvertebrate | Count | | Platyhelminthes | | | Turbellaria (FLATWORMS) | | | Tricladida | | | Planariidae | 1 | | Nematoda (NEMATODES) | 53 | | Nemertea (PROBOSAS WORMS) | | | Enopla | | | Hoplonemertea | | | Tetrastemmatidae | | | <u>Prostoma</u> sp | 11 | | Mollusca | | | Gastropoda (SNAILS) | | | Basommatophora | | | Ancylidae | | | <u>Ferrissia</u> sp | 20 | | Annelida | | | Oligochaeta (AQUATIC EARTHWORMS) | 17 | | Tubificida | | | Naididae | 2 | | Arthropoda | | | Acariformes | | | Hydrachnidia (WATER MITES) | 50 | | Crustacea | | | Amphipoda (SCUDS) | | | Crangonyctidae | | | <u>Crangonyx</u> sp | 1 | | Isopoda (AQUATIC SOWBUGS) | | | Asellidae | | | <u>Caecidotea</u> sp | 1 | | Insecta | | | Ephemeroptera (MAYFLIES) | | | Baetidae | | | <u>Baetis</u> sp | 27 | | Ephemerellidae | | | <u>Serratella</u> sp | 15 | | Heptageniidae | | | Stenonema sp | 69 | | Odonata (DRAGONFLIES AND DAMSELFLIES) | | | Coenagrionidae | | | Argia sp | 1 | | Megaloptera | | | Sialidae (ALDERFLIES) | | | <u>Sialis</u> sp | 1 | # 01480300 WEST BRANCH BRANDYWINE CREEK NEAR HONEY BROOK, PA--Continued # BIOLOGICAL DATA BENTHIC MACROINVERTEBRATES--Continued | i————————————————————————————————————— | | |--|----------| | Date | 10/04/01 | | Benthic Macroinvertebrate | Count | | Trichoptera (CADDISFLIES) | | | Hydropsychidae | | | <u>Cheumatopsyche</u> sp | 67 | | <u>Hydropsyche</u> sp | 619 | | Hydroptilidae | | | <u>Hydroptila</u> sp | 54 | | <u>Leucotrichia</u> sp | 13 | | Philopotamidae | | | <u>Chimarra</u> sp | 16 | | Coleoptera (BEETLES) | | | Elmidae (RIFFLE BEETLES) | | | Ancyronyx sp | 4 | | Macronychus sp | 2 | | <u>Optioservus</u> sp | 108 | | <u>Stenelmis</u> sp | 506 | | Psephenidae (WATER PENNIES) | | | Psephenus sp | 3 | | Diptera (TRUE FLIES) | | | Chironomidae (MIDGES) | 624 | | Empididae (DANCE FLIES) | | | <u>Hemerodromia</u> sp | 19 | | Simuliidae (BLACK FLIES) | | | <u>Simulium</u> sp | 9 | | Tabanidae (HORSE FLIES) | | | <u>Tabanus</u> sp | 2 | | Tipulidae (CRANE FLIES) | | | <u>Antocha</u> sp | 49 | | <u>Tipula</u> sp | 2 | | | | | Total organisms | 2366 | | Total number of taxa | 30 | ### 01480400 BIRCH RUN NEAR WAGONTOWN, PA LOCATION.--Lat 40°01'38", long 75°50'43", Chester County, Hydrologic Unit 02040205, on right bank 15 ft upstream from SR 4005, 0.2 mi upstream of mouth, 0.6 mi downstream from Chambers Lake, and 1.1 mi northwest of Wagontown. **DRAINAGE AREA**.--4.55 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--February 1995 to current year. REVISED RECORDS.--WDR PA-99-1: 1996-98 (M). GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Elevation of gage is 505.81 ft above North American Vertical Datum of 1988. REMARKS.--No estimated daily discharges. Records fair. Flow regulated by Chambers Lake (station 01480399) 0.6 mi upstream. Satellite and landline telemetry at station. | | | | DISCHAR | GE, CUBIC | FEET PER SE | | TER YEAR (
EAN VALUE | | 001 TO SEPT | EMBER 2002 | } | | |------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--|---------------------------------------|---------------------------------------|---------------------------------------|--|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 3.3
3.3
3.4
3.3
3.3 | 3.0
2.8
2.7
2.7
2.7 | 1.3
1.3
1.6
2.2
3.0 | 2.9
2.9
2.8
3.0
3.0 | 3.1
3.1
3.1
3.1
3.2 | 3.3
3.3
3.4
3.3
3.3 | 1.4
1.4
1.4
1.4 | 1.4
1.5
1.5
1.4 | 1.4
1.4
1.4
1.4 | 1.5
1.4
1.4
1.4 | 1.1
1.1
1.1
1.2
2.2 | 4.8
4.6
4.6
4.6
4.6 | | 6
7
8
9
10 | 3.3
3.3
3.1
3.1
3.0 | 2.7
2.7
2.4
1.8
2.4 | 3.0
3.1
2.6
1.9
3.2 | 3.1
3.1
3.1
3.0
3.0 | 3.3
3.2
3.1
3.1
3.1 | 3.3
3.3
2.7
1.2
1.3 | 1.5
1.4
1.4
1.5 | 1.4
1.4
1.4
1.4 | 6.3
27
11
5.0
3.3 | 1.4
1.4
1.4
1.4 | 3.0
3.0
2.9
2.8
2.8 | 4.6
4.6
4.6
4.6 | | 11
12
13
14
15 | 2.9
2.8
2.8
2.9
3.5 | 2.4
2.4
2.3
2.2 | 3.1
3.1
3.1
3.1
3.1 | 3.1
3.1
3.1
3.1
3.1 | 3.1
3.2
3.2
3.3
3.2 | 1.3
1.3
1.3
1.3 | 1.4
1.5
1.4
1.4 | 1.4
1.4
4.9
23 | 2.7
2.3
1.9
7.1
8.8 | 1.4
1.4
1.4
1.5 | 2.9
3.1
3.4
3.4
3.2 | 4.6
5.9
5.7
4.7
5.3 | | 16
17
18
19
20 | 3.5
3.5
3.2
3.1
3.1 | 2.3
2.4
2.5
1.8 | 3.1
3.1
3.1
3.1
3.0 | 3.1
3.1
3.1
3.1
3.0 | 3.3
3.3
3.2
3.2
3.2 | 1.3
1.4
1.4
1.4 | 1.4
1.3
1.3
1.3 | 5.4
3.8
11
10
5.5 | 6.2
3.9
3.1
3.0
2.5 | 1.3
1.3
1.3
1.3 | 3.3
3.3
3.3
3.2
3.1 | 5.2
4.8
5.1
4.9
4.9 | | 21
22
23
24
25 | 3.1
3.1
3.0
3.0 | 1.3
1.2
1.2
1.2 | 2.9
2.9
2.9
3.0
3.0 | 3.0
3.1
3.1
3.3
3.1 | 3.2
3.2
3.3
3.3
3.2 | 1.5
1.4
1.4
1.4 | 1.3
1.4
1.4
1.4 | 3.7
3.1
2.8
2.6
2.3 | 2.1
1.8
1.6
1.5 | 1.3
1.4
1.4
1.4 | 3.1
3.0
3.1
3.1
3.0 | 3.9
4.0
4.0
3.9
3.9 | | 26
27
28
29
30
31 | 3.0
3.0
3.0
3.0
3.0 | 1.3
1.3
1.3
1.3 | 3.0
3.0
3.0
3.0
3.0 | 3.1
3.1
3.1
3.1
3.1
3.1 | 3.2
3.3
3.3
 | 1.4
1.5
1.4
1.4
1.4 | 1.4
1.5
1.4
1.4 | 2.2
2.4
4.3
5.3
3.6
1.4 | 1.4
1.5
1.5
1.5 | 1.4
1.4
1.4
1.2 | 3.0
3.1
3.6
4.6
4.6 | 4.1
3.6
1.6
1.2
1.3 | | TOTAL
MEAN
MAX
MIN | 97.0
3.129
3.5
2.8 | 60.8
2.027
3.0
1.2 | 86.8
2.800
3.2
1.3 | 95.0
3.065
3.3
2.8 | 89.6
3.200
3.3
3.1 | 57.6
1.858
3.4
1.2 | 42.0
1.400
1.5
1.3 | 125.3
4.042
23
1.4 | 116.9
3.897
27
1.4 | 42.5
1.371
1.5
1.1 | 90.6
2.923
4.6
1.1 | 128.8
4.293
5.9
1.2 | | STATIST | rics of M | ONTHLY ME | AN DATA F | OR WATER | YEARS 199 | 5 - 2002, | BY WATER | YEAR (WY |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 5.243
19.2
1997
1.15
1996 | 3.616
11.3
1997
1.23
1996 | 7.519
30.3
1997
1.21
1996 | 6.000
16.2
1996
1.57
1999 | 7.441
9.94
1997
2.79
1999 | 11.16
17.3
2000
1.86
2002 | 9.185
17.1
1998
1.40
2002 | 5.694
8.99
1998
2.65
1999 | 4.014
10.4
1996
1.50
1999 | 2.433
6.23
1996
1.33
1995 | 2.540
4.49
1999
1.25
1995 | 2.963
6.19
1996
1.45
1995 | #
01480400 BIRCH RUN NEAR WAGONTOWN, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1995 - 2002 | |--------------------------|------------------------|---------------------|--------------------------| | ANNUAL TOTAL | 1735.9 | 1032.9 | | | ANNUAL MEAN | 4.76 | 2.83 | 5.85 | | HIGHEST ANNUAL MEAN | | | 9.52 1997 | | LOWEST ANNUAL MEAN | | | 2.83 2002 | | HIGHEST DAILY MEAN | 41 Mar 30 | 27 Jun 7 | 250 Oct 19 1996 | | LOWEST DAILY MEAN | 1.2 Nov 20a | 1.1 Jul 31 b | 0.10 Feb 15 1995 | | ANNUAL SEVEN-DAY MINIMUM | 1.2 Nov 20 | 1.2 Jul 29 | 0.27 Apr 18 1995 | | MAXIMUM PEAK FLOW | | 43 Jun 7 | c 401 Jan 19 1996 | | MAXIMUM PEAK STAGE | | 2.93 Jun 7 | 4.99 Jan 19 1996 | | 10 PERCENT EXCEEDS | 11 | 4.6 | 12 | | 50 PERCENT EXCEEDS | 3.0 | 3.0 | 3.1 | | 90 PERCENT EXCEEDS | 1.5 | 1.3 | 1.5 | ^{a Also Nov. 22-25. b Also Aug. 1-3. c From rating curve extended above 230 ft³/s based on a slope-conveyance calculation.} ### 01480400 BIRCH RUN NEAR WAGONTOWN, PA--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD.--June 1996 to current year. PERIOD OF DAILY RECORD.--WATER TEMPERATURE: June 1996 to current year. $\textbf{INSTRUMENTATION}. - Temperature \ probe \ interfaced \ with \ a \ data \ collection \ platform.$ **REMARKS**.--Water temperature records rated good. # EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: Maximum, 26.0°C, July 19, Aug. 1, 1996; mimimum, 0.0°C, several days during winters. # EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum, 25.0°C, Aug. 17, 18; minimum, 1.0°C, Jan. 1, 2. WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--|-----------------------------------|-----------------------------------|---------------------------------|---------------------------------|---------------------------------| | | | OCTOBER | | : | NOVEMBER | | | DECEMBER | | | JANUARY | • | | 1
2
3
4
5 | 17.5
18.5
19.0
19.0 | 17.0
16.5
17.0
17.0 | 17.0
17.5
17.5
17.5 | 13.0
14.0
14.0
13.5
13.0 | 11.5
12.0
12.5
12.0
11.5 | 12.0
12.5
13.0
12.5
12.0 | 11.0
9.5
10.0
10.5
11.0 | 8.5
8.0
8.0
8.0
9.5 | 9.5
9.0
8.5
9.0
10.0 | 1.5
2.0
2.5
3.0
3.0 | 1.0
1.5
2.0
2.0 | 1.0
1.0
2.0
2.0
2.5 | | 6
7
8
9
10 | 18.5
17.5
16.5
16.0
16.0 | 16.5
16.0
15.0
14.5
14.0 | 17.5
16.5
15.5
15.0
15.0 | 12.0
12.0
12.0
11.5
11.5 | 11.0
10.5
10.5
9.5
10.0 | 11.5
11.0
11.0
10.5
10.5 | 11.5
11.0
10.0
10.0
9.5 | 10.0
10.0
9.0
8.5
8.5 | 10.5
10.5
9.5
9.0
9.0 | 3.0
3.0
3.0
3.0
3.5 | 1.5
2.0
1.5
2.0
2.0 | 2.5
2.5
2.0
2.5
2.5 | | 11
12
13
14
15 | 16.5
16.5
16.5
16.5
17.0 | 15.0
15.0
15.5
15.5 | 15.5
15.5
16.0
16.0 | 11.0
10.5
10.5
10.5
11.0 | 9.5
9.0
8.5
8.5
9.0 | 10.0
9.5
9.5
9.0
10.0 | 9.5
9.0
9.5
9.5 | 8.5
8.0
8.5
9.0
8.0 | 9.0
8.5
9.0
9.0
8.5 | 3.5
3.5
3.5
3.5
3.5 | 2.5
2.0
2.5
2.0
2.5 | 3.0
2.5
2.5
2.5
3.0 | | 16
17
18
19
20 | 16.5
16.0
15.0
15.0 | 15.0
14.0
14.0
13.5
13.5 | 15.5
15.0
14.5
14.0
14.5 | 11.5
10.5
10.5
11.0
10.0 | 9.0
9.0
9.0
9.0
8.0 | 10.0
9.5
9.5
9.5
9.5 | 8.5
8.5
8.5
8.0
7.5 | 7.5
8.0
7.5
7.5
6.5 | 8.0
8.0
8.0
7.5
7.0 | 3.5
4.0
3.0
2.5
3.0 | 2.5
2.5
2.0
1.5
2.0 | 3.0
3.0
2.5
2.0
2.5 | | 21
22
23
24
25 | 15.5
16.0
15.5
16.5
16.5 | 14.0
14.5
14.0
15.0
14.5 | 14.5
15.0
15.0
15.0 | 9.5
10.0
10.0
10.5
10.5 | 7.5
7.5
7.5
7.5
9.5 | 8.5
8.5
8.5
9.0
10.0 | 6.5
6.0
6.5
6.0
5.0 | 5.5
5.5
5.0
5.0
4.5 | 6.0
5.5
5.5
5.5
5.0 | 3.5
3.5
3.5
4.0
4.0 | 2.0
2.5
2.5
3.0
2.5 | 2.5
3.0
3.0
3.5
3.5 | | 26
27
28
29
30
31 | 15.5
14.0
13.5
13.0
13.0 | 13.5
13.0
12.0
11.5
11.5 | 14.5
13.5
12.5
12.0
12.5
12.0 | 10.5
10.5
11.0
10.0
10.5 | 8.5
8.0
9.0
9.5
9.5 | 9.5
9.0
9.5
9.5
10.5 | 5.0
4.5
4.5
4.5
2.5
2.0 | 4.0
3.5
3.0
2.5
2.0 | 4.5
4.0
3.5
3.5
2.5 | 4.0
4.5
5.0
6.0
5.5 | 2.5
2.5
3.0
3.5
4.5 | 3.0
3.5
3.5
4.5
5.0 | | MONTH | 19.0 | 11.5 | 15.2 | 14.0 | 7.5 | 10.2 | 11.5 | 1.5 | 7.2 | 6.0 | 1.0 | 2.8 | # 01480400 BIRCH RUN NEAR WAGONTOWN, PA--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|--|---|--|--|---|--|--|--|--|--
--|--| | | | FEBRUAR | Y | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 6.0
5.0
5.5
5.5
3.5 | 4.5
4.0
3.5
3.0
2.0 | 5.0
4.5
4.5
4.0
2.5 | 7.0
6.5
7.0
6.5
6.0 | 4.0
4.5
5.0
3.5
3.5 | 5.0
5.5
6.0
5.0
4.5 | 13.0 | 7.5
8.0
9.0
8.0 | 9.5
10.0
10.5
10.0
9.5 | 14.5
14.5
15.0
16.0 | 10.0
10.5
10.0
10.5
11.5 | 11.5
12.0
12.5
13.0
13.5 | | 6
7
8
9
10 | 3.5
4.0
4.5
4.5 | 2.0
2.5
2.0
2.5
3.0 | 2.5
3.0
3.0
3.5
4.0 | 6.5
7.5
8.0
8.5
8.5 | 4.0
4.5
5.0
5.5
4.5 | 5.0
5.5
6.0
7.0
6.5 | 12.0
12.5
12.5
12.5
13.5 | 8.0
7.5
7.5
9.0
8.5 | 9.5
9.5
9.5
10.5 | 16.0
16.5
16.5
13.0
16.5 | 11.5
12.5
12.5
12.0
12.5 | 13.5
14.0
14.0
12.5
14.0 | | 11
12
13
14
15 | 4.5
4.5
4.5
4.5
5.0 | 3.0
3.0
3.0
2.5
3.0 | 4.0
3.5
3.5
3.0
4.0 | 8.5
8.5
7.0
10.5
10.5 | 4.0
5.0
6.0
6.5
6.0 | 6.0
6.5
6.5
7.5 | 13.5
10.5
13.0
13.0
14.5 | 8.0
8.0
9.5
9.5 | 10.0
9.5
10.5
11.0
11.5 | 16.0
15.5
19.5
19.0
17.0 | 11.5
12.0
12.5
16.5
16.0 | 13.0
13.5
15.5
18.0
16.5 | | 16
17
18
19
20 | 5.5
5.5
5.0
5.5
6.0 | 4.0
3.5
3.0
3.0
4.0 | | 9.5
6.5
7.0
8.5
7.0 | 5.5
4.5
5.5
6.0
6.0 | 7.5
5.5
6.5
7.0
6.5 | 15.0
15.5
14.5
15.0
12.5 | 9.5
9.5
10.0
9.5
9.5 | 11.5
11.5
11.5
11.5
10.5 | 18.0
18.0
17.5
17.0
16.0 | 15.5
16.5
16.0
15.5
15.0 | 16.5
17.0
16.5
16.5 | | 21
22
23
24
25 | 7.0
6.5
7.0
7.0 | 4.5
5.0
4.5
4.5 | 5.5
5.5
5.5
5.5
5.5 | 11.0
8.0
9.5
9.0 | 6.0
4.5
4.5
5.0
6.0 | 8.0
6.0
6.0
7.0 | 10.0
12.0
12.5
13.5
11.0 | 8.5
8.0 | 9.5
9.5
10.0
10.0
9.5 | 16.0
16.5
17.5
18.5
17.5 | 14.0
13.5
14.5
14.5
15.0 | 15.0
15.0
16.0
16.5
16.0 | | 26
27
28
29
30
31 | 8.0
7.0
6.5
 | 5.0
4.5
4.0
 | 6.0
5.5
5.0
 | 7.0
8.5
10.5
11.0
12.5
9.5 | 6.0
6.0
5.5
6.0
7.0
8.0 | 6.5
7.0
7.5
7.5
9.0
8.5 | 12.5
13.5
12.0
12.0
13.0 | 8.0
8.5
9.5
9.0
8.5 | 10.0
10.5
10.5
10.0
10.5 | 17.5
17.5
16.5
12.5
15.0
17.5 | 14.5
15.5
11.0
11.0
11.0 | 15.5
16.0
13.5
11.5
12.5
15.0 | | MONTH | 8.0 | 2.0 | 4.3 | 12.5 | 3.5 | 6.5 | 15.5 | 7.5 | 10.3 | 19.5 | 10.0 | 14.6 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | JULY | MEAN | MAX | MIN
AUGUST | | s | MIN
EPTEMBER | | | DAY 1 2 3 4 5 | MAX
17.5
17.0
16.5
15.5
16.5 | | 15.0
14.5
14.5
14.5
14.0 | 17.5
17.5
17.5
18.0
17.5 | | MEAN
15.0
15.0
15.5
15.5 | 19.0
18.5
18.5
19.0
24.0 | AUGUST | MEAN 16.0 16.0 16.0 16.0 19.5 | 21.0
21.5
22.0
24.0 | EPTEMBER 20.5 | | | 1
2
3
4 | 17.5
17.0
16.5
15.5 | JUNE 13.5 13.5 13.0 13.0 | 15.0
14.5
14.5
14.0
14.5 | 17.5
17.5
17.5
18.0 | JULY 14.0 14.0 14.0 14.0 | 15.0
15.0
15.5
15.5 | 19.0
18.5
18.5
19.0 | 15.0
14.5
15.0
15.0 | 16.0
16.0
16.0
16.0 | 21.0
21.5
22.0
24.0
23.0 | 20.5
20.5
20.5
21.0
21.5
21.5
21.5
21.5 | 21.0
21.0
21.0
22.0 | | 1
2
3
4
5
6
7
8
9 | 17.5
17.0
16.5
15.5
16.5
23.0
23.0
23.0
22.0 | JUNE 13.5 13.5 13.0 13.5 13.5 21.0 20.5 19.0 | 15.0
14.5
14.5
14.0
14.5
16.0
22.0
21.5
20.5 | 17.5
17.5
17.5
18.0
17.5
17.0
16.5
17.5 | JULY 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14. | 15.0
15.5
15.5
15.5
15.5
15.0
14.5
15.0
15.5 | 19.0
18.5
18.5
19.0
24.0 | AUGUST 15.0 14.5 15.0 15.0 15.0 21.5 21.5 21.5 21.0 20.5 20.5 | 16.0
16.0
16.0
16.0
19.5 | 21.0
21.5
22.0
24.0
23.0 | 20.5
20.5
20.5
21.0
21.5
21.5
21.5
21.5
21.5 | 21.0
21.0
21.0
22.0
22.5
22.0
22.0
22.0
22.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 17.5
17.0
16.5
15.5
16.5
23.0
23.0
23.0
22.0
21.5
21.5
20.0
18.0
20.5 | JUNE 13.5 13.5 13.0 13.0 13.5 21.0 20.5 19.0 18.5 18.0 16.0 16.0 | 15.0
14.5
14.5
14.0
14.5
16.0
22.0
21.5
20.5
20.0 | 17.5
17.5
17.5
18.0
17.5
17.0
16.5
17.5
18.0
17.5
17.0
17.6
17.6 | JULY 14.0 14.0 14.0 14.0 14.0 14.0 14.0 13.5 13.5 13.5 14.0 13.5 13.5 13.5 | 15.0
15.0
15.5
15.5
15.5
15.0
14.5
15.0
15.0
15.0
15.0
15.0
14.5 | 19.0
18.5
18.5
19.0
24.0
24.5
23.5
23.0
23.0
23.0
23.0
24.0 | 15.0
14.5
15.0
15.0
15.0
21.5
21.5
21.5
21.0
20.5
20.5
21.0
22.0 | 16.0
16.0
16.0
19.5
23.5
22.5
22.5
21.5
21.5
22.0
22.5
22.5
22.5 | 21.0
21.5
22.0
24.0
23.0
22.5
22.5
22.5
22.5
22.5
22.5
22.5
22 | 20.5
20.5
20.5
21.0
21.5
21.5
21.5
21.5
21.5
21.5
21.5
22.0 | 21.0
21.0
21.0
22.0
22.5
22.0
22.0
22.0
22.5
22.5
22 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 17.5
17.0
16.5
15.5
16.5
23.0
23.0
22.0
21.5
21.5
20.0
18.0
20.5
20.5
20.5
20.0 | JUNE 13.5 13.5 13.0 13.0 13.5 13.5 21.0 20.5 19.0 18.5 18.0 16.0 16.0 19.5 19.5 19.5 19.5 19.5 19.5 | 15.0
14.5
14.5
14.0
14.5
16.0
22.0
21.5
20.5
20.0
19.5
19.0
17.0
19.0
20.0 | 17.5
17.5
17.5
18.0
17.5
17.0
16.5
17.5
17.0
17.5
16.0
17.5
17.5
17.5 | JULY 14.0 14.0 14.0 14.0 14.0 13.5 13.5 14.0 14.0 14.0 14.0 13.5 13.5 13.5 14.0 14.0 14.0 | 15.0
15.0
15.5
15.5
15.5
15.0
14.5
15.0
15.0
15.0
15.5
15.0 | 19.0
18.5
18.5
19.0
24.0
24.5
23.5
23.0
23.0
23.0
23.0
24.0
24.0
24.0
24.0
24.0
24.0 | 15.0
14.5
15.0
15.0
15.0
21.5
21.5
21.5
21.5
20.5
20.5
22.0
22.0
22.0
22.0
22.0
22 | 16.0
16.0
16.0
19.5
23.5
22.5
21.5
21.5
21.5
22.5
22.5
22.5
23.0
23.5
23.5
23.5
23.5
23.5 | 21.0
21.5
22.0
24.0
23.0
22.5
22.5
22.5
22.5
22.5
22.5
22.5
22 | 20.5
20.5
20.5
21.0
21.5
21.5
21.0
21.5
21.5
22.0
21.5
22.0
21.5
22.0
21.5
21.0
20.5
21.5
21.0
21.5 | 21.0
21.0
21.0
22.0
22.5
22.0
22.0
22.0
22.5
21.5
21.5
21.5
21.5
21.5
21.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 17.5
17.0
16.5
15.5
16.5
23.0
23.0
22.0
21.5
21.5
20.5
20.5
20.5
20.5
20.0
19.0
19.0
19.0
19.0
17.5
17.5
17.5
17.5
17.5 | JUNE 13.5 13.5 13.0 13.0 13.5 21.0 20.5 19.0 18.5 18.0 16.0 19.5 19.0 16.5 17.5 17.0 16.5 17.5 17.0 14.5 14.0 14.0 14.0 | 15.0
14.5
14.5
14.0
14.5
16.0
22.0
21.5
20.5
20.0
19.5
19.0
20.0
19.5
19.0
20.0
19.5
19.5
18.5
18.5
18.5
17.0
16.5
17.0
16.5
15.5
15.5
15.5
15.5
15.5 | 17.5
17.5
17.5
18.0
17.5
17.0
16.5
17.0
17.5
17.0
16.5
16.0
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5 | JULY 14.0 14.0 14.0 14.0 14.0 13.5 13.5 14.0 14.0 14.0 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 | 15.0
15.0
15.5
15.5
15.5
15.5
15.0
14.5
15.0
15.0
14.5
14.5
15.5
15.5
15.5
15.5
15.5
15.5 |
19.0
18.5
18.5
19.0
24.0
24.5
23.5
23.0
23.0
23.0
23.0
24.0
24.0
24.5
25.0
24.0
24.5
25.0
24.0
24.5
25.0
24.5
25.0
26.0
27.0
28.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
20.0
20.0
20.0
20.0
20.0
20.0 | AUGUST 15.0 14.5 15.0 15.0 21.5 21.5 21.5 21.0 20.5 20.5 21.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 | 16.0
16.0
16.0
19.5
23.5
22.5
22.5
21.5
21.5
22.0
22.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5 | 21.0
21.5
22.0
24.0
23.0
22.5
22.5
22.5
22.5
22.5
22.5
22.5
22 | 20.5
20.5
20.5
21.0
21.5
21.5
21.0
21.5
21.5
22.0
21.5
21.5
21.0
20.5
21.5
21.0
21.5
21.5
21.0
21.5
21.5
21.0
21.5
21.0
20.5
21.5
21.0
21.5
21.0
20.5
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.5
21.0
21.5
21.0
21.5
21.5
21.0
21.5
21.5
21.5
21.0
21.5
21.5
21.0
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5 | 21.0
21.0
21.0
22.0
22.5
22.0
22.0
22.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 17.5
17.0
16.5
15.5
16.5
23.0
23.0
22.0
21.5
20.5
20.5
20.5
20.5
20.0
19.0
19.0
19.0
18.0
17.5
17.5
17.5
17.5
17.5 | JUNE 13.5 13.5 13.0 13.0 13.5 13.5 21.0 20.5 19.0 18.5 18.0 16.0 16.0 19.5 19.0 18.0 17.5 17.5 17.0 16.5 15.5 14.5 14.0 14.5 14.0 | 15.0
14.5
14.5
14.0
14.5
16.0
22.0
21.5
20.5
20.0
19.5
19.0
17.0
19.0
20.0
19.5
18.5
18.5
18.5
17.0
16.5
15.5
15.5
15.5 | 17.5
17.5
17.5
18.0
17.5
17.0
16.5
17.5
17.0
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5 | JULY 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14. | 15.0
15.0
15.5
15.5
15.5
15.5
15.0
15.0 | 19.0
18.5
18.5
19.0
24.0
24.5
23.0
23.0
23.0
23.0
24.0
24.0
24.0
24.5
24.0
24.5
25.0
26.0
27.5
28.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5
29.5 | AUGUST 15.0 14.5 15.0 15.0 21.5 21.5 21.5 20.5 20.5 20.5 22.0 22.0 22.0 22.0 22 | 16.0
16.0
16.0
19.5
23.5
22.5
21.5
21.5
21.5
22.5
22.5
23.5
23.5
23.5
23.5
23.5
23 | 21.0
21.5
22.0
24.0
23.0
22.5
22.5
22.5
22.5
22.5
22.5
22.5
22 | 20.5
20.5
20.5
21.0
21.5
21.5
21.0
21.5
21.5
22.0
21.5
21.5
22.0
21.5
21.5
21.0
20.5
21.5
21.0
21.5
21.5
21.0
20.5
21.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0 | 21.0
21.0
21.0
22.0
22.5
22.0
22.0
22.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5 | ## 01480400 BIRCH RUN NEAR WAGONTOWN, PA--Continued ## CROSS-SECTION ANALYSES, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
DEPTH
(FEET)
(00003) | | | |----------|------|---|---|------|----| | APR 2002 | | | | | | | 23 | 1558 | 1.4 | | | 0 | | 23 | 1559 | | .50 | 11.2 | 2 | | 23 | 1600 | | 1.00 | 11.3 | 4 | | 23 | 1601 | | 1.00 | 11.3 | 5 | | 23 | 1602 | | 1.00 | 11.2 | 6 | | 23 | 1603 | | 1.00 | 11.1 | 7 | | 23 | 1604 | | 1.00 | 11.1 | 8 | | 23 | 1605 | | 1.00 | 11.0 | 9 | | 23 | 1606 | | 1.00 | 11.0 | 10 | | 23 | 1607 | | 1.00 | 11.0 | 11 | | 23 | 1608 | | 1.00 | 11.0 | 12 | | 23 | 1609 | | 1.00 | 11.1 | 13 | | 23 | 1610 | | 1.00 | 11.2 | 14 | | 23 | 1611 | | 1.00 | 11.2 | 15 | | 23 | 1612 | | 1.00 | 11.2 | 16 | | 23 | 1613 | | 1.00 | 11.2 | 17 | | 23 | 1614 | | | | 18 | #### 01480500 WEST BRANCH BRANDYWINE CREEK AT COATESVILLE, PA LOCATION.--Lat 39°59'08", long 75°49'40", Chester County, Hydrologic Unit 02040205, on right bank at city limits of Coatesville, 1,200 ft upstream from bridge on old Lincoln Highway, and 0.6 mi downstream from Rock Run. **DRAINAGE AREA**.--45.8 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1943 to December 1951, January 1970 to current year. **GAGE**.--Water-stage recorder and V-notch sharp-crested weir. Datum of gage is 306.05
ft above National Geodetic Vertical Datum of 1929. Sept. 10, 1943, to Dec. 31, 1951, nonrecording gage at site 1,100 ft downstream at different datum. Satellite and landline telemetry at station. **REMARKS.**--No estimated daily discharges. Records good. Diversion from Rock Run Reservoir (station 01480465) 2.6 mi upstream, capacity, 982 acreft, for municipal supply of city of Coatesville. **EXTREMES OUTSIDE PERIOD OF RECORD.**—Flood of Aug. 9, 1942, reached a stage of 12.3 ft, site and datum then in use, discharge, 8,600 ft³/s, by slope-area measurement. **COOPERATION**.--Records of diversion provided by city of Coatesville. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 700 ft³/s and maximum (*): | Date
May 1 | | Time
2330 | Discharge
ft ³ /s
*741 | Gage Height
(ft)
*5.41 | ht | | Da
No ot: | | Гіте | Discharge
ft ³ /s
than base | Gage Heig
(ft)
discharge | | |------------------------------------|-------------------------------------|----------------------------|---|----------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--|---------------------------------|-------------------------------------| | | | | DISCH | ARGE, CUBIC | FEET PER S | | ATER YEAR
IEAN VALU | | 2001 TO SEI | PTEMBER 2 | 002 | | | DAY | OCT | nc NC | V DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 12
13
12
13
12 | 11
11
11
10
10 | 11
10
9.7
11
12 | 11
10
11
11 | 40
35
26
24
20 | 15
15
93
36
23 | 31
26
24
30
24 | 29
61
128
41
31 | 22
19
18
18
20 | 14
13
13
12
11 | 6.1
5.7
5.4
8.1
7.8 | 11
12
9.0
7.4
6.4 | | 6
7
8
9
10 | 11
10
10
11 | 10
11
11
9. | 12
12
12
12
7 19
16 | 16
30
21
18
17 | 21
21
21
19
18 | 21
20
19
17
19 | 22
20
19
20
25 | 27
25
23
33
38 | 87
206
48
33
26 | 11
10
11
11 | 6.9
6.1
5.6
5.1
4.8 | 6.1
5.6
5.2
4.8
4.9 | | 11
12
13
14
15 | 11
11
11
10
13 | 10
9.
9.
10 | | 102
61
30
23
21 | 20
19
18
17
17 | 17
16
20
24
19 | 22
21
21
24
23 | 26
28
97
234
59 | 22
20
20
55
51 | 10
9.6
9.0
10
11 | | 4.8
4.4
5.7
4.4
5.5 | | 16
17
18
19
20 | 12
13
12
11
11 | 10
10
10
9. | 16
14
27
8 21
16 | 20
19
18
17
19 | 18
17
16
16 | 18
17
31
33
106 | 22
20
19
19 | 42
35
134
75
46 | 39
27
23
26
23 | 9.9
8.8
7.8
7.9
8.7 | 3.3
3.5
3.4 | 8.2
7.4
6.5
5.7
5.5 | | 21
22
23
24
25 | 11
10
11
11
11 | 9.
9.
9.
15 | 5 13
0 13 | 18
18
19
138
82 | 18
17
16
15 | 83
38
29
25
23 | 18
25
26
20
21 | 38
34
31
28
26 | 20
18
16
15 | 9.6
8.1
7.7
8.0
8.5 | 3.1
3.0
4.3 | 4.9
4.2
4.2
3.9
4.1 | | 26
27
28
29
30
31 | 11
10
9.8
9.8
11 | | 14
13
13
13
11
- 10 | 36
28
25
24
24
39 | 16
16
16
 | 24
56
35
29
25
24 | 23
19
70
55
33 | 25
26
30
30
27
22 | 15
16
24
18
15 | 7.5
7.7
7.9
8.0
7.8
6.7 | 5.3
5.3
12
10 | 5.7
28
37
12
7.3 | | TOTAL
MEAN
MAX
MIN
(†) | 346.6
11.2
13
9.8
1.1 | 11.
3 2
3 9. | 1 14.4
8 27
0 9.7 | 30.2
138 | 549
19.6
40
15 | 970
31.3
106
15
0.9 | 761
25.4
70
18
1.1 | 1529
49.3
234
22
2.6 | 975
32.5
206
15
1.7 | 298.2
9.62
14
6.7
1.1 | 5.43
12
3.0 | 241.8
8.06
37
3.9
6.2 | | STATIST | CICS OF | MONTHLY | MEAN DATA | FOR PERIOR | OF DAIL | Y RECORD, | BY WATER | YEAR (W | Y) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 37.2
149
1997
11.2
2002 | 11
197
11. | 4 227
3 1997
1 14.4 | 262
1979
15.5 | 84.2
179
1971
19.6
2002 | 96.1
275
1994
31.3
2002 | 86.0
197
1983
25.4
2002 | 71.9
159
1989
29.6
1999 | 58.9
236
1972
17.5
1999 | 47.5
176
1984
9.62
2002 | 82.9
1971
5.43 | 36.7
136
1979
8.06
2002 | [†] Diversion for municipal supply, equivalent in cubic feet per second (includes change in contents from Rock Run Reservoir). ## 01480500 WEST BRANCH BRANDYWINE CREEK AT COATESVILLE, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | FOR PERIOD OF DAILY RECORD | |--------------------------|------------------------|---------------------|----------------------------| | ANNUAL TOTAL | 14883.4 | 7556.4 | | | ANNUAL MEAN | 40.8 | 20.7 | 62.4 | | HIGHEST ANNUAL MEAN | | | 98.6 1979 | | LOWEST ANNUAL MEAN | | | 20.7 2002 | | HIGHEST DAILY MEAN | 418 Mar 30 | 234 May 14 | 3400 Jun 22 1972 | | LOWEST DAILY MEAN | 8.7 Sep 17 | 3.0 Aug 23 | 3.0 Aug 23 2002 | | ANNUAL SEVEN-DAY MINIMUM | 9.4 Sep 13 | 3.2 Aug 17 | 3.2 Aug 17 2002 | | MAXIMUM PEAK FLOW | | 741 May 13 | a 8100 Jun 29 1973 | | MAXIMUM PEAK STAGE | | 5.41 May 13 | 10.08 Jun 29 1973 | | 10 PERCENT EXCEEDS | 83 | 35 | 110 | | 50 PERCENT EXCEEDS | 26 | 15 | 41 | | 90 PERCENT EXCEEDS | 10 | 5.7 | 15 | $^{{\}bf a} \ \ {\rm From \ rating \ curve \ extended \ above \ 7,800 \ ft^3/s \ on \ basis \ of \ slope-area \ measurement \ at \ gage \ height \ 9.92 \ ft.}$ #### 01480500 WEST BRANCH BRANDYWINE CREEK AT COATESVILLE, PA--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1965, 1970-72, 1995 to current year. PERIOD OF DAILY RECORD.--WATER TEMPERATURE: January 1995 to current year. **INSTRUMENTATION**.--Temperature probe interfaced with a data collection platform. **REMARKS**.--Water temperature records rated good. ## EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: Maximum, 29.0°C, July 6, 1999; minimum, 0.0°C, many days during winters. ## EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum, 28.0°C, Aug. 18; minimum 0.5°C, many days during winter. WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|---|--------------------------------------|-------------------------------------|-------------------------------------|------------------------------------|----------------------------------|-----------------------------------|---------------------------------|---------------------------------|--| | | | OCTOBER | ! | | NOVEMBER | ı | | DECEMBER | 1 | | JANUARY | | | 1
2
3
4
5 | 13.5
15.5
17.0
17.0 | 12.5
11.5
13.5
15.0
14.5 | 13.0
13.5
15.0
16.0
16.0 | 11.5
14.5
15.0
13.0
11.0 | 8.5
10.5
13.0
10.0
8.5 | 10.0
12.5
14.0
11.5
9.5 | 13.5
12.0
8.5
8.0
10.5 | 12.0
8.5
6.5
5.5
7.5 | 12.5
10.0
7.0
6.5
9.0 | 1.0
1.0
1.0
1.0 | 0.5
0.5
0.5
0.5 | 0.5
0.5
0.5
0.5 | | 6
7
8
9
10 | 17.0
15.0
11.5
10.0
11.5 | 15.0
11.5
9.5
7.5
8.0 | 16.0
12.5
10.5
9.0
9.5 | 8.5
10.0
9.5
9.5
8.5 | 7.5
7.0
7.5
8.5
6.5 | 8.0
8.5
9.0
9.0
7.5 | 11.0
11.5
10.5
8.0
6.5 | 9.0
10.5
7.5
6.5
4.0 | 10.0
11.0
8.0
7.5
5.0 | 1.0
1.0
1.0
1.0 | 0.5
0.5
0.5
0.5 | 0.5
0.5
0.5
0.5 | | 11
12
13
14
15 | 14.0
15.0
16.5
17.0 | 10.5
12.5
14.0
15.0 | 12.0
13.5
15.5
16.0
16.0 | 8.0
7.5
6.0
6.5
9.0 | 7.0
5.0
4.5
4.5
6.0 | 7.5
6.0
5.5
5.5
7.5 | 7.5
7.0
9.0
10.0
10.0 | 6.0
5.0
7.0
8.5
7.0 | 6.5
6.0
8.0
9.0
8.5 | 2.0
3.0
3.5
3.0
4.0 | 0.5
1.5
2.0
1.0
2.0 | 1.0
2.0
2.5
2.0
3.0 | | 16
17
18
19
20 | 15.0
13.5
11.5
11.0
12.5 | 11.5
11.5
9.0
8.0
9.5 | 13.0
12.0
10.0
9.5
11.0 | 9.5
9.5
8.0
8.5
8.5 | 7.5
8.0
6.0
6.0
7.5 | 8.5
8.5
7.0
7.5
8.5 | 7.0
7.5
9.0
7.5
6.5 | 4.5
5.5
7.5
6.5
4.5 | 5.5
6.0
8.5
7.0
5.5 | 4.0
4.0
3.5
2.0
1.0 | 3.0
2.5
2.0
0.5 | 3.5
3.5
3.0
1.0 | | 21
22
23
24
25 | 13.5
15.0
15.5
17.0
17.0 | 10.0
12.0
13.0
14.5
15.0 | 12.0
13.5
14.5
15.5 | 7.5
5.5
5.5
9.0
12.0 | 5.0
3.5
4.0
5.0
9.0 | 5.5
4.5
5.0
6.5
11.0 | 4.5
3.5
4.0
5.0
4.0 | 3.5
2.0
1.5
4.0
1.5 | 4.0
2.5
2.5
4.5
2.5 | 1.0
2.0
3.5
5.0
5.5 | 0.5
0.5
1.5
3.5
4.0 | 1.0
1.5
2.0
4.0
5.0 | | 26
27
28
29
30
31 | 15.0
11.0
9.5
9.0
10.5 | 11.0
9.0
8.5
6.5
8.5 | 12.5
9.5
9.0
8.0
9.5
9.0 | 12.0
10.5
12.5
12.5
13.5 | 10.5
8.0
10.5
12.0
12.0 | 11.5
9.5
11.5
12.0
13.0 | 2.5
1.5
1.0
1.0
1.0 | 1.5
0.5
0.5
0.5
0.5 | 2.0
1.0
0.5
1.0
1.0 | 5.0
5.0
6.0
8.0
8.5 | 2.5
2.0
2.5
4.0
7.0 | 3.5
3.5
4.0
5.5
8.0
7.5 | | MONTH | 17.0 | 6.5 | 12.5 | 15.0 | 3.5 | 8.7 | 13.5 | 0.5 | 5.8 | 8.5 | 0.5 | 2.4 | ## 01480500 WEST BRANCH BRANDYWINE CREEK AT
COATESVILLE, PA--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|--|---|--|--|--|--|--|--|--|--|--|--| | | | FEBRUAR | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 6.5 | 6.5
4.0
2.0
2.0
0.5 | 2.5 | 4.0 | 1.5
2.0
5.5
3.0
1.0 | 3.5
3.5
7.5
5.5
2.5 | 14.5
14.0
15.0
12.5
10.0 | | 13.5
10.5
8.5 | 18.0
18.0
17.5
17.0
19.0 | | 14.5
15.5
16.0
14.0
15.5 | | 6
7
8
9
10 | 2.0
3.5
4.5
5.0
7.0 | 0.5
2.0
1.5
2.0
3.5 | | | 1.5
3.5
5.5
8.0
7.0 | 3.5
6.0
7.5
10.0
9.5 | 10.5
11.0
12.5
15.5
17.5 | 6.5
5.5
7.0
11.0
12.5 | 8.5
8.0
9.5
13.0
15.0 | 18.5
20.0
21.0
19.5
20.5 | 15.5 | 16.0
17.5
18.5
16.0
17.5 | | 11
12 | 7.0
4.0
4.0
3.0
3.5 | 4.0
1.5
1.5
0.5 | 6.0
2.5
3.0
1.5
2.0 | 7.0
7.5
7.5
12.0
13.5 | 4.0
4.0
7.0
7.0
8.5 | 5.5
5.5
7.5
9.5
11.0 | 16.5
14.5
17.0
18.5
21.5 | 10.5
11.0
12.5
14.5
16.0 | 13.5
12.5
14.5
16.5
18.5 | 19.0
19.0
19.5
17.5
17.0 | 16.5
14.5 | 16.5
16.5
17.5
16.0
14.5 | | 16
17
18
19
20 | 7.0
6.5
4.5
5.5 | 3.5
4.5
2.0
1.5
4.5 | 5.0
5.0
3.5
3.5
6.0 | 13.0
10.5
6.5
8.5
8.0 | 10.5
5.5
5.0
6.0
6.5 | 12.0
7.5
6.0
7.5
7.0 | 23.5
24.5
24.0
23.5
22.0 | 17.5
18.5
19.5
19.0
19.0 | 20.5
21.5
22.0
21.5
20.0 | 19.0
20.0
18.5
15.0
14.0 | 12.5
16.0
13.0
11.5
10.5 |
15.5
18.0
15.0
13.0
12.5 | | 21
22
23
24
25 | 10.0
9.0
8.0
6.5
7.0 | 7.5
7.5
5.0
3.0
3.5 | 8.5
8.0
6.5
5.0 | 10.5
8.5
8.0
8.0
9.0 | 6.0
4.0
2.0
4.0
5.5 | 8.0
5.5
5.0
6.0
7.0 | 19.0
14.0
14.5
15.5
14.5 | 13.0
11.5
10.5
9.5
10.5 | 15.5
12.5
12.5
12.5
11.5 | 14.0
16.0
18.0
20.0
20.0 | 11.5
13.5 | 12.0
13.0
14.5
16.5
18.0 | | 26
27
28
29
30
31 | 8.5
8.0
5.0
 | 3.5
5.0
5.0
2.0
 | 6.5
6.5
4.0
 | 8.0
8.5
11.0
12.5
14.5 | 10.0 | 7.0
7.5
8.0
9.5
12.0 | 15.0
16.0
15.0
14.5
15.0 | 8.5
10.0
12.0
12.0
10.0 | 11.5
13.0
13.5
13.5
12.5 | 18.5
18.5
19.5
21.0
21.5
23.5 | 16.0
16.5
16.5
16.5
17.0 | 17.0
17.5
18.0
18.5
19.0
20.5 | | MONTH | 10.0 | 0.5 | 4.4 | 14.5 | 1.0 | 7.3 | 24.5 | 5.5 | 14.0 | 23.5 | 10.0 | 16.1 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | | | MIN
AUGUST | MEAN | | MIN
EPTEMBER | | | DAY 1 2 3 4 5 | MAX
24.0
22.5
21.5
20.0
22.5 | JUNE 19.5 18.5 17.5 17.5 | 22.0
21.0
19.5
19.0
20.0 | 24.5
26.0
27.0
27.5
27.0 | JULY 20.5 21.5 | | 27.0
27.5
27.0
27.0
26.0 | AUGUST 23.5 23.5 | MEAN 25.0 25.5 25.5 25.5 25.0 | 20.5
20.0 | EPTEMBER
18.0
17.5 | | | 1
2
3
4 | 24.0
22.5
21.5
20.0 | JUNE 19.5 18.5 17.5 17.5 18.0 19.5 18.0 17.0 17.0 | 22.0
21.0
19.5
19.0
20.0 | 24.5
26.0
27.0
27.5
27.0 | JULY 20.5 21.5 23.0 23.5 24.0 20.5 19.0 | 23.0
24.0
25.5
26.0
25.5 | 27.0
27.5
27.0
27.0
26.0 | 23.5
23.5
24.5
24.0
24.0 | 25.0
25.5 | 20.5
20.0
22.0
23.5
23.0 | 18.0
17.5
19.0
21.0
20.0 | 18.5
18.5
20.5
22.0 | | 1
2
3
4
5
6
7
8
9
10 | 24.0
22.5
21.5
20.0
22.5
22.5
19.5
21.0
21.5
23.0
24.0
23.5 | JUNE 19.5 18.5 17.5 17.5 18.0 19.5 18.0 17.0 17.0 19.0 | 22.0
21.0
19.5
19.0
20.0
21.0
19.0
19.0
20.5 | 24.5
26.0
27.0
27.5
27.0
24.5
22.5
23.5
24.5
22.5 | JULY 20.5 21.5 23.0 23.5 24.0 20.5 19.0 19.0 21.0 22.5 | 23.0
24.0
25.5
26.0
25.5
21.0
21.5
23.0
23.5 | 27.0
27.5
27.0
27.0
26.0 | 23.5
23.5
24.5
24.0
24.0
20.0
19.0
19.0
20.0
20.0 | 25.0
25.5
25.5
25.5
25.0
24.5
21.5
20.5
20.5
22.0 | 20.5
20.0
22.0
23.5
23.0
21.0
20.5
20.5
21.0
22.5 | 18.0
17.5
19.0
21.0
20.0
18.5
17.5
17.5
17.5
19.0
20.0 | 18.5
18.5
20.5
22.0
21.0
20.0
19.0
19.5
20.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 24.0
22.5
21.5
20.0
22.5
22.5
19.5
21.0
21.5
23.0
24.0
23.5
22.5
19.5 | JUNE 19.5 18.5 17.5 17.5 18.0 19.5 18.0 17.0 19.0 19.5 21.0 19.5 17.0 19.5 17.0 19.5 17.0 17.0 | 22.0
21.0
19.5
19.0
20.0
21.0
19.0
19.0
20.5
21.5
22.5
21.0
18.0 | 24.5
26.0
27.0
27.5
27.0
24.5
22.5
23.5
24.5
25.0
23.5
22.0
21.0 | JULY 20.5 21.5 23.0 23.5 24.0 20.5 19.0 21.0 22.5 19.5 18.0 18.5 19.5 | 23.0
24.0
25.5
26.0
25.5
21.0
21.5
23.0
23.5
21.5
20.0
20.0 | 27.0
27.5
27.0
27.0
26.0
25.5
23.0
22.0
22.5
24.0
24.5
25.5
27.0
27.5 | 23.5
23.5
24.5
24.0
24.0
23.0
20.0
19.0
18.5
20.0
20.5
22.5
23.0
24.0 | 25.0
25.5
25.5
25.5
25.0
24.5
21.5
20.5
20.5
22.0
22.5
23.5
24.5
25.5 | 20.5
20.0
22.0
23.5
23.0
21.0
20.5
20.5
21.0
22.5
22.5
20.0
19.0
20.0 | 18.0
17.5
19.0
21.0
20.0
18.5
17.5
17.5
17.5
17.5
17.5
17.5 | 18.5
18.5
20.5
22.0
21.0
20.0
19.0
19.5
20.5
21.5
19.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 24.0
22.5
21.5
20.0
22.5
19.5
21.0
21.5
23.0
24.0
23.5
19.5
18.0
20.0
20.5
21.5
21.5 | 19.5
18.5
17.5
17.5
18.0
19.5
18.0
17.0
17.0
19.0
19.5
21.0
19.5
17.0
17.0 | 22.0
21.0
19.5
19.0
20.0
21.0
19.0
19.0
20.5
21.5
22.5
21.0
18.0
17.5 | 24.5
26.0
27.0
27.5
27.0
24.5
22.5
23.5
24.5
22.0
21.0
21.0
23.5
24.5
22.0
21.0
21.0
23.5 | JULY 20.5 21.5 23.0 23.5 24.0 20.5 19.0 21.0 22.5 19.5 18.5 19.5 19.0 20.5 20.0 22.5 | 23.0
24.0
25.5
26.0
25.5
21.0
23.5
21.5
23.0
23.5
21.5
20.0
20.0
20.0
21.0 | 27.0
27.5
27.0
26.0
25.5
23.0
22.0
22.5
24.0
24.5
25.5
27.0
27.5
27.5
27.0
27.0
27.0
27.0 | 23.5
23.5
24.5
24.0
24.0
23.0
20.0
19.0
18.5
20.0
20.5
22.5
23.0
24.0
24.0
24.0 | 25.0
25.5
25.5
25.5
25.0
24.5
20.5
20.5
22.0
22.5
24.5
22.0
22.5
24.5
24.5
24.5
25.5
26.0
26.0
26.0
26.0 | 20.5
20.0
22.0
23.5
23.0
21.0
20.5
20.5
21.0
22.5
22.5
22.5
20.0
21.5
22.0
20.0
20.0 | 18.0
17.5
19.0
21.0
20.0
18.5
17.5
17.5
17.5
17.5
19.0
20.0
17.5
16.0
17.5
20.0
20.0 | 18.5
18.5
20.5
22.0
21.0
20.0
19.0
19.5
20.5
21.5
19.0
20.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 24.0
22.5
21.5
20.0
22.5
19.5
21.0
21.5
23.0
24.0
23.5
19.5
18.0
20.0
20.5
21.5
21.5
22.5 | JUNE 19.5 18.5 17.5 18.0 19.5 18.0 17.0 17.0 19.0 19.5 21.0 17.0 17.0 17.0 17.0 18.5 17.0 17.0 17.0 21.5 21.5 21.5 22.5 23.0 | 22.0
21.0
19.5
19.0
20.0
21.0
19.0
19.0
20.5
21.5
22.5
21.0
18.0
17.5
18.0
19.0
19.0
20.5 | 24.5
26.0
27.0
27.5
27.0
24.5
22.5
23.5
24.5
22.0
21.0
21.0
23.5
24.5
24.5
25.0
25.5
24.5
25.0 | JULY 20.5 21.5 23.0 23.5 24.0 20.5 19.0 21.0 22.5 19.5 18.5 19.5 19.0 22.5 23.0 23.0 23.0 23.0 | 23.0
24.0
25.5
26.0
25.5
21.0
23.5
23.0
23.5
21.5
20.0
20.0
20.0
21.0
22.5
22.5
24.5
24.5
24.5
24.5 | 27.0
27.5
27.0
26.0
25.5
23.0
22.0
22.5
24.0
24.5
25.5
27.0
27.5
27.5
27.5
27.0
27.5
27.5
27.5
27.5
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0 | 23.5
23.5
24.5
24.0
24.0
23.0
20.0
19.0
18.5
20.0
20.5
22.5
23.0
24.0
24.0
24.5
24.5
24.5
24.5
24.5
24.5 | 25.0
25.5
25.5
25.5
25.0
24.5
20.5
20.5
22.0
22.5
24.5
24.5
25.5
26.0
25.5
26.0
25.5
24.0
25.5 | 20.5
20.0
22.0
23.5
23.0
21.0
20.5
20.5
21.0
22.5
22.5
20.0
21.5
23.0
22.0
21.5
23.0
22.5
23.0
22.0
23.5
23.0 | 18.0
17.5
19.0
21.0
20.0
18.5
17.5
17.5
17.5
17.5
19.0
20.0
17.5
20.0
20.0
20.5
18.0
19.0
20.0
20.0 | 18.5
18.5
18.5
20.5
22.0
21.0
20.0
19.0
19.5
20.5
21.5
19.0
20.5
21.5
20.5
21.5
20.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 24.0
22.5
21.5
20.0
22.5
19.5
21.0
21.5
23.0
24.0
23.5
19.5
18.0
20.5
21.5
21.5
21.5
21.5
22.5
19.5
21.5
22.5
24.0
20.5
21.5
22.5
22.5
22.5 | JUNE 19.5 18.5 17.5 18.0 19.5 18.0 17.0 17.0 19.0 19.5 21.0 17.0 17.0 16.0 17.0 16.5 17.5 18.0 18.0 17.5 22.5 22.5 22.0 22.0 20.5 | 22.0
21.0
21.0
19.5
19.0
20.0
21.0
19.0
19.0
20.5
21.5
22.5
21.0
18.0
17.5
18.0
19.0
19.0
20.5
21.5
22.5
21.0
21.5
22.5
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0 | 24.5
26.0
27.0
27.5
27.0
24.5
22.5
23.5
24.5
22.0
21.0
21.0
23.5
24.0
25.0
25.0
25.0
26.5
27.5
26.0
27.5
26.0
27.5 | JULY 20.5 21.5 23.0 23.5 24.0 20.5 19.0 21.0 22.5 19.5 18.0 18.5 19.5 20.0 22.5 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 | 23.0
24.0
25.5
26.0
25.5
21.0
23.5
21.5
23.0
20.0
20.0
20.0
21.0
22.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
25.5
24.5
24.5
25.5 |
27.0
27.5
27.0
26.0
25.5
23.0
22.5
24.0
22.5
24.5
27.0
27.5
27.5
27.0
27.5
27.5
27.0
27.5
27.5
27.0
28.0
27.5
27.5
27.0
28.0
27.5
27.5
27.0
28.0
27.5
27.5
27.5
27.0
28.0
27.5
27.5
27.0
28.0
27.5
27.5
27.5
27.0
28.0
29.5
29.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5 | 23.5 23.5 24.0 24.0 23.0 20.0 19.0 18.5 20.0 20.5 22.5 23.0 24.0 24.0 25.0 24.5 22.5 23.0 24.5 22.5 23.0 24.5 22.5 23.0 24.5 22.5 23.5 23.0 24.5 | 25.0
25.5
25.5
25.5
25.0
24.5
20.5
20.5
22.0
22.5
24.5
24.5
26.0
25.5
26.0
25.5
24.0
25.5
24.5
26.0
25.5
24.5
26.0
27.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28 | 20.5
20.0
22.0
23.5
23.0
21.0
20.5
20.5
21.0
22.5
22.5
20.0
21.5
23.0
22.0
20.5
22.5
20.0
21.5
23.0
22.0
20.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5 | 18.0
17.5
19.0
21.0
20.0
18.5
17.5
17.5
17.5
19.0
20.0
17.5
20.0
20.5
18.0
19.0
20.0
21.5
20.0
17.5
18.0
19.0 | 18.5
18.5
18.5
20.5
22.0
21.0
20.0
19.0
19.5
20.5
21.5
19.0
20.5
21.5
19.0
20.5
21.5
19.0
20.5
17.5
19.0
20.5
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0 | ## 01480500 WEST BRANCH BRANDYWINE CREEK AT COATESVILLE, PA--Continued CROSS-SECTION ANALYSES, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | SECOND (FEET) (DEG C) L B
(00061) (00003) (00010) (00 | | |--|---| | JUL 2002 | | | 12 1201 9.9 | 1 | | | 3 | | | 6 | | 12 1206 1.00 18.8
12 1207 1.00 18.8 1 | 9 | | 12 1207 1.00 18.8 1 | | | 12 1210 1.00 18.9 1 | | | 12 1213 1.00 18.9 2 | | | 12 1214 1.00 18.9 2 | | | 12 1216 1.00 18.9 2 | 7 | | 12 1218 1.00 19.0 3 | | | 12 1219 1.50 18.9 3 | | | 12 1221 1.00 18.8 3 | | | 12 1222 1.00 18.8 3 | | | 12 1223 1.00 18.8 4
12 1224 1.00 18.9 4 | | | 12 1224 1.00 18.9 4 | | | 12 1227 1.00 19.1 4 | | | 12 1229 1.00 19.3 5 | | | 12 1230 1.00 19.3 5 | | | 12 1232 1.00 19.2 6 | 0 | | 12 1233 1.00 19.2 6 | 3 | | 12 123550 19.5 6 | | | 12 1236 7 | 0 | #### 01480617 WEST BRANCH BRANDYWINE CREEK AT MODENA, PA LOCATION.--Lat 39°57'42", long 75°48'06", Chester County, Hydrologic Unit 02040205, on left bank at bridge on SR 15068 at Modena, and 300 ft upstream from Dennis Run. **DRAINAGE AREA**.--55.0 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--January 1970 to current year. REVISED RECORDS.--WDR PA-74-1: 1971-72(P), 1973. WDR PA-75-1: 1974(m). GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 265 ft above National Geodetic Vertical Datum of 1929, from topographic map. **REMARKS.**--Records fair except those for estimated daily discharges, which are poor. Slight regulation from Rock Run Reservoir 5.6 mi upstream, capacity, 982 acre-ft, and by Lukens Steel Company. Diversion from Rock Run Reservoir for municipal supply of city of Coatesville reenters creek upstream from gage. Satellite and landline telemetry at station. **COOPERATION**.--Records of diversion provided by the city of Coatesville. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,000 ft³/s and maximum (*): | Date
June 6 | Time 2330 | e f | charge
t ³ /s
833 | Gage Height
(ft)
*5.13 | | | Date
(No | Tim
peaks a | ne f | charge
t ³ /s
se disch | Gage Height (ft) | | |---|---|---|---|--|--|--|---|---|---|---|---|---| | | | | DISCHA | RGE, CUBIC FI | EET PER SE | | TER YEAR O
AN VALUES | |)1 TO SEPTI | EMBER 200 | 02 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 21
19
19
21
18 | 17
16
19
16
16 |
21
19
17
20
19 | 19
20
20
20
21 | 49
45
35
33
30 | 25
30
132
49
33 | 40
36
33
38
33 | 34
96
125
45
37 | 29
26
24
25
27 | 19
20
18
19
17 | 11
11
11
13
13 | 26
20
15
14
12 | | 6
7
8
9
10 | 19
18
17
19 | 15
16
15
15 | 20
20
24
32
24 | 39
46
31
28
25 | 29
31
30
30
28 | 31
30
30
27
33 | 32
30
30
31
35 | 32
32
30
39
43 | 109
261
49
35
30 | 17
16
17
16
18 | 13
11
12
9.9 | 12
11
11
10
11 | | 11
12
13
14
15 | 19
19
19
18
27 | 15
15
15
15
16 | 23
22
22
32
34 | 117
81
38
31
30 | 30
30
27
28
27 | 26
27
32
35
30 | 31
31
31
35
32 | 31
37
97
e235
e60 | 28
26
26
67
57 | 15
16
14
18
16 | 9.3
11
7.8
9.1
8.5 | 15
18
20
19
30 | | 16
17
18
19
20 | 20
23
23
21
22 | 15
17
15
16
15 | 24
25
41
31
25 | 28
26
27
26
29 | 30
29
28
28
29 | 29
28
44
44
140 | 31
29
28
31
28 | 44
39
175
85
50 | 40
31
28
29
28 | 15
15
14
13
15 | 8.6
8.4
8.8
8.0
7.9 | 22
20
17
18
16 | | 21
22
23
24
25 | 20
21
21
23
20 | 16
16
13
15
36 | 23
22
21
30
26 | 26
28
28
166
106 | 30
28
27
27
26 | 102
45
38
33
32 | 27
34
32
27
28 | 40
39
35
34
32 | 25
24
23
22
22 | 15
14
13
14
15 | 7.9
8.0
7.4
22
14 | 17
15
15
14
12 | | 26
27
28
29
30
31 | 23
20
21
17
16
17 | 40
23
20
20
19 | 23
23
22
22
21
20 | 45
36
34
31
35
48 | 28
27
27
 | 39
71
42
38
33
36 | 29
25
94
62
37 | 30
33
33
33
33
29 | 21
23
26
23
20 | 12
15
14
14
12
12 | 14
9.9
12
35
17 | 33
74
62
24
16 | | TOTAL
MEAN
MAX
MIN
CFSM
IN.
(†) | 620
20.0
27
16
0.36
0.42 | 533
17.8
40
13
0.32
0.36 | 748
24.1
41
17
0.44
0.51 | 1285
41.5
166
19
0.75
0.87
+.4 | 846
30.2
49
26
0.55
0.57
+.1 | 1364
44.0
140
25
0.80
0.92
+.6 | 1040
34.7
94
25
0.63
0.70
+.1 | 1737
56.0
235
29
1.02
1.17 | 1204
40.1
261
20
0.73
0.81 | 478
15.4
20
12
0.28
0.32
-1.0 | 364.5
11.8
35
7.4
0.21
0.25
8 | 619
20.6
74
10
0.38
0.42 | | STATISTI | CS OF MON | | | FOR WATER Y | | _ | BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 54.5
190
1997
20.0
2002 | 70.2
144
1997
17.8
2002 | 90.8
306
1997
21.5
1999 | 101
330
1979
20.1
1981 | 106
235
1971
30.2
2002 | 125
308
1994
43.0
1985 | 116
241
1983
34.7
2002 | 93.8
213
1989
41.5
1999 | 80.4
302
1972
28.4
1999 | 66.8
236
1984
15.4
2002 | 45.4
123
1971
11.8
2002 | 54.1
186
1979
20.6
2002 | [†] Change in contents from Rock Run Reservoir, equivalent in cubic feet per second. e Estimated. ## 01480617 WEST BRANCH BRANDYWINE CREEK AT MODENA, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1970 - 2002 | |--------------------------|------------------------|---------------------|---------------------------| | ANNUAL TOTAL | 21060 | 10838.5 | | | ANNUAL MEAN | 57.7 | 29.7 | 83.7 | | HIGHEST ANNUAL MEAN | | | 130 1979 | | LOWEST ANNUAL MEAN | | | 29.7 2002 | | HIGHEST DAILY MEAN | 520 Mar 30 | 261 Jun 7 | 4010 Jun 22 1972 | | LOWEST DAILY MEAN | 13 Nov 23 | 7.4 Aug 23 | 7.4 Aug 23 2002 | | ANNUAL SEVEN-DAY MINIMUM | 15 Nov 8 | 8.1 Aug 17 | 8.1 Aug 17 2002 | | MAXIMUM PEAK FLOW | | 833 Jun 6 | a 9600 Jun 29 1973 | | MAXIMUM PEAK STAGE | | 5.13 Jun 6 | 12.47 Jun 29 1973 | | ANNUAL RUNOFF (CFSM) | 1.05 | 0.54 | 1.52 | | ANNUAL RUNOFF (INCHES) | 14.24 | 7.33 | 20.67 | | 10 PERCENT EXCEEDS | 113 | 43 | 143 | | 50 PERCENT EXCEEDS | 37 | 25 | 55 | | 90 PERCENT EXCEEDS | 17 | 13 | 25 | $[{]f a}$ From rating curve extended above 7,800 ft³/s on basis of slope-area measurement at gage height 11.48 ft. #### 01480617 WEST BRANCH BRANDYWINE CREEK AT MODENA, PA--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--October 1969 to October 1978, August 1981 to current year. PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: May 1971 to October 1977, August 1981 to current year. pH: May 1971 to October 1977, August 1981 to current year. WATER TEMPERATURES: May 1971 to October 1977, August 1981 to current year. DISSOLVED OXYGEN: May 1971 to October 1977, August 1981 to current year. INSTRUMENTATION.--Water-quality monitor May 1971 to October 1977, August 1981 to current year. REMARKS.—Specific conductance record rated fair except for periods Mar. 18 to Apr. 1 and Aug. 14-18, which are poor. pH record rated good. Water temperature and dissolved oxygen records rated fair. Data collection discontinued during winter months since 1981 water year. Other interruptions in the record were due to malfunctions of the equipment. ## EXTREMES FOR PERIOD OF DAILY RECORD.-- SPECIFIC CONDUCTANCE: Maximum, 858 microsiemens, Jan. 10, 1977; minimum, 72 microsiemens, Nov. 16, 1985. pH: Maximum, 10.0, Dec. 21, 1971; minimum, 5.9, July 14, 1991. WATER TEMPERATURE: Maximum, 33.5°C, July 19, 1977; minimum, 0.0°C, many days during winters. DISSOLVED OXYGEN: Maximum, 19.5 mg/L, Sept. 2, 1990; minimum, 0.6 mg/L, Nov. 1, 3, 1974. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | AGENCY
COL-
LECTING
SAMPLE
(CODE
NUMBER)
(00027) | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | COLI-
FORM,
FECAL,
0.7
µM-MF
(COLS./
100 ML)
(31625) | |----------|------|--|---|---|--|---|--|---|---| | MAR 2002 | | | | | | | | | | | 05 | 1235 | 1028 | 1028 | 33 | 14.5 | 8.3 | 313 | 4.4 | 272 | | 18 | 1210 | 1028 | 1028 | 46 | 12.9 | 8.1 | 323 | 7.2 | 580 | | APR | | | | | | | | | | | 23 | 1330 | 1028 | 1028 | 31 | 11.0 | 8.0 | 323 | 13.4 | 217 | | MAY | | | | | | | | | | | 01 | 1315 | 1028 | 1028 | 35 | 10.7 | 8.0 | 317 | 16.4 | 740 | | 14 | 1230 | 1028 | 1028 | 227 | 8.8 | 7.5 | 202 | 16.3 | 48000 | | 30 | 1410 | 1028 | 1028 | 35 | 10.2 | 8.1 | 323 | 21.4 | 175 | | JUN | | | | | | | | | | | 10 | 0849 | 1028 | 1028 | 30 | 7.7 | 7.5 | 311 | 19.5 | 827 | | 17 | 1325 | 1028 | 1028 | 32 | 9.6 | 8.1 | 307 | 20.6 | 1160 | | 25 | 1400 | 1028 | 1028 | 23 | 10.8 | 8.7 | 381 | 25.6 | 760 | | JUL | | | | | | | | | | | 08 | 1410 | 1028 | 1028 | 17 | 11.5 | 8.6 | 396 | 23.7 | 120 | | 15 | 1145 | 1028 | 1028 | 17 | 9.9 | 8.0 | 400 | 22.1 | 233 | | 23 | 1335 | 1028 | 1028 | 14 | 10.8 | 8.5 | 431 | 27.4 | 197 | | AUG | 1120 | 1000 | 1000 | 1.4 | 0 6 | | 460 | 04.5 | 200 | | 06 | 1130 | 1028 | 1028 | 14 | 8.6 | 7.8 | 463 | 24.5 | 380 | | 14 | 1220 | 1028 | 1028 | 10 | 10.2 | 8.4 | 538 | 26.6 | 553 | | 20 | 1250 | 1028 | 1028 | 9.1 | 10.0 | 8.2 | 531 | 26.9 | 293 | | SEP | 1255 | 1000 | 1000 | 1.77 | 10.0 | 0 4 | 463 | 01 1 | 1.57 | | 12 | 1355 | 1028 | 1028 | 17
16 | 10.9 | 8.4
8.1 | 463 | 21.1 | 157 | | 23 | 1320 | 1028 | 1028 | Τ6 | 9.9 | 8.I | 502 | 22.5 | 500 | ## 01480617 WEST BRANCH BRANDYWINE CREEK AT MODENA, PA--Continued ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | AGENCY
COL-
LECTING
SAMPLE
(CODE
NUMBER)
(00027) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | ANCE (µS/CM) | | SOLVED
(MG/L
) AS CA) | DIS-
SOLVED
(MG/L | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC WATER UNFLTRD IT FIELD (MG/L AS CACO3) (00419) | |----------------|--|---|--|--|--|---|---|--|---|---|--|--|--| | OCT 2001
02 | 0845 | 80020 | 1028 | 19 | 11.3 | 7.9 | 393 | 14.5 | 32.3 | 10.4 |
5.97 | 25.1 | 73 | | Date | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
NITRITI
DIS- | PHOS-
E PHATE,
DIS-
O SOLVED
(MG/L
AS P) | ALUM-
INUM,
DIS-
SOLVEI
(µG/L
AS AL) | (µG/L
AS AS) | DIS- | CADMIUM
DIS-
SOLVED
(µG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(µG/L
AS CR)
(01030) | COPPER, DIS- SOLVED (µG/L AS CU) (01040) | | OCT 2001
02 | 41.4 | 10.6 | 34.5 | <.04 | 4.10 | .016 | .16 | 20 | <2 | 90 | <.1 | 3.9 | 3.1 | | | | Date | | IRON,
DIS-
SOLVED
(µG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(µG/L
AS PB)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(μG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(µG/L
AS HG)
(71890) | MOLYB-
DENUM,
DIS-
SOLVED
(µG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(µG/L
AS NI)
(01065) | ZINC,
DIS-
SOLVED
(MG/L
AS ZN)
(01090) | | | | | | | OCT 2
02. | | 47 | <1 | 31.3 | <.01 | 31.1 | 3.0 | <24 | | | | ## 01480617 WEST BRANCH BRANDYWINE CREEK AT MODENA, PA--Continued ## BIOLOGICAL DATA BENTHIC MACROINVERTEBRATES **REMARKS.**--Samples were collected using a Hess sampler with a mesh size of 500 μ m. Each sample covered a total area of 3.2 m². | Date | 10/02/01 | |--|----------| | Benthic Macroinvertebrate | Count | | Platyhelminthes | | | Turbellaria (FLATWORMS) | | | Tricladida | | | Planariidae | 104 | | Nematoda (NEMATODES) | 84 | | Nemertea (PROBOSAS WORMS) | | | Enopla | | | Hoplonemertea | | | Tetrastemmatidae | | | <u>Prostoma</u> sp | 10 | | Mollusca | | | Gastropoda (SNAILS) | | | Basommatophora | | | Ancylidae | | | <u>Ferrissia</u> sp | 1 | | Physidae | - | | Physa sp | 1 | | Arthropoda | - | | Acariformes | | | Hydrachnidia (WATER MITES) | 31 | | Insecta | 31 | | Ephemeroptera (MAYFLIES) | | | Baetidae | | | Baetis sp | 17 | | Pseudocloeon sp | 3 | | Ephemerellidae | 3 | | Serratella sp | 3 | | Heptageniidae | 3 | | Stenonema sp | 2 | | | 2 | | Trichoptera (CADDISFLIES) | | | Hydropsychidae | 4.47 | | <u>Cheumatopsyche</u> sp | 447 | | Hydropsyche sp | 661 | | Hydroptilidae | 122 | | <u>Leucotrichia</u> sp | 132 | | Leptoceridae | 1 | | Oecetis sp | 1 | | Philopotamidae | 1 | | <u>Chimarra</u> sp | 1 | | Lepidoptera | | | Pyralididae (MOTHS) | 2.2 | | <u>Petrophila</u> sp
Coleoptera (BEETLES) | 89 | | _ | | | Elmidae (RIFFLE BEETLES) | 4.1 | | Optioservus sp | 41 | | Oulimnius sp | 5 | | Stenelmis sp | 47 | | Psephenidae (WATER PENNIES) | 2 | | <u>Psephenus</u> sp | 3 | ## 01480617 WEST BRANCH BRANDYWINE CREEK AT MODENA, PA--Continued # BIOLOGICAL DATA BENTHIC MACROINVERTEBRATES--Continued | Date | 10/02/01 | |---------------------------|----------| | Benthic Macroinvertebrate | Count | | Diptera (TRUE FLIES) | | | Chironomidae (MIDGES) | 121 | | Empididae (DANCE FLIES) | | | <u>Hemerodromia</u> sp | 9 | | Tipulidae (CRANE FLIES) | | | Antocha sp | 1 | | | | | Total organisms | 1814 | | Total number of taxa | 23 | ## 01480617 WEST BRANCH BRANDYWINE CREEK AT MODENA, PA--Continued SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25° CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|------------|------------------------|------------|---|--|---|---|---|---|---|---|---| | | | OCTOBER | | | NOVEMBER | | | DECEMBER | | | JANUARY | | | 1
2 | | | | 400
398 | 357
357 | 386
383 | 399
412 | 364
374 | 388
394 | | | | | 3 | 412 | 379 | 396 | 396 | 358 | 383 | 415 | 373 | 399 | | | | | 4
5 | 404
408 | 365
369 | 386
390 | 398
399 | 352
354 | 378
381 | 418 | 371 | 397
 | | | | | 6 | 419 | 372 | 397 | 406 | 360 | 388 | | | | | | | | 7
8 | 410
409 | 375
375 | 395
395 | 402
403 | 367
360 | 391
386 | | | | | | | | 9 | 421 | 378 | 396 | 396 | 358 | 382 | | | | | | | | 10 | 397 | 361 | 386 | 409 | 370 | 394 | | | | | | | | 11
12 | 410
402 | 367
368 | 385
386 | 403
404 | 360
363 | 383
388 | | | | | | | | 13 | 404 | 375 | 392 | 398 | 361 | 384 | | | | | | | | 14
15 | 402
401 | 367
270 | 387 | 404
399 | 378 | 393
388 | | | | | | | | 13 | 401 | 270 | 346 | 399 | 367 | 300 | | | | | | | | 16 | 393 | 360 | 377 | 401 | 352 | 386 | | | | | | | | 17
18 | 396
396 | 336
353 | 367
374 | 401
398 | 349
357 | 384
382 | | | | | | | | 19 | 401 | 358 | 387 | 399 | 360 | 384 | | | | | | | | 20 | 404 | 370 | 393 | 396 | 363 | 381 | | | | | | | | 21 | 399 | 365 | 388 | 393 | 359 | 382 | | | | | | | | 22
23 | 402
416 | 366
377 | 389
397 | 405
405 | 360
352 | 387
382 | | | | | | | | 24 | 400 | 364 | 388 | 412 | 367 | 397 | | | | | | | | 25 | 407 | 368 | 393 | 405 | 204 | 347 | | | | | | | | 26 | 403 | 362 | 385 | 325 | 287 | 307 | | | | | | | | 27 | 402 | 369 | 387 | 371 | 325 | 351 | | | | | | | | 28 | 413 | 367 | 392 | 393 | 363 | 380 | | | | | | | | 29
30 | 413
404 | 369
360 | 396
389 | 398
396 | 365
371 | 384
387 | | | | | | | | 31 | 402 | 358 | 381 | | | | | | | | | | | MONTH | 421 | 270 | 387 | 412 | 204 | 380 | 418 | 364 | 394 | DAY | MAX | MIN | MEAN | | DAY | | MIN
FEBRUARY | MEAN | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | DAY
1 | | | MEAN | MAX
378 | | MEAN
362 | MAX | | MEAN | MAX
324 | | MEAN
310 | | 1
2 |
 | FEBRUARY | | 378
374 | MARCH 342 339 | 362
361 |
340 | APRIL 304 | 322 | 324
332 | MAY
289
149 | 310
272 | | 1
2
3 | | FEBRUARY |
 | 378
374
339 | MARCH
342
339
195 | 362
361
233 |
340
345 | APRIL 304 320 |
322
337 | 324
332
257 | MAY 289 149 129 | 310
272
219 | | 1
2 | | FEBRUARY | | 378
374 | MARCH 342 339 | 362
361 |
340 | APRIL 304 | 322 | 324
332 | MAY
289
149 | 310
272 | | 1
2
3
4
5 |

 | FEBRUARY

 | | 378
374
339
302
345 | MARCH 342 339 195 257 299 | 362
361
233
279
319 |
340
345
342
353 | APRIL 304 320 306 317 |
322
337
321
334 | 324
332
257
311
338 | 289
149
129
257
311 | 310
272
219
283
322 | | 1
2
3
4 |

 | FEBRUARY

 |

 | 378
374
339
302 | MARCH
342
339
195
257 | 362
361
233
279 |
340
345
342 | APRIL 304 320 306 |
322
337
321 | 324
332
257
311 | MAY
289
149
129
257 | 310
272
219
283 | | 1
2
3
4
5 | | FEBRUARY | | 378
374
339
302
345
350
351
356 | MARCH 342 339 195 257 299 315 328 332 | 362
361
233
279
319
336
339
348 | 340
345
342
353
355
352
358 | APRIL 304 320 306 317 313 323 331 | 322
337
321
334
338
341
348 | 324
332
257
311
338
343
348
358 | 289
149
129
257
311
323
324
335 | 310
272
219
283
322
336
338
347 | | 1
2
3
4
5
6
7
8 | | FEBRUARY | | 378
374
339
302
345
350
351
356
368 | 342
339
195
257
299
315
328
332
335 | 362
361
233
279
319
336
339
348
353 | 340
345
342
353
355
352
358
360 | APRIL 304 320 306 317 313 323 331 321 | 322
337
321
334
338
341
348
345 |
324
332
257
311
338
343
348
358
362 | 289
149
129
257
311
323
324
335
289 | 310
272
219
283
322
336
338
347
333 | | 1
2
3
4
5
6
7
8
9 | | FEBRUARY | | 378
374
339
302
345
350
351
356
368
365 | 342
339
195
257
299
315
328
332
335
289 | 362
361
233
279
319
336
339
348
353
336 | 340
345
342
353
355
352
358
360
353 | 304
320
306
317
313
323
331
321
306 | 322
337
321
334
338
341
348
345
320 | 324
332
257
311
338
343
348
358
362
338 | 289
149
129
257
311
323
324
335
289
290 | 310
272
219
283
322
336
338
347
333
315 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | 378
374
339
302
345
350
351
356
368
365 | MARCH 342 339 195 257 299 315 328 332 335 289 | 362
361
233
279
319
336
339
348
353
336 | 340
345
342
353
355
352
358
360
353 | APRIL 304 320 306 317 313 323 331 321 306 320 | 322
337
321
334
338
341
348
345
320 | 324
332
257
311
338
343
348
358
362
338 | MAY 289 149 129 257 311 323 324 335 289 290 326 | 310
272
219
283
322
336
338
347
333
315 | | 1
2
3
4
5
6
7
8
9 | | FEBRUARY | | 378
374
339
302
345
350
351
356
368
365 | 342
339
195
257
299
315
328
332
335
289 | 362
361
233
279
319
336
339
348
353
336 | 340
345
342
353
355
352
358
360
353 | 304
320
306
317
313
323
331
321
306 | 322
337
321
334
338
341
348
345
320 | 324
332
257
311
338
343
348
358
362
338 | 289
149
129
257
311
323
324
335
289
290 | 310
272
219
283
322
336
338
347
333
315 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | | FEBRUARY | | 378
374
339
302
345
350
351
356
368
365
373
378
362
334 | MARCH 342 339 195 257 299 315 328 332 335 289 333 340 320 294 | 362
361
233
279
319
336
339
348
353
336
355
358
318 | 340
345
342
353
355
352
358
360
353
357
362
355
348 | APRIL 304 320 306 317 313 323 321 306 320 323 326 308 |
322
337
321
334
338
341
348
345
320
332
346
343
333 | 324
332
257
311
338
343
348
358
362
338
352
349
306
235 | MAY 289 149 129 257 311 323 324 335 289 290 326 284 175 156 | 310
272
219
283
322
336
338
347
333
315
340
326
253
198 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | 378
374
339
302
345
350
351
356
368
365
373
378
362 | 342
339
195
257
299
315
328
332
335
289
333
340
320 | 362
361
233
279
319
336
339
348
353
336
355
358
338 | 340
345
342
353
355
352
358
360
353
357
362
355 | APRIL 304 320 306 317 313 323 331 321 306 320 323 323 326 | 322
337
321
334
348
345
320
332
346
343 | 324
332
257
311
338
343
348
358
362
338 | 289
149
129
257
311
323
324
335
289
290 | 310
272
219
283
322
336
338
347
333
315
340
326
253 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | 378
374
339
302
345
350
351
356
368
365
373
378
362
334
353 | MARCH 342 339 195 257 299 315 328 332 335 289 333 340 320 294 331 | 362
361
233
279
319
336
339
348
353
336
355
358
316
342 | 340
345
342
353
355
352
358
360
353
357
362
355
348
348 | APRIL 304 320 306 317 313 323 331 321 306 320 323 326 308 326 325 |
322
337
321
334
338
341
348
345
320
332
346
343
333
333
336 | 324
332
257
311
338
343
348
358
362
338
352
349
306
235
286 | MAY 289 149 129 257 311 323 324 335 289 290 326 284 175 156 235 | 310
272
219
283
322
336
338
347
333
315
340
326
253
198
261 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | 378
374
339
302
345
350
351
356
368
365
373
378
362
334
353 | 342
339
195
257
299
315
328
332
335
289
333
340
320
294
331 | 362
361
233
279
319
336
339
348
353
336
355
358
338
316
342 | 340
345
342
353
355
352
358
360
353
357
362
355
348
348 | APRIL 304 320 306 317 313 323 321 306 320 326 326 328 326 328 | 322
337
321
334
341
345
320
332
346
343
333
336 | 324
332
257
311
338
348
358
362
338
352
349
306
235
286 | 289 149 129 257 311 323 324 335 289 290 326 284 175 156 235 | 310
272
219
283
322
336
338
347
333
315
340
326
253
198
261 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | 378
374
339
302
345
350
351
356
368
365
373
378
362
334
353 | MARCH 342 339 195 257 299 315 328 332 335 289 333 340 320 294 331 | 362
361
233
279
319
336
339
348
353
336
355
358
316
342 | 340
345
342
353
355
352
358
360
353
357
362
355
348
348 | APRIL 304 320 306 317 313 323 331 321 306 320 323 326 308 326 325 |
322
337
321
334
338
341
348
345
320
332
346
343
333
333
336 | 324
332
257
311
338
343
348
358
362
338
352
349
306
235
286 | MAY 289 149 129 257 311 323 324 335 289 290 326 284 175 156 235 | 310
272
219
283
322
336
338
347
333
315
340
326
253
198
261 | | 1 2 3 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 | | FEBRUARY | | 378
374
339
302
345
350
351
356
368
365
378
362
334
353 | 342
339
195
257
299
315
328
332
335
289
333
340
320
294
331
327
337
300 | 362
361
233
279
319
336
339
348
353
336
355
358
338
316
342
348
354
322 | 340
345
342
353
355
352
358
360
353
357
362
355
348
348 | APRIL 304 320 306 317 313 323 331 321 306 320 323 326 308 326 325 329 345 | 322
337
321
334
341
348
345
320
332
346
343
333
336
341
350
362 | 324
332
257
311
338
348
358
362
338
352
349
306
235
286
307
333
333 | 289 149 129 257 311 323 324 335 289 290 326 284 175 156 235 | 310
272
219
283
322
336
338
347
333
315
340
326
253
198
261
292
318
241 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | | FEBRUARY | | 378
374
339
302
345
350
351
356
368
365
373
378
362
334
353 | MARCH 342 339 195 257 299 315 328 335 289 333 340 320 294 331 327 337 300 281 | 362
361
233
279
319
336
339
348
353
336
355
358
316
342
348
354
322
299 | 340
345
342
353
355
352
358
360
353
357
362
355
348
348
348 | APRIL 304 320 306 317 313 323 321 306 320 326 320 326 328 326 329 345 312 | 322
337
321
334
338
341
348
345
320
332
346
343
333
336
341
350
362
357 | 324
332
257
311
338
343
348
358
362
338
352
349
306
235
286 | MAY 289 149 129 257 311 323 324 335 289 290 326 284 175 156 235 278 305 174 230 | 310
272
219
283
322
336
338
347
333
315
340
326
253
198
261
292
318
248 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | | FEBRUARY | | 378
374
339
302
345
350
351
356
368
365
373
378
362
334
353 | 342
339
195
257
299
315
328
335
289
333
340
320
294
331
327
337
300
281
182 | 362
361
233
279
319
336
339
348
353
336
355
358
316
342
348
354
322
299
266 | 340
345
342
353
355
352
358
360
353
357
362
355
348
348
357
363
373
374 | APRIL 304 320 306 317 313 323 331 321 306 320 323 326 329 345 312 343 |
322
337
321
334
348
341
345
320
332
346
343
333
336
341
350
362
357
361 | 324
332
257
311
338
343
348
358
362
338
352
349
306
235
286
307
333
333
272
305 | 289 149 129 257 311 323 324 335 289 290 326 284 175 156 235 278 305 174 230 271 | 310
272
219
283
322
336
338
347
333
315
340
326
253
198
261
292
318
241
248
285 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | | FEBRUARY | | 378
374
339
302
345
350
351
356
368
365
378
362
334
353
361
370
350
327
334
260
319
331 |
342
339
195
257
299
315
328
332
335
289
331
340
320
294
331
327
337
300
281
182 | 362
361
233
279
319
336
339
348
353
336
358
338
316
342
348
354
322
299
266
237
289
324 | 340
345
342
353
355
352
358
360
353
357
362
355
348
348
347
373
374 | APRIL 304 320 306 317 313 323 321 306 320 323 326 328 326 329 345 312 343 345 323 309 |
322
337
321
334
341
348
345
320
346
343
333
336
341
350
362
357
361
362
339
327 | 324
332
257
311
338
348
358
362
338
352
349
306
235
286
307
333
333
272
305 | 289 149 129 257 311 323 324 335 289 290 326 284 175 156 235 278 305 174 230 271 295 305 313 | 310
272
219
283
322
336
338
347
333
315
340
326
253
198
261
292
318
241
248
285
307
319
327 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | | FEBRUARY | | 378
374
339
302
345
350
351
356
368
365
373
378
362
334
353 | 342
339
195
257
299
315
328
335
289
333
340
320
294
331
327
337
300
281
182 | 362
361
233
279
319
336
339
348
353
336
355
358
316
342
348
354
322
299
266 | 340
345
342
353
355
352
358
360
353
357
362
355
348
348
357
363
373
374 | APRIL 304 320 306 317 313 323 331 321 306 320 323 326 329 345 312 343 |
322
337
321
334
348
341
345
320
332
346
343
333
336
341
350
362
357
361 | 324
332
257
311
338
343
348
358
362
338
352
349
306
235
286
307
333
333
272
305 | 289 149 129 257 311 323 324 335 289 290 326 284 175 156 235 278 305 174 230 271 | 310
272
219
283
322
336
338
347
333
315
340
326
253
198
261
292
318
241
248
285 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | | FEBRUARY | | 378
374
339
302
345
350
351
356
368
365
373
378
362
334
353
361
370
350
327
334
260
319
331
326
349 | 342
339
195
257
299
315
328
335
289
331
340
320
294
331
327
337
300
281
182
210
260
318
278
295 | 362
361
233
279
319
336
339
348
353
336
358
338
316
342
348
354
322
299
266
237
289
324
299
316 | 340
345
342
353
355
352
358
360
353
357
362
355
348
348
373
373
374
373
364
340
362
366 | APRIL 304 320 306 317 313 323 321 306 320 326 329 345 312 343 345 323 309 331 329 |
322
337
321
334
341
348
345
320
332
346
343
333
336
341
350
362
357
361
362
339
327
347
350 | 324
332
257
311
338
348
358
362
338
352
349
306
235
286
307
333
333
272
305
318
335
342
354
356 | 289 149 129 257 311 323 324 335 289 290 326 284 175 156 235 278 305 174 230 271 295 305 313 324 333 | 310
272
219
283
322
336
338
347
333
315
340
326
253
198
261
292
318
241
248
285
307
319
327
341
346 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | | FEBRUARY | | 378
374
339
302
345
350
351
356
368
365
373
378
362
334
353
361
370
350
351
370
351
370
351
370
351
370
351
370
370
370
370
370
370
370
370
370
370 | 342
339
195
257
299
315
328
332
335
289
333
340
320
294
331
327
337
300
281
182
210
260
318
295 | 362
361
233
279
319
336
339
348
353
336
355
358
316
342
348
354
322
299
266
237
289
324
299
316 | 340
345
342
353
355
352
358
360
353
357
362
355
348
348
348
377
374
373
364
340
362
366
357
358 | APRIL 304 320 306 317 313 323 321 306 320 326 329 345 312 343 345 323 309 331 329 | 338
331
334
338
341
348
345
320
332
346
343
333
336
341
350
362
357
361
362
339
327
347
350 | 324
332
257
311
338
343
348
358
362
338
352
349
306
235
286
307
333
333
272
305 | 289 149 129 257 311 323 324 335 289 290 326 284 175 156 235 278 305 174 230 271 295 305 313 324 333 | 310
272
219
283
322
336
338
347
333
315
340
326
253
198
261
292
318
241
248
285
307
319
327
341
346
348
344 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | | FEBRUARY | | 378
374
339
302
345
350
351
356
368
365
378
362
334
353
361
370
350
327
334
260
319
331
326
349 | 342
339
195
257
299
315
328
332
335
289
3340
320
294
331
327
337
300
281
182
210
260
318
278
295 | 362
361
233
279
319
336
339
348
353
336
355
358
338
316
342
348
354
322
299
266
237
289
324
299
316 | 340
345
342
353
355
352
358
360
353
357
362
355
348
348
357
363
377
374
373
364
340
362
366 | APRIL 304 320 306 317 313 323 321 306 320 326 329 345 312 343 345 329 345 312 343 345 329 345 312 343 |
322
337
321
334
341
348
345
320
346
343
333
336
341
350
362
357
361
362
357
361
362
357
361 | 324
332
257
311
338
348
358
362
338
352
349
306
235
286
307
333
333
272
305
318
335
342
354
356
356
356
356
356
356
356
356 | 289 149 129 257 311 323 324 335 289 290 326 284 175 156 235 278 305 174 230 271 295 305 313 324 333 341 335 324 | 310
272
219
283
322
336
338
347
333
315
340
326
253
198
261
292
318
241
248
285
307
319
327
341
346
348
344
348
344
335 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | | FEBRUARY | | 378
374
339
302
345
350
351
356
368
365
373
378
362
334
353
361
370
350
327
334
260
319
326
349 | 342
339
195
257
299
315
328
335
289
333
340
320
294
331
327
337
300
281
182
210
260
318
278
295 | 362
361
2233
279
319
336
339
348
353
353
353
342
348
354
322
299
266
237
289
316
342
299
316 | 340
345
342
353
355
352
358
360
353
357
362
355
348
348
348
357
363
377
374
373
364
362
366
357
358
369 | APRIL 304 320 306 317 313 323 321 306 320 323 326 328 326 329 345 312 343 345 323 345 312 343 345 323 329 324 294 221 238 | 338
337
321
334
338
345
320
332
346
343
333
336
341
350
362
337
361
362
337
361
362
339
327
347
350 | 324
332
257
311
338
343
348
358
362
338
352
349
306
235
286
307
333
3272
305
318
335
342
354
356
352
356
356
352
356
356
356
356
356
356
356
356
356
356 | 289 149 129 257 311 323 324 335 289 290 326 284 175 156 235 278 305 174 230 271 295 305 313 324 333 341 335 324 331 | 310
272
219
283
322
336
338
347
333
315
340
326
253
198
261
292
318
241
248
248
285
307
319
327
341
346
348
344
348
344
348
344
346 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | | FEBRUARY | | 378
374
339
302
345
350
351
356
368
365
378
362
334
353
361
370
350
327
334
260
319
331
326
349 | 342
339
195
257
299
315
328
332
335
289
3340
320
294
331
327
337
300
281
182
210
260
318
278
295 | 362
361
233
279
319
336
339
348
353
336
355
358
338
316
342
348
354
322
299
266
237
289
324
299
316 | 340
345
342
353
355
352
358
360
353
357
362
355
348
348
357
363
377
374
373
364
340
362
366 | APRIL 304 320 306 317 313 323 321 306 320 326 329 345 312 343 345 329 345 312 343 345 329 345 312 343 |
322
337
321
334
341
348
345
320
346
343
333
336
341
350
362
357
361
362
357
361
362
357
361 |
324
332
257
311
338
348
358
362
338
352
349
306
235
286
307
333
333
272
305
318
335
342
354
356
356
356
356
356
356
356
356 | 289 149 129 257 311 323 324 335 289 290 326 284 175 156 235 278 305 174 230 271 295 305 313 324 333 341 335 324 | 310
272
219
283
322
336
338
347
333
315
340
326
253
198
261
292
318
241
248
285
307
319
327
341
346
348
344
348
344
335 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
20
20
20
20
20
20
20
20
20
20
20
20
20 | | FEBRUARY | | 378
374
339
302
345
350
351
356
368
365
373
378
362
334
353
361
370
350
351
370
351
327
334
260
331
327
334
327
334
327
334
327
334
345 | 342
339
195
257
299
315
328
332
335
289
333
340
320
294
331
327
337
300
281
182
210
260
318
295
221
220
221
287
296
285 | 362
361
233
279
319
336
339
348
353
353
358
316
342
299
266
237
289
324
299
316
334
262
307
312
320 | 340
345
342
353
355
352
358
360
353
357
362
355
348
348
348
377
363
377
374
374
364
340
362
366
357
358
358
368
369
373
374
374
374
375
375
375
375
375
375
375
375
375
375 | APRIL 304 320 306 317 313 323 321 306 320 326 329 345 312 343 345 329 345 312 343 345 329 345 329 345 329 345 329 345 329 345 329 345 329 345 329 345 329 345 329 345 329 | 337
337
321
334
338
341
348
345
320
332
346
343
333
336
341
350
362
339
327
361
362
339
327
347
350 | 324
332
257
311
338
343
348
358
362
338
352
349
306
235
286
307
333
333
272
305
318
335
342
356
356
356
356
356
356
356
356
356
356 | 289 149 129 257 311 323 324 335 289 290 326 284 175 156 235 278 305 174 230 271 295 305 313 324 333 341 335 324 310 314 | 310
272
219
283
322
336
338
347
333
315
340
326
253
198
261
292
318
241
248
285
307
319
327
340
340
341
346
348
344
335
340 | ## 01480617 WEST BRANCH BRANDYWINE CREEK AT MODENA, PA--Continued SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25° CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | 51 20 | | D C C 11 11 (CE, | ······································ | ILI ID I LII | CEITINE | 20 01 | and the state of the | TIEN IEIN | OCTOBER 2 | 001 10 52 | I I E I I E E I E E | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|--|---------------------------------|---------------------------------|---------------------------------| | DAY | MAX | MIN | MEAN | | | | JUNE | | | JULY | | | AUGUST | | 5 | SEPTEMBE | R | | 1 | 373 | 339 | 356 | 386 | 357 | 373 | 477 | 442 | 465 | 434 | 266 | 346 | | 2 | 382 | 348 | 363 | 392 | 356 | 374 | 484 | 442 | 470 | 391 | 335 | 362 | | 3 | 388 | 366 | 382 | 397 | 359 | 381 | 488 | 425 | 468 | 420 | 370 | 394 | | 4 | 390 | 351 | 373 | 405 | 367 | 389 | 492 | 443 | 467 | 450 | 400 | 431 | | 5 | 385 | 342 | 364 | 417 | 376 | 396 | 452 | 409 | 428 | 471 | 443 | 460 | | 6 | 373 | 139 | 327 | 424 | 382 | 406 | 472 | 426 | 451 | 476 | 448 | 464 | | 7 | 226 | 138 | 188 | 432 | 386 | 413 | 474 | 443 | 460 | 475 | 409 | 451 | | 8 | 283 | 226 | 254 | 431 | 387 | 410 | 480 | 440 | 467 | 484 | 435 | 467 | | 9 | 320 | 278 | 296 | 444 | 404 | 427 | 480 | 443 | 467 | 485 | 438 | 467 | | 10 | 341 | 310 | 325 | 438 | 371 | 411 | 493 | 450 | 476 | 478 | 441 | 461 | | 11 | 351 | 324 | 338 | 446 | 380 | 412 | 491 | 433 | 467 | 479 | 435 | 460 | | 12 | 367 | 341 | 356 | 425 | 383 | 403 | 489 | 440 | 468 | 485 | 443 | 466 | | 13 | 374 | 350 | 362 | 417 | 357 | 395 | 493 | 461 | 481 | 526 | 427 | 475 | | 14 | 366 | 239 | 283 | 437 | 343 | 372 | 539 | 432 | 497 | 478 | 430 | 447 | | 15 | 289 | 235 | 263 | 452 | 397 | 429 | 538 | 447 | 487 | 485 | 305 | 460 | | 16 | 304 | 286 | 293 | 442 | 382 | 412 | 528 | 461 | 491 | 415 | 207 | 337 | | 17 | 322 | 293 | 308 | | | | 545 | 468 | 506 | 430 | 388 | 415 | | 18 | 336 | 303 | 320 | 477 | 432 | 453 | 549 | 491 | 516 | 448 | 409 | 432 | | 19 | 340 | 307 | 324 | 476 | 444 | 459 | 523 | 474 | 504 | 471 | 438 | 451 | | 20 | 348 | 315 | 330 | 477 | 438 | 461 | 532 | 493 | 515 | 499 | 452 | 474 | | 21 | 387 | 332 | 351 | 475 | 419 | 449 | 541 | 518 | 532 | 497 | 397 | 464 | | 22 | 394 | 372 | 387 | 484 | 415 | 455 | 554 | 518 | 539 | 488 | 452 | 474 | | 23 | 408 | 374 | 391 | 463 | 424 | 444 | 540 | 489 | 520 | 509 | 453 | 487 | | 24 | 417 | 360 | 397 | 447 | 405 | 433 | 517 | 232 | 442 | 508 | 484 | 496 | | 25 | 428 | 381 | 400 | 451 | 406 | 430 | 431 | 231 | 364 | 524 | 485 | 508 | | 26
27
28
29
30
31 | 403
408
371
387
390 | 387
366
328
339
365 | 396
387
343
361
382 | 454
461
445
446
447
469 | 404
431
404
412
413
435 | 435
448
428
434
435
453 | 426
467
484
471
402
434 | 374
415
449
200
361
370 | 398
438
469
323
384
394 | 512
316
350
440
471 | 223
201
197
350
423 | 464
274
303
391
451 | | MONTH | 428 | 138 | 340 | 484 | 343 | 421 | 554 | 200 | 463 | 526 | 197 | 434 | ## PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEDIAN | |----------------------------------|--|--|--|---------------------------------|---------------------------------|---------------------------------|--------------------------|--------------------------|--------------------------|----------|--------|--------------| | | | OCTOBER | ! | N | OVEMBE | R | D | ECEMBE | R | | JANUAR | Y | | 1
2
3
4
5 |
8.7
8.8
8.8 |
7.7
7.6
7.6 | 8.3
8.3
8.3 | 8.6
8.4
8.1
8.5
8.5 | 7.5
7.4
7.2
7.3
7.4 | 7.9
7.7
7.4
7.8
8.0 | 7.6
8.0
8.1
7.9 | 7.3
7.4
7.8
7.5 | 7.5
7.8
7.9
7.8 |

 | |

 | | 6
7
8
9
10 | 8.5
8.7
8.7
8.6
8.7 | 7.5
7.7
7.8
7.8
7.8 | 8.1
8.4
8.4
8.3 | 8.5
8.4
8.6
8.6
8.6 | 7.5
7.5
7.5
7.5
7.6 | 7.9
7.9
8.0
8.0 |

 | |

 |

 | |

 | | 11
12
13
14
15 | 8.5
8.5
8.4
8.3
8.0 | 7.6
7.5
7.3
7.3
7.1 | 8.2
8.1
7.9
7.8
7.6 | 8.6
8.6
8.4
8.4 | 7.6
7.6
7.6
7.6
7.4 | 8.0
8.1
7.9
7.9 |

 | |

 |

 | |

 | | 16
17
18
19
20 | 8.2
8.2
8.3
8.3 | 7.4
7.3
7.5
7.4
7.4 | 7.7
7.8
7.8
7.8
7.8 | 8.3
8.3
8.4
8.3
8.2 | 7.3
7.3
7.5
7.5 | 7.8
7.8
7.9
7.8
7.8 |

 | |

 |

 | |

 | | 21
22
23
24
25 | 8.3
8.4
8.3
8.3 | 7.3
7.2
7.2
7.2
7.1 | 7.6
7.8
7.7
7.6
7.5 | 8.2
8.3
8.3
8.0
7.5 | 7.5
7.6
7.7
7.5
7.2 | 7.9
8.0
7.9
7.7 |

 | |

 |

 | | | | 26
27
28
29
30
31 | 8.2
8.4
8.5
8.4
8.5
8.6 | 7.2
7.4
7.5
7.6
7.5
7.5 | 7.8
8.0
8.0
7.8
7.8
8.0 | 7.4
7.9
7.8
7.6
7.5 | 7.2
7.3
7.4
7.4
7.3 | 7.3
7.5
7.5
7.5
7.4 |

 | |

 | | |

 | | MAX
MIN | 8.8
8.0 | 7.8
7.1 | 8.4
7.5 | 8.6
7.4 | 7.7
7.2 | 8.1
7.3 | 8.1
7.6 | 7.8
7.3 | 7.9
7.5 | | | | ## 01480617 WEST BRANCH BRANDYWINE CREEK AT MODENA, PA--Continued PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | | EK, WHOLE, I | | | | | | | | | |---|---|--|---|--|--
---|---|--|---|---|--|---| | DAY | MAX | | MEDIAN | | | | FEBRUAR | Y | | MARCH | | | APRIL | | | MAY | | | 1
2 | | | | 9.2
9.2 | 7.6
7.6 | 8.4
8.4 | 9.0
9.0 | 7.4
7.5 | 7.9
8.1 | 8.2
8.4 | 7.4
7.5 | 7.7
7.8 | | 3
4 | | | | 8.0 | 7.7
7.7 | 7.8
7.8 | 8.9
9.0 | 7.5
7.5 | 7.8
8.1 | 7.7
7.7 | 7.5
7.5 | 7.6
7.6 | | 5 | | | | 8.6 | 7.7 | 7.9 | 9.0 | 7.5 | 8.2 | 7.8 | 7.5 | 7.6 | | 6 | | | | 8.8 | 7.6 | 8.0 | 9.1 | 7.6 | 8.3 | 7.9 | 7.5 | 7.6 | | 7
8 | | | | 8.9
9.1 | 7.6
7.6 | 8.2
8.2 | 9.1
9.2 | 7.6
7.5 | 8.3
8.4 | 7.9
8.0 | 7.5
7.5 | 7.6
7.7 | | 9
10 | | | | 9.1
9.1 | 7.6
7.6 | 8.2
8.2 | 9.1
9.2 | 7.5
7.4 | 8.2
8.2 | 7.8
8.2 | 7.5
7.6 | 7.6
7.8 | | 11 | | | | 9.0 | 7.6 | 8.3 | 9.1 | 7.5 | 8.3 | 8.3 | 7.6 | 7.8 | | 12
13 | | | | 9.0
8.1 | 7.6 | 8.2 | 8.8 | 7.5
7.5 | 8.0 | 8.2 | 7.5
7.5 | 7.7 | | 14 | | | | 9.2 | 7.6
7.6 | 7.8
8.2 | 9.0
8.9 | 7.4 | 8.1
7.9 | 8.0
7.8 | 7.4 | 7.7
7.6 | | 15 | | | | 9.0 | 7.5 | 8.1 | 8.8 | 7.4 | 7.9 | 7.9 | 7.6 | 7.7 | | 16
17 | | | | 9.0
8.6 | 7.5
7.6 | 8.1
7.9 | 8.8
8.7 | $7.4 \\ 7.4$ | 7.9
7.9 | 8.0
8.2 | 7.6
7.6 | 7.7
7.7 | | 18 | | | | 8.3 | 7.6 | 7.7 | 8.6 | 7.3 | 7.8 | 7.9 | 7.5 | 7.6 | | 19
20 | | | | 8.9
8.1 | 7.7
7.6 | 8.0
7.7 | 8.5
7.9 | 7.3
7.3 | 7.6
7.6 | 7.8
8.0 | 7.6
7.6 | 7.6
7.7 | | 21 | | | | 7.9 | 7.6 | 7.7 | 7.8 | 7.4 | 7.5 | 8.1 | 7.6 | 7.8 | | 22
23 | | | | 8.3
8.3 | 7.5
7.6 | 7.8
7.8 | 7.8
8.3 | 7.5
7.5 | 7.6
7.8 | 8.2
8.4 | 7.6
7.6 | 7.8
7.8 | | 24
25 | | | | 8.6
8.7 | 7.6
7.6 | 7.8
7.9 | 8.3
7.8 | 7.6
7.5 | 7.8
7.6 | 8.5
8.6 | 7.6
7.6 | 7.9
8.1 | | 26 | | | | 8.2 | 7.6 | 7.8 | 8.3 | 7.6 | 7.8 | 8.6 | 7.6 | 7.9 | | 27 | 9.2 | 7.5 | 8.5 | 8.3 | 7.6 | 7.8 | 8.3 | 7.5 | 7.8 | 8.1 | 7.5 | 7.8 | | 28
29 | 9.1 | 7.7
 | 8.5 | 8.6
8.8 | 7.6
7.5 | 7.8
7.9 | 7.7
7.8 | 7.5
7.5 | 7.6
7.6 | 8.5
8.6 | 7.5
7.5 | 7.8
7.9 | | 30
31 | | | | 8.9
8.7 | 7.5
7.5 | 7.9
7.8 | 7.8 | 7.4 | 7.6
 | 8.8
8.8 | 7.5
7.5 | 7.9
8.0 | | MAX | 9.2 | 7.7 | 8.5 | 9.2 | 7.7 | 8.4 | 9.2 | 7.6 | 8.4 | 8.8 | 7.6 | 8.1 | | MIN | 9.1 | 7.5 | 8.5 | 7.9 | 7.5 | 7.7 | 7.7 | 7.3 | 7.5 | 7.7 | 7.4 | 7.6 | DAY | MAX | MIN | MEDIAN | | DAY | MAX | MIN
JUNE | MEDIAN | MAX | MIN
JULY | MEDIAN | MAX | MIN
AUGUST | MEDIAN | | MIN
SEPTEMB | | | 1 | 8.4 | JUNE 7.4 | 7.8 | 8.6 | JULY 7.4 | 7.9 | 8.5 | AUGUST | 8.0 | 8.2 | 5EPTEMB
7.6 | ER 7.6 | | 1
2
3 | 8.4
8.6
8.5 | JUNE 7.4 7.5 7.5 | 7.8
7.9
7.9 | 8.6
8.6
8.6 | JULY 7.4 7.4 7.3 | 7.9
8.0
8.0 | 8.5
8.5
8.5 | 7.4
7.4
7.4
7.4 | 8.0
8.0
7.9 | 8.2
8.4
8.7 | 7.6
7.5
7.5 | 7.6
7.9
8.0 | | 1
2 | 8.4
8.6 | JUNE 7.4 7.5 | 7.8
7.9 | 8.6
8.6 | JULY 7.4 7.4 | 7.9
8.0 | 8.5
8.5 | 7.4
7.4 | 8.0
8.0 | 8.2
8.4 | 7.6
7.5 | ER 7.6 7.9 | | 1
2
3
4 | 8.4
8.6
8.5
8.5 | 7.4
7.5
7.5
7.5 | 7.8
7.9
7.9
7.9 | 8.6
8.6
8.6
8.6 | 7.4
7.4
7.3
7.3 | 7.9
8.0
8.0
8.0 | 8.5
8.5
8.5
8.6 | 7.4
7.4
7.4
7.4
7.4 | 8.0
8.0
7.9
7.9
7.9 | 8.2
8.4
8.7
8.6 | 7.6
7.5
7.5
7.5 | 7.6
7.9
8.0
8.3
8.3 | | 1
2
3
4
5 | 8.4
8.6
8.5
8.5
8.1
8.2 | 7.4
7.5
7.5
7.5
7.5
7.5 | 7.8
7.9
7.9
7.9
7.8
7.6
7.3 | 8.6
8.6
8.6
8.6
8.7 | 7.4
7.4
7.3
7.3
7.3
7.3 | 7.9
8.0
8.0
8.0
8.0
8.0 | 8.5
8.5
8.6
8.3
8.7 | 7.4
7.4
7.4
7.4
7.4
7.4
7.4 | 8.0
8.0
7.9
7.9
7.9
8.0 | 8.2
8.4
8.7
8.6
8.5
8.6 | 7.6
7.5
7.5
7.5
7.5
7.5
7.6
7.6 | 7.6
7.9
8.0
8.3
8.3
8.4 | | 1
2
3
4
5
6
7
8
9 | 8.4
8.6
8.5
8.5
8.1
8.2
7.4
7.7
8.0 | 7.4
7.5
7.5
7.5
7.5
7.5
7.5 | 7.8
7.9
7.9
7.9
7.8
7.6
7.3
7.5 | 8.6
8.6
8.6
8.6
8.7
8.7 | 7.4
7.4
7.3
7.3
7.3
7.3
7.4
7.4 | 7.9
8.0
8.0
8.0
8.0
8.1
8.1 | 8.5
8.5
8.6
8.3
8.7
8.7
8.6
8.7 | 7.4
7.4
7.4
7.4
7.4
7.4
7.4
7.5
7.5 | 8.0
8.0
7.9
7.9
7.9
8.0
8.2
8.2 | 8.2
8.4
8.7
8.6
8.5
8.6
8.6
8.6 | 7.6
7.5
7.5
7.5
7.5
7.5
7.6
7.6
7.6
7.5 | 7.6
7.9
8.0
8.3
8.3
8.4
8.4
8.4 | | 1
2
3
4
5
6
7
8
9 | 8.4
8.6
8.5
8.5
8.1
8.2
7.4
7.7
8.0
8.3 | 7.4
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 7.8
7.9
7.9
7.9
7.8
7.6
7.3
7.5
7.6 | 8.6
8.6
8.6
8.6
8.7
8.7
8.8 | 7.4
7.4
7.3
7.3
7.3
7.3
7.4
7.4
7.4
7.2 | 7.9
8.0
8.0
8.0
8.0
8.1
8.2
8.1 | 8.5
8.5
8.6
8.3
8.7
8.6
8.7 | 7.4
7.4
7.4
7.4
7.4
7.4
7.5
7.5 | 8.0
8.0
7.9
7.9
7.9
8.0
8.2
8.2
8.2
8.3 | 8.2
8.4
8.7
8.6
8.5
8.6
8.6
8.5 | 7.6
7.5
7.5
7.5
7.5
7.6
7.6
7.6
7.6 | 7.6
7.9
8.0
8.3
8.3
8.4
8.4
8.3
8.3 | | 1
2
3
4
5
6
7
8
9 | 8.4
8.6
8.5
8.5
8.1
8.2
7.4
7.7
8.0
8.3 | 7.4
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 7.8
7.9
7.9
7.8
7.6
7.3
7.5
7.6
7.8 | 8.6
8.6
8.6
8.6
8.7
8.7 | 7.4
7.4
7.3
7.3
7.3
7.3
7.4
7.4
7.4
7.2 | 7.9
8.0
8.0
8.0
8.0
8.1
8.1 | 8.5
8.5
8.6
8.3
8.7
8.6
8.7 | 7.4
7.4
7.4
7.4
7.4
7.4
7.5
7.5
7.5
7.5 | 8.0
8.0
7.9
7.9
7.9
8.0
8.2
8.2 | 8.2
8.4
8.7
8.6
8.5
8.6
8.6
8.5 | 7.6
7.5
7.5
7.5
7.5
7.5
7.6
7.6
7.6
7.6
7.6
7.5 | 7.6
7.9
8.0
8.3
8.3
8.4
8.4
8.3
8.3 | | 1
2
3
4
5
6
7
8
9
10 | 8.4
8.6
8.5
8.1
8.2
7.4
7.7
8.0
8.3
8.5
8.4 | 7.4
7.5
7.5
7.5
7.5
7.5
7.4
7.2
7.3
7.5
7.5
7.5 | 7.8
7.9
7.9
7.8
7.6
7.3
7.5
7.6
7.8 | 8.6
8.6
8.6
8.6
8.7
8.7
8.7
8.7
8.7 | 7.4
7.4
7.3
7.3
7.3
7.4
7.4
7.4
7.2
7.4 | 7.9
8.0
8.0
8.0
8.0
8.1
8.2
8.1
8.2
8.1
8.0 | 8.5
8.5
8.6
8.3
8.7
8.6
8.7
8.7
8.7
8.7 | 7.4
7.4
7.4
7.4
7.4
7.5
7.5
7.5
7.5 | 8.0
8.0
7.9
7.9
7.9
8.0
8.2
8.2
8.2
8.3
8.3
8.3 | 8.2
8.4
8.7
8.6
8.5
8.6
8.6
8.5
8.6
8.5
8.6 | 7.6
7.5
7.5
7.5
7.5
7.6
7.6
7.6
7.6
7.7 | 7.6
7.9
8.0
8.3
8.3
8.4
8.4
8.3
8.3
8.3 | | 1
2
3
4
5
6
7
8
9
10 | 8.4
8.6
8.5
8.5
8.1
8.2
7.4
7.7
8.0
8.3 | 7.4
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 7.8
7.9
7.9
7.8
7.6
7.3
7.5
7.6
7.8 | 8.6
8.6
8.6
8.6
8.7
8.7
8.7
8.7
8.7 | 7.4
7.4
7.3
7.3
7.3
7.4
7.4
7.4
7.4
7.4
7.2 | 7.9
8.0
8.0
8.0
8.0
8.1
8.2
8.1
8.0 | 8.5
8.5
8.6
8.3
8.7
8.7
8.6
8.7 | 7.4
7.4
7.4
7.4
7.4
7.4
7.5
7.5
7.5
7.5 | 8.0
8.0
7.9
7.9
7.9
8.0
8.2
8.2
8.3 | 8.2
8.4
8.7
8.6
8.5
8.6
8.6
8.6
8.6 | 7.6
7.5
7.5
7.5
7.5
7.5
7.6
7.6
7.6
7.6
7.6
7.5 | 7.6
7.9
8.0
8.3
8.3
8.3
8.4
8.4
8.3
8.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 8.4
8.6
8.5
8.5
8.1
8.2
7.4
7.7
8.0
8.3
8.5
8.4
8.0
7.6
7.7 | 7.4
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 7.8
7.9
7.9
7.8
7.6
7.3
7.5
7.6
7.8
7.9
7.8
7.7
7.5
7.5 |
8.6
8.6
8.6
8.6
8.7
8.7
8.7
8.7
8.7
8.7
8.7 | JULY 7.4 7.4 7.3 7.3 7.3 7.4 7.4 7.4 7.4 7.2 7.4 7.4 7.3 7.3 | 7.9
8.0
8.0
8.0
8.0
8.1
8.2
8.1
8.0
7.7
8.0 | 8.5
8.5
8.6
8.3
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7 | 7.4
7.4
7.4
7.4
7.4
7.5
7.5
7.5
7.5
7.5
7.6 | 8.0
8.0
7.9
7.9
7.9
8.0
8.2
8.2
8.3
8.3
8.4
8.5
8.5
8.5 | 8.2
8.4
8.7
8.6
8.5
8.6
8.6
8.5
8.6
8.6
8.7
8.6
8.7 | 7.6
7.5
7.5
7.5
7.5
7.6
7.6
7.6
7.6
7.6
7.5
7.6
7.5 | 7.6
7.9
8.0
8.3
8.3
8.4
8.4
8.3
8.3
8.3
8.3
8.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 8.4
8.6
8.5
8.5
8.1
8.2
7.4
7.7
8.0
8.3
8.5
8.4
8.0
7.6
7.7 | 7.4
7.5
7.5
7.5
7.5
7.5
7.2
7.3
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 7.8
7.9
7.9
7.8
7.6
7.3
7.5
7.6
7.8
7.7
7.5
7.5
7.6 | 8.6
8.6
8.6
8.6
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7 | 7.4
7.4
7.3
7.3
7.3
7.4
7.4
7.4
7.4
7.2
7.4
7.4
7.3
7.3 | 7.9
8.0
8.0
8.0
8.0
8.1
8.2
8.1
8.0
8.1
8.0
8.0
8.1
8.0 | 8.5
8.5
8.6
8.3
8.7
8.6
8.7
8.7
8.7
8.7
8.8
8.8
8.8
8.7 | 7.4
7.4
7.4
7.4
7.4
7.5
7.5
7.5
7.5
7.6
7.7
7.7 | 8.0
8.0
7.9
7.9
7.9
8.0
8.2
8.2
8.3
8.3
8.4
8.5
8.5
8.5
8.3 | 8.2
8.4
8.7
8.6
8.5
8.6
8.6
8.5
8.6
8.7
8.6
8.7
8.6
8.5 | 7.6
7.5
7.5
7.5
7.5
7.6
7.6
7.6
7.6
7.6
7.7
7.6
7.6
7.7 | 7.6
7.9
8.0
8.3
8.3
8.4
8.4
8.3
8.3
8.3
8.3
8.4
8.4
8.4
8.4
8.7
7.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 8.4
8.6
8.5
8.5
8.1
8.2
7.4
7.7
8.0
8.3
8.5
8.4
8.0
7.6
7.7 | 7.4
7.5
7.5
7.5
7.5
7.5
7.4
7.2
7.3
7.5
7.5
7.5
7.5
7.5 | 7.8
7.9
7.9
7.8
7.6
7.3
7.5
7.6
7.8
7.7
7.5
7.5
7.5 | 8.6
8.6
8.6
8.6
8.7
8.7
8.8
8.7
8.7
8.7
8.7
8.7
8.7 | 7.4
7.4
7.3
7.3
7.3
7.4
7.4
7.4
7.2
7.4
7.4
7.3 | 7.9
8.0
8.0
8.0
8.0
8.1
8.2
8.1
8.0
8.1
8.0
8.0 | 8.5
8.5
8.6
8.3
8.7
8.7
8.6
8.7
8.7
8.7
8.7
8.7
8.8
8.7 | 7.4
7.4
7.4
7.4
7.4
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.6
7.7 | 8.0
8.0
7.9
7.9
7.9
8.0
8.2
8.2
8.2
8.3
8.4
8.5
8.5
8.5 | 8.2
8.4
8.7
8.6
8.5
8.6
8.6
8.5
8.6
8.6
8.6
8.6
8.6
8.6
8.6 | 7.6
7.5
7.5
7.5
7.5
7.6
7.6
7.6
7.6
7.7
7.6
7.7 | 7.6
7.9
8.0
8.3
8.3
8.4
8.4
8.3
8.3
8.3
8.4
8.4
8.4
8.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 8.4
8.6
8.5
8.5
8.1
8.2
7.4
7.7
8.0
8.3
8.5
8.4
8.0
7.6
7.7 | 7.4
7.5
7.5
7.5
7.5
7.5
7.2
7.3
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 7.8
7.9
7.9
7.8
7.6
7.3
7.5
7.6
7.8
7.7
7.5
7.6
7.7
7.5 | 8.6
8.6
8.6
8.6
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7 | 7.4
7.4
7.3
7.3
7.3
7.4
7.4
7.4
7.2
7.4
7.4
7.3
7.3
7.3 | 7.9
8.0
8.0
8.0
8.1
8.2
8.1
8.0
8.1
8.0
8.0
8.0
8.0
8.0
8.0 | 8.5
8.5
8.6
8.3
8.7
8.6
8.7
8.7
8.7
8.8
8.8
8.7
8.8
8.8 | 7.4 7.4 7.4 7.4 7.5 7.5 7.5 7.6 7.7 7.7 7.6 7.6 7.6 7.6 7.6 7.6 | 8.0
8.0
7.9
7.9
7.9
8.0
8.2
8.2
8.3
8.4
8.5
8.5
8.5
8.5
8.3
8.4 | 8.2
8.4
8.7
8.6
8.5
8.6
8.6
8.6
8.7
8.6
8.7
8.6
8.7
8.6
8.7 | 7.6
7.5
7.5
7.5
7.5
7.6
7.6
7.6
7.6
7.6
7.7
7.6
7.7
7.6 | 7.6
7.9
8.0
8.3
8.3
8.4
8.4
8.3
8.3
8.3
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 8.4
8.6
8.5
8.5
8.1
8.2
7.4
7.7
8.0
8.3
8.5
8.4
8.7
7.7 | 7.4
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 7.8
7.9
7.9
7.8
7.6
7.3
7.5
7.6
7.8
7.7
7.5
7.5
7.6
7.8
7.7
7.5
7.6
8.1 | 8.6
8.6
8.6
8.6
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7 | 7.4 7.4 7.3 7.3 7.4 7.4 7.4 7.4 7.2 7.4 7.4 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.9
8.0
8.0
8.0
8.1
8.1
8.2
8.1
8.0
8.1
8.0
8.0
8.0
8.0
8.0
8.1
8.0 | 8.5
8.5
8.6
8.3
8.7
8.7
8.7
8.7
8.7
8.7
8.8
8.7
8.7
8.8
8.7 | AUGUST 7.4 7.4 7.4 7.4 7.5 7.5 7.5 7.6 7.6 7.7 7.7 7.6 7.6 7.6 7.7 7.6 | 8.0
8.0
7.9
7.9
7.9
8.0
8.2
8.2
8.3
8.4
8.5
8.5
8.3
8.4
8.5
8.5 | 8.2
8.4
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.7
8.4
8.3
8.4
8.5
8.7 | 7.6
7.5
7.5
7.5
7.5
7.6
7.6
7.6
7.6
7.6
7.7
7.7
7.6
7.7
7.7 | 7.6
7.9
8.0
8.3
8.3
8.4
8.4
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.4
8.4
8.4
8.4
8.4
8.4
8.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 8.4
8.5
8.5
8.5
8.1
8.2
7.4
7.7
8.0
8.3
8.5
8.4
8.6
7.6
7.7
7.9
8.1
8.4
8.5
8.5
8.5
8.5
8.5
8.5
8.6
7.6
7.7
7.7
8.6
8.6
7.6
7.7
7.7
7.7
8.6
8.6
7.6
8.6
8.6
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7 | 7.4
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 7.8
7.9
7.9
7.9
7.8
7.6
7.3
7.5
7.6
7.8
7.7
7.5
7.5
7.6
7.8
7.7
7.5
7.5
7.6
7.8 | 8.6
8.6
8.6
8.6
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7 | 7.4 7.4 7.3 7.3 7.3 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.9
8.0
8.0
8.0
8.0
8.1
8.2
8.1
8.0
8.7
7.7
8.0
8.1
8.0
8.1
8.0
8.1
8.0
8.1
8.0 | 8.5
8.5
8.6
8.3
8.7
8.7
8.7
8.7
8.7
8.7
8.8
8.8
8.7
8.8
8.7
8.8
8.8 | 7.4
7.4
7.4
7.5
7.5
7.5
7.5
7.6
7.6
7.7
7.7
7.6
7.6
7.6
7.6
7.6 | 8.0
8.0
7.9
7.9
7.9
8.0
8.2
8.2
8.2
8.3
8.4
8.5
8.5
8.3
8.4
8.5
8.5
8.3
8.4
8.5
8.7
8.7 | 8.2
8.4
8.7
8.6
8.5
8.6
8.6
8.5
8.6
8.6
8.7
8.6
8.7
8.6
8.7
8.6
8.7
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6 | 7.6
7.5
7.5
7.5
7.5
7.6
7.6
7.6
7.5
7.6
7.7
7.6
7.5
7.7
7.6
7.5
7.5 | 7.6
7.9
8.0
8.3
8.3
8.4
8.4
8.3
8.3
8.3
8.3
8.3
8.3
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 8.4
8.6
8.5
8.1
8.2
7.4
7.7
8.0
8.3
8.5
8.4
8.0
7.7
7.7
7.9
8.1
8.4
8.5
8.5
8.7
8.8
8.8 | 7.4
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 7.8
7.9
7.9
7.8
7.6
7.3
7.5
7.6
7.8
7.7
7.5
7.6
7.8
7.7
7.5
7.6
7.8
7.7
9
8.0
8.1
8.2
8.1 | 8.6
8.6
8.6
8.6
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.2
8.7
8.7
8.6
8.2
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7 | 7.4 7.4 7.3 7.3 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.5 7.6 7.7 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.9
8.0
8.0
8.0
8.1
8.2
8.1
8.0
8.1
8.0
8.0
8.0
8.1
8.0
8.0
8.1
8.0
8.0
8.1
8.0 | 8.5
8.5
8.6
8.3
8.7
8.7
8.7
8.7
8.7
8.8
8.8
8.7
8.7
8.8
8.8 | 7.4 7.4 7.4 7.4 7.5 7.5 7.5 7.6 7.7 7.7 7.6 7.6 7.7 7.7 7.6 7.6 7.7 7.7 | 8.0
8.0
7.9
7.9
7.9
8.0
8.2
8.2
8.3
8.4
8.5
8.5
8.5
8.3
8.4
8.5
8.3
8.4
8.7
6.7 | 8.2
8.4
8.7
8.6
8.6
8.6
8.6
8.6
8.6
8.7
8.4
8.5
8.4
8.5
8.7
8.6
8.7
8.7
8.6
8.7 | 7.6
7.5
7.5
7.5
7.5
7.6
7.6
7.6
7.6
7.6
7.7
7.6
7.7
7.6
7.5
7.5
7.5
7.5
7.6 | 7.6
7.9
8.0
8.3
8.3
8.4
8.4
8.3
8.3
8.3
8.4
8.4
8.4
8.4
8.0
7.7
7.8
8.0
8.2
8.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 8.4
8.5
8.5
8.5
8.1
8.2
7.4
7.7
8.0
8.3
8.5
8.4
8.6
7.6
7.7
7.9
8.1
8.4
8.5
8.5
8.5
8.5
8.5
8.5
8.6
7.6
7.7
7.7
8.6
8.6
7.6
7.7
7.7
7.7
8.6
8.6
7.6
8.6
8.6
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7 |
7.4
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 7.8
7.9
7.9
7.9
7.8
7.6
7.3
7.5
7.6
7.8
7.7
7.5
7.5
7.6
7.8
7.7
7.5
7.5
7.6
7.8 | 8.6
8.6
8.6
8.6
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7 | 7.4 7.4 7.3 7.3 7.3 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.9
8.0
8.0
8.0
8.0
8.1
8.2
8.1
8.0
8.7
7.7
8.0
8.1
8.0
8.1
8.0
8.1
8.0
8.1
8.0 | 8.5
8.5
8.6
8.3
8.7
8.7
8.7
8.7
8.7
8.7
8.8
8.8
8.7
8.8
8.7
8.8
8.8 | 7.4
7.4
7.4
7.5
7.5
7.5
7.5
7.6
7.6
7.7
7.7
7.6
7.6
7.6
7.6
7.6 | 8.0
8.0
7.9
7.9
7.9
8.0
8.2
8.2
8.3
8.4
8.5
8.5
8.3
8.4
8.5
8.7
7.7 | 8.2
8.4
8.7
8.6
8.5
8.6
8.6
8.5
8.6
8.6
8.7
8.6
8.7
8.6
8.7
8.6
8.7
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6 | 7.6
7.5
7.5
7.5
7.5
7.6
7.6
7.6
7.5
7.6
7.7
7.6
7.5
7.7
7.6
7.5
7.5 | 7.6
7.9
8.0
8.3
8.3
8.4
8.4
8.3
8.3
8.3
8.3
8.3
8.3
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 8.4
8.6
8.5
8.1
8.2
7.4
7.7
8.3
8.5
8.4
8.0
7.7
7.9
8.1
8.4
8.5
8.7
8.4
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5 | 7.4
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 7.8
7.9
7.9
7.8
7.6
7.3
7.5
7.6
7.8
7.7
7.5
7.6
7.8
7.7
7.5
7.5
8.0
8.1
8.1
8.1
7.9 | 8.6
8.6
8.6
8.6
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7 | 7.4 7.4 7.3 7.3 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.5 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.9
8.0
8.0
8.0
8.1
8.1
8.2
8.1
8.0
8.1
8.0
8.1
8.0
8.1
8.0
8.1
7.7
8.0
8.1
8.1
8.0
8.1
8.1
8.0
8.1
8.1
8.1
8.1
8.1
8.1
8.1
8.1
8.1
8.1 | 8.5
8.5
8.6
8.3
8.7
8.7
8.6
8.7
8.7
8.8
8.7
8.7
8.8
8.7
8.7
8.8
8.8 | 7.4 7.4 7.4 7.5 7.5 7.5 7.6 7.7 7.7 7.6 7.6 7.7 7.7 7.6 7.6 7.7 7.7 | 8.0
8.0
7.9
7.9
7.9
8.0
8.2
8.2
8.3
8.4
8.5
8.5
8.5
8.3
8.4
8.5
8.3
8.4
8.7
7.7
7.8
8.7
7.9 | 8.2
8.4
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.7
8.7
8.7
8.7
8.7
8.6
8.7 | 7.6
7.5
7.5
7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.7
7.6
7.6
7.7
7.6
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.6
7.6
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 7.6
7.9
8.0
8.3
8.3
8.4
8.4
8.3
8.3
8.3
8.4
8.4
8.4
8.4
8.0
7.7
7.8
8.0
8.2
8.4
8.4
8.4
8.4
8.4
8.4
8.6
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 8.4
8.5
8.5
8.1
8.2
7.4
7.0
8.3
8.5
8.4
9.6
7.7
7.9
8.1
4.4
8.5
8.7
8.8
8.8
8.6
8.5
8.5
8.4 | 7.4
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 7.8
7.9
7.9
7.8
7.6
7.3
7.5
7.6
7.8
7.7
7.5
7.5
7.6
7.6
7.9
8.0
8.1
8.1
8.1
8.1
8.1 | 8.6
8.6
8.6
8.6
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7 | 7.4 7.4 7.3 7.3 7.4 7.4 7.4 7.4 7.4 7.4 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.9
8.0
8.0
8.0
8.1
8.1
8.0
8.1
8.0
8.1
8.0
8.1
8.0
8.1
7.7
8.0
8.1
8.1
8.0
8.1
7.7
8.0
8.1
8.1
8.0
8.1
8.1
8.0
8.1
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | 8.5
8.5
8.6
8.3
8.7
8.7
8.7
8.7
8.7
8.8
8.8
8.7
8.8
8.8 | AUGUST 7.4 7.4 7.4 7.5 7.5 7.5 7.6 7.6 7.7 7.7 7.6 7.6 7.7 7.7 7.6 7.6 | 8.0
8.0
7.9
7.9
7.9
8.0
8.2
8.2
8.3
8.4
8.5
8.5
8.3
8.4
8.5
8.7
7.7 | 8.2
8.4
8.6
8.6
8.6
8.6
8.6
8.7
8.6
8.7
8.6
8.7
8.6
8.7
8.7
8.6
8.7
8.6
8.7
8.6
8.7
8.6
8.7
8.6
8.7
8.6
8.7
8.6
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7 | 7.6
7.5
7.5
7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.7
7.6
7.6
7.5
7.5
7.5
7.6
7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.6
7.9
8.0
8.3
8.3
8.4
8.4
8.3
8.3
8.3
8.3
8.3
8.4
8.4
8.4
8.0
7.7
7.8
8.0
8.4
8.4
8.4
8.4
8.4
8.7
7.7
7.8
8.4
8.4
8.4
8.4
8.7
7.7
7.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 8.4
8.5
8.5
8.1
8.2
7.7
8.0
8.3
8.5
8.4
8.7
7.7
7.9
8.1
8.4
8.5
8.7
8.8
8.8
8.8
8.8
8.6
8.3
8.5 | JUNE 7.4 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 | 7.8
7.9
7.9
7.9
7.8
7.6
7.5
7.6
7.8
7.7
7.5
7.5
7.7
7.5
7.5
8.1
8.1
8.1
7.9
7.6
7.8 | 8.6
8.6
8.6
8.6
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7 | 7.4 7.4 7.3 7.3 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.9
8.0
8.0
8.0
8.0
8.1
8.2
8.1
8.0
7.7
8.0
8.1
8.0
8.1
8.0
7.7
8.0
8.1
7.7
8.0
8.1
7.7
8.0 | 8.5
8.5
8.6
8.3
8.7
8.7
8.7
8.7
8.7
8.8
8.8
8.7
8.8
8.7
8.8
8.7
8.8
8.9
8.1
8.1
8.1 | AUGUST 7.4 7.4 7.4 7.5 7.5 7.5 7.6 7.6 7.6 7.6 7.6 7.7 7.7 7.6 7.6 7.6 | 8.0
8.0
7.9
7.9
7.9
8.0
8.2
8.2
8.3
8.4
8.5
8.5
8.5
8.3
8.4
8.5
8.7
7.7
7.8
7.9 | 8.2
8.4
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.7
8.6
8.6
8.7
8.6
8.7
8.6
8.7
8.6
8.7
8.6
8.7
8.6
8.7
8.6
8.7
8.6
8.7
8.6
8.7
8.7
8.6
8.7
8.6
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7 | 7.6
7.5
7.5
7.5
7.6
7.6
7.6
7.5
7.6
7.6
7.5
7.6
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 7.6
7.9
8.0
8.3
8.3
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4 | ## 01480617 WEST BRANCH BRANDYWINE CREEK AT MODENA, PA--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|--------------|--------------|------------------------------|--|--|---|--|--|---|--
--|--| | | | OCTOBER | | | NOVEMBER | | | DECEMBER | | | JANUARY | | | 1 | | | | 13.0 | 10.0 | 11.5 | 15.0 | 13.5 | 14.0 | | | | | 2 | 18.5 | 15.0 | 16.5 | 15.5
16.0 | 12.0
14.0 | 14.0
15.0 | 13.5
10.5 | 10.5
8.5 | 12.0
9.5 | | | | | 4 | 19.0 | 16.0 | 17.5 | 14.0 | 12.0 | 13.0 | 10.5 | 8.0 | 9.0 | | | | | 5 | 19.0 | 16.0 | 17.5 | 13.0 | 10.0 | 11.0 | | | | | | | | 6 | 18.0 | 16.0 | 17.5 | 10.0 | 8.5 | 9.5 | | | | | | | | 7
8 | 16.0
13.0 | 13.0
11.0 | 14.5
12.0 | 11.5
11.5 | 9.0
9.5 | 10.0
10.5 | | | | | | | | 9 | 12.5 | 9.5 | 11.5 | 11.5 | 10.0 | 10.5 | | | | | | | | 10 | 14.0 | 10.0 | 12.0 | 10.5 | 9.0 | 10.0 | | | | | | | | 11 | 16.0 | 12.5 | 14.0 | 10.0 | 8.5 | 9.5 | | | | | | | | 12
13 | 17.0
18.5 | 14.0
15.0 | 15.5
16.5 | 8.5
8.5 | 6.5
6.0 | 7.5
7.5 | | | | | | | | 14 | 18.5 | 16.0 | 17.5 | 9.0 | 6.5 | 7.5 | | | | | | | | 15 | 18.5 | 15.5 | 17.0 | 11.0 | 8.0 | 9.5 | | | | | | | | 16 | 15.5 | 13.5 | 14.5 | 11.5 | 9.0 | 10.5 | | | | | | | | 17
18 | 15.0
12.5 | 12.5
10.5 | 13.5
11.5 | 11.5
10.0 | 9.5
8.0 | 10.5
9.5 | | | | | | | | 19 | 13.0 | 10.0 | 11.5 | 10.5 | 8.5 | 9.5 | | | | | | | | 20 | 14.0 | 11.0 | 12.5 | 11.0 | 8.5 | 10.0 | | | | | | | | 21
22 | 15.0
16.5 | 12.0
13.5 | 13.5
15.0 | 8.5
8.0 | 7.0
6.0 | 7.5
7.0 | | | | | | | | 23 | 16.5 | 14.5 | 15.5 | 8.0 | 6.0 | 7.0 | | | | | | | | 24
25 | 18.0
18.0 | 15.5
15.5 | 17.0
17.0 | 11.0
13.5 | 7.5
11.0 | 9.0
12.5 | 26
27 | 15.5
12.0 | 12.0
10.0 | 13.5
11.0 | 13.0
12.0 | 11.5
10.0 | 12.5
11.0 | | | | | | | | 28 | 11.0 | 9.5 | 10.5 | 14.0 | 12.0 | 12.5 | | | | | | | | 29
30 | 11.0
12.0 | 8.0
9.5 | 9.5
11.0 | 14.0
15.0 | 13.0
14.0 | 13.5
14.5 | | | | | | | | 31 | 11.5 | 9.5 | 10.5 | | | | | | | | | | | MONTH | 19.0 | 8.0 | 14.0 | 16.0 | 6.0 | 10.4 | 15.0 | 8.0 | 11.1 | | | | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | MAX | | MEAN | 7.0 | MARCH
3.5 | 5.5 | 14.0 | APRIL
11.0 | 12.0 | 18.0 | MAY
13.0 | 15.5 | | 1
2
3 | | FEBRUARY | | 7.0
7.0
8.5 | MARCH 3.5 4.5 7.0 | 5.5
5.5
8.0 | 14.0
14.0
16.0 | APRIL
11.0
9.5
11.5 | 12.0
12.0
13.5 | 18.0
19.5
17.5 | MAY
13.0
14.0
15.0 | 15.5
16.0
16.0 | | 1
2
3
4 | | FEBRUARY | | 7.0
7.0
8.5
7.5 | 3.5
4.5
7.0
4.0 | 5.5
5.5
8.0
6.0 | 14.0
14.0
16.0
13.0 | APRIL
11.0
9.5
11.5
9.0 | 12.0
12.0
13.5
11.0 | 18.0
19.5
17.5
17.0 | MAY
13.0
14.0
15.0
12.0 | 15.5
16.0
16.0
14.5 | | 1
2
3
4
5 | | FEBRUARY | | 7.0
7.0
8.5
7.5
5.5 | MARCH 3.5 4.5 7.0 4.0 2.0 | 5.5
5.5
8.0
6.0
4.0 | 14.0
14.0
16.0
13.0
10.5 | 11.0
9.5
11.5
9.0
8.0 | 12.0
12.0
13.5
11.0
9.5 | 18.0
19.5
17.5
17.0
19.0 | MAY
13.0
14.0
15.0
12.0
13.5 | 15.5
16.0
16.0
14.5
16.0 | | 1
2
3
4 | | FEBRUARY |

 | 7.0
7.0
8.5
7.5 | 3.5
4.5
7.0
4.0 | 5.5
5.5
8.0
6.0 | 14.0
14.0
16.0
13.0 | APRIL
11.0
9.5
11.5
9.0 | 12.0
12.0
13.5
11.0 | 18.0
19.5
17.5
17.0 | MAY
13.0
14.0
15.0
12.0 | 15.5
16.0
16.0
14.5 | | 1
2
3
4
5 | | FEBRUARY |

 | 7.0
7.0
8.5
7.5
5.5
7.0
9.0
11.0 | MARCH 3.5 4.5 7.0 4.0 2.0 3.5 5.0 7.0 | 5.5
5.5
8.0
6.0
4.0
5.0
7.0
9.0 | 14.0
14.0
16.0
13.0
10.5 | 11.0
9.5
11.5
9.0
8.0
7.5
7.0
8.5 | 12.0
12.0
13.5
11.0
9.5
9.0
9.5 | 18.0
19.5
17.5
17.0
19.0
18.5
20.5
21.0 | MAY 13.0 14.0 15.0 12.0 13.5 14.5 16.0 17.0 | 15.5
16.0
16.0
14.5
16.0 | | 1
2
3
4
5 | | FEBRUARY | ==== | 7.0
7.0
8.5
7.5
5.5 | MARCH 3.5 4.5 7.0 4.0 2.0 3.5 5.0 | 5.5
5.5
8.0
6.0
4.0
5.0
7.0 | 14.0
14.0
16.0
13.0
10.5 | 11.0
9.5
11.5
9.0
8.0
7.5
7.0 | 12.0
12.0
13.5
11.0
9.5 | 18.0
19.5
17.5
17.0
19.0 | 13.0
14.0
15.0
12.0
13.5
14.5
16.0 | 15.5
16.0
16.0
14.5
16.0 | | 1
2
3
4
5
6
7
8
9 | | FEBRUARY |

 | 7.0
7.0
8.5
7.5
5.5
7.0
9.0
11.0
12.5 | 3.5
4.5
7.0
4.0
2.0
3.5
5.0
7.0
9.5 | 5.5
5.5
8.0
6.0
4.0
5.0
7.0
9.0
11.0 | 14.0
14.0
16.0
13.0
10.5
11.5
12.0
13.5
16.0 | APRIL
11.0
9.5
11.5
9.0
8.0
7.5
7.0
8.5
11.5
13.5 | 12.0
12.0
13.5
11.0
9.5
9.0
9.5
10.5
13.5 | 18.0
19.5
17.5
17.0
19.0
18.5
20.5
21.0
18.5
20.5 | MAY 13.0 14.0 15.0 12.0 13.5 14.5 16.0 17.0 15.5 15.0 | 15.5
16.0
16.0
14.5
16.0
19.0
16.5
17.5 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | ====
====
====
==== | 7.0
7.0
8.5
7.5
5.5
7.0
9.0
11.0
12.5
12.5
8.5
8.5 | 3.5
4.5
7.0
4.0
2.0
3.5
5.0
7.0
9.5
7.0 | 5.5
5.5
8.0
6.0
4.0
5.0
7.0
9.0
11.0
10.5 | 14.0
14.0
16.0
13.0
10.5
11.5
12.0
13.5
16.0
17.5 | APRIL 11.0 9.5 11.5 9.0 8.0 7.5 7.0 8.5 11.5 12.0 12.5 | 12.0
12.0
13.5
11.0
9.5
9.0
9.5
10.5
13.5
15.5 | 18.0
19.5
17.5
17.0
19.0
18.5
20.5
21.0
18.5
20.5 | MAY 13.0 14.0 15.0 12.0 13.5 14.5 16.0 17.0 15.5 15.0 15.5 | 15.5
16.0
16.0
14.5
16.0
16.5
18.0
19.0
16.5
17.5 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | 7.0
7.0
8.5
7.5
5.5
7.0
9.0
11.0
12.5
12.5
8.5
9.0 | 3.5
4.5
7.0
4.0
2.0
3.5
5.0
7.0
9.5
7.0
5.5
6.0
8.0 | 5.5
5.5
8.0
4.0
7.0
9.0
11.0
7.0
7.0
8.5 | 14.0
14.0
16.0
13.0
10.5
11.5
12.0
13.5
16.0
17.5 | APRIL 11.0 9.5 11.5 9.0 8.0 7.5 7.0 8.5 11.5 12.0 12.5 13.5 | 12.0
12.0
13.5
11.0
9.5
9.0
9.5
10.5
13.5
14.5
13.0
15.0 | 18.0
19.5
17.5
17.0
19.0
18.5
20.5
21.0
18.5
20.5 | MAY 13.0 14.0 15.0 12.0 13.5 14.5 16.0 17.0 15.5 15.0 | 15.5
16.0
16.0
14.5
16.0
16.5
18.0
19.0
16.5
17.5
17.5 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | 7.0
7.0
8.5
7.5
5.5
7.0
9.0
11.0
12.5
12.5 | 3.5
4.5
7.0
4.0
2.0
3.5
5.0
7.0
9.5
7.0 | 5.5
5.5
8.0
6.0
4.0
5.0
7.0
9.0
11.0
10.5 | 14.0
14.0
16.0
13.0
10.5
11.5
12.0
13.5
16.0
17.5 | APRIL 11.0 9.5 11.5 9.0 8.0 7.5 7.0 8.5 11.5 12.0 12.5 | 12.0
12.0
13.5
11.0
9.5
9.0
9.5
10.5
13.5
15.5 | 18.0
19.5
17.5
17.0
19.0
18.5
20.5
21.0
18.5
20.5 | MAY 13.0 14.0 15.0 12.0 13.5 14.5 16.0 17.0 15.5 15.0 15.5 | 15.5
16.0
16.0
14.5
16.0
16.5
18.0
19.0
16.5
17.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | 7.0
7.0
8.5
7.5
5.5
7.0
9.0
11.0
12.5
12.5
8.5
9.0
12.5
14.0 | 3.5
4.5
7.0
4.0
2.0
3.5
5.0
7.0
9.5
7.0
5.5
6.0
8.0
8.0 | 5.5
5.5
8.0
6.0
4.0
5.0
7.0
9.0
11.0
7.0
8.5
10.0
12.0 | 14.0
14.0
16.0
13.0
10.5
11.5
12.0
13.5
16.0
17.5 | APRIL 11.0 9.5 11.5 9.0 8.0 7.5 7.0 8.5 11.5 12.0 12.5 13.5 15.5 | 12.0
12.0
13.5
11.0
9.5
9.0
9.5
10.5
13.5
15.5
14.5
15.0
17.0
19.0 | 18.0
19.5
17.5
17.0
19.0
18.5
20.5
21.0
18.5
20.5
19.5
19.5
17.5 | 13.0
14.0
15.0
12.0
13.5
14.5
16.0
17.0
15.5
15.0
15.5
17.0
14.5
13.0 | 15.5
16.0
16.0
14.5
16.0
19.0
19.0
17.5
17.5
17.5
17.0
18.0
16.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | 7.0
7.0
8.5
7.5
5.5
7.0
9.0
11.0
12.5
8.5
9.0
12.5
14.0 | 3.5
4.5
7.0
4.0
2.0
3.5
5.0
7.0
9.5
7.0
8.0
8.0
10.0 | 5.5
5.5
8.0
6.0
4.0
5.0
7.0
9.0
11.0
10.5
7.0
8.5
10.0
12.0 | 14.0
14.0
16.0
13.0
10.5
11.5
12.0
13.5
16.0
17.5
14.0
17.0
19.0
21.5 | APRIL 11.0 9.5 11.5 9.0 8.0 7.5 7.0 8.5 11.5 13.5 12.0 12.5 13.5 15.5 17.0 18.0 19.0 | 12.0
12.0
13.5
11.0
9.5
9.0
9.5
10.5
13.5
15.5
14.5
13.0
15.0
17.0
19.0 | 18.0
19.5
17.5
17.0
19.0
18.5
20.5
21.0
18.5
20.5 | MAY 13.0 14.0 15.0 12.0 13.5 14.5 16.0 17.0 15.5 15.0 15.5 17.0 14.5 13.0 | 15.5
16.0
16.0
14.5
16.0
16.5
18.0
19.0
16.5
17.5
17.5
17.0
18.0
15.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | | FEBRUARY | | 7.0
7.0
8.5
7.5
5.5
7.0
9.0
11.0
12.5
12.5
8.5
9.0
12.5
14.0
11.0
7.0 | 3.5
4.5
7.0
4.0
2.0
3.5
5.0
7.0
9.5
7.0
8.0
8.0
10.0 | 5.5
5.5
8.0
6.0
4.0
5.0
7.0
9.0
11.0
10.5
7.0
8.5
10.0
13.0
8.5
7.0 |
14.0
14.0
16.0
13.0
10.5
11.5
12.0
13.5
16.0
17.5
14.0
17.0
19.0
21.5
24.5
24.5 | APRIL 11.0 9.5 11.5 9.0 8.0 7.5 7.0 8.5 11.5 12.0 12.5 13.5 15.5 17.0 18.0 19.0 20.0 | 12.0
12.0
13.5
11.0
9.5
9.0
9.5
10.5
13.5
15.5
14.5
15.0
17.0
19.0 | 18.0
19.5
17.5
17.0
19.0
18.5
20.5
21.0
18.5
20.5
19.5
19.5
17.5
17.5 | MAY 13.0 14.0 15.0 12.0 13.5 14.5 16.0 17.0 15.5 15.0 15.5 17.0 14.5 13.0 | 15.5
16.0
16.0
14.5
16.0
16.5
18.0
19.0
16.5
17.5
17.5
17.5
17.0
18.0
15.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | 7.0
7.0
8.5
7.5
5.5
7.0
9.0
11.0
12.5
8.5
9.0
12.5
14.0 | 3.5
4.5
7.0
4.0
2.0
3.5
5.0
7.0
9.5
7.0
8.0
8.0
10.0 | 5.5
5.5
8.0
6.0
4.0
5.0
7.0
9.0
11.0
10.5
7.0
8.5
10.0
12.0 | 14.0
14.0
16.0
13.0
10.5
11.5
12.0
13.5
16.0
17.5
14.0
17.0
19.0
21.5 | APRIL 11.0 9.5 11.5 9.0 8.0 7.5 7.0 8.5 11.5 13.5 12.0 12.5 13.5 15.5 17.0 18.0 19.0 | 12.0
12.0
13.5
11.0
9.5
9.0
9.5
10.5
13.5
15.5
14.5
13.0
15.0
17.0
19.0 | 18.0
19.5
17.5
17.0
19.0
18.5
20.5
21.0
18.5
20.5 | MAY 13.0 14.0 15.0 12.0 13.5 14.5 16.0 17.0 15.5 15.0 15.5 17.0 14.5 13.0 | 15.5
16.0
16.0
14.5
16.0
16.5
18.0
19.0
16.5
17.5
17.5
17.0
18.0
15.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | | FEBRUARY | | 7.0
7.0
8.5
7.5
5.5
7.0
9.0
11.0
12.5
12.5
8.5
8.5
9.0
12.5
14.0 | MARCH 3.5 4.5 7.0 4.0 2.0 3.5 5.0 7.0 9.5 7.0 9.5 7.0 11.0 7.0 6.5 6.5 | 5.5
5.5
8.0
6.0
4.0
5.0
7.0
9.0
11.0
10.5
7.0
7.0
8.5
10.0
12.0 | 14.0
14.0
16.0
13.0
10.5
11.5
12.0
13.5
16.0
17.5
14.0
17.0
19.0
21.5
24.5
24.0 | APRIL 11.0 9.5 11.5 9.0 8.0 7.5 7.0 8.5 11.5 12.0 12.5 13.5 12.0 12.5 13.5 12.0 12.5 13.5 | 12.0
12.0
13.5
11.0
9.5
9.0
9.5
10.5
13.5
15.5
14.5
13.0
17.0
19.0 | 18.0
19.5
17.5
17.0
19.0
18.5
20.5
21.0
18.5
20.5 | MAY 13.0 14.0 15.0 12.0 13.5 14.5 16.0 17.0 15.5 15.0 15.5 17.0 14.5 13.0 13.5 14.5 13.5 11.5 | 15.5
16.0
16.0
14.5
16.0
16.5
18.0
19.0
16.5
17.5
17.5
17.0
18.0
15.0
15.0
13.5
13.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | | FEBRUARY | | 7.0
7.0
8.5
7.5
5.5
7.0
9.0
11.0
12.5
12.5
8.5
9.0
12.5
14.0
14.0
7.0
9.5
8.5 | MARCH 3.5 4.5 7.0 4.0 2.0 3.5 5.0 7.0 9.5 7.0 5.5 6.0 8.0 8.0 10.0 11.0 7.0 6.5 7.0 6.0 5.0 | 5.5
5.5
8.0
6.0
4.0
5.0
7.0
91.0
10.5
7.0
8.5
7.0
8.5
7.0
8.5
7.0
8.5
7.5 | 14.0
14.0
16.0
13.0
10.5
11.5
12.0
13.5
16.0
17.5
14.0
17.0
21.5
24.5
24.0
21.0 | APRIL 11.0 9.5 11.5 9.0 8.0 7.5 7.0 8.5 11.5 13.5 12.0 12.5 13.5 15.5 17.0 18.0 19.0 20.0 19.5 19.0 | 12.0
12.0
13.5
11.0
9.5
9.0
9.5
10.5
13.5
15.5
14.5
13.0
17.0
19.0
20.5
21.5
22.0
21.5
20.5 | 18.0
19.5
17.5
17.0
19.0
18.5
20.5
21.0
18.5
20.5
19.5
17.5
17.5
19.0
20.0
18.5
17.5 | 13.0
14.0
12.0
12.0
13.5
14.5
16.0
17.0
15.5
15.0
15.5
17.0
14.5
13.0
13.5
14.5
13.5 | 15.5
16.0
16.0
14.5
16.0
16.5
18.0
19.0
16.5
17.5
17.5
17.0
18.0
15.0
15.0
15.0
13.5
13.0
14.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | | FEBRUARY | | 7.0
7.0
8.5
7.5
5.5
7.0
9.0
11.0
12.5
12.5
8.5
9.0
12.5
14.0
14.0
7.0
9.5
8.5 | MARCH 3.5 4.5 7.0 4.0 2.0 3.5 5.0 7.0 9.5 7.0 9.5 7.0 11.0 7.0 6.5 6.5 7.0 6.0 | 5.5
5.5
8.0
6.0
4.0
5.0
7.0
9.0
11.0
10.5
7.0
7.0
8.5
10.0
12.0 | 14.0
14.0
16.0
13.0
10.5
11.5
12.0
13.5
16.0
17.5
24.5
24.5
24.0
21.0 | APRIL 11.0 9.5 11.5 9.0 8.0 7.5 7.0 8.5 11.5 12.0 12.5 13.5 12.0 12.5 13.5 15.5 17.0 18.0 19.0 20.0 19.5 19.0 | 12.0
12.0
13.5
11.0
9.5
9.0
9.5
10.5
13.5
15.5
14.5
13.0
17.0
19.0
20.5
21.5
22.0
5 | 18.0
19.5
17.5
17.0
19.0
18.5
20.5
21.0
18.5
20.5
19.5
19.5
17.5
17.5
17.5 | 13.0
14.0
15.0
12.0
13.5
14.5
16.0
17.0
15.5
15.0
15.5
17.0
14.5
13.0
13.5
14.5
13.0 | 15.5
16.0
14.5
16.0
14.5
16.0
16.5
17.5
17.5
17.5
17.0
18.0
15.0
16.0
15.0 | | 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | | FEBRUARY | | 7.0
7.0
8.5
5.5
5.5
7.0
9.0
11.0
12.5
12.5
8.5
9.0
12.5
14.0
11.0
7.0
9.5
8.5 | MARCH 3.5 4.5 7.0 4.0 2.0 3.5 5.0 7.0 9.5 7.0 5.5 6.0 8.0 8.0 10.0 11.0 7.0 6.5 6.5 7.0 6.0 3.5 | 5.5
5.5
8.0
6.0
4.0
5.0
7.0
9.0
11.0
10.5
7.0
8.5
10.0
12.0
13.0
8.0
7.0
8.0
7.0
8.5 | 14.0
14.0
16.0
13.0
10.5
11.5
12.0
13.5
16.0
17.5
16.5
14.0
17.0
19.0
21.5
24.0
24.0
21.0 | APRIL 11.0 9.5 11.5 9.0 8.0 7.5 7.0 8.5 11.5 13.5 12.0 12.5 13.5 15.5 17.0 18.0 19.0 20.0 19.5 19.0 | 12.0
12.0
13.5
11.0
9.5
9.5
10.5
13.5
13.5
15.5
14.5
13.0
15.0
17.0
20.5
21.5
22.0
21.5
20.5 | 18.0
19.5
17.5
17.0
19.0
18.5
20.5
21.0
18.5
20.5
19.5
17.5
17.5
17.5
19.0
20.0
18.5
17.5
17.5 | MAY 13.0 14.0 15.0 12.0 13.5 14.5 16.0 17.0 15.5 17.0 14.5 17.0 14.5 13.0 13.5 11.5 11.5 | 15.5
16.0
16.0
14.5
16.0
16.5
18.0
19.0
16.5
17.5
17.5
17.5
17.5
18.0
15.0
15.0
13.5
13.0
14.0
15.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | | FEBRUARY | | 7.0
7.0
8.5
7.5
5.5
7.0
9.0
11.0
12.5
12.5
8.5
9.0
12.5
14.0
14.0
7.0
8.5
8.5
9.0
8.5
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0 | MARCH 3.5 4.5 7.0 4.0 2.0 3.5 5.0 7.0 9.5 7.0 8.0 8.0 10.0 11.0 7.0 6.5 6.5 7.0 6.0 3.5 7.0 7.5 | 5.5
5.5
8.0
6.0
4.0
5.0
7.0
9.0
11.0
10.5
7.0
8.5
7.0
8.5
7.5
8.0
7.5
8.0
7.5 | 14.0
14.0
16.0
13.0
10.5
11.5
12.0
17.5
16.5
14.0
21.5
24.5
24.0
21.0 | APRIL 11.0 9.5 11.5 9.0 8.0 7.5 7.0 8.5 11.5 12.0 12.5 13.5 12.0 19.0 20.0 19.0 20.0 19.5 19.0 14.0 12.5 11.5 11.5 | 12.0
12.0
13.5
11.0
9.5
9.0
9.5
10.5
13.5
15.5
14.5
17.0
19.0
20.5
21.5
22.0
5
21.5
22.0
5
13.5
12.5 | 18.0
19.5
17.5
17.0
19.0
18.5
20.5
21.0
18.5
20.5
19.5
19.5
17.5
17.5
17.5
17.5
17.5
19.0
20.0
18.5
20.0
20.5 | MAY 13.0 14.0 15.0 12.0 13.5 14.5 16.0 17.0 15.5 15.0 15.5 17.0 14.5 13.0 13.5 14.5 11.5 11.5 11.5 11.0 11.0 12.5 14.0 17.0 16.5 | 15.5
16.0
14.5
16.0
14.5
16.0
16.5
17.5
17.5
17.5
18.0
16.0
18.0
15.0
13.0
14.0
13.5
17.0
18.0
13.5
13.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | | FEBRUARY | | 7.0
7.0
8.5
7.5
5.5
7.0
9.0
11.0
12.5
12.5
8.5
9.0
12.5
14.0
14.0
11.0
7.0
9.5
8.5
9.0
8.5
9.0
12.5
12.5 | MARCH 3.5 4.5 7.0 4.0 2.0 3.5 5.0 7.0 9.5 7.0 8.0 8.0 10.0 11.0 7.0 6.5 6.5 7.0 6.0 5.5 7.0 7.5 7.0 | 5.5
5.5
5.5
8.0
6.0
4.0
5.0
7.0
9.0
11.0
5.0
7.0
8.5
7.0
8.5
7.0
8.5
7.5
8.0
6.5
6.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8 | 14.0
14.0
16.0
13.0
10.5
11.5
12.0
17.5
16.5
14.0
17.0
21.5
23.5
24.5
24.0
24.0
21.0 | APRIL 11.0 9.5 11.5 9.0 8.0 7.5 7.0 8.5 11.5 13.5 12.0 12.5 13.5 15.5 17.0 18.0 19.0 20.0 19.5 19.0 14.0 12.5 11.0 10.5 11.0 | 12.0
12.0
12.5
11.0
9.5
9.0
9.5
10.5
13.5
15.5
14.5
13.0
17.0
19.0
20.5
21.5
22.0
21.5
22.0
21.5
21.5
22.5 | 18.0
19.5
17.5
17.0
19.0
18.5
20.5
21.0
18.5
20.5
19.5
17.5
17.5
17.5
17.5
17.5
19.0
20.0
18.5
17.5
17.5 | MAY 13.0 14.0 15.0 12.0 13.5 14.5 16.0 17.0 15.5 15.0 15.5 17.0 14.5 13.0 13.5 11.5 11.5 11.5 11.0 12.5 14.0 17.0 | 15.5
16.0
14.5
16.0
14.5
18.0
19.0
16.5
17.5
17.5
17.0
18.0
15.0
15.0
13.5
13.0
13.0
14.0
15.5
17.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | | FEBRUARY | | 7.0
7.0
8.5
7.5
5.5
7.0
9.0
11.0
12.5
12.5
8.5
9.0
12.5
14.0
11.0
7.0
8.5
8.5
9.0
9.0
8.5
8.5
14.0 | MARCH 3.5 4.5 7.0 4.0 2.0 3.5 5.0 9.5 7.0 9.5 7.0 8.0 8.0 10.0 11.0 7.0 6.5 6.5 7.0 6.0 3.5 7.0 6.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 |
5.5
5.5
8.0
6.0
4.0
5.0
7.0
9.0
11.0
10.5
7.0
8.5
7.0
8.5
7.5
8.0
7.5
8.0
7.5
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | 14.0
14.0
16.0
13.0
10.5
11.5
12.0
17.5
16.5
14.0
21.5
24.5
24.0
21.0
19.0
14.5
15.0
16.5
14.0 | APRIL 11.0 9.5 11.5 9.0 8.0 7.5 7.0 8.5 11.5 12.0 12.5 13.5 12.0 19.0 20.0 19.5 19.0 14.0 12.5 11.5 11.5 | 12.0
12.0
13.5
11.0
9.5
9.0
9.5
10.5
13.5
15.5
14.5
17.0
19.0
20.5
21.5
22.0
21.5
22.0
13.5
13.5
14.5
21.5
22.0
15.2
21.5
22.0
13.5
21.5
22.0
13.5
21.5
22.0
13.5
21.5
22.0
21.5
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
21.5
22.0
21.5
22.0
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5 | 18.0
19.5
17.5
17.0
19.0
18.5
20.5
21.0
18.5
20.5
19.5
19.5
17.5
17.5
17.5
17.5
17.5
19.0
20.0
20.0
20.5 | 13.0
14.0
15.0
12.0
13.5
14.5
16.0
17.0
15.5
15.0
15.5
17.0
14.5
13.0
13.5
11.5
11.5
11.5
11.5
11.5
11.5 | 15.5
16.0
14.5
16.0
14.5
16.0
16.5
17.5
17.5
17.5
17.5
18.0
18.0
13.0
14.0
13.5
17.0
18.0
14.0
15.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | | FEBRUARY | 7.5 | 7.0
7.0
8.5
7.5
5.5
7.0
9.0
11.5
12.5
8.5
9.0
12.5
14.0
14.0
9.5
8.5
9.0
8.5
9.0
8.5
9.0
11.0
9.0
8.5
9.0
11.0
9.0
8.5
9.0
9.0
8.5
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0 | MARCH 3.5 4.5 7.0 4.0 2.0 3.5 5.0 7.0 9.5 7.0 8.0 8.0 10.0 11.0 7.0 6.5 6.5 7.0 6.0 5.5 7.0 6.0 6.5 7.0 6.0 6.5 7.0 6.0 6.5 7.0 6.0 6.5 7.0 | 5.5
5.5
5.5
8.0
6.0
4.0
5.0
7.0
9.0
9.0
11.0
10.5
7.0
8.5
7.0
8.5
7.0
8.5
7.5
8.0
7.5
8.0
8.0
8.5
7.5
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | 14.0
14.0
16.0
13.0
10.5
11.5
12.0
13.5
16.0
17.5
24.5
24.5
24.5
24.0
24.0
21.0 | APRIL 11.0 9.5 11.5 9.0 8.0 7.5 7.0 8.5 11.5 13.5 12.0 12.5 13.5 17.0 18.0 19.0 20.0 19.5 19.0 14.0 12.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 | 12.0
12.0
12.0
13.5
11.0
9.5
9.0
9.5
10.5
13.5
15.5
14.5
13.0
17.0
19.0
20.5
21.5
22.0
21.5
22.0
21.5
21.5
22.5
21.5
22.5
21.5
22.5
21.5
22.5
21.5
22.5
21.5
21 | 18.0
19.5
17.5
17.0
19.0
18.5
20.5
21.0
18.5
20.5
19.5
17.5
17.5
17.5
17.5
17.5
19.0
20.0
18.5
14.5
20.5 | MAY 13.0 14.0 15.0 12.0 13.5 14.5 16.0 17.0 15.5 17.0 15.5 17.0 14.5 13.0 13.5 14.5 13.0 13.5 14.5 17.0 16.5 17.0 17.0 18.5 | 15.5
16.0
14.5
16.0
14.5
18.0
19.0
16.5
17.5
17.5
17.0
18.0
15.0
15.0
13.0
13.0
14.0
15.5
17.5
17.5
17.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | | FEBRUARY | | 7.0
7.0
8.5
7.5
5.5
7.0
9.0
11.0
12.5
12.5
8.5
9.0
12.5
14.0
11.0
7.0
8.5
8.5
9.0
9.0
8.5
8.5
14.0 | MARCH 3.5 4.5 7.0 4.0 2.0 3.5 5.0 9.5 7.0 9.5 7.0 8.0 8.0 10.0 11.0 7.0 6.5 6.5 7.0 6.0 3.5 7.0 6.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 | 5.5
5.5
8.0
6.0
4.0
5.0
7.0
9.0
11.0
10.5
7.0
8.5
7.0
8.5
7.5
8.0
7.5
8.0
7.5
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | 14.0
14.0
16.0
13.0
10.5
11.5
12.0
17.5
16.5
14.0
21.5
24.5
24.0
21.0
19.0
14.5
15.0
16.5
14.0 | APRIL 11.0 9.5 11.5 9.0 8.0 7.5 7.0 8.5 11.5 12.0 12.5 13.5 12.0 19.0 20.0 19.5 19.0 14.0 12.5 11.5 11.5 | 12.0
12.0
13.5
11.0
9.5
9.0
9.5
10.5
13.5
15.5
14.5
17.0
19.0
20.5
21.5
22.0
21.5
22.0
13.5
13.5
14.5
21.5
22.0
15.2
21.5
22.0
13.5
21.5
22.0
13.5
21.5
22.0
13.5
21.5
22.0
21.5
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
21.5
22.0
21.5
22.0
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5 | 18.0
19.5
17.5
17.0
19.0
18.5
20.5
21.0
18.5
20.5
19.5
19.5
17.5
17.5
17.5
17.5
17.5
19.0
20.0
20.0
20.5 | 13.0
14.0
15.0
12.0
13.5
14.5
16.0
17.0
15.5
15.0
15.5
17.0
14.5
13.0
13.5
11.5
11.5
11.5
11.5
11.5
11.5 | 15.5
16.0
14.5
16.0
14.5
16.0
16.5
17.5
17.5
17.5
17.5
18.0
18.0
13.0
14.0
13.5
17.0
18.0
14.0
15.0 | ## 01480617 WEST BRANCH BRANDYWINE CREEK AT MODENA, PA--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5 | 25.0
23.5
22.5
21.0
23.5 | 20.0
19.5
18.5
18.5
18.5 | 22.5
21.5
20.5
19.5
21.0 | 26.0
27.5
28.0
29.0
27.5 | 21.5
22.5
24.0
24.5
24.5 | 24.0
25.0
26.0
27.0
26.5 | 28.0
28.0
28.0
28.0
27.0 | 24.0
24.5
25.5
24.5
24.5 | 26.5
26.5
26.5
26.5
26.0 | 21.5
21.0
23.5
25.0
23.5 | 18.5
18.5
19.5
21.5
20.5 | 19.5
19.5
21.5
23.0
22.0 | | 6
7
8
9
10 | 23.5
19.5
21.5
22.5
24.0 | 19.5
18.5
17.0
17.0 | 22.0
19.0
19.5
19.5
21.5 | 25.0
23.5
25.0
26.0
26.5 | 21.5
20.0
20.0
21.5
23.0 | 23.5
22.0
22.5
24.0
24.5 | 26.5
24.5
23.5
24.5
25.0 | 23.5
21.0
20.0
20.0
21.0 | 25.0
22.5
22.0
22.5
23.0 | 22.5
22.5
22.5
23.0
24.0 | 19.5
19.0
19.0
19.0
20.5 | 21.5
21.0
21.0
21.5
22.5 | | 11
12
13
14
15 | 25.0
24.5
23.0
20.0
18.5 | 20.0
21.5
20.0
17.5
17.0 | 22.5
23.0
21.5
18.5
17.5 | 24.0
24.0
23.0
22.5
25.5 | 20.0
19.0
19.5
20.5
20.0 | 22.5
22.0
21.5
21.5
22.5 | 25.5
26.0
28.0
28.0
28.0 | 21.5
23.0
24.0
25.0
25.0 | 24.0
24.5
26.0
26.5
26.5 | 23.5
21.5
21.0
22.0
22.5 | 21.0
18.5
17.5
19.0
21.5 | 22.5
20.0
19.5
20.5
22.0 | | 16
17
18
19
20 | 20.5
21.5
22.5
22.0
23.0 | 16.5
17.5
17.0
18.5
18.5 | 18.5
19.5
19.5
20.0
20.5 | 26.0

26.5
26.5
27.0 | 21.5

23.0
24.0
23.5 | 24.0

25.0
25.5
25.5 | 27.5
28.5
28.5
28.5
27.5 | 25.5
25.0
25.0
25.5
25.0 | 26.5
26.5
26.5
27.0
26.5 | 24.0
23.0
22.0
22.0
23.0 | 21.5
20.5
19.5
19.0
20.0 | 23.0
22.0
21.0
20.5
21.5 | | 21
22
23
24
25 | 24.0
24.5
25.0
25.5
26.5 | 18.5
19.5
20.0
21.0
22.0 | 21.0
22.0
22.5
23.5
24.5 | 26.0
27.5
28.5
27.0
25.5 | 23.5
23.0
24.5
24.0
22.0 | 25.0
25.5
26.5
25.0
24.0 | 27.0
26.5
26.0
25.0
26.0 | 23.0
23.0
24.5
23.5
23.0 | 25.0
24.5
25.0
24.0
24.5 | 24.0
24.5
23.0
21.0
20.0 | 21.0
22.5
20.5
18.0
18.0 | 22.5
23.5
22.0
19.5
19.0 | | 26
27
28
29
30
31 | 27.0
27.5
25.5
25.5
25.5 | 23.0
23.5
23.0
21.5
21.5 | 25.0
25.5
24.0
23.5
23.5 |
24.0
22.5
26.0
27.5
28.0
27.5 | 21.5
21.0
22.0
24.0
25.0
24.0 | 22.5
22.0
24.0
26.0
26.5
26.0 | 24.5
24.0
23.5
21.0
20.0
22.0 | 22.0
21.5
21.0
18.5
19.0
18.5 | 23.0
23.0
22.5
19.5
19.5
20.0 | 19.5
19.5
20.5
19.5
19.5 | 17.5
16.5
18.5
16.5
16.5 | 19.0
17.5
19.5
18.0
18.0 | | MONTH | 27.5 | 16.5 | 21.4 | 29.0 | 19.0 | 24.3 | 28.5 | 18.5 | 24.5 | 25.0 | 16.5 | 20.8 | ## OXYGEN, DISSOLVED (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|---|--------------------------------------|-----------------------------------|--------------------------------------|------------------------------|---------------------------|-----------------------------|--------------|----------|------| | | | OCTOBER | | 1 | NOVEMBER | | | DECEMBER | | | JANUARY | | | 1
2
3
4
5 |
10.7
9.5
9.4 |
6.6
6.2
6.2 |
8.4
7.6
7.4 | 13.8
13.4
12.5
13.4
13.8 | 9.3
8.7
7.7
8.5
8.9 | 11.0
10.5
9.6
10.4
10.8 | 10.5
11.3
12.1
12.4 | 8.6
9.0
9.6
10.1 | 9.4
10.0
10.7
11.0 | | | | | 6
7
8
9
10 | 9.6
10.0
9.8
10.0
9.7 | 6.3
6.9
7.2
7.2
6.8 | 7.5
8.3
8.3
8.4
8.2 | 14.2
14.0
13.5
13.5 | 9.7
9.4
9.0
8.0
8.9 | 11.3
11.2
10.6
10.4
10.7 |

 |

 |

 |

 |

 | | | 11
12
13
14
15 | 9.1
9.4
9.0
9.1
9.4 | 6.5
6.4
6.2
6.2 | 7.5
7.6
7.3
7.3 | 13.7
13.9
15.5
14.1
13.2 | 8.7
8.3
8.7
7.2
8.5 | 10.8
11.2
11.5
11.4
10.3 |

 |

 |

 |

 |

 | | | 16
17
18
19
20 | 10.7
11.6
12.5
12.9
12.7 | 7.7
7.8
8.7
7.2
8.0 | 8.8
9.4
10.2
9.9
9.8 | 13.5
13.4
13.9
12.9
12.6 | 7.5
7.7
7.6
8.1
9.0 | 10.2
9.7
10.2
10.6
10.4 | |

 |

 |

 |

 | | | 21
22
23
24
25 | 13.1
13.2
12.3
12.2
12.2 | 8.2
8.0
7.5
7.2
7.3 | 9.9
10.1
9.4
9.3
9.1 | 13.1
13.7
13.7
12.9
11.0 | 9.8
10.3
10.4
9.7
8.8 | 11.1
11.6
11.6
10.9
9.6 |

 |

 |

 | |

 | | | 26
27
28
29
30
31 | 12.7
13.9
14.1
13.8
13.5
13.6 | 7.9
8.4
8.7
8.8
9.4
9.3 | 9.9
10.6
11.1
11.2
10.9
11.0 | 10.7
11.6
11.5
10.2
10.0 | 9.1
9.6
9.1
8.8
8.6 | 9.9
10.3
10.0
9.4
9.1 |

 |

 | |

 |

 | | | MONTH | 14.1 | 6.2 | 9.0 | 15.5 | 7.2 | 10.5 | 12.4 | 8.6 | 10.3 | | | | ## 01480617 WEST BRANCH BRANDYWINE CREEK AT MODENA, PA--Continued OXYGEN, DISSOLVED (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|---|--|--|---|---|---|--|--|--
---|---|--| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2 | | | | 15.7
15.3 | 10.9
10.8 | 12.9
12.6 | 13.7
14.4 | 9.6
9.5 | 11.3
11.7 | 10.7
9.5 | 8.2
7.3 | 9.5
8.4 | | 3 | | | | 11.2
13.0 | 10.5 | 10.9
11.9 | 14.0
14.7 | 9.2
9.4 | 10.7
11.9 | 9.0
10.2 | 8.1
8.6 | 8.7
9.4 | | 5 | | | | 14.5 | 11.6 | 13.0 | 15.1 | 10.3 | 12.5 | 10.0 | 8.2 | 9.1 | | 6
7
8 | | | | 14.7
14.7
14.8 | 11.2
10.5
9.9 | 12.8
12.3
11.9 | 15.3
15.6
15.4 | 10.7
10.7
10.1 | 12.6
12.7
12.4 | 10.0
9.5
9.8 | 8.1
7.7
7.7 | 8.9
8.5
8.5 | | 9
10 | | | | 14.0
14.0 | 8.8
8.6 | 11.0
11.0 | 14.4
14.6 | 8.7
8.2 | 11.1 | 9.3
10.1 | 7.7
8.3 | 8.5
9.3 | | 11 | | | | 15.5 | 10.4 | 12.5 | 14.7 | 8.8 | 11.2 | 10.5 | 8.3 | 9.3 | | 12
13 | | | | 15.4
11.9 | 10.5
9.7 | 12.3
10.7 | 13.3
13.3 | 9.0
8.6 | 10.7
10.4 | 10.3
9.5 | 7.8
7.9 | 9.1
8.7 | | 14
15 | | | | 14.7
14.0 | 9.2
8.6 | 11.6
10.8 | 11.9
11.1 | 7.6
7.3 | 9.4
8.8 | 9.4
10.1 | 8.2
8.9 | 9.0
9.5 | | 16
17 | | | | 12.6
13.4 | 8.1
9.1 | 10.1
11.1 | 10.7
10.5 | 6.8
6.4 | 8.4 | 10.1
9.5 | 8.3
7.9 | 9.3
8.6 | | 18
19 | | | | 13.1
14.2 | 10.6 | 11.7 | 10.4 | 6.1
4.4 | 7.7
7.3 | 9.8
10.4 | 7.9
9.4 | 9.2
10 | | 20 | | | | 11.9 | 10.5 | 11.3 | 8.8 | 4.5 | 6.9 | 10.7 | 9.5 | 10.1 | | 21
22 | | | | 12.4
13.4 | 10.5
10.6 | 11.6
12.2 | 9.5
10.4 | 6.6
8.3 | 8.3
9.3 | 10.9
10.9 | 9.6
9.2 | 10.2
10.1 | | 23
24 | | | | 13.9
14.0 | 11.3
11.1 | 12.6
12.4 | 11.1
11.3 | 9.0
8.7 | 9.9
9.8 | 10.7
10.7 | 8.6
7.9 | 9.7
9.3 | | 25 | | | | 14.0 | 10.9 | 12.1 | 10.3 | 8.7 | 9.3 | 10.7 | 7.8 | 9.1 | | 26
27
28 | 14.5
15.2 | 9.0
10.6 | 11.6
12.6 | 13.2
13.1
13.7 | 10.8
11.3
10.6 | 11.7
12.0
12.2 | 11.5
11.4
9.9 | 9.2
8.7
8.7 | 10.2
9.9
9.4 | 10.9
10.1
10.3 | 8.1
8.1
7.7 | 9.1
8.8
8.9 | | 29
30 | | | | 13.8
13.5 | 9.8 | 11.7
11.0 | 10.3 | 9.1
8.8 | 9.6
10 | 10.3 | 7.7
7.9
7.6 | 8.9
8.7 | | 31 | | | | 13.2 | 9.2 | 10.8 | | | | 10.2 | 7.2 | 8.4 | | MONTH | 15.2 | 9.0 | 12.1 | 15.7 | 8.1 | 11.8 | 15.6 | 4.4 | 10.1 | 10.9 | 7.2 | 9.1 | | | | | | | | | | | | | | | | מעת | MλΥ | MTN | MEAN | млу | MTN | MEAN | млу | MTN | MEAN | млу | MTN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | MAX | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMBI | MEAN
ER | | 1 | 9.3 | JUNE 6.4 | 7.7 | 10.1 | JULY 6.5 | 7.9 | 9.2 | AUGUST | 6.8 | 8.3 | SEPTEMBI 6.9 | ER 7.7 | | 1
2
3 | 9.3
9.9
10.1 | JUNE 6.4 7.0 7.3 | 7.7
8.2
8.4 | 10.1
9.5
9.4 | JULY
6.5
6.1
5.6 | 7.9
7.6
7.3 | 9.2
9.3
9.9 | AUGUST 5.0 5.1 5.0 | 6.8
6.9
7.0 | 8.3
9.1
10.4 | 6.9
7.4
6.9 | 7.7
8.1
8.0 | | 1
2 | 9.3
9.9 | JUNE 6.4 7.0 | 7.7
8.2 | 10.1
9.5 | JULY 6.5 6.1 | 7.9
7.6 | 9.2
9.3 | AUGUST 5.0 5.1 | 6.8
6.9 | 8.3
9.1 | 6.9
7.4 | 7.7
8.1 | | 1
2
3
4
5 | 9.3
9.9
10.1
10.3
9.9 | JUNE 6.4 7.0 7.3 7.6 7.1 6.8 | 7.7
8.2
8.4
8.8
8.1 | 10.1
9.5
9.4
9.5
9.9 | JULY 6.5 6.1 5.6 5.4 5.3 | 7.9
7.6
7.3
7.1
7.2 | 9.2
9.3
9.9
10.0
9.2 | 5.0
5.1
5.0
5.3
5.5 | 6.8
6.9
7.0
7.3
7.0 | 8.3
9.1
10.4
9.7
10.1 | 6.9
7.4
6.9
6.6
6.6
7.0 | 7.7
8.1
8.0
7.9
8.1 | | 1
2
3
4
5 | 9.3
9.9
10.1
10.3
9.9
9.5
8.3
8.6 | 5.4
7.0
7.3
7.6
7.1
6.8
7.8
7.6 | 7.7
8.2
8.4
8.8
8.1
7.8
8.1
8.2 | 10.1
9.5
9.4
9.5
9.9
10.4
11.0 | 5.6
6.5
5.4
5.3
5.6
6.5
6.5 | 7.9
7.6
7.3
7.1
7.2
7.7
8.4
8.6 | 9.2
9.3
9.9
10.0
9.2
10.1
10.7
10.8 | 5.0
5.1
5.0
5.3
5.5
5.6
6.3
6.8 | 6.8
6.9
7.0
7.3
7.0 | 8.3
9.1
10.4
9.7
10.1
10.2
10.6 | 6.9
7.4
6.9
6.6
6.6
7.0
7.4
7.3 | 7.7
8.1
8.0
7.9
8.1
8.4
8.7
8.7 | | 1
2
3
4
5
6
7
8
9 | 9.3
9.9
10.1
10.3
9.9
9.5
8.3
8.6
9.3
9.6 | JUNE 6.4 7.0 7.3 7.6 7.1 6.8 7.8 7.6 7.7 | 7.7
8.2
8.4
8.8
8.1
7.8
8.1
8.2
8.4
8.3 | 10.1
9.5
9.4
9.5
9.9
10.4
11.0
11.6
11.3 | 5.6
6.1
5.6
5.4
5.3
5.6
6.5
6.5
6.5 | 7.9
7.6
7.3
7.1
7.2
7.7
8.4
8.6
8.2
7.7 | 9.2
9.3
9.9
10.0
9.2 | 5.0
5.1
5.0
5.3
5.5
5.6
6.3
6.8
6.7
6.8 | 6.8
6.9
7.0
7.3
7.0
7.6
8.2
8.5
8.7 | 8.3
9.1
10.4
9.7
10.1
10.2
10.6
10.6
10.7 | 6.9
7.4
6.9
6.6
6.6
7.0
7.4
7.3
7.3
7.3 | 7.7
8.1
8.0
7.9
8.1
8.4
8.7
8.7
8.8 | | 1
2
3
4
5
6
7
8
9
10 | 9.3
9.9
10.1
10.3
9.9
9.5
8.3
8.6
9.3
9.6 | JUNE 6.4 7.0 7.3 7.6 7.1 6.8 7.8 7.6 7.7 7.4 7.1 7.0 | 7.7
8.2
8.4
8.8
8.1
7.8
8.1
8.2
8.4
8.3 | 10.1
9.5
9.4
9.5
9.9
10.4
11.0
11.6
11.3
10.6 | JULY 6.5 6.1 5.4 5.3 5.6 6.5 6.5 6.5 6.2 5.3 | 7.9
7.6
7.3
7.1
7.2
7.7
8.4
8.6
8.2
7.7 | 9.2
9.3
9.9
10.0
9.2
10.1
10.7
10.8
11.1
11.1 | 5.0
5.1
5.0
5.3
5.5
5.6
6.3
6.8
6.7
6.8 | 6.8
6.9
7.0
7.3
7.0
7.6
8.2
8.5
8.7
8.7 | 8.3
9.1
10.4
9.7
10.1
10.2
10.6
10.6
10.7
10.8 | 6.9
7.4
6.9
6.6
6.6
7.0
7.4
7.3
7.3 | 7.7
8.1
8.0
7.9
8.1
8.4
8.7
8.7
8.8
8.8
9.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 9.3
9.9
10.1
10.3
9.9
9.5
8.3
8.6
9.3
9.6
9.6
9.3
9.1
8.8 | JUNE 6.4 7.0 7.3 7.6 7.1 6.8 7.8 7.6 7.7 7.4 7.1 7.0 7.0 | 7.7
8.2
8.4
8.8
8.1
7.8
8.1
8.2
8.4
8.3
7.9
7.9 | 10.1
9.5
9.4
9.5
9.9
10.4
11.0
11.6
11.3
10.6 | JULY 6.5 6.1 5.6 5.4 5.3 5.6 6.5 6.2 5.3 6.2 6.3 5.9 | 7.9
7.6
7.3
7.1
7.2
7.7
8.4
8.2
7.7
8.2
8.2 | 9.2
9.3
9.9
10.0
9.2
10.1
10.7
10.8
11.1
11.1
11.1
10.9
11.5
11.2 | 5.0
5.1
5.0
5.3
5.5
5.6
6.3
6.7
6.8
6.7
6.5 | 6.8
6.9
7.0
7.3
7.0
7.6
8.2
8.7
8.7
8.6
8.6
8.6 | 8.3
9.1
10.4
9.7
10.1
10.2
10.6
10.6
10.7
10.8 |
6.9
7.4
6.9
6.6
6.6
7.0
7.4
7.3
7.3
7.3
7.3
7.3 | 7.7
8.1
8.0
7.9
8.1
8.4
8.7
8.7
8.8
9.2
9.0
8.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 9.3
9.9
10.1
10.3
9.9
9.5
8.3
8.6
9.3
9.6
9.3
9.1
8.8 | 5.4 7.0 7.3 7.6 7.1 6.8 7.6 7.7 7.4 7.1 7.0 7.6 8.3 | 7.7
8.2
8.4
8.8
8.1
7.8
8.1
8.2
8.4
8.3
7.9
7.9
8.4 | 10.1
9.5
9.4
9.5
9.9
10.4
11.0
11.6
11.3
10.6 | JULY 6.5 6.1 5.4 5.3 5.6 6.5 6.5 6.5 6.2 5.3 6.2 6.3 5.9 5.8 | 7.9
7.6
7.3
7.1
7.2
7.7
8.4
8.6
8.2
7.7
8.2
8.0
7.3
7.8 | 9.2
9.3
9.9
10.0
9.2
10.1
10.7
10.8
11.1
11.1
11.1
10.9
11.5
11.2 | 5.0
5.1
5.0
5.3
5.5
5.6
6.3
6.8
6.7
6.5
6.4
6.3 | 6.8
6.9
7.0
7.3
7.0
7.6
8.2
8.5
8.7
8.6
8.6
8.5
7.9 | 8.3
9.1
10.4
9.7
10.1
10.2
10.6
10.6
10.7
10.8
10.6
10.9
11.0
10.6
9.7 | 6.9
7.4
6.9
6.6
6.6
7.0
7.4
7.3
7.3
7.3
7.3
7.2
7.8
7.4
7.1 | 7.7
8.1
8.0
7.9
8.1
8.4
8.7
8.7
8.8
9.2
9.0
8.8
8.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 9.3
9.9
10.1
10.3
9.9
9.5
8.3
8.6
9.3
9.6
9.3
9.1
8.8
9.1 | JUNE 6.4 7.0 7.3 7.6 7.1 6.8 7.8 7.6 7.7 7.4 7.1 7.0 7.0 7.6 8.3 | 7.7
8.2
8.4
8.8
8.1
7.8
8.1
8.2
8.3
7.9
7.9
8.4
8.7 | 10.1
9.5
9.4
9.5
9.9
10.4
11.0
11.6
11.3
10.6
11.0
10.8
10.9
9.6
10.6 | JULY 6.5 6.1 5.4 5.3 5.6 6.5 6.2 5.3 6.2 5.3 6.2 5.9 5.8 | 7.9
7.6
7.3
7.1
7.2
7.7
8.4
8.6
8.2
7.7
8.2
8.0
7.3
7.8 | 9.2
9.3
9.9
10.0
9.2
10.1
10.7
11.1
11.1
11.1
11.1
10.9
11.5
11.2
10.9 | 5.0
5.1
5.0
5.3
5.5
5.6
6.3
6.7
6.8
6.7
6.5
6.4
6.3
5.7 | 6.8
6.9
7.0
7.3
7.0
7.6
8.2
8.5
8.7
8.7
8.6
8.6
8.5
7.9 | 8.3
9.1
10.4
9.7
10.1
10.2
10.6
10.6
10.7
10.8
10.6
10.9
11.0
10.6
9.7 | 6.9
7.4
6.9
6.6
6.6
7.0
7.4
7.3
7.3
7.3
7.3
7.3 | 7.7
8.1
8.0
7.9
8.1
8.4
8.7
8.7
8.8
9.2
9.0
8.8
8.2
7.8
8.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 9.3
9.9
10.1
10.3
9.9
9.5
8.3
9.6
9.3
9.6
9.1
8.8
9.1 | JUNE 6.4 7.0 7.3 7.6 7.1 6.8 7.8 7.6 7.7 7.4 7.1 7.0 7.6 8.3 7.7 7.7 8.0 8.0 | 7.7
8.2
8.4
8.8
8.1
7.8
8.1
8.2
8.4
8.3
7.9
8.4
8.7
8.4
8.7 | 10.1
9.5
9.4
9.5
9.9
10.4
11.0
11.6
11.3
10.6
11.0
10.8
10.9
9.6
10.6 | JULY 6.5 6.1 5.4 5.3 5.6 6.5 6.2 5.3 6.2 6.3 5.9 5.8 5.5 5.3 5.4 | 7.9
7.6
7.3
7.1
7.2
7.7
8.4
8.2
7.7
8.2
8.2
7.3
7.8 | 9.2
9.3
9.9
10.0
9.2
10.1
10.7
10.8
11.1
11.1
11.1
11.2
10.9
11.5
11.2
10.9 | 5.0
5.1
5.0
5.3
5.5
5.6
6.3
6.7
6.8
6.7
6.8
6.7
6.5
6.3
5.7 | 6.8
6.9
7.0
7.3
7.0
7.6
8.2
8.7
8.7
8.6
8.6
8.6
8.5
7.9 | 8.3
9.1
10.4
9.7
10.1
10.2
10.6
10.6
10.7
10.8
10.6
10.9
11.0
10.6
9.7
9.6
10.1
10.5
10.5 | 6.9 7.4 6.9 6.6 6.6 7.0 7.4 7.3 7.3 7.3 7.3 7.2 7.8 7.4 7.1 7.0 | 7.7
8.1
8.0
7.9
8.1
8.4
8.7
8.8
8.9
9.2
9.0
8.8
8.2
7.8
8.3
8.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 9.3
9.9
10.1
10.3
9.9
9.5
8.3
8.6
9.3
9.6
9.3
9.1
8.8
9.1 | 7.0
7.3
7.6
7.1
6.8
7.8
7.6
7.7
7.4
7.1
7.0
7.0
7.6
8.3
7.7 | 7.7
8.2
8.4
8.8
8.1
7.8
8.1
8.2
8.4
8.3
7.9
7.9
8.4
8.7
8.4
8.7 | 10.1
9.5
9.4
9.5
9.9
10.4
11.0
11.6
11.3
10.6
11.0
10.8
10.9
9.6
10.6 | 5.6
6.5
6.1
5.4
5.3
5.6
6.5
6.5
6.2
5.3
6.2
5.9
5.9
5.9
5.8 | 7.9
7.6
7.3
7.1
7.2
7.7
8.4
8.6
8.2
7.7
8.2
8.0
7.3
7.8
7.7
7.6
7.5
7.8 | 9.2
9.3
9.9
10.0
9.2
10.1
10.7
10.8
11.1
11.1
11.1
10.9
11.5
11.2
10.9
10.7
11.1
10.7 | 5.0
5.1
5.0
5.1
5.3
5.5
5.6
6.3
6.8
6.7
6.8
6.7
6.5
6.4
6.3
5.7 | 6.8
6.9
7.3
7.0
7.6
8.2
8.5
8.7
8.7
8.6
8.6
8.5
7.9 | 8.3
9.1
10.4
9.7
10.1
10.2
10.6
10.6
10.7
10.8
10.6
10.9
11.0
10.6
9.7
9.6
10.1
10.5
10.8 | 6.9 7.4 6.9 6.6 6.6 7.0 7.4 7.3 7.3 7.3 7.2 7.8 7.4 7.1 7.0 6.4 6.8 7.1 7.2 7.1 | 7.7
8.1
8.0
7.9
8.1
8.4
8.7
8.7
8.7
8.9
8.8
9.2
9.0
8.8
8.2
9.0
8.8
8.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 9.3
9.9
10.1
10.3
9.9
9.5
8.3
8.6
9.6
9.6
9.3
9.1
8.8
9.1
9.7
10.1
10.2
10.7 | 7.0
7.3
7.6
7.1
6.8
7.8
7.6
7.7
7.4
7.1
7.0
7.0
7.6
8.3
7.7
7.7
8.0
8.1 | 7.7
8.2
8.4
8.8
8.1
7.8
8.1
8.2
8.3
7.9
8.4
8.7
8.4
8.7
8.6
8.8
9.1
9.1
9.0
8.9 | 10.1
9.5
9.4
9.5
9.9
10.4
11.0
11.6
11.3
10.6
11.0
10.8
10.9
9.6
10.6
10.3

10.8
10.4
10.6 | JULY 6.5 6.1 5.4 5.3 5.6 6.5 6.2 5.3 6.2 6.3 5.9 5.8 5.7 5.9 5.7 5.9 5.7 | 7.9
7.6
7.3
7.1
7.2
7.7
8.4
8.6
8.2
7.7
8.2
8.0
7.3
7.8
7.7
7.6
7.5
7.8 | 9.2
9.3
9.9
10.0
9.2
10.1
10.7
11.1
11.1
11.1
11.1
11.2
10.9
11.5
11.2
10.7
11.1
11.1
11.1
11.1 | 5.0
5.1
5.0
5.1
5.3
5.5
5.6
6.3
6.8
6.7
6.8
6.7
6.5
6.4
6.3
5.7 | 6.8
6.9
7.3
7.0
7.6
8.2
8.5
8.7
8.7
8.6
8.6
8.5
7.9
7.7
7.7
7.9
8.3
8.6
7.8 | 8.3
9.1
10.4
9.7
10.1
10.2
10.6
10.6
10.7
10.8
10.6
10.9
11.0
10.6
9.7
9.6
10.1
10.5
10.8
10.6
10.1
10.5
10.6
10.6
10.7 | 6.9 7.4 6.9 6.6 6.6 7.0 7.4 7.3 7.3 7.3 7.2 7.8 7.4 7.1 7.0 6.4 6.8 7.1 7.2 7.1 | 7.7
8.1
8.0
7.9
8.1
8.4
8.7
8.7
8.7
8.8
9.2
9.0
8.8
8.2
7.8
8.3
8.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 9.3
9.9
10.1
10.3
9.9
9.5
8.3
8.6
9.3
9.6
9.6
9.3
9.1
9.7
10.1
10.2
10.5 | JUNE 6.4 7.0 7.3 7.6 7.1 6.8 7.8 7.6 7.7 7.4 7.1 7.0 7.0 8.3 7.7 7.7 8.0 8.0 8.1 8.0 7.7 | 7.7
8.2
8.4
8.8
8.1
7.8
8.1
8.2
8.4
8.3
7.9
7.9
8.4
8.7
8.6
8.4
8.7 | 10.1
9.5
9.4
9.5
9.9
10.4
11.0
11.6
11.3
10.6
11.0
10.8
10.9
9.6
10.6 | JULY 6.5 6.1 5.4 5.3 5.6 6.5 6.2 5.3 6.2 6.3 5.9 5.8 5.7 5.4 5.7 | 7.9
7.6
7.3
7.1
7.2
7.7
8.4
8.2
7.7
8.2
8.2
7.3
7.8
7.6
7.5
7.8 | 9.2
9.3
9.9
10.0
9.2
10.1
10.7
10.8
11.1
11.1
11.2
10.9
10.7
11.1
10.7
11.1
11.1 | 5.0
5.1
5.0
5.3
5.5
5.6
6.3
6.7
6.8
6.7
6.5
6.4
6.3
5.7 | 6.8
6.9
7.0
7.3
7.0
7.6
8.2
8.7
8.7
8.6
8.6
8.5
7.9
7.7
7.7
7.9
7.9 | 8.3
9.1
10.4
9.7
10.1
10.2
10.6
10.6
10.7
10.8
10.6
10.9
11.0
10.6
10.9
11.0
10.6
10.9
11.0
10.6
10.7 | 6.9 7.4 6.9 6.6 6.6 7.0 7.4 7.3 7.3 7.3 7.3 7.2 7.8 7.4 7.1 7.0 6.4 6.8 7.1 7.2 7.1 7.1 6.8 | 7.7
8.1
8.0
7.9
8.1
8.4
8.7
8.8
8.9
8.8
9.2
9.0
8.8
8.2
7.8
8.3
8.7
8.3
8.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 9.3
9.9
10.1
10.3
9.9
9.5
8.3
9.6
9.6
9.3
9.1
8.8
9.1
9.4
9.7
10.1
10.2
10.5
10.7
10.9 | JUNE 6.4 7.0 7.3 7.6 7.1 6.8 7.8 7.6 7.7 7.4 7.1 7.0 7.6 8.3 7.7 7.7 8.0 8.0 8.1 8.0 7.7 7.5 6.8 6.5 | 7.7
8.2
8.4
8.8
8.1
7.8
8.1
8.2
8.4
8.3
7.9
8.4
8.7
8.4
8.7
8.6
8.8
9.1
9.0
9.0
8.6
8.5 | 10.1
9.5
9.4
9.5
9.9
10.4
11.0
11.3
10.6
11.3
10.6
10.8
10.9
9.6
10.6
10.3

10.8
10.4
10.6 | JULY 6.5 6.1 5.4 5.3 5.6 6.5 6.2 5.3 6.2 5.9 5.8 5.7 5.9 6.2 5.7 4.2 6.1 5.8 | 7.9
7.6
7.3
7.1
7.2
7.7
8.4
8.2
7.7
8.2
8.2
7.7
8.2
8.2
7.7
8.3
7.8
7.5
7.5
7.5
7.6
7.6 | 9.2
9.3
9.9
10.0
9.2
10.1
10.8
11.1
11.1
11.2
10.9
10.7
11.1
11.1
11.1
11.1
11.1
11.1
11.1 | 5.0
5.1
5.0
5.3
5.5
5.6
6.3
6.7
6.8
6.7
6.8
6.7
6.5
6.4
6.3
5.7
5.6
5.2
5.4
4.3 | 6.8
6.9
7.0
7.3
7.0
7.6
8.2
8.7
8.7
8.6
8.6
8.5
7.9
7.7
7.7
7.9
8.3
8.6
7.9 |
8.3
9.1
10.4
9.7
10.1
10.2
10.6
10.6
10.7
10.8
10.6
10.9
11.0
10.6
9.7
9.6
10.1
10.5
10.8
10.9
10.5
10.9
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5 | 6.9 7.4 6.9 6.6 6.6 7.0 7.43 7.3 7.3 7.3 7.2 7.8 7.4 7.1 7.0 6.4 6.8 7.1 7.2 7.1 6.8 6.7 6.1 6.5 | 7.7
8.1
8.0
7.9
8.1
8.4
8.7
8.8
8.9
9.2
9.0
8.8
8.2
7.8
8.3
8.7
8.9
8.8
8.2
9.2
9.2
9.2
9.2
9.8
8.8
8.9
8.8
8.9
8.8
8.1
9.2
9.2
9.8
8.1
8.1
9.8
8.1
8.1
8.1
8.1
8.1
8.1
8.1
8.1
8.1
8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 9.3
9.9
10.1
10.3
9.9
9.5
8.3
8.6
9.3
9.6
9.6
9.3
9.1
8.8
9.1
10.2
10.5
10.7
10.7
10.7
10.9
10.8
10.9 | JUNE 6.4 7.0 7.3 7.6 7.1 6.8 7.8 7.6 7.7 7.4 7.1 7.0 7.0 8.3 7.7 7.7 8.0 8.0 8.1 8.0 7.7 7.5 7.2 6.8 6.5 6.5 6.5 6.5 | 7.7
8.2
8.4
8.8
8.1
7.8
8.1
8.2
8.3
8.3
7.9
7.9
8.4
8.7
8.4
8.7
8.6
8.9
9.1
9.0
8.9
8.5
8.5
8.5
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 10.1
9.5
9.4
9.5
9.9
10.4
11.0
11.6
11.3
10.6
11.0
10.8
10.9
9.6
10.6
10.3

10.8
10.6
10.4
11.1
10.9
9.5
10.6 | JULY 6.5 6.16 5.4 5.3 5.6 6.5 6.2 5.3 6.3 5.9 5.8 5.7 5.2 6.1 5.7 6.2 6.1 5.7 | 7.9
7.6
7.3
7.1
7.2
7.7
8.4
8.6
8.2
7.7
8.2
8.0
7.5
7.5
8.9
8.0
7.5
7.5
8.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 9.2
9.3
9.9
10.0
9.2
10.1
10.7
11.1
11.1
11.1
11.1
11.2
10.9
10.7
11.1
10.7
11.1
11.1
11.1
11.1
10.7
11.1
10.7
11.1
10.7
11.1
10.7
11.1
10.7
11.1
10.7
10.8 | 5.0
5.1
5.0
5.3
5.5
5.6
6.3
6.7
6.8
6.7
6.5
6.4
6.5
5.7
5.6
5.2
4
4.3
6.0
6.1
6.0
5.3 | 6.8
6.9
7.3
7.0
7.6
8.2
8.5
8.7
8.6
8.6
8.6
8.5
7.9
7.7
7.7
9.9
8.6
6.7
7.3
7.1 | 8.3
9.1
10.4
9.7
10.1
10.2
10.6
10.6
10.7
10.8
10.6
10.9
11.0
10.6
9.7
9.6
10.1
10.5
10.8
10.9
11.0
10.5
10.5
10.5
10.6
10.7
10.6
10.9
11.0
10.6
10.7
10.6
10.9
11.0
10.6
10.7
10.6
10.7
10.6
10.7
10.6
10.7
10.6
10.7
10.6
10.7
10.6
10.7
10.6
10.7
10.6
10.7
10.6
10.7
10.6
10.7
10.6
10.7
10.6
10.7
10.6
10.7
10.6
10.7
10.6
10.7
10.6
10.7
10.6
10.7
10.6
10.7
10.6
10.7
10.6
10.7
10.6
10.7
10.6
10.7
10.6
10.7
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8
10.8 | 6.9 7.4 6.9 6.6 6.6 7.0 7.4 7.3 7.3 7.3 7.2 7.8 7.4 7.1 7.0 6.4 6.8 7.1 7.2 7.1 6.5 6.9 8.0 7.5 | 7.7
8.1
8.0
7.9
8.1
8.4
8.7
8.7
8.8
9.2
9.0
8.8
8.9
7.8
8.3
8.7
8.9
8.2
9.0
7.8
8.3
8.2
7.8
8.3
8.2
8.3
8.4
8.2
8.3
8.4
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 9.3
9.9
10.1
10.3
9.9
9.5
8.3
8.6
9.3
9.6
9.3
9.1
9.7
10.1
10.2
10.5
10.7
10.9
10.9
10.3
9.8
9.2
9.4
9.8 | JUNE 6.4 7.0 7.3 7.6 7.1 6.8 7.8 7.6 7.7 7.4 7.1 7.0 7.6 8.3 7.7 7.7 8.0 8.1 8.0 7.7 7.5 6.8 6.5 6.0 5.5 6.4 6.4 | 7.7
8.2
8.4
8.8
8.1
7.8
8.1
8.2
8.4
8.3
8.3
7.9
9.4
8.7
8.4
8.8
9.1
9.0
9.8
8.5
8.5
8.6
7.2
7.7
8.6
8.7 |
10.1
9.5
9.4
9.5
9.9
10.4
11.0
11.6
11.3
10.6
11.0
10.8
10.9
9.6
10.6
10.3

10.8
10.6
10.6
10.6
10.6
10.6
10.6
10.7
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.7
10.8
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6 | JULY 6.51 6.16 5.4 5.3 5.65 6.25 5.3 5.65 6.25 5.3 5.99 5.8 5.5 7 5.27 6.1 5.81 5.79 4.8 | 7.9
7.6
7.1
7.2
7.7
8.4
8.2
7.7
8.2
8.2
7.7
8.2
8.7
7.5
8.9
7.5
7.8
7.8
9.3
7.5
7.3
8.0
7.5
7.3
7.3
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 9.2
9.3
9.9
10.0
9.2
10.1
10.7
11.1
11.1
11.2
10.9
10.7
11.1
11.1
11.1
11.1
11.1
8.0
8.3
8.9
9.6
8.3
8.7
9.2 | 5.0
5.1
5.0
5.3
5.5
5.6
6.3
6.7
6.8
6.7
6.5
6.4
6.3
5.7
5.5
5.6
6.3
5.7 | 6.8
6.9
7.3
7.0
7.6
8.2
8.7
8.6
8.6
8.5
7.9
7.7
7.7
7.9
8.3
6.7
7.5
7.5
7.1
8.0 | 8.3
9.1
10.4
9.7
10.1
10.2
10.6
10.6
10.7
10.8
10.6
10.9
11.0
10.6
9.7
9.6
10.1
10.5
10.8
10.8
10.9
9.5
10.9
9.5
10.9
9.7 | 6.9 7.4 6.9 6.6 6.6 7.0 7.4 7.3 7.3 7.3 7.3 7.2 7.8 7.4 7.1 7.0 6.4 6.8 7.1 7.1 6.8 6.7 6.1 6.5 | 7.7
8.1
8.0
7.9
8.1
8.4
8.7
8.8
8.9
9.2
9.0
8.8
8.3
8.7
8.3
8.7
8.8
8.3
8.7
8.8
8.3
8.6
8.1
7.8
8.6
8.1
7.8
8.6
8.1
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 9.3
9.0
10.1
10.3
9.9
9.5
8.3
9.6
9.6
9.3
9.1
8.8
9.1
9.4
9.7
10.1
10.2
10.5
10.7
10.8
10.9 | JUNE 6.4 7.0 7.3 7.6 7.1 6.8 7.8 7.6 7.7 7.4 7.1 7.0 7.6 8.3 7.7 7.7 8.0 8.0 8.1 8.0 7.7 7.5 6.8 6.5 6.0 5.5 6.4 | 7.7
8.2
8.4
8.8
8.1
7.8
8.1
8.2
8.4
8.3
7.9
9.4
8.7
8.4
8.7
8.4
8.7
9.1
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 10.1
9.5
9.4
9.5
9.9
10.4
11.0
11.6
11.3
10.6
11.0
9.6
10.6
10.3

10.8
10.4
10.6
10.4
11.1
10.6 | JULY 6.51 5.4 5.3 5.65 6.55 6.2 5.3 6.23 5.9 5.8 5.7 5.9 6.2 5.7 4.2 6.1 5.8 6.1 7 4.9 | 7.9
7.6
7.1
7.2
7.7
8.4
8.2
7.7
8.2
8.2
7.7
8.2
8.0
7.5
7.8
7.5
8.3
7.7
7.5
8.3
7.6
7.5
7.6
8.3
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 9.2
9.3
9.9
10.0
9.2
10.1
10.8
11.1
11.1
11.2
10.9
10.7
11.1
11.1
11.1
11.1
11.1
8.0
8.3
8.9
9.6
8.3
8.7 | 5.0
5.1
5.0
5.3
5.5
5.6
6.3
6.7
6.8
6.7
6.8
6.7
6.5
6.4
6.3
5.7
5.6
5.2
5.4
4.3
6.0
6.1
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0 | 6.8
6.9
7.3
7.0
7.6
8.2
8.7
8.7
8.6
8.6
8.5
7.9
7.7
7.9
8.3
6.7
7.5
9.7
7.5
1.8 | 8.3
9.1
10.4
9.7
10.1
10.2
10.6
10.6
10.7
10.8
10.6
9.7
9.6
10.1
10.5
10.8
10.8
10.6
9.7
9.6
10.1
10.5
10.5
10.5
10.5
10.5
10.7
10.5
10.7
10.7
10.8 | 6.9 7.4 6.6 6.6 7.0 7.43 7.3 7.3 7.3 7.2 7.8 7.1 7.0 6.4 6.8 7.1 7.2 7.1 6.8 6.7 6.1 6.5 | 7.7
8.1
8.0
7.9
8.1
8.4
8.7
8.8
8.9
9.2
9.0
8.8
8.2
7.8
8.3
8.7
8.9
8.8
8.2
9.2
9.2
9.2
9.0
8.8
8.2
9.2
9.2
9.2
9.8
8.3
8.4
8.7
8.8
8.9
8.8
8.9
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | #### 01480675 MARSH CREEK NEAR GLENMOORE, PA LOCATION.--Lat 40°05'52", long 75°44'31", Chester County, Hydrologic Unit 02040205, on left bank 200 ft north of Pennsylvania Turnpike, 1.2 mi downstream from Lyons Run, 1.8 mi upstream from Black Horse Creek, and 3.0 mi northeast of Glenmoore. DRAINAGE AREA.--8.57 mi². PERIOD OF RECORD.--July 1966 to current year. **REVISED RECORDS.--**WDR PA-74-1: 1967(M), 1971-72(P) WDR PA-93-1: 1992. GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Elevation of gage is 450 ft above National Geodetic Vertical Datum of 1929, from topographic map. **REMARKS**.--Records fair except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. Satellite and landline telemetry at station. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 130 ft³/s and maximum (*): | Date
May 14 | Time | • | scharge
ft ³ /s
*67 | Gage Heigh
(ft)
*2.06 | t | | Date
(No | | | scharge
ft ³ /s
se discl | Gage Height
(ft)
narge.) | | |--|--|--|--|--|--|--|--|--|--|--|--|---| | | | | DISCHA | RGE, CUBIC I | FEET PER SI | | TER YEAR O
EAN VALUES | | 001 TO SEPT | EMBER 200 | 02 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.1
1.9
1.8
1.7 | 1.6
1.7
1.9
2.0
1.9 | 2.9
2.6
2.3
2.2
2.2 | e1.2
e1.2
e1.1
e1.1
e1.3 | 12
9.4
6.0
4.9
3.1 | 2.1
2.2
30
17
5.9 | 7.3
6.0
5.8
7.6
5.8 | 7.5
10
13
8.4
5.0 | 3.7
2.7
2.3
2.0
2.2 | 1.7
1.5
1.3
1.2 | 0.40
0.38
e0.99
e1.3
e0.92 | 1.3
1.5
1.1
0.89
0.68 | | 6
7
8
9
10 | 1.4
1.4
1.4
1.4 | 1.7
1.6
1.7
1.7 | 2.2
2.3
3.3
11
7.0 | 2.4
6.5
5.7
4.6
4.6 | 3.0
3.4
3.7
3.4
3.4 | 4.3
4.3
3.5
3.3
4.2 | 4.5
3.6
3.5
3.6
4.9 | 3.9
3.4
3.0
9.1 | 7.3
18
11
5.2
3.4 | 1.0
1.0
0.98
0.95
0.98 | 0.56
0.48
0.45
0.44
0.38 | 0.53
0.48
0.43
0.41
0.39 | | 11
12
13
14
15 | 1.4
1.2
1.2
1.3
2.7 | 1.7
1.6
1.7
1.7 | 4.2
3.2
3.2
6.5
8.9 | 14
18
10
5.6
4.7 | 5.1
3.3
3.1
2.5
2.5 | 3.2
2.9
5.6
8.3
5.6 | 3.9
3.5
3.6
4.8
4.3 | 6.4
5.3
18
63
31 | 2.7
2.6
2.7
7.8
7.9 | 0.83
0.76
0.75
0.93
0.89 | 0.34
0.34
0.37
0.30
0.31 | 0.39
0.32
0.31
0.32
0.39 | | 16
17
18
19
20 | 2.6
3.1
2.6
2.2
1.9 | 1.8
1.7
1.8
1.9
2.2 | 5.0
3.8
11
8.6
5.1 | 4.2
3.7
3.3
2.7
2.8 | 2.9
3.2
2.7
2.5
2.6 | 4.4
3.6
11
14
31 | 3.7
3.1
2.7
2.6
2.6 | 9.5
5.8
24
28
11 | 6.6
4.4
3.8
4.0
3.4 | 0.76
0.69
0.69
0.69
0.83 | 0.27
0.26
0.26
0.23
0.21 | 0.69
0.46
0.39
0.35
0.32 | |
21
22
23
24
25 | 1.7
1.7
1.7
1.7 | 2.1
2.0
1.9
2.0
5.1 | 3.4
2.7
2.5
5.4
4.2 | 2.8
3.0
4.1
32
39 | 3.7
3.4
2.8
2.5
2.4 | 45
12
7.2
5.8
4.9 | 2.6
7.2
7.2
4.1
4.6 | 6.9
5.4
4.6
4.0
3.6 | 3.0
2.5
2.0
1.9
1.8 | 0.68
0.61
0.58
0.60
0.58 | 0.21
0.21
0.31
e1.2
e1.9 | 0.30
0.30
0.30
0.28
0.27 | | 26
27
28
29
30
31 | 1.4
1.4
1.3
1.4
1.5 | 9.3
6.0
3.8
3.1
2.9 | 3.2
2.4
1.9
e1.7
e1.5
e1.4 | 11
6.9
5.3
4.8
5.5 | 2.4
2.9
2.3
 | 5.1
16
11
6.5
5.2
4.9 | 6.2
4.4
22
30
12 | 3.4
3.7
4.1
4.0
3.4
2.9 | 1.7
2.1
3.0
2.4
2.1 | 0.52
0.54
0.58
0.52
0.43
0.41 | e0.95
0.36
0.34
1.6
0.87
0.84 | 0.46
4.7
12
7.2
3.0 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 52.9
1.71
3.1
1.2
0.20
0.23 | 73.5
2.45
9.3
1.6
0.29
0.32 | 127.8
4.12
11
1.4
0.48
0.55 | 225.1
7.26
39
1.1
0.85
0.98 | 105.1
3.75
12
2.3
0.44
0.46 | 290.0
9.35
45
2.1
1.09
1.26 | 187.7
6.26
30
2.6
0.73
0.81 | 324.3
10.5
63
2.9
1.22
1.41 | 126.2
4.21
18
1.7
0.49
0.55 | 25.58
0.83
1.7
0.41
0.10
0.11 | 17.98
0.58
1.9
0.21
0.07
0.08 | 40.46
1.35
12
0.27
0.16
0.18 | | | | | | FOR WATER | | _ | | - | - | 0.01 | | 6 50 | | MEAN
MAX
(WY)
MIN
(WY) | 7.08
25.3
1997
1.71
2002 | 10.6
22.8
1997
2.45
2002 | 13.9
49.9
1997
2.07
1981 | 14.1
35.9
1978
1.19
1981 | 16.5
44.8
1971
3.75
2002 | 21.0
58.4
1994
6.58
1981 | 18.9
47.4
1983
4.84
1985 | 15.0
36.7
1989
4.97
1969 | 10.5
42.2
1972
2.30
1999 | 8.21
34.0
1984
0.83
2002 | 5.57
22.1
1971
0.58
2002 | 6.50
23.8
1999
0.88
1980 | e Estimated. ## 01480675 MARSH CREEK NEAR GLENMOORE, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1966 - 2002 | |--------------------------|------------------------|---------------------|--------------------------| | ANNUAL TOTAL | 3190.64 | 1596.62 | | | ANNUAL MEAN | 8.74 | 4.37 | 12.3 | | HIGHEST ANNUAL MEAN | | | 23.2 1984 | | LOWEST ANNUAL MEAN | | | 4.37 2002 | | HIGHEST DAILY MEAN | 97 Mar 30 | 63 May 14 | 444 Jun 22 1972 | | LOWEST DAILY MEAN | 0.83 Sep 18 | 0.21 Aug 20-22 | 0.21 Aug 20-22 2002 | | ANNUAL SEVEN-DAY MINIMUM | 0.89 Sep 13 | 0.24 Aug 16 | 0.24 Aug 16 2002 | | MAXIMUM PEAK FLOW | | 67 May 14 | a 946 Jun 22 1972 | | MAXIMUM PEAK STAGE | | 2.06 May 14 | 4.68 Jun 22 1972 | | INSTANTANEOUS LOW FLOW | | 0.21 Aug 19-22 | 0.21 Aug 6 1999 b | | ANNUAL RUNOFF (CFSM) | 1.02 | 0.51 | 1.44 | | ANNUAL RUNOFF (INCHES) | 13.85 | 6.93 | <u> 19.52</u> | | 10 PERCENT EXCEEDS | 19 | 9.3 | 24 | | 50 PERCENT EXCEEDS | 4.5 | 2.6 | 7.5 | | 90 PERCENT EXCEEDS | 1.4 | 0.44 | 2.1 | $^{{\}bf a}~$ From rating curve extended above 903 ft $^3\!/\!s$ based on straight-line extension. ${\bf b}~$ Also Aug. 19-22,2002. #### 01480685 MARSH CREEK NEAR DOWNINGTOWN, PA **LOCATION.**--Lat 40°03'19", long 75°43'00", Chester County, Hydrologic Unit 02040205, on left bank 1,000 ft downstream from Marsh Creek Dam, 0.2 mi upstream from mouth, and 3.0 mi north of Downingtown. **DRAINAGE AREA**.--20.3 mi². PERIOD OF RECORD.--June 1973 to current year. GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Elevation of gage is 280 ft above National Geodetic Vertical Datum of 1929, from topographic map. **REMARKS.**--No estimated daily discharges. Records good. Flow completely regulated since November 1973 by Marsh Creek Reservoir (station 01480684). Several measurements of water temperature were made during the year. Satellite telemetry at station. | | | | DISCHAR | GE, CUBIC I | FEET PER S | | TER YEAR C
EAN VALUE | OCTOBER 200:
S | TO SEPT | EMBER 2002 | 2 | | |------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|---|-------------------------------------|--------------------------------------|--------------------------------------|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 13
11
11
10
6.2 | 11
11
11
11
11 | 11
11
11
11 | 11
11
11
11
11 | 5.2
5.0
5.0
5.0 | 12
12
6.1
0.28
0.20 | 10
10
10
11
11 | 20
22
25
22
20 | 15
13
10
10 | 12
11
9.1
9.9
8.8 | 9.1
9.1
9.2
4.8
4.8 | 6.2
0.77
7.1
9.8
9.3 | | 6
7
8
9
10 | 3.2
5.6
9.6
8.9
8.6 | 11
11
11
11
11 | 11
11
11
11
11 | 11
11
11
11
11 | 7.9
11
12
12 | 0.37
6.2
8.4
6.6
8.1 | 11
10
10
11
11 | 19
18
17
17 | 11
10
11
13
17 | 7.3
10
10
9.4
9.4 | 9.3
9.5
9.4
9.4 | 9.1
9.5
9.1
9.9 | | 11
12
13
14
15 | 8.9
9.1
9.1
9.1
9.1 | 11
11
11
11
11 | 11
11
11
11
11 | 8.4
1.2
1.2
1.1
1.1 | 12
12
12
12
12 | 0.65
3.9
8.1
8.1
5.5 | 11
11
11
11
12 | 17
16
18
32
33 | 18
18
17
21
23 | 9.2
8.9
8.8
9.0
9.4 | 9.1
8.5
9.1
9.1 | 9.6
11
10
9.4
9.1 | | 16
17
18
19
20 | 9.1
9.1
9.1
9.1
9.1 | 11
11
11
11
11 | 11
11
11
10
10 | 3.2
11
13
13
13 | 12
12
12
12
12 | 4.5
12
5.9
0.25
0.46 | 11
11
11
11
11 | 31
29
30
31
32 | 22
21
19
17
16 | 9.0
8.8
8.9
8.9 | 9.1
9.1
9.1
9.1
9.1 | 9.6
8.9
8.0
9.9
9.2 | | 21
22
23
24
25 | 9.1
4.3
4.4
9.8
9.1 | 11
11
11
11
11 | 10
10
11
11 | 13
13
13
13
10 | 12
12
12
12
12 | 0.44
0.25
0.22
0.19
0.18 | 9.8
11
11
12
13 | 29
27
25
24
22 | 14
12
14
20
17 | 8.9
8.9
8.9
8.9 | 9.1
9.1
9.1
9.1
4.5 | 9.0
8.7
8.6
27
7.6 | | 26
27
28
29
30
31 | 9.1
9.1
9.1
9.4
9.8 | 11
11
11
12
12 | 11
11
11
11
11 | 5.1
5.0
5.0
5.0
5.0 | 12
12
12
 | 0.20
1.8
5.1
6.1
7.2
8.7 | 13
12
16
20
20 | 21
19
18
18
17
16 | 14
13
13
11
12 | 8.9
9.0
9.1
9.1
9.1
9.1 | 5.9
9.4
8.8
5.2
1.6
8.3 | 7.6
5.6
0.62
2.0
9.6 | | TOTAL
MEAN
MAX
MIN
(†) | 272.1
8.78
13
3.2
-6.0 | 332
11.1
12
11
-5.6 | 337
10.9
11
10
-1.6 | 268.5
8.66
13
1.1
+7.6 | 296.1
10.6
12
5.0
0 | 139.99
4.52
12
0.18
+15.3 | 353.8
11.8
20
9.8
+3.4 | 703
22.7
33
16
+.8 | 453
15.1
23
10
-2.5 | 285.5
9.21
12
7.3
-8.8 | 254.5
8.21
9.5
1.6
-5.4 | 261.79
8.73
27
0.62
-3.4 | | STATIST | rics of M | ONTHLY MEA | N DATA F | OR WATER | YEARS 197 | 73 - 2002, | BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 19.4
59.5
1997
3.39
1981 | 22.5
60.0
1989
3.50
1979 | 41.6
148
1997
3.01
1974 | 40.8
128
1979
7.30
1981 | 33.3
72.4
1996
0.86
1989 | 38.5
119
1994
0.83
1974 | 42.1
140
1983
0.84
1974 | 33.7
83.4
1989
0.72
1974 | 23.2
71.2
1982
4.06
1976 | 20.5
81.6
1984
5.18
1983 | 14.1
31.4
1989
6.42
1981 | 16.6
54.3
1979
6.47
1981 | [†] Change in contents from Marsh Creek Reservoir, equivalent in cubic feet per second. ## 01480685 MARSH CREEK NEAR DOWNINGTOWN, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1973 - 2002 | |--------------------------|------------------------|---------------------|--------------------------| | ANNUAL TOTAL | 7710.2 | 3957.28 | | | ANNUAL MEAN | 21.1 | 10.8 | 28.7 | | HIGHEST ANNUAL MEAN | | | 52.9 1984 | | LOWEST ANNUAL MEAN | | | 10.8 2002 | | HIGHEST DAILY MEAN | 117 May 28 | 33 May 15 | 462 Jun 18 1982 | | LOWEST DAILY MEAN | 1.2 Sep 22 | 0.18 Mar 25 | 0.18 Mar 25 2002 | | ANNUAL SEVEN-DAY MINIMUM | 6.7 Jul 9 | 0.28 Mar 20 | 0.28 Mar 20 2002 | | MAXIMUM PEAK FLOW | | a 369 Sep 24 | a 560 Dec 14 1983 | | MAXIMUM PEAK STAGE | | 3.37 Sep 24 | 3.70 Dec 14 1983 | | 10 PERCENT EXCEEDS | 57 | 17 | 65 | | 50 PERCENT EXCEEDS | 11 | 11 | 15 | | 90 PERCENT EXCEEDS | 8.9 | 5.0 | 6.2 | **a** From rating curve extended above $300 \text{ ft}^3/\text{s}$. #### 01480700 EAST BRANCH BRANDYWINE CREEK NEAR DOWNINGTOWN, PA LOCATION.--Lat 40°02'05", long 75°42'32", Chester County, Hydrologic Unit 02040205, on right bank 20 ft downstream from bridge on Dowlin Forge Road, 200 ft east of State Highway 282, 0.4 mi downstream from Shamona Creek, 1.5 mi downstream from Marsh Creek, 2.0 mi upstream from Beaver Creek, and 2.2 mi north of Downingtown. **DRAINAGE AREA**.--60.6 mi². PERIOD OF RECORD.--Occasional low-flow measurements, water years 1948-57. October 1965 to current year. **GAGE**.--Water-stage recorder and crest-stage gage. Elevation of gage is 270 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to July 30, 1966, nonrecording gage at same site and datum. **REMARKS.**--No estimated daily
discharges. Records good. Flow regulated since November 1973 by Marsh Creek Reservoir (station 01480684) 1.9 mi upstream. Several measurements of water temperature were made during the year. Satellite and landline telemetry at station. # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|------|------|------|------|------|------|------|------|------|------|------|-------| | DAI | OCI | INOV | DEC | UAIN | LFD | MAR | APK | MAI | UUN | 001 | AUG | SEP | | 1 | 30 | 26 | 22 | 21 | 50 | 25 | 47 | 55 | 38 | 27 | 16 | 29 | | 2 | 26 | 27 | 21 | 21 | 43 | 26 | 40 | 156 | 33 | 25 | 15 | 21 | | 3 | 24 | 27 | 22 | 22 | 31 | 141 | 39 | 155 | 29 | 23 | 43 | 16 | | 4 | 23 | 26 | 21 | 21 | 29 | 43 | 47 | 68 | 28 | 22 | 38 | 17 | | 5 | 19 | 25 | 21 | 22 | 25 | 26 | 39 | 55 | 29 | 21 | 15 | 16 | | 5 | 10 | 23 | 21 | 22 | 23 | 20 | 3,5 | 33 | 2,5 | 21 | 13 | 10 | | 6 | 14 | 24 | 21 | 32 | 27 | 23 | 36 | 48 | 140 | 18 | 18 | 14 | | 7 | 16 | 24 | 21 | 61 | 31 | 26 | 34 | 44 | 171 | 21 | 17 | 14 | | 8 | 22 | 24 | 25 | 41 | 32 | 30 | 33 | 41 | 49 | 21 | 16 | 13 | | 9 | 21 | 25 | 47 | 33 | 30 | 25 | 34 | 69 | 42 | 20 | 16 | 13 | | 10 | 19 | 24 | 30 | 33 | 30 | 32 | 41 | 60 | 43 | 23 | 15 | 12 | | 10 | 10 | 21 | 30 | 33 | 30 | 32 | | 00 | 15 | 23 | 13 | 12 | | 11 | 20 | 24 | 26 | 103 | 31 | 19 | 34 | 44 | 41 | 20 | 15 | 10 | | 12 | 21 | 24 | 25 | 62 | 30 | 21 | 32 | 49 | 40 | 18 | 14 | 9.3 | | 13 | 21 | 24 | 26 | 33 | 29 | 32 | 33 | 124 | 39 | 18 | 14 | 9.1 | | 14 | 21 | 23 | 35 | 26 | 27 | 36 | 36 | 261 | 92 | 20 | 14 | 9.4 | | 15 | 30 | 23 | 42 | 24 | 28 | 28 | 35 | 98 | 73 | 21 | 14 | 16 | | 13 | 30 | 23 | 12 | 24 | 20 | 20 | 33 | 20 | 73 | 21 | 14 | 10 | | 16 | 27 | 24 | 31 | 23 | 28 | 24 | 33 | 77 | 60 | 19 | 14 | 25 | | 17 | 28 | 22 | 29 | 30 | 28 | 33 | 31 | 67 | 48 | 18 | 14 | 18 | | 18 | 27 | 22 | 55 | 31 | 27 | 64 | 30 | 204 | 46 | 18 | 14 | 14 | | 19 | 26 | 21 | 37 | 30 | 26 | 44 | 30 | 104 | 47 | 18 | 13 | 16 | | 20 | 25 | 22 | 30 | 33 | 27 | 187 | 30 | 80 | 41 | 19 | 13 | 15 | | | | | | | | | | | | | | | | 21 | 25 | 23 | 27 | 31 | 30 | 105 | 28 | 71 | 36 | 18 | 13 | 14 | | 22 | 19 | 22 | 25 | 30 | 28 | 49 | 45 | 64 | 32 | 18 | 13 | 14 | | 23 | 16 | 22 | 25 | 32 | 27 | 35 | 38 | 59 | 31 | 18 | 14 | 14 | | 24 | 28 | 22 | 35 | 216 | 26 | 30 | 31 | 55 | 39 | 18 | 24 | 34 | | 25 | 26 | 35 | 31 | 98 | 26 | 27 | 36 | 50 | 35 | 18 | 25 | 11 | | | | | | | | | | | | 10 | 23 | | | 26 | 26 | 49 | 28 | 44 | 26 | 28 | 40 | 48 | 32 | 18 | 12 | 15 | | 27 | 25 | 25 | 25 | 35 | 27 | 95 | 33 | 46 | 35 | 18 | 16 | 58 | | 28 | 25 | 22 | 24 | 31 | 26 | 46 | 136 | 46 | 45 | 19 | 15 | 44 | | 29 | 25 | 23 | 25 | 28 | | 39 | 94 | 44 | 30 | 20 | 42 | 13 | | 30 | 26 | 24 | 22 | 27 | | 37 | 60 | 42 | 27 | 18 | 14 | 18 | | 31 | 26 | | 21 | 52 | | 38 | | 39 | | 17 | 16 | | | | | | | | | | | | | | | | | TOTAL | 727 | 748 | 875 | 1326 | 825 | 1414 | 1255 | 2423 | 1471 | 610 | 552 | 541.8 | | MEAN | 23.5 | 24.9 | 28.2 | 42.8 | 29.5 | 45.6 | 41.8 | 78.2 | 49.0 | 19.7 | 17.8 | 18.1 | | MAX | 30 | 49 | 55 | 216 | 50 | 187 | 136 | 261 | 171 | 27 | 43 | 58 | | MIN | 14 | 21 | 21 | 21 | 25 | 19 | 28 | 39 | 27 | 17 | 12 | 9.1 | #### 01480700 EAST BRANCH BRANDYWINE CREEK NEAR DOWNINGTOWN, PA--Continued | STATIST | CICS OF M | MONTHLY MEAN | DATA | FOR WATER | YEARS 1974 | - 2002, | BY WATER | YEAR (WY) | (SINCE | REGULATION) | | |------------------------------------|--|-------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|-------------------------------------|------------------------------------|--| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG SEP | | MEAN
MAX
(WY)
MIN
(WY) | 58.6
199
1997
23.2
1981 | 72.6
169
1997
24.9
2002 | 109
385
1997
23.5
1981 | 118
361
1979
17.5
1981 | 110
242
1979
29.5
2002 | 138
380
1994
35.7
1985 | 129
365
1983
28.9
1985 | 106
246
1989
49.2
1976 | 71.5
181
1982
29.6
1985 | 257
1984
19.7 | 42.7 54.9
90.9 191
1989 1979
17.8 17.1
2002 1980 | | SUMMARY | STATIST | rics | FOR | 2001 CAL | ENDAR YEAR | F | OR 2002 W | ATER YEAR | | WATER YEAR | s 1974 - 2002 | | ANNUAL
ANNUAL | MEAN | | | 23256
63. | 7 | | 12767.8
35.0 | | | 89.3 | 1004 | | LOWEST
HIGHEST | CANNUAL MODEL OF CONTROL CONTR | IEAN
IEAN | | 523
14 | Mar 30
Oct 6 | | 261
9.1 | May 14
Sep 13 | | 150
35.0
2020
9.1 | 1984
2002
Jan 26 1978
Sep 13 2002 | | ANNUAL
MAXIMUM
MAXIMUM | SEVEN-DA
1 PEAK FI
1 PEAK ST | AY MINIMUM
LOW
FAGE | | 19 | Oct 5 | | 11
1070
4.71
7.4 | Sep 8
Jun 6
l Jun 6 | | 11
a 5410
9.59
7.4 | Sep 8 2002
Sep 16 1999
Sep 16 1999 | | 10 PERC
50 PERC | CANEOUS I
CENT EXCE
CENT EXCE | EEDS
EEDS | | 131
43
21 | | | 55
27
15 | Sep 13 | | 172
57
25 | <u>Sep 13 2002</u> | | STAT | SISTICS OF | MONTHLY | MEAN DATA | FOR WATER | YEARS 19 | 966 - 1973, | BY WATE | R YEAR (WY |) (PRIOR | TO REGULA | TION) | | |------|------------|---------|-----------|-----------|----------|-------------|---------|------------|----------|-----------|-------|------| | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN | 44.3 | 76.4 | 92.0 | 81.4 | 139 | 129 | 123 | 98.8 | 99.8 | 63.1 | 56.5 | 45.2 | | MAX | 120 | 168 | 245 | 168 | 286 | 195 | 238 | 144 | 306 | 128 | 147 | 148 | | (WY) | 1972 | 1973 | 1973 | 1973 | 1971 | 1972 | 1973 | 1973 | 1972 | 1972 | 1971 | 1971 | | MIN | 24.8 | 27.6 | 32.0 | 33.3 | 51.6 | 70.0 | 64.3 | 43.2 | 30.3 | 18.3 | 15.3 | 20.1 | | (WY) | 1970 | 1966 | 1966 | 1969 | 1969 | 1969 | 1969 | 1969 | 1966 | 1966 | 1966 | 1970 | | SUMMARY STATISTICS | WATER | YEARS 1966 - 1973 | |--------------------------|----------------|--------------------| | ANNUAL TOTAL ANNUAL MEAN | 87.0 | | | HIGHEST ANNUAL MEAN | 139 | 1973 | | LOWEST ANNUAL MEAN | 51.6 | 1969 | | HIGHEST DAILY MEAN | 3220 | Jun 22 1972 | | LOWEST DAILY MEAN | 7.2 | Sep 12 1966 | | ANNUAL SEVEN DAY MINIMUM | 8.0 | Sep 7 1966 | | MAXIMUM PEAK FLOW | a 8070 | Jun 22 1972 | | MAXIMUM PEAK STAGE | b 12.06 | Jun 22 1972 | | INSTANTANEOUS LOW FLOW | 7.2 | Sep 2,3,11-13,1966 | | ANNUAL RUNOFF (CFSM) | 1.44 | | | ANNUAL RUNOFF (INCHES) | 19.51 | | | 10 PERCENT EXCEEDS | 163 | | | 50 PERCENT EXCEEDS | 56 | | | 90 PERCENT EXCEEDS | 23 | | - $\begin{array}{ll} \textbf{a} & \text{From rating curve extended above 5,000 ft}^3/s. \\ \textbf{b} & \text{From floodmark.} \end{array}$ #### 01480870 EAST BRANCH BRANDYWINE CREEK BELOW DOWNINGTOWN, PA LOCATION.--Lat 39°58'07", long 75°40'25", Chester County, Hydrologic Unit 02040205, on left bank at downstream side of Sugars Bridge (U.S. Highway 322), 2,000 ft upstream from Valley Creek, 1.5 mi north of Marshallton, and 3.3 mi southeast of Downingtown. DRAINAGE AREA.--89.9 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--February 1972 to current year. REVISED RECORDS.--WDR PA-75-1: 1972(P), 1973, 1974. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 195 ft above National Geodetic Vertical Datum of 1929, from topographic map. Feb. 1 to Apr. 10, and June 25 to Nov. 17, 1972, nonrecording gage at same site and datum. **REMARKS.**--Records fair except those for estimated daily discharges, which are poor. Flow regulated since November 1973 by Marsh Creek Reservoir (station 01480684) about 7.5 mi upstream. Satellite and landline telemetry at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | |
Discillin | GE, CODIC | TEETTERSE | | AN VALUES | | or to ber i | INDER 2002 | | | |----------------------------------|----------------------------------|----------------------------|---------------------------------------|----------------------------------|--------------|-----------------------------------|------------------------------|----------------------------------|----------------------------|----------------------------------|----------------------------------|------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 45 | 40 | 41 | e25 | 76 | 44 | 78 | 83 | 63 | 47 | 22 | 67 | | 2 | 40 | 40 | 41 | e27 | 72 | 46 | 69 | 212 | 56 | 43 | 23 | 51 | | 3 | 38 | 41 | 41 | e30 | 55 | 207 | 66 | 244 | 51 | 41 | 52 | 32 | | 4 | 37 | 41 | 41 | e33 | e48 | 78 | 72 | 102 | 49 | 39 | 78 | 33 | | 5 | 34 | 40 | 39 | e34 | e40 | 53 | 65 | 87 | 60 | 36 | 30 | 31 | | 6 | 29 | 38 | 39 | e50 | e37 | 48 | 62 | 80 | 177 | 32 | 30 | 27 | | 7 | 30 | 37 | 38 | 96 | e45 | 49 | 60 | 75 | 408 | 34 | 28 | 26 | | 8 | 35 | 39 | 45 | 64 | 52 | 56 | 58 | 71 | 91 | 37 | 27 | 27 | | 9 | 35 | 39 | 75 | 51 | 50 | 44 | 59 | 96 | 72 | 34 | 26 | 24 | | 10 | 32 | 37 | 50 | 50 | 50 | 62 | 67 | 94 | 71 | 41 | 25 | 26 | | 11 | 34 | 38 | 46 | 129 | 52 | 44 | 58 | 73 | 67 | 33 | 25 | 23 | | 12 | 34 | 39 | 44 | 99 | 49 | 42 | 56 | 82 | 65 | 30 | 25 | 20 | | 13 | 35 | 39 | 45 | 56 | 49 | 57 | 58 | 157 | 63 | 30 | 23 | 20 | | 14 | 35 | 37 | 58 | 47 | 46 | 63 | 66 | 374 | 145 | 34 | 22 | 19 | | 15 | 48 | 37 | 63 | 44 | 47 | 54 | 63 | 127 | 114 | 37 | 23 | 25 | | 16 | 38 | 40 | 51 | 40 | 48 | 47 | 58 | 103 | 92 | 33 | 22 | 44 | | 17 | 42 | 38 | 47 | 44 | 48 | 59 | 55 | 92 | 77 | 30 | 23 | 31 | | 18 | 37 | 38 | 79 | 48 | 46 | 96 | 52 | 321 | 72 | 28 | 24 | 25 | | 19 | 38 | 39 | 57 | 48 | 46 | 80 | 53 | 144 | 75 | 29 | 23 | 26 | | 20 | 40 | 41 | 48 | 50 | 46 | 244 | 54 | 112 | 68 | 31 | 22 | 26 | | 21 | 39 | 39 | 45 | 50 | 53 | 156 | 50 | 101 | 61 | 30 | 22 | 25 | | 22 | 38 | 40 | 43 | 48 | 47 | 84 | 72 | 92 | 55 | 27 | 22 | 25 | | 23 | 28 | 39 | 43 | 48 | 46 | 66 | 64 | 86 | 53 | 28 | 22 | 25 | | 24 | 39 | 38 | 59 | 269 | 45 | 59 | 54 | 79 | 62 | 31 | 41 | 45 | | 25 | 37 | 61 | 51 | 140 | 46 | 56 | 61 | 76 | 58 | 28 | 64 | 24 | | 26
27
28
29
30
31 | 38
37
36
37
39
35 | 81
49
44
42
43 | 45
e40
e38
e40
e33
e30 | 69
56
52
50
48
80 | 46
46
 | 57
147
81
68
66
69 | 65
55
186
126
88 | 73
75
74
71
67
64 | 53
54
78
52
47 | 26
26
30
30
28
23 | 24
28
26
97
36
28 | 31
136
102
37
32 | | TOTAL | 1139 | 1254 | 1455 | 1975 | 1377 | 2382 | 2050 | 3587 | 2509 | 1006 | 983 | 1085 | | MEAN | 36.7 | 41.8 | 46.9 | 63.7 | 49.2 | 76.8 | 68.3 | 116 | 83.6 | 32.5 | 31.7 | 36.2 | | MAX | 48 | 81 | 79 | 269 | 76 | 244 | 186 | 374 | 408 | 47 | 97 | 136 | | MIN | 28 | 37 | 30 | 25 | 37 | 42 | 50 | 64 | 47 | 23 | 22 | 19 | | CFSM | 0.41 | 0.46 | 0.52 | 0.71 | 0.55 | 0.85 | 0.76 | 1.29 | 0.93 | 0.36 | 0.35 | 0.40 | | IN. | 0.47 | 0.52 | 0.60 | 0.82 | 0.57 | 0.99 | 0.85 | 1.48 | 1.04 | 0.42 | 0.41 | 0.45 | | STATIST | ICS OF MO | ONTHLY ME | AN DATA F | OR WATER | YEARS 1974 | 4 - 2002, | BY WATER | YEAR (WY) |) | | | | | MEAN | 90.4 | 110 | 166 | 180 | 173 | 217 | 206 | 168 | 117 | 105 | 72.6 | 91.6 | | MAX | 304 | 242 | 577 | 527 | 409 | 525 | 594 | 410 | 315 | 421 | 177 | 292 | | (WY) | 1997 | 1997 | 1997 | 1979 | 1979 | 1994 | 1983 | 1989 | 1982 | 1984 | 1996 | 1979 | | MIN | 36.7 | 41.8 | 40.8 | 30.9 | 49.2 | 61.6 | 53.1 | 75.9 | 45.5 | 32.5 | 28.6 | 29.5 | | (WY) | 2002 | 2002 | 1981 | 1981 | 2002 | 1985 | 1985 | 1999 | 1999 | 2002 | 1999 | 1980 | e Estimated. #### 01480870 EAST BRANCH BRANDYWINE CREEK BELOW DOWNINGTOWN, PA--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1974 - 2002 | |--------------------------|------------------------|---------------------|----------------------------| | ANNUAL TOTAL | 37240 | 20802 | | | ANNUAL MEAN | 102 | 57.0 | 141 | | HIGHEST ANNUAL MEAN | | | <u>257</u> 1984 | | LOWEST ANNUAL MEAN | | | 57.0 2002 | | HIGHEST DAILY MEAN | 938 Mar 30 | 408 Jun 7 | 3080 Sep 16 1999 | | LOWEST DAILY MEAN | 28 Oct 23 | 19 Sep 14 | 19 Sep 14 2002 | | ANNUAL SEVEN-DAY MINIMUM | 32 Sep 6 | 22 Sep 9 | 22 Sep 9 2002 | | MAXIMUM PEAK FLOW | | 1590 Jun 7 | a 8160 Jun 22 1972 | | MAXIMUM PEAK STAGE | | 6.51 Jun 7 | b 14.79 Sep 16 1999 | | ANNUAL RUNOFF (CFSM) | 1.13 | 0.63 | 1.57 | | ANNUAL RUNOFF (INCHES) | 15.41 | 8.61 | 21.33 | | 10 PERCENT EXCEEDS | 202 | 89 | 269 | | 50 PERCENT EXCEEDS | 70 | 46 | 91 | | 90 PERCENT EXCEEDS | 35 | 26 | 41 | a From rating curve extended above 3,600 ft³/s on basis of slope-area measurement of peak flow at gage height 13.40 ft. b Discharge, 7,200 ft³/s on basis of runoff comparison with nearby stations. #### 01480870 EAST BRANCH BRANDYWINE CREEK BELOW DOWNINGTOWN, PA--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--October 1965 to September 1966, October 1970 to current year. #### PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: February 1972 to current year. pH: February 1972 to current year. WATER TEMPERATURES: February 1972 to current year. DISSOLVED OXYGEN: February 1972 to current year. **INSTRUMENTATION**.--Water-quality monitor since February 1972. REMARKS.--Specific conductance record rated good, except for periods July 8-23 and Aug. 6-14, which are fair, and Mar. 27 to Apr. 1, which are poor. pH record rated good, except for periods Nov. 7-19 and Sept. 12-30, which are fair. Water temperature record rated good. Dissolved oxygen record rated fair. Data collection discontinued during winter months since 1981 water year. Other interruptions in the record were due to malfunctions of the #### EXTREMES FOR PERIOD OF DAILY RECORD.-- SPECIFIC CONDUCTANCE: Maximum, 891 microsiemens, Mar. 5, 2001; minimum, 67 microsiemens, July 1, 1984. pH: Maximum, 9.9, May 13, June 5, 1973; minimum, 5.4, Oct. 24, 26, 1973. WATER TEMPERATURE: Maximum, 33.0°C, July 18, 1977; minimum, 0.0°C, many days during winters. DISSOLVED OXYGEN: Maximum, 19.4 mg/L, Mar. 18, 1989; minimum, 0.8 mg/L, July 23, 1984. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 COT T | Date | Time | AGENCY
COL-
LECTING
SAMPLE
(CODE
NUMBER)
(00027) | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | COLI-
FORM,
FECAL,
0.7
µM-MF
(COLS./
100 ML)
(31625) | |-----------|------|--|---|---|--|-------|--|---|---| | MAR 2002 | | | | | | | | | | | 05 | 1350 | 1028 | 1028 | 51 | 15.8 | 8.1 | 346 | 6.4 | 119 | | 18 | 1330 | 1028 | 1028 | 105 | 12.3 | 7.9 | 319 | 7.2 | 433 | | APR | | | | | | | | | | | 23 | 1530 | 1028 | 1028 | 59 | 12.0 | 8.3 | 317 | 16.3 | 450 | | MAY | | | | | | | | | | | 01 | 1425 | 1028 | 1028 | 84 | 11.2 | 7.8 | 297 | 11.2 | 130 | | 14 | 1345 | 1028 | 1028 | 234 | 8.6 | 7.3 | 179 | 15.8 | 13000 | | 30 | 1515 | 1028 | 1028 | 68 | 10.9 | 7.7 | 327 | 23.2 | 627 | | JUN
10 | 0941 | 1028 | 1028 | 62 | 7.5 | 7.2 | 312 | 20.0 | 800 | | 17 | 1200 | 1028 | 1028 | 68 | 9.2 | 7.2 | 299 | 19.7 | 380 | | 25 | 1245 | 1028 | 1028 | 57 | 9.6 | 7.7 | 338 | 25.0 | 620 | | JUL | 1213 | 1020 | 1020 | 37 | 5.0 | , , , | 330 | 23.0 | 020 | | 08 | 1300 | 1028 | 1028 | 36 | 9.7 | 8.0 | 382 | 22.9 | 360 | | 15 | 1310 | 1028 | 1028 | 37 | 9.9 | 7.9 | 402 | 22.6 | 237 | | 23 | 1245 | 1028 | 1028 | 25 | 9.2 | 7.9 | 414 | 25.9 | 520 | | AUG | | | | | | | | | | | 06 | 1300 | 1028 | 1028 | 30 | 8.1 | 7.8 | 389 | 24.0 | 427 | | 14 | 1330 | 1028 | 1028 | 24 | 10.6 | 8.3 | 441 | 26.2 | 700 | | 20 | 1405 | 1028 | 1028 | 21 | 9.3 | 7.8 | 464 | 25.7 | 1450 | | SEP | | | | | | | | | | | 12 | 1250 | 1028 | 1028 | 23 | 8.6 | 8.2 | 514 | 20.0 | 540 | | 23 | 1130 | 1028 | 1028 | 23 | 7.6 | 7.6 | 450 | 22.0 | 260 | DTC_ ## 01480870 EAST BRANCH BRANDYWINE CREEK BELOW DOWNINGTOWN, PA--Continued ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | AGENCY
COL-
LECTING
SAMPLE
(CODE
NUMBER)
(00027) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | OXYGEN,
DIS-
SOLVEE
(MG/L)
(00300) | (STAND-
ARD
UNITS | ANCE (µS/CM) | | SOLVED
(MG/L
) AS CA) | DIS-
SOLVED
(MG/L
AS MG) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC WATER UNFLTRD IT FIELD (MG/L AS CACO3) (00419) | |----------------|--|---|--|--|--|---|---|--|---|---
--|--|---| | OCT 2001
03 | 1130 | 80020 | 1028 | 43 | 10.4 | 7.8 | 382 | 15.5 | 32.9 | 10.8 | 4.47 | 25.4 | 87 | | Date | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN, NITRITE DIS- SOLVEE (MG/L AS N) | PHOS-
E PHATE,
DIS-
O SOLVED
(MG/L
AS P) | ALUM- | (µG/L
) AS AS) | DIS-
SOLVED
(µG/L
AS B) | CADMIUM
DIS-
SOLVED
(µG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(µG/L
AS CR)
(01030) | COPPER,
DIS-
SOLVED
(µG/L
AS CU)
(01040) | | OCT 2001
03 | 38.0 | 11.0 | 22.1 | <.04 | 3.19 | E.006 | .31 | 20 | <2 | 210 | <.1 | <.8 | 4.0 | | | | Date | | IRON, DIS- SOLVED (µG/L AS FE) | LEAD,
DIS-
SOLVED
(µG/L
AS PB)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(µG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(µG/L
AS HG)
(71890) | MOLYB-
DENUM,
DIS-
SOLVED
(µG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(µG/L
AS NI)
(01065) | ZINC,
DIS-
SOLVED
(µG/L
AS ZN)
(01090) | | | | | | | OCT 2 | | 28 | <1 | 27.3 | <.01 | <1.8 | <2.0 | <24 | | | | ## 01480870 EAST BRANCH BRANDYWINE CREEK BELOW DOWNINGTOWN, PA--Continued ## BIOLOGICAL DATA BENTHIC MACROINVERTEBRATES **REMARKS**.--Samples were collected using a Hess sampler with a mesh size of 500 μm. Each sample covered a total area of 3.2 m². | Date | 10/03/01 | |----------------------------------|----------| | Benthic Macroinvertebrate | Count | | Platyhelminthes | | | Turbellaria (FLATWORMS) | | | Tricladida | | | Planariidae | 44 | | Nematoda (NEMATODES) | 82 | | Nemertea (PROBOSCIS WORMS) | | | Enopla | | | Hoplonemertea | | | Tetrastemmatidae | | | <u>Prostoma</u> sp | 3 | | Mollusca | | | Gastropoda (SNAILS) | | | Basommatophora | | | Ancylidae | | | <u>Ferrissia</u> sp | 3 | | Lymnaeidae | 2 | | Planorbidae | | | <u>Gyraulus</u> sp | 4 | | Annelida | | | Oligochaeta (AQUATIC EARTHWORMS) | 9 | | Arthropoda | | | Acariformes | | | Hydrachnidia (WATER MITES) | 79 | | Crustacea | | | Amphipoda (SCUDS) | | | Gammaridae | | | <u>Gammarus</u> sp | 29 | | Insecta | | | Ephemeroptera (MAYFLIES) | | | Baetidae | | | <u>Baetis</u> sp | 68 | | Caenidae | | | <u>Caenis</u> sp | 49 | | Ephemerellidae sp | | | <u>Serratella</u> sp | 87 | | Heptageniidae | | | <u>Stenonema</u> sp | 43 | | Isonychiidae | | | <u>Isonychia</u> sp | 5 | | Leptohyphidae | | | <u>Tricorythodes</u> sp | 8 | | Plecoptera (STONEFLIES) | | | Capniidae | 1 | ## 01480870 EAST BRANCH BRANDYWINE CREEK BELOW DOWNINGTOWN, PA--Continued # BIOLOGICAL DATA BENTHIC MACROINVERTEBRATES--Continued | Date | 10/03/01 | |-------------------------------------|----------| | Benthic Macroinvertebrate | Count | | Trichoptera (CADDISFLIES) | | | Apataniidae | | | <u>Apatania</u> sp | 1 | | Brachycentridae | | | <u>Micrasema</u> sp | 6 | | Hydropsychidae | | | <u>Cheumatopsyche</u> sp | 232 | | <u>Hydropsyche</u> sp | 626 | | Hydroptilidae | | | <u>Leucotrichia</u> sp | 2 | | Lepidostomatidae | | | <u>Lepidostoma</u> sp | 1 | | Philopotamidae | | | <u>Chimarra</u> sp | 80 | | Lepidoptera | | | Pyralididae (MOTHS) | | | <u>Petrophila</u> sp | 9 | | Coleoptera (BEETLES) | | | <pre>Elmidae (RIFFLE BEETLES)</pre> | | | <u>Optioservus</u> sp | 277 | | <u>Oulimnius</u> sp | 4 | | Stenelmis sp | 63 | | Hydrophilidae | | | <u>Berosus</u> sp | 1 | | Psephenidae (WATER PENNIES) | | | <u>Psephenus</u> sp | 13 | | Diptera (TRUE FLIES) | | | Chironomidae (MIDGES) | 56 | | Empididae (DANCE FLIES) | | | <u>Hemerodromia</u> sp | 3 | | Tipulidae (CRANE FLIES) | | | <u>Antocha</u> sp | 4 | | | | | Total organisms | 1894 | | Total number of taxa | 32 | ## 01480870 EAST BRANCH BRANDYWINE CREEK BELOW DOWNINGTOWN, PA--Continued SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25° CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |--|------------|------------|------------|--|---|--|---|---|--|--|--|---| | | | OCTOBER | | | NOVEMBER | | | DECEMBER | | | JANUARY | | | 1 | 358 | 341 | 350 | 384 | 362 | 373 | 369 | 318 | 345 | | | | | 2 | 375
386 | 340
334 | 360
369 | 388
387 | 352
363 | 372
376 | 374
375 | 351
330 | 362
356 | | | | | 4 | 399 | 343 | 375 | 391 | 363 | 377 | 369 | 356 | 363 | | | | | 5 | 394 | 352 | 377 | 397 | 376 | 383 | | | | | | | | 6 | 454 | 358 | 418 | 397 | 364 | 380 | | | | | | | | 7 | 462 | 429 | 443 | 394 | 358 | 383 | | | | | | | | 8
9 | 456
405 | 398
384 | 413
392 | 395
394 | 354
357 | 378
378 | | | | | | | | 10 | 400 | 356 | 388 | 391 | 362 | 381 | | | | | | | | 11 | 398 | 343 | 376 | 393 | 358 | 380 | | | | | | | | 12 | 401 | 360 | 384 | 394 | 360 | 381 | | | | | | | | 13 | 393 | 361 | 377 | 394 | 369 | 381 | | | | | | | | 14
15 | 395
380 | 358
321 | 377
347 | 410
390 | 343
357 | 383
376 | 16
17 | 375
389 | 303
358 | 349
374 | 392
402 | 357
361 | 377
384 | | | | | | | | 18 | 383 | 310 | 355 | 402 | 371 | 390 | | | | | | | | 19 | 400 | 370 | 387 | 401 | 383 | 392 | | | | | | | | 20 | 422 | 388 | 402 | 395 | 366 | 379 | | | | | | | | 21 | 419 | 392 | 407 | 392 | 373 | 384 | | | | | | | | 22 | 410 | 380 | 394 | 395 | 348 | 374 | | | | | | | | 23
24 | 423
437 | 396
375 | 410
398 | 374
382 | 346
347 | 359
368 | | | | | | | | 25 | 388 | 324 | 368 | 381 | 246 | 344 | | | | | | | | 0.6 | 202 | 200 | 206 | | | | | | | | | | | 26
27 | 393
413 | 377
371 | 386
394 | 339 | 308 | 325 | | | | | | | | 28 | 421 | 378 | 399 | 352 | 313 | 339 | | | | | | | | 29 | 418 | 372 | 396 | 356 | 341 | 350 | | | | | | | | 30 | 403 | 365 | 382 | 361 | 341 | 352 | | | | | | | | 31 | 392 | 301 | 360 | | | | | | | | | | | MONTH | 462 | 301 | 384 | 410 | 246 | 372 | DAY | MAX | MIN | MEAN | | DAY | | | MEAN | MAX | | MEAN | MAX | | MEAN | MAX | | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | | FEBRUARY | | 372 | MARCH 353 | 361 | 320 | APRIL
289 | 307 | 313 | MAY
296 | 303 | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4 | | FEBRUARY |

 | 372
375
350
322 | 353
350
203
251 | 361
364
237
289 | 320
322
341
340 | 289
302
311
304 | 307
313
324
323 | 313
308
242
283 | MAY
296
144
154
239 | 303
264
201
266 | | 1
2
3 | | FEBRUARY | | 372
375
350 | MARCH
353
350
203 | 361
364
237 | 320
322
341 | 289
302
311 | 307
313
324 | 313
308
242 | MAY 296 144 154 | 303
264
201 | | 1
2
3
4
5 | | FEBRUARY | | 372
375
350
322
357 | 353
350
203
251
322
349 | 361
364
237
289
341
367 | 320
322
341
340
342 | 289
302
311
304
315 | 307
313
324
323
325 | 313
308
242
283
308 | MAY 296 144 154 239 282 | 303
264
201
266
294 | | 1
2
3
4
5 | | FEBRUARY | | 372
375
350
322
357
373 | MARCH 353 350 203 251 322 349 362 | 361
364
237
289
341
367
373 | 320
322
341
340
342
337
340 | 289
302
311
304
315
314
308 | 307
313
324
323
325
327
328 | 313
308
242
283
308
311
319 | MAY 296 144 154 239 282 282 286 | 303
264
201
266
294
301
311 | | 1
2
3
4
5 | | FEBRUARY | | 372
375
350
322
357
373
379
362 | MARCH 353 350 203 251 322 349 362 329 | 361
364
237
289
341
367
373
344 |
320
322
341
340
342
337
340
347 | 289
302
311
304
315
314
308
311 | 307
313
324
323
325
327
328
333 | 313
308
242
283
308
311
319
330 | 296
144
154
239
282
282
286
301 | 303
264
201
266
294
301
311
319 | | 1
2
3
4
5 | | FEBRUARY | | 372
375
350
322
357
373 | MARCH 353 350 203 251 322 349 362 | 361
364
237
289
341
367
373 | 320
322
341
340
342
337
340 | 289
302
311
304
315
314
308 | 307
313
324
323
325
327
328 | 313
308
242
283
308
311
319 | MAY 296 144 154 239 282 282 286 | 303
264
201
266
294
301
311 | | 1
2
3
4
5
6
7
8
9 | | FEBRUARY | | 372
375
350
322
357
373
379
362
390
371 | 353
350
203
251
322
349
362
329
348
320 | 361
364
237
289
341
367
373
344
369
337 | 320
322
341
340
342
337
340
347
354
358 | 289
302
311
304
315
314
308
311
321
312 | 307
313
324
323
325
327
328
333
344
334 | 313
308
242
283
308
311
319
330
347
315 | MAY 296 144 154 239 282 282 286 301 265 286 | 303
264
201
266
294
301
311
319
308
300 | | 1
2
3
4
5
6
7
8
9 | | FEBRUARY | | 372
375
350
322
357
373
379
362
390 | 353
350
203
251
322
349
362
329
348 | 361
364
237
289
341
367
373
344
369 | 320
322
341
340
342
337
340
347
354 | 289
302
311
304
315
314
308
311
321 | 307
313
324
323
325
327
328
333
344 | 313
308
242
283
308
311
319
330
347 | MAY 296 144 154 239 282 282 286 301 265 | 303
264
201
266
294
301
311
319
308 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | 372
375
350
322
357
373
379
362
390
371
391
406
367 | 353
350
203
251
322
349
362
329
348
320
356
367
325 | 361
364
237
289
341
367
373
344
369
337
376
388
348 | 320
322
341
340
342
337
340
347
354
358
356
367
366 | 289
302
311
304
315
314
308
311
321
312
315
338
326 | 307
313
324
323
325
327
328
333
344
334
334
334 | 313
308
242
283
308
311
319
330
347
315
328
329
265 | MAY 296 144 154 239 282 282 286 301 265 286 305 260 220 | 303
264
201
266
294
301
311
319
308
300
314
309
245 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | | FEBRUARY | | 372
375
350
322
357
373
379
362
390
371
391
406
367
333 | 353
350
203
251
322
349
362
329
348
320
356
367
325
312 | 361
364
237
289
341
367
373
344
369
337
376
388
348
348 | 320
322
341
340
342
337
340
347
354
358
356
367
366
347 | 289
302
311
304
315
314
308
311
321
312
315
338
326
324 | 307
313
324
323
325
327
328
333
344
334
353
344
353 | 313
308
242
283
308
311
319
330
347
315 | MAY 296 144 154 239 282 286 301 265 286 305 260 220 151 | 303
264
201
266
294
301
311
319
308
300
314
309
245
182 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | 372
375
350
322
357
373
379
362
390
371
391
406
367 | 353
350
203
251
322
349
362
329
348
320
356
367
325 | 361
364
237
289
341
367
373
344
369
337
376
388
348 | 320
322
341
340
342
337
340
347
354
358
356
367
366 | 289
302
311
304
315
314
308
311
321
312
315
338
326 | 307
313
324
323
325
327
328
333
344
334
334
334 | 313
308
242
283
308
311
319
330
347
315
328
329
265 | MAY 296 144 154 239 282 282 286 301 265 286 305 260 220 | 303
264
201
266
294
301
311
319
308
300
314
309
245 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | 372
375
350
322
357
373
379
362
390
371
391
406
367
333
355 | 353
350
203
251
322
349
362
329
348
320
356
367
325
312
330 | 361
364
237
289
341
367
373
344
369
337
376
388
348
325
343 | 320
322
341
340
342
337
340
347
354
358
356
367
366
347
349 | 289
302
311
304
315
314
308
311
321
312
315
338
326
324
301
328 | 307
313
324
323
325
327
328
334
334
334
334
333
344
333
344
333
344
333
344
343 | 313
308
242
283
308
311
319
330
347
315
328
329
265
220
267 | MAY 296 144 154 239 282 286 301 265 286 305 260 220 151 215 | 303
264
201
266
294
301
311
319
308
300
314
309
245
182
244 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | 372
375
350
322
357
373
379
362
390
371
391
406
367
333
335
355 | 353
350
203
251
322
349
362
329
348
320
356
367
325
312
330 | 361
364
237
289
341
367
373
344
369
337
376
388
348
325
343 | 320
322
341
342
337
340
347
354
358
356
367
366
347
349 | 289
302
311
304
315
314
308
311
321
312
315
338
326
324
301 | 307
313
324
323
325
327
328
334
334
334
353
344
353
344
353
344
353 | 313
308
242
283
308
311
319
330
347
315
328
329
265
220
227
276
287 | MAY 296 144 154 239 282 286 301 265 286 305 260 220 151 215 | 303
264
201
266
294
301
311
319
308
300
314
309
245
182
244 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | | FEBRUARY | | 372
375
350
322
357
373
379
362
390
371
391
406
367
333
355
395
396
442 | 353
350
203
251
322
349
362
329
348
320
356
367
325
312
330 | 361
364
237
289
341
367
373
344
369
337
376
388
348
325
343
369
356
359 | 320
322
341
340
342
337
340
347
354
358
366
347
349
361
374 | 289
302
311
304
315
314
308
311
321
312
315
338
326
324
301
328
336
341 | 307
313
324
323
325
327
328
333
344
334
333
344
333
324
341
354
357 | 313
308
242
283
308
311
319
330
347
315
328
329
265
220
267
276
287
284 | MAY 296 144 154 239 282 286 301 265 286 305 260 220 151 215 263 273 164 | 303
264
201
266
294
301
311
319
308
300
314
309
245
182
244
269
280
210 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | 372
375
350
322
357
373
379
362
390
371
391
406
367
333
335
355 | 353
350
203
251
322
349
362
329
348
320
356
367
325
312
330 | 361
364
237
289
341
367
373
344
369
337
376
388
348
325
343 | 320
322
341
342
337
340
347
354
358
356
367
366
347
349 | 289
302
311
304
315
314
308
311
321
312
315
338
326
324
301 | 307
313
324
323
325
327
328
334
334
334
353
344
353
344
353
344
353 | 313
308
242
283
308
311
319
330
347
315
328
329
265
220
227
276
287 | MAY 296 144 154 239 282 286 301 265 286 305 260 220 151 215 | 303
264
201
266
294
301
311
319
308
300
314
309
245
182
244 | | 1
2
3
4
5
6
7
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | | FEBRUARY | | 372
375
350
322
357
373
379
362
390
371
391
406
367
333
355
395
396
442
355
359 | 353
350
203
251
322
349
362
329
348
320
356
367
325
312
330
355
342
311
329
186 | 361
364
237
289
341
367
373
344
369
337
376
388
348
325
343
369
356
359
343
288 | 320
322
341
340
342
337
340
347
354
358
356
367
349
361
374
367
380 | 289
302
311
304
315
314
308
311
321
312
315
338
326
324
301
328
336
341
358
359 | 307
313
324
323
325
327
328
334
334
334
354
333
324
354
354
354
354
354
354 | 313
308
242
283
308
311
319
330
347
315
328
329
265
220
267
276
287
284
255
276 | MAY 296 144 154 239 282 286 301 265 286 305 260 220 151 215 263 273 164 195 253 |
303
264
201
266
294
301
311
319
308
300
314
309
245
182
244
269
280
210
230
263 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | | FEBRUARY | | 372
375
350
322
357
373
379
362
390
371
391
406
367
333
355
396
442
255
359
238
297 | 353
350
203
251
322
349
362
329
348
320
356
367
325
312
330
355
342
311
329
186 | 361
364
237
289
341
367
373
344
369
337
376
388
348
325
343
369
356
359
343
288
217
269 | 320
322
341
340
342
337
340
347
354
358
356
367
347
349
361
374
367
380
390
372 | 289
302
311
304
315
314
308
311
321
312
315
338
326
324
301
328
336
341
358
359 | 307
313
324
323
325
327
328
333
344
353
344
353
324
354
357
368
373 | 313
308
242
283
308
311
319
330
347
315
328
329
265
220
267
276
287
284
255
276 | MAY 296 144 154 239 282 286 301 265 286 305 260 220 151 215 263 273 164 195 253 | 303
264
201
266
294
301
311
319
308
300
314
309
245
182
244
269
280
210
230
263 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | | FEBRUARY | | 372
375
350
322
357
373
379
362
390
371
391
406
367
333
355
395
396
442
355
359
329
329 | 353
350
203
251
322
349
362
329
348
320
356
367
325
312
330
355
342
311
329
186 | 361
364
237
289
341
367
373
344
369
337
376
388
348
325
343
356
359
343
288
217
269
303 | 320
322
341
340
342
337
340
347
354
358
356
367
366
347
349
361
374
367
380
390
390
372
349 | 289
302
311
304
315
314
308
311
321
312
315
338
326
324
301
328
336
341
358
359
349
317
302 | 307
313
324
323
325
327
328
334
334
334
353
344
353
324
357
368
373
367
332
323 | 313
308
242
283
308
311
319
330
347
315
328
329
265
220
267
276
287
284
255
276 | MAY 296 144 154 239 282 286 301 265 286 305 260 220 151 215 263 273 164 195 253 | 303
264
201
266
294
301
311
319
308
300
314
309
245
182
244
269
280
210
230
263
277
282
293 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | | FEBRUARY | | 372
375
350
322
357
373
379
362
390
371
391
406
367
333
355
396
442
255
359
238
297 | 353
350
203
251
322
349
362
329
348
320
356
367
325
312
330
355
342
311
329
186 | 361
364
237
289
341
367
373
344
369
337
376
388
348
325
343
369
356
359
343
288
217
269 | 320
322
341
340
342
337
340
347
354
358
356
367
347
349
361
374
367
380
390
372 | 289
302
311
304
315
314
308
311
321
312
315
338
326
324
301
328
336
341
358
359 | 307
313
324
323
325
327
328
333
344
353
344
353
324
354
357
368
373 | 313
308
242
283
308
311
319
330
347
315
328
329
265
220
267
276
287
284
255
276 | MAY 296 144 154 239 282 286 301 265 286 305 260 220 151 215 263 273 164 195 253 | 303
264
201
266
294
301
311
319
308
300
314
309
245
182
244
269
280
210
230
263 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | | FEBRUARY | | 372
375
350
322
357
373
379
362
390
371
391
406
367
333
355
395
396
442
355
359
238
297
329
333
325 | 353
350
203
251
322
349
362
329
348
320
356
367
325
312
330
355
342
311
329
186 | 361
364
237
289
341
367
373
344
369
337
376
388
348
325
343
356
359
343
288
217
269
303
303
297 | 320
322
341
340
342
337
340
347
354
358
356
347
366
347
380
390
390
372
349
365
366 | 304
302
311
304
315
314
308
311
312
315
338
326
324
301
328
336
341
358
359
349
317
302
339
333 | 307
313
324
323
325
327
328
334
334
334
353
344
353
344
357
368
373
367
367
367
367
367
367
367
367
367 | 313
308
242
283
308
311
319
330
347
315
328
329
265
220
267
276
287
284
255
276
287
291
303
306
319 | MAY 296 144 154 239 282 286 301 265 286 305 260 220 151 215 263 273 164 195 253 274 270 281 285 301 | 303
264
201
266
294
301
311
319
308
300
314
309
245
182
244
269
280
210
230
263
277
282
293
297
306 | | 1
2
3
4
5
6
7
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
26
27
28
28
28
28
28
28
28
28
28
28
28
28
28 | | FEBRUARY | | 372
375
350
322
357
373
379
362
390
371
391
406
367
333
355
395
395
3442
355
359
238
297
329
333
325 | MARCH 353 350 203 251 322 349 362 329 348 320 356 367 325 312 330 355 342 311 329 186 188 233 252 259 268 | 361
364
237
289
341
367
373
344
369
337
376
388
348
325
343
356
359
356
359
343
288
217
269
303
303
297 | 320
322
341
340
342
337
340
347
354
358
356
367
349
361
374
367
380
390
372
349
365
366
347 | 289
302
311
304
315
314
308
311
321
312
315
338
326
324
301
328
336
341
358
359
349
317
302
339
333 | 307
313
324
323
325
327
328
334
334
334
334
334
354
354
357
368
373
367
332
323
350
346
327 | 313
308
242
283
308
311
319
330
347
315
328
329
265
220
267
276
287
284
255
276
287
291
303
306
319 | MAY 296 144 154 239 282 286 301 265 286 305 260 220 151 215 263 273 164 195 253 274 270 281 285 301 | 303
264
201
266
294
301
311
319
308
300
314
309
245
182
244
269
280
210
230
263
277
282
297
306
307 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | | FEBRUARY | | 372
375
350
322
357
373
379
362
390
371
391
406
367
333
355
395
396
442
355
359
238
297
329
333
325 | 353
350
203
251
322
349
362
329
348
320
356
367
325
312
330
355
342
311
329
186 | 361
364
237
289
341
367
373
344
369
337
376
388
348
325
343
356
359
343
288
217
269
303
303
297 | 320
322
341
340
342
337
340
347
354
358
356
347
366
347
380
390
390
372
349
365
366 | 304
302
311
304
315
314
308
311
312
315
338
326
324
301
328
336
341
358
359
349
317
302
339
333 | 307
313
324
323
325
327
328
334
334
334
353
344
353
344
357
368
373
367
367
367
367
367
367
367
367
367 | 313
308
242
283
308
311
319
330
347
315
328
329
265
220
267
276
287
284
255
276
287
291
303
306
319 | MAY 296 144 154 239 282 286 301 265 286 305 260 220 151 215 263 273 164 195 253 274 270 281 285 301 | 303
264
201
266
294
301
311
319
308
300
314
309
245
182
244
269
280
210
230
263
277
282
293
297
306 | | 1
2
3
4
5
6
7
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | | FEBRUARY | | 372
375
350
322
357
373
379
362
390
371
391
406
367
333
355
395
395
344
442
355
359
238
297
329
333
325 | 353
350
203
251
322
349
362
329
348
320
356
367
325
312
330
355
342
311
329
186
188
233
252
259
268 | 361
364
237
289
341
367
373
344
369
337
376
388
348
325
343
288
217
269
303
303
297 | 320
322
341
340
342
337
340
347
354
358
356
367
349
361
374
367
380
390
372
349
365
366
347
349
 289 302 311 304 315 314 308 311 321 312 315 338 326 324 301 328 336 324 301 328 336 341 358 359 349 317 302 339 333 312 318 212 227 | 307
313
324
323
325
327
328
334
334
334
334
334
335
344
357
368
373
367
323
350
346
327
328 | 313
308
242
283
308
311
319
330
347
315
328
329
265
220
267
276
287
284
255
276
287
291
303
306
319 | MAY 296 144 154 239 282 286 301 265 286 305 260 220 151 215 263 273 164 195 253 274 270 281 285 301 | 303
264
201
266
294
301
311
319
308
300
314
309
245
182
244
269
280
210
230
263
277
282
297
306
307
307
307
303
316 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | | FEBRUARY | | 372
375
350
322
357
373
379
362
390
371
391
406
367
333
355
396
442
255
359
238
297
329
329
333
325 | 353
350
203
251
322
349
362
329
348
320
356
367
325
312
330
355
342
311
329
186
188
233
252
259
268 | 361
364
237
289
341
367
373
344
369
337
376
388
348
325
343
369
356
353
343
288
217
269
303
303
297 | 320
322
341
340
342
337
340
354
358
356
367
366
367
349
361
374
367
380
390
372
349
365
366
367
359
361
359
361
366 | 289 302 311 304 315 314 308 311 321 312 315 338 326 324 301 328 336 341 359 349 317 302 339 333 312 227 279 | 307
313
324
323
325
327
328
333
344
334
354
354
354
354
354
354
354 | 313
308
242
283
308
311
319
330
347
315
328
329
265
220
267
276
287
284
255
276
287
291
303
306
319
319
311
325
330
331
331
331
331
331
331
331
331
331 | MAY 296 144 154 239 282 286 301 265 286 305 260 220 151 215 263 273 164 195 253 274 270 281 285 301 295 299 270 260 319 | 303
264
201
266
294
301
311
319
308
300
314
309
245
182
244
269
280
210
230
263
277
282
293
297
306 | | 1
2
3
4
5
6
7
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | | FEBRUARY | | 372
375
350
322
357
373
379
362
390
371
391
406
367
333
355
395
395
344
442
355
359
238
297
329
333
325 | 353
350
203
251
322
349
362
329
348
320
356
367
325
312
330
355
342
311
329
186
188
233
252
259
268 | 361
364
237
289
341
367
373
344
369
337
376
388
348
325
343
288
217
269
303
303
297 | 320
322
341
340
342
337
340
347
354
358
356
367
349
361
374
367
380
390
372
349
365
366
347
349 | 289 302 311 304 315 314 308 311 321 312 315 338 326 324 301 328 336 324 301 328 336 341 358 359 349 317 302 339 333 312 318 212 227 | 307
313
324
323
325
327
328
334
334
334
334
334
335
344
357
368
373
367
323
350
346
327
328 | 313
308
242
283
308
311
319
330
347
315
328
329
265
220
267
276
287
284
255
276
287
291
303
306
319 | MAY 296 144 154 239 282 286 301 265 286 305 260 220 151 215 263 273 164 195 253 274 270 281 285 301 | 303
264
201
266
294
301
311
319
308
300
314
309
245
182
244
269
280
210
230
263
277
282
297
306
307
307
307
303
316 | ## 01480870 EAST BRANCH BRANDYWINE CREEK BELOW DOWNINGTOWN, PA--Continued SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25° CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|--|---------------------------------|---------------------------------|---------------------------------| | | | JUNE | | | JULY | | | AUGUST | | S | EPTEMBE | R | | 1
2
3
4 | 359
370
382
381 | 337
326
364
363 | 348
350
371
373 | 369
376
383
392 | 352
351
362
382 | 364
361
372
386 | 460
479
474
369 | 423
447
192
215 | 442
464
420
291 | 420
384
445
434 | 264
287
381
382 | 345
336
409
415 | | 5
6 | 372
358 | 284
138 | 341
321 | 393
423 | 355
393 | 374
406 | 432
432 | 369
381 | 397
398 | 475
467 | 405
438 | 442
451 | | 7
8
9
10 | 240
302
322
335 | 137
239
302
308 | 186
276
314
322 | 413
415 | 391
384 |
398
399 | 419
435
440
447 | 400
405
394
417 | 407
421
422
432 | 469
473
460
456 | 414
434
372
414 | 443
452
428
435 | | 11
12
13
14
15 | 345
347
352
340
292 | 313
313
322
234
236 | 334
338
340
276
267 | 415
431
420
420
405 | 390
384
387
386
380 | 404
412
406
397
393 | 446
455
446
448
479 | 406
419
386
396
441 | 429
438
414
426
459 | 474
514
526
534
537 | 427
450
486
505
455 | 448
487
506
518
495 | | 16
17
18
19 | 305
319
334 | 279
296
304 | 290
310
318 | 414
444
444
448 | 393
384
392
411 | 405
416
418
432 | 479
477
483
475 | 440
450
442
449 | 460
460
462
461 | 455
426
487
478 | 341
393
425
431 | 382
413
460
456 | | 20
21
22
23 | | | | 463
435
433
443 | 410
387
400 | 434
424
414
421 | 491
507
511
493 | 457
478
470
438 | 469
493
487
470 | 457
457
474
 | 424
432
433 | 443
443
453 | | 24
25 | | | | 445
450 | 414
418 | 429
435 | 480
363 | 254
243 | 422
306 |
457 | 388 |
428 | | 26
27
28
29
30
31 |

360
368
 |

324
348
 |

337
356 | 460
452
452
428
450
457 | 409
427
388
412
412
417 | 438
437
425
420
428
437 | 485
469
452
432
396
428 | 363
414
432
247
314
380 | 434
429
439
311
359
404 | 494
321
323
415
418 | 321
207
224
323
395 | 458
252
267
366
407 | | MONTH | 382 | 137 | 318 | 463 | 351 | 410 | 511 | 192 | 423 | 537 | 207 | 423 | ## PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEDIAN | |----------------------------------|--|--|--|---------------------------------|---------------------------------|---------------------------------|--------------------------|--------------------------|--------------------------|--------------|----------|----------| | | OCTOBER | | NOVEMBER | | : | DECEMBER | | | JANUARY | | | | | 1
2
3
4
5 | 7.9
7.9
7.9
7.8
7.9 | 7.5
7.5
7.4
7.3
7.3 | 7.6
7.6
7.5
7.4
7.4 | 8.5
8.5
8.3
8.5
8.5 | 7.4
7.3
7.2
7.3
7.4 | 7.6
7.4
7.3
7.5
7.6 | 7.9
8.0
8.1
8.1 | 7.3
7.4
7.6
7.5 | 7.4
7.6
7.7
7.7 |

 |

 | | | 6
7
8
9
10 | 7.8
7.9
7.9
8.0
8.2 | 7.2
7.2
7.3
7.4
7.4 | 7.3
7.4
7.4
7.5
7.6 | 8.6
8.6
8.5
8.4
8.6 | 7.5
7.3
7.3
7.3
7.3 | 7.6
7.5
7.5
7.4
7.5 |

 | |

 |

 | |

 | | 11
12
13
14
15 | 8.2
8.3
8.2
8.2
7.7 | 7.5
7.4
7.3
7.3
7.2 | 7.6
7.5
7.4
7.3
7.3 | 8.6
8.5
8.5
8.6
8.6 | 7.3
7.4
7.4
7.4
7.3 | 7.5
7.6
7.5
7.5
7.4 |

 | |

 |

 | |

 | | 16
17
18
19
20 | 8.1
7.9
8.0
7.9
8.0 | 7.3
7.3
7.4
7.4 | 7.4
7.4
7.5
7.5
7.4 | 8.5
8.4
8.5
8.6
8.5 | 7.3
7.3
7.3
7.3
7.4 | 7.4
7.4
7.4
7.5
7.6 |

 | |

 |

 | | | | 21
22
23
24
25 | 8.0
8.0
8.2
8.0 | 7.3
7.3
7.2
7.2
7.2 | 7.4
7.4
7.3
7.2 | 8.6
8.6
8.3
7.8 | 7.5
7.6
7.6
7.3
7.2 | 7.7
7.7
7.7
7.6
7.3 |

 | |

 |

 | |

 | | 26
27
28
29
30
31 | 7.9
7.9
8.1
8.2
8.3
8.7 | 7.2
7.3
7.4
7.4
7.5
7.5 | 7.4
7.4
7.5
7.6
7.6
7.7 | 8.0
8.1
7.6
7.6 | 7.4
7.3
7.3
7.3 | 7.5
7.4
7.4
7.3 |

 | |

 |

 | |

 | | MAX
MIN | 8.7
7.7 | 7.5
7.2 | 7.7
7.2 | 8.6
7.6 | 7.6
7.2 | 7.7
7.3 | | | | | | | ## 01480870 EAST BRANCH BRANDYWINE CREEK BELOW DOWNINGTOWN, PA--Continued PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN
 MEDIAN | |---|---|--|---|---|---|---|--|---|--|--|--|---| | | | FEBRUAR | Y | | MARCH | | | APRIL | | | MAY | | | 1 2 | | | | 8.6
8.5 | 7.7
7.6 | 7.8
7.8 | 9.0
9.0 | 7.4
7.4 | 7.9
7.8 | 8.0
7.6 | 7.3
7.0 | 7.5
7.4 | | 3 | | | | 7.6
8.1 | 7.4
7.4 | 7.4
7.7 | 8.9
9.1 | 7.3 | 7.5
7.8 | 7.3
7.7 | 7.0 | 7.3 | | 5 | | | | 8.2 | 7.6 | 7.7 | 9.2 | 7.5 | 8.0 | 7.7 | 7.3 | 7.4 | | 6
7 | | | | 8.3 | 7.6 | 7.7 | 9.2 | 7.6 | 8.1 | 7.8 | 7.2
7.1 | 7.4
7.3 | | 8 | | | | 8.3
8.3 | 7.5
7.3 | 7.7
7.6 | 9.3
9.3 | 7.6
7.5 | 8.1
8.0 | 7.7
7.8 | 7.1 | 7.3 | | 9
10 | | | | 8.3
8.5 | 7.3
7.3 | 7.5
7.6 | 9.1
9.3 | 7.2
7.2 | 7.6
7.8 | 7.7
7.9 | 7.2
7.3 | 7.4
7.5 | | 11 | | | | 8.6 | 7.6 | 7.7 | 9.3 | 7.3 | 8.0 | 8.2 | 7.3 | 7.6 | | 12
13 | | | | 8.5
7.9 | 7.5
7.5 | 7.7
7.6 | 9.0
9.2 | 7.3
7.3 | 7.7
7.7 | 8.2
7.5 | 7.4
7.3 | 7.6
7.4 | | 14
15 | | | | 8.6
8.6 | 7.3
7.2 | 7.6
7.5 | 9.0
9.0 | 7.2
7.1 | 7.6
7.5 | 7.5
7.8 | 7.2
7.3 | 7.3
7.6 | | 16 | | | | 8.3 | 7.2 | 7.5 | 8.9 | 6.9 | 7.2 | 7.8 | 7.1 | 7.5 | | 17
18 | | | | 8.3
8.0 | 7.4
7.6 | 7.7
7.6 | 8.8
8.5 | 6.9 | 7.2
7.1 | 7.6
7.4 | 7.1 | 7.3
7.4 | | 19 | | | | 8.7 | 7.5 | 7.7 | 8.4 | 6.8 | 7.0 | 7.7 | 7.4 | 7.5 | | 20 | | | | 7.8 | 7.5 | 7.6 | 7.8 | 6.8 | 7.1 | 7.8 | 7.5 | 7.6 | | 21
22 | | | | 8.0
8.4 | 7.5
7.5 | 7.6
7.9 | 7.8
7.8 | 7.1
7.5 | 7.5
7.6 | 7.9
7.9 | 7.6
7.6 | 7.7
7.7 | | 23
24 | | | | 8.5
8.5 | 7.8
7.8 | 8.0
7.9 | 8.3
8.2 | 7.4
7.2 | 7.6
7.5 | 7.9
7.9 | 7.4
7.3 | 7.7
7.6 | | 25 | | | | 8.7 | 7.8 | 7.9 | 7.7 | 7.2 | 7.4 | 7.9 | 7.2 | 7.4 | | 26
27 | 8.7 | 7.5 | 7.8 | 8.2
8.2 | 7.8
7.8 | 7.9
7.9 | 8.1
8.2 | 7.3
7.3 | 7.6
7.5 | 8.0
7.7 | 7.3
7.4 | 7.5
7.5 | | 28
29 | 8.6 | 7.7 | 7.8 | 8.7
8.8 | 7.8
7.7 | 7.9
8.0 | 7.3
7.6 | 7.1
7.1 | 7.3
7.4 | 7.8
7.9 | 7.3
7.3 | 7.5
7.5 | | 30
31 | | | | 8.7
8.6 | 7.6
7.6 | 7.8
7.9 | 7.8 | 7.4 | 7.5 | 8.0 | 7.2
7.1 | 7.4
7.4 | | MAX | | | | 8.8 | 7.8 | 8.0 | 9.3 | 7.6 | 8.1 | 8.2 | 7.1 | 7.7 | | MIN | | | | 7.6 | 7.8 | 7.4 | 7.3 | 6.8 | 7.0 | 7.3 | 7.0 | 7.7 | DAY | MAX | MIN | MEDIAN | | DAY | MAX | MIN
JUNE | MEDIAN | MAX | MIN
JULY | MEDIAN | MAX | MIN
AUGUST | | MAX | MIN
SEPTEME | | | 1 | 8.0 | JUNE 7.1 | 7.3 | 8.3 | JULY 7.3 | 7.5 | 8.3 | AUGUST | 7.5 | 7.8 | SEPTEME 7.6 | BER 7.7 | | 1
2
3 | 8.0
8.0
7.9 | JUNE 7.1 7.1 7.2 | 7.3
7.4
7.4 | 8.3
8.3
8.2 | JULY 7.3 7.2 7.2 | 7.5
7.4
7.4 | 8.3
8.3
8.5 | 7.2
7.3
7.1 | 7.5
7.4
7.4 | 7.8
7.9
8.1 | 7.6
7.5
7.5 | 7.7
7.7
7.6 | | 1
2 | 8.0
8.0 | JUNE 7.1 7.1 | 7.3
7.4 | 8.3
8.3 | JULY 7.3 7.2 | 7.5
7.4 | 8.3
8.3 | 7.2
7.3 | 7.5
7.4 | 7.8
7.9 | 7.6
7.5 | 3 ER
7.7
7.7 | | 1
2
3
4
5 | 8.0
8.0
7.9
7.5
7.5 | 7.1
7.1
7.2
7.3
7.0 | 7.3
7.4
7.4
7.5
7.3 | 8.3
8.3
8.2
8.0 | 7.3
7.2
7.2
7.2
7.2
7.2 | 7.5
7.4
7.4
7.3
7.3 | 8.3
8.3
8.5
7.7
7.8 | 7.2
7.3
7.1
7.1
7.1 | 7.5
7.4
7.4
7.2
7.3 | 7.8
7.9
8.1
8.1
8.2 | 7.6
7.5
7.5
7.4
7.5 | 7.7
7.7
7.6
7.6
7.6 | | 1
2
3
4
5 | 8.0
8.0
7.9
7.9
7.5 | 7.1
7.1
7.2
7.3
7.0 | 7.3
7.4
7.4
7.5
7.3 | 8.3
8.3
8.2
8.0
8.1 | 7.3
7.2
7.2
7.2
7.2 | 7.5
7.4
7.4
7.3
7.3 | 8.3
8.3
8.5
7.7
7.8 | 7.2
7.3
7.1
7.1 | 7.5
7.4
7.4
7.2
7.3 | 7.8
7.9
8.1
8.1 | 7.6
7.5
7.5
7.4
7.5 | 7.7
7.7
7.6
7.6
7.6 | | 1
2
3
4
5 | 8.0
8.0
7.9
7.9
7.5
7.6
7.2 | 7.1
7.1
7.2
7.3
7.0
6.9
6.8 | 7.3
7.4
7.4
7.5
7.3
7.2
7.0 | 8.3
8.3
8.2
8.0
8.1 | 7.3
7.2
7.2
7.2
7.2
7.2 | 7.5
7.4
7.4
7.3
7.3 | 8.3
8.3
8.5
7.7
7.8
8.2
8.3 | 7.2
7.3
7.1
7.1
7.1
7.2
7.4 | 7.5
7.4
7.4
7.2
7.3
7.5 | 7.8
7.9
8.1
8.1
8.2 | 7.6
7.5
7.5
7.4
7.5 | 7.7
7.7
7.6
7.6
7.6
7.7 | | 1
2
3
4
5
6
7
8
9 | 8.0
8.0
7.9
7.5
7.6
7.2
7.5
7.6
7.7 | 7.1
7.1
7.2
7.3
7.0
6.9
6.8
7.2
7.3 | 7.3
7.4
7.4
7.5
7.3
7.2
7.0
7.3
7.4
7.4 | 8.3
8.3
8.2
8.0
8.1
8.1

8.4
8.2 | 7.3
7.2
7.2
7.2
7.2
7.2
7.2 | 7.5
7.4
7.4
7.3
7.3
7.5

7.6
7.5 | 8.3
8.3
8.5
7.7
7.8
8.2
8.3
8.3
8.5 | 7.2
7.3
7.1
7.1
7.1
7.2
7.4
7.5
7.4 | 7.5
7.4
7.4
7.2
7.3
7.5
7.7 | 7.8
7.9
8.1
8.1
8.2
8.3
8.4
8.3
8.3 | 7.6
7.5
7.5
7.4
7.5
7.6
7.6
7.6 | 7.7
7.7
7.6
7.6
7.6
7.7
7.8
7.8
7.8 | | 1
2
3
4
5
6
7
8
9
10 | 8.0
8.0
7.9
7.5
7.6
7.2
7.5
7.6
7.7 | 7.1
7.1
7.2
7.3
7.0
6.9
6.9
7.2
7.3
7.2 | 7.3
7.4
7.4
7.5
7.3
7.2
7.0
7.3
7.4
7.4 | 8.3
8.3
8.2
8.0
8.1
8.1

8.4
8.2 | 7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.3
7.4
7.3 | 7.5
7.4
7.4
7.3
7.3
7.5

7.6
7.5 | 8.3
8.3
8.5
7.7
7.8
8.2
8.3
8.3
8.5
8.5 | 7.2
7.3
7.1
7.1
7.1
7.2
7.4
7.5
7.4
7.3 | 7.5
7.4
7.4
7.2
7.3
7.5
7.7
7.7
7.6 | 7.8
7.9
8.1
8.1
8.2
8.3
8.4
8.3
8.3 | 7.6
7.5
7.5
7.4
7.5
7.6
7.7 | 7.7
7.7
7.6
7.6
7.6
7.7
7.8
7.8
7.8
7.8
7.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 8.0
8.0
7.9
7.5
7.6
7.2
7.5
7.6
7.7 | 7.1
7.1
7.2
7.3
7.0
6.9
6.8
7.2
7.3
7.2 | 7.3
7.4
7.5
7.3
7.2
7.0
7.3
7.4
7.4
7.5
7.5 | 8.3
8.3
8.2
8.0
8.1
8.1

8.4
8.2
8.4
8.5 | 7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.4
7.3 | 7.5
7.4
7.4
7.3
7.3
7.5

7.6
7.5
7.7
7.7 | 8.3
8.5
7.7
7.8
8.2
8.3
8.5
8.5
8.6
8.8 | 7.2
7.3
7.1
7.1
7.1
7.2
7.4
7.5
7.4
7.4
7.3
7.3
7.3
7.3 | 7.5
7.4
7.2
7.3
7.5
7.7
7.7
7.6
7.6
7.6 | 7.8
7.9
8.1
8.2
8.3
8.4
8.3
8.3
8.3
8.3 | 7.6
7.5
7.5
7.5
7.4
7.5
7.6
7.6
7.6
7.6
7.6 | 7.7
7.7
7.6
7.6
7.6
7.7
7.8
7.8
7.7
7.7
7.8
7.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 8.0
8.0
7.9
7.5
7.6
7.2
7.5
7.6
7.7
7.7
7.7 | 7.1
7.1
7.2
7.3
7.0
6.9
6.8
7.2
7.3
7.2
7.2
7.2 | 7.3
7.4
7.4
7.5
7.3
7.2
7.0
7.3
7.4
7.4
7.5
7.6
7.7 | 8.3
8.3
8.2
8.0
8.1
8.1

8.4
8.2
8.4
8.5
8.4
8.2 | 7.3 7.2 7.2 7.2 7.2 7.2 7.4 7.3 7.4 7.5 7.4 7.5 | 7.5
7.4
7.4
7.3
7.3
7.5

7.6
7.5
7.6
7.7
7.7 | 8.3
8.5
7.7
7.8
8.2
8.3
8.5
8.5
8.6
8.8
8.3 | 7.2
7.3
7.1
7.1
7.1
7.2
7.4
7.5
7.4
7.3
7.3
7.2 | 7.5
7.4
7.4
7.2
7.3
7.5
7.7
7.7
7.6
7.6
7.6
7.6 |
7.8
7.9
8.1
8.1
8.2
8.3
8.4
8.3
8.3
8.3
8.4
8.4
8.4
8.2 | 7.6
7.5
7.5
7.5
7.4
7.5
7.6
7.7
7.6
7.6
7.6
7.6
7.7 | 7.7
7.7
7.6
7.6
7.6
7.8
7.8
7.8
7.7
7.7
7.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 8.0
8.0
7.9
7.5
7.6
7.2
7.5
7.7
7.7
7.7
7.7
7.9
8.0
8.0 | 7.1
7.1
7.2
7.3
7.0
6.9
6.8
7.2
7.3
7.2
7.2
7.2
7.5 | 7.3
7.4
7.5
7.3
7.2
7.0
7.3
7.4
7.4
7.5
7.7 | 8.3
8.3
8.2
8.0
8.1
8.1

8.4
8.2
8.4
8.5
8.4
8.2
8.4 | 7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.4
7.3
7.4
7.5
7.5
7.5
7.5
7.4
7.5 | 7.5
7.4
7.3
7.3
7.5

7.6
7.5
7.6
7.7
7.7
7.7
7.6
7.6 | 8.3
8.5
7.7
7.8
8.2
8.3
8.3
8.5
8.5
8.6
8.3
8.6
8.3 | 7.2
7.3
7.1
7.1
7.1
7.2
7.4
7.5
7.4
7.3
7.3
7.2
7.3 | 7.5
7.4
7.2
7.3
7.5
7.7
7.7
7.6
7.6
7.6
7.6
7.6 | 7.8
7.9
8.1
8.2
8.3
8.4
8.3
8.3
8.3
8.3
8.3 | 7.6
7.5
7.5
7.5
7.4
7.5
7.6
7.6
7.6
7.6
7.6
7.7
7.6
7.5
7.5 | 7.7
7.7
7.6
7.6
7.6
7.7
7.8
7.8
7.8
7.7
7.7
7.7
7.7
7.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 8.0
8.0
7.9
7.5
7.6
7.2
7.5
7.6
7.7
7.7
7.7
7.7
7.7
9
8.0
8.0
8.2 | 7.1
7.1
7.2
7.3
7.0
6.9
6.8
7.2
7.3
7.2
7.2
7.2
7.5
7.6 | 7.3
7.4
7.5
7.3
7.2
7.0
7.3
7.4
7.4
7.5
7.6
7.7 | 8.3
8.3
8.2
8.0
8.1
8.1

8.4
8.2
8.4
8.5
8.4
8.4
8.2
8.4 | 7.3
7.2
7.2
7.2
7.2
7.2
7.4
7.3
7.4
7.5
7.4
7.5
7.4
7.5 | 7.5
7.4
7.4
7.3
7.3
7.5

7.6
7.5
7.6
7.7
7.6
7.6
7.6
7.6
7.7 | 8.3
8.5
7.7
7.8
8.2
8.3
8.5
8.5
8.6
8.3
8.8
8.3
8.3
8.3 | 7.2 7.3 7.1 7.1 7.1 7.2 7.4 7.5 7.4 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.5
7.4
7.2
7.3
7.5
7.7
7.6
7.6
7.6
7.6
7.5
7.5
7.7 | 7.8
7.9
8.1
8.2
8.3
8.4
8.3
8.3
8.3
8.3
8.4
8.2
7.8 | 7.6
7.5
7.5
7.5
7.4
7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.5
7.5
7.5 | 7.7
7.7
7.6
7.6
7.6
7.7
7.8
7.8
7.7
7.7
7.8
7.9
7.9
7.6
7.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 8.0
8.0
7.9
7.5
7.6
7.2
7.5
7.6
7.7
7.7
7.7
7.7
7.7
9
8.0
8.2
 | 7.1 7.1 7.2 7.3 7.0 6.9 6.8 7.2 7.3 7.2 7.2 7.2 7.5 7.6 7.5 7.6 | 7.3
7.4
7.4
7.5
7.3
7.2
7.0
7.3
7.4
7.4
7.4
7.5
7.6
7.7 | 8.3
8.2
8.0
8.1
8.1

8.4
8.2
8.4
8.5
8.4
8.2
8.4
8.2
8.4 | 7.3 7.2 7.2 7.2 7.2 7.4 7.3 7.4 7.5 7.4 7.5 7.4 7.5 7.4 7.5 7.4 7.5 | 7.5
7.4
7.4
7.3
7.3
7.5

7.6
7.5
7.6
7.7
7.7
7.6
7.6
7.6
7.7 | 8.3
8.5
7.7
7.8
8.2
8.3
8.3
8.5
8.6
8.8
8.3
8.4
8.3
8.3
8.3 | 7.2 7.3 7.1 7.1 7.2 7.4 7.5 7.4 7.3 7.3 7.3 7.2 7.3 7.2 7.3 7.2 7.3 | 7.5
7.4
7.4
7.2
7.3
7.5
7.7
7.7
7.6
7.6
7.6
7.6
7.6
7.6
7.5
7.4 | 7.8
7.9
8.1
8.2
8.3
8.4
8.3
8.3
8.3
8.4
8.4
8.2
7.8
7.9
8.1
8.1 | 7.6
7.5
7.5
7.4
7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.5
7.5 | 7.7
7.7
7.6
7.6
7.6
7.7
7.8
7.8
7.8
7.7
7.7
7.7
7.7
7.6
7.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 8.0
8.0
7.9
7.5
7.6
7.2
7.5
7.6
7.7
7.7
7.7
7.7
7.7
9
8.0
8.0
8.2 | 7.1
7.1
7.2
7.3
7.0
6.9
6.8
7.2
7.3
7.2
7.2
7.2
7.5
7.6 | 7.3
7.4
7.5
7.3
7.2
7.0
7.3
7.4
7.4
7.5
7.6
7.7 | 8.3
8.3
8.2
8.0
8.1
8.1

8.4
8.2
8.4
8.5
8.4
8.4
8.2
8.4 | 7.3
7.2
7.2
7.2
7.2
7.2
7.4
7.3
7.4
7.5
7.4
7.5
7.4
7.5 | 7.5
7.4
7.4
7.3
7.3
7.5

7.6
7.5
7.6
7.7
7.6
7.6
7.6
7.6
7.7 | 8.3
8.5
7.7
7.8
8.2
8.3
8.5
8.5
8.6
8.3
8.8
8.3
8.3
8.3 | 7.2 7.3 7.1 7.1 7.1 7.2 7.4 7.5 7.4 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.5
7.4
7.2
7.3
7.5
7.7
7.6
7.6
7.6
7.6
7.5
7.5
7.7 | 7.8
7.9
8.1
8.2
8.3
8.4
8.3
8.3
8.3
8.3
8.4
8.2
7.8 | 7.6
7.5
7.5
7.5
7.4
7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.5
7.5
7.5 | 7.7
7.7
7.6
7.6
7.6
7.7
7.8
7.8
7.7
7.7
7.8
7.9
7.9
7.6
7.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | 8.0
8.0
7.9
7.5
7.6
7.2
7.5
7.6
7.7
7.7
7.7
7.7
7.7
9
8.0
8.0
8.2 | 7.1 7.1 7.2 7.3 7.0 6.9 6.8 7.2 7.3 7.2 7.2 7.2 7.5 7.6 7.5 7.6 | 7.3
7.4
7.5
7.3
7.2
7.0
7.3
7.4
7.4
7.5
7.6
7.7
7.6
7.7 | 8.3
8.3
8.2
8.0
8.1
8.1

8.4
8.2
8.4
8.5
8.4
8.2
8.4
8.3 | 7.3 7.2 7.2 7.2 7.2 7.4 7.3 7.4 7.5 7.4 7.5 7.4 7.5 7.4 7.5 7.4 7.5 7.4 7.5 | 7.5
7.4
7.4
7.3
7.3
7.5

7.6
7.5
7.6
7.7
7.6
7.6
7.6
7.7
7.6
7.6
7.7 | 8.3
8.5
7.7
7.8
8.2
8.3
8.5
8.5
8.6
8.8
8.3
8.3
8.3
8.3
8.3
8.3
8.3 | 7.2 7.3 7.1 7.1 7.1 7.2 7.4 7.5 7.4 7.3 7.3 7.3 7.3 7.3 7.3 7.2 7.3 7.3 7.3 | 7.5
7.4
7.2
7.3
7.5
7.7
7.6
7.6
7.6
7.6
7.5
7.4
7.4 | 7.8
7.9
8.1
8.2
8.3
8.4
8.3
8.3
8.3
8.4
8.2
7.8
7.9
8.0 | 7.6
7.5
7.5
7.5
7.4
7.5
7.6
7.6
7.6
7.6
7.6
7.7
7.6
7.6
7.5
7.5
7.5
7.5 | 7.7
7.7
7.6
7.6
7.6
7.7
7.8
7.8
7.7
7.7
7.7
7.8
7.9
7.9
7.9
7.9
7.6
7.6
7.6
7.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 8.0
8.0
7.9
7.5
7.6
7.2
7.5
7.6
7.7
7.7
7.7
7.7
7.7
8.0
8.0
8.2 | 7.1 7.1 7.2 7.3 7.0 6.9 6.8 7.2 7.2 7.2 7.2 7.2 7.5 7.6 | 7.3 7.4 7.4 7.5 7.3 7.2 7.0 7.3 7.4 7.4 7.4 7.7 7.6 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 | 8.3
8.2
8.0
8.1
8.1

8.4
8.2
8.4
8.5
8.4
8.2
8.4
8.2
8.1
8.3
8.3
8.3
8.3 | 7.3 7.2 7.2 7.2 7.2 7.4 7.3 7.4 7.5 7.5 7.4 7.5 7.4 7.5 7.7 7.7 7.7 7.3 7.2 7.2 7.2 7.3 | 7.5
7.4
7.3
7.3
7.5

7.6
7.5
7.6
7.7
7.6
7.6
7.6
7.6
7.5
7.4
7.5 | 8.3
8.5
7.7
7.8
8.2
8.3
8.3
8.5
8.6
8.8
8.3
8.3
8.3
8.3
8.3 | 7.2 7.3 7.1 7.1 7.2 7.4 7.5 7.4 7.3 7.3 7.2 7.3 7.2 7.3 7.2 7.3 7.3 7.2 7.3 7.3 7.3 7.3 7.3 7.3 | 7.5
7.4
7.2
7.3
7.5
7.7
7.7
7.6
7.6
7.6
7.6
7.5
7.4
7.5
7.5 | 7.8
7.9
8.1
8.2
8.3
8.4
8.3
8.3
8.3
8.3
8.3
8.4
8.4
8.4
8.2
7.8
7.9
8.1
8.1
8.1 | 7.6
7.5
7.5
7.5
7.4
7.5
7.6
7.6
7.6
7.6
7.6
7.5
7.5
7.5
7.5
7.5
7.5 | 7.7
7.7
7.6
7.6
7.6
7.7
7.8
7.8
7.8
7.7
7.7
7.7
7.6
7.6
7.6
7.7
7.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
26
27
27
28
28
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 8.0
8.0
7.9
7.5
7.6
7.2
7.5
7.6
7.7
7.7
7.7
7.7
7.7
9
8.0
8.2
 | 7.1 7.1 7.2 7.3 7.0 6.9 6.8 7.2 7.2 7.2 7.2 7.5 7.6 7.5 7.6 7.5 7.6 | 7.3 7.4 7.5 7.3 7.2 7.0 7.3 7.4 7.4 7.4 7.5 7.7 7.6 7.7 7.6 7.7 7.6 7.7 7.6 7.7 | 8.3
8.3
8.2
8.0
8.1
8.1

8.4
8.2
8.4
8.5
8.4
8.2
8.4
8.2
8.4
8.3
8.3
8.6
8.6
8.6 | 7.3 7.2 7.2 7.2 7.4 7.3 7.4 7.5 7.4 7.3 7.2 7.2 7.3 7.2 7.4 7.4 7.4 | 7.5
7.4
7.4
7.3
7.3
7.5

7.6
7.5
7.6
7.7
7.6
7.6
7.6
7.7
7.7
7.6
7.5
7.6
7.5
7.7 | 8.3
8.5
7.7
7.8
8.2
8.3
8.5
8.5
8.6
8.8
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3 | 7.2 7.3 7.1 7.1 7.2 7.4 7.5 7.4 7.3 7.3 7.3 7.4 7.3 7.3 7.3 7.4 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.54
7.44
7.22
7.3
7.57
7.6
7.66
7.66
7.66
7.55
7.44
7.56
7.54
7.55
7.44 | 7.8
7.9
8.1
8.2
8.3
8.4
8.3
8.3
8.3
8.4
8.2
7.8
7.9
8.0
8.1
8.1
8.1
8.1 | 7.6
7.5
7.5
7.5
7.4
7.6
7.6
7.6
7.6
7.6
7.6
7.7
7.6
7.6
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 7.7
7.6
7.6
7.6
7.6
7.7
7.8
7.8
7.7
7.7
7.7
7.8
7.6
7.6
7.6
7.7
7.7 | |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 8.0
8.0
7.9
7.5
7.6
7.2
7.6
7.7
7.7
7.7
7.7
7.7
7.9
8.0
8.2
 | 7.1 7.1 7.2 7.3 7.0 6.9 6.8 7.2 7.2 7.2 7.2 7.5 7.6 7.5 7.6 | 7.3 7.4 7.5 7.3 7.2 7.0 7.3 7.4 7.4 7.4 7.7 7.6 7.7 7.6 7.7 | 8.3
8.2
8.0
8.1
8.1

8.4
8.2
8.4
8.5
8.4
8.2
8.4
8.2
8.1
8.3
8.6
8.6
8.6
8.6 | 7.3 7.2 7.2 7.2 7.2 7.4 7.3 7.4 7.5 7.5 7.4 7.5 7.4 7.5 7.4 7.5 7.7 7.2 7.2 7.2 7.3 7.2 7.2 7.3 7.2 7.3 7.2 7.3 7.2 7.3 7.2 7.3 | 7.5
7.4
7.3
7.3
7.5

7.6
7.5
7.6
7.6
7.6
7.6
7.6
7.5
7.6
7.5
7.6
7.5
7.7
7.7
7.7
7.7 | 8.3
8.5
7.7
7.8
8.2
8.3
8.3
8.5
8.5
8.6
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3 | 7.2 7.3 7.1 7.1 7.2 7.4 7.5 7.4 7.3 7.2 7.3 7.2 7.3 7.2 7.3 7.2 7.3 7.3 7.2 7.3 7.2 7.2 7.2 7.2 7.3 7.3 7.4 | 7.54
7.4
7.2
7.3
7.5
7.7
7.6
7.66
7.66
7.65
7.4
7.55
7.4
7.55
7.4
7.55
7.7 | 7.8
7.9
8.1
8.2
8.3
8.4
8.3
8.3
8.3
8.3
8.3
8.4
8.4
8.4
8.2
7.8
7.9
8.0
8.1
8.1
8.0
8.0
8.5
8.5 | 7.6
7.5
7.5
7.5
7.4
7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 7.7
7.7
7.6
7.6
7.6
7.7
7.8
7.8
7.7
7.7
7.7
7.6
7.6
7.6
7.6
7.7
7.7
7.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30
20
21
22
23
24
25
26
27
27
28
28
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 8.0
8.0
7.9
7.5
7.6
7.2
7.5
7.6
7.7
7.7
7.7
7.7
7.7
7.9
8.0
8.2
 | 7.1 7.1 7.2 7.3 7.0 6.9 6.8 7.2 7.2 7.2 7.2 7.5 7.6 7.5 7.6 7.3 7.3 | 7.3 7.4 7.5 7.3 7.2 7.0 7.3 7.4 7.4 7.4 7.5 7.7 7.6 7.7 7.6 7.7 7.6 7.7 7.5 7.7 7.5 7.7 | 8.3
8.3
8.2
8.0
8.1
8.1

8.4
8.2
8.4
8.5
8.4
8.2
8.4
8.2
8.4
8.2
8.4
8.5
8.6
8.6
8.6
8.6
8.6 | 7.3 7.2 7.2 7.2 7.2 7.4 7.3 7.4 7.5 7.4 7.5 7.4 7.5 7.4 7.5 7.4 7.5 7.4 7.5 7.4 7.3 7.2 7.2 7.2 7.3 7.2 7.3 7.2 7.3 7.2 7.3 7.2 7.3 7.2 7.3 7.2 7.3 7.2 7.3 | 7.5
7.4
7.3
7.3
7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.7
7.7 | 8.3
8.5
7.7
7.8
8.2
8.3
8.5
8.5
8.6
8.3
8.4
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3 | 7.2 7.3 7.1 7.1 7.2 7.4 7.5 7.4 7.3 7.3 7.3 7.2 7.3 7.2 7.3 7.2 7.3 7.3 7.3 7.7 7.7 | 7.54
7.44
7.23
7.57
7.77
7.66
7.66
7.66
7.55
7.44
7.55
7.57
7.77
7.78
7.77
7.88 | 7.8
7.9
8.1
8.2
8.3
8.4
8.3
8.3
8.3
8.3
8.4
8.4
8.2
7.8
7.9
8.0
8.1
8.1
8.1 | 7.6
7.5
7.5
7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 7.7
7.6
7.6
7.6
7.8
7.8
7.8
7.7
7.7
7.8
7.9
7.6
7.6
7.6
7.7
7.7
7.7
7.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
31
31
31
31
31
31
31
31
31
31
31
31 | 8.0
8.0
7.9
7.9
7.5
7.6
7.7
7.8
7.7
7.7
7.7
7.7
7.9
8.0
8.2
 | 7.1 7.1 7.2 7.3 7.0 6.9 6.8 7.2 7.2 7.2 7.2 7.5 7.6 7.5 7.6 7.5 7.6 7.5 7.7 7.3 7.3 7.3 | 7.3 7.4 7.5 7.3 7.2 7.0 7.3 7.4 7.4 7.4 7.5 7.7 7.6 7.7 7.6 7.7 7.6 7.7 7.7 7.6 7.7 7.5 7.7 7.5 7.5 7.5 7.5 | 8.3
8.3
8.2
8.0
8.1
8.1

8.4
8.2
8.4
8.2
8.4
8.2
8.1
8.3
8.6
8.6
8.6
8.6
8.5
8.1
8.3
8.3 | 7.3 7.2 7.2 7.2 7.4 7.3 7.4 7.5 7.4 7.5 7.4 7.5 7.4 7.5 7.4 7.5 7.4 7.5 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 | 7.5
7.4
7.3
7.3
7.5
7.6
7.5
7.6
7.6
7.6
7.6
7.6
7.7
7.6
7.6
7.5
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 8.3
8.3
8.5
7.7
7.8
8.2
8.3
8.5
8.5
8.6
8.3
8.4
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3 | 7.2 7.3 7.1 7.1 7.2 7.4 7.4 7.3 7.3 7.4 7.3 7.3 7.4 7.3 7.3 7.4 7.3 7.5 7.6 7.7 7.6 | 7.54
7.44
7.22
7.3
7.57
7.6
7.66
7.66
7.65
7.44
7.66
7.55
7.44
7.66
7.77
7.88
7.88 | 7.8
7.9
8.1
8.2
8.3
8.4
8.3
8.3
8.3
8.4
8.2
7.8
7.9
8.0
8.1
8.1
8.1
8.1
8.2
7.8 | 7.6
7.5
7.5
7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.5
7.5
7.5
7.5
7.5
7.6
7.5
7.5
7.5
7.5
7.5
7.5
7.6
7.5 | 7.7
7.6
7.6
7.6
7.6
7.7
7.8
7.8
7.8
7.7
7.7
7.8
7.6
7.6
7.6
7.7
7.7
7.7
7.7
7.7
7.9
7.9
7.9
7.9
7.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30
20
21
22
23
24
25
26
27
27
28
28
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 8.0
8.0
7.9
7.5
7.6
7.2
7.5
7.6
7.7
7.7
7.7
7.7
7.7
7.9
8.0
8.2
 | 7.1 7.1 7.2 7.3 7.0 6.9 6.8 7.2 7.2 7.2 7.2 7.5 7.6 7.5 7.6 7.3 7.3 | 7.3 7.4 7.5 7.3 7.2 7.0 7.3 7.4 7.4 7.4 7.5 7.7 7.6 7.7 7.6 7.7 7.6 7.7 7.5 7.7 7.5 7.7 | 8.3
8.3
8.2
8.0
8.1
8.1

8.4
8.2
8.4
8.5
8.4
8.2
8.4
8.2
8.4
8.2
8.4
8.5
8.6
8.6
8.6
8.6
8.6 | 7.3 7.2 7.2 7.2 7.2 7.4 7.3 7.4 7.5 7.4 7.5 7.4 7.5 7.4 7.5 7.4 7.5 7.4 7.5 7.4 7.3 7.2 7.2 7.2 7.3 7.2 7.3 7.2 7.3 7.2 7.3 7.2 7.3 7.2 7.3 7.2 7.3 7.2 7.3 | 7.5
7.4
7.3
7.3
7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.7
7.7 | 8.3
8.5
7.7
7.8
8.2
8.3
8.5
8.5
8.6
8.3
8.4
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3 | 7.2 7.3 7.1 7.1 7.2 7.4 7.5 7.4 7.3 7.3 7.3 7.2 7.3 7.2 7.3 7.2 7.3 7.3 7.3 7.7 7.7 | 7.54
7.44
7.23
7.57
7.77
7.66
7.66
7.66
7.55
7.44
7.55
7.57
7.77
7.78
7.77
7.88 | 7.8
7.9
8.1
8.2
8.3
8.4
8.3
8.3
8.3
8.3
8.4
8.4
8.2
7.8
7.9
8.0
8.1
8.1
8.1 | 7.6
7.5
7.5
7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 7.7
7.6
7.6
7.6
7.8
7.8
7.8
7.7
7.7
7.8
7.9
7.6
7.6
7.6
7.7
7.7
7.7
7.7 | ## 01480870 EAST BRANCH BRANDYWINE CREEK BELOW DOWNINGTOWN, PA--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|--------------|---------------------|--------------|--|--|---|--|---|---|--|---|--| | | | OCTOBER | | | NOVEMBER | | | DECEMBER | | | JANUARY | | | 1 2 | 15.0
17.5 | 13.5
13.0 | 14.0
15.0 | 14.0
16.0 | 10.0
12.0 | 12.0
14.0 | 14.5
12.5 | 12.5
9.0 | 13.5
11.0 | | | | | 3 | 19.0 | 14.5 | 16.5 | 17.0 | 13.5 | 15.0 | 10.5 | 7.5 | 9.0 | | | | | 4
5 | 20.0
19.5 | 16.0
15.5 | 17.5
17.5 | 14.5
13.0 | 11.5
10.0 | 13.0
11.0 | 10.5 | 7.5
 | 9.0 | | | | | 6 | 18.5 | 15.5 | 17.5 | 12.0 | 9.0 | 10.0 | | | | | | | | 7
8 | 15.5
14.0 | 13.0
11.0 | 14.5
12.5 | 13.0
13.0 | 9.0
9.5 | 10.5
11.0 | | | | | | | | 9 | 14.0 | 9.5 | 11.5 | 12.5 | 10.0 | 11.0 | | | | | | | | 10 | 14.5 | 10.0 | 12.0 | 11.5 | 8.0 | 10.0 | | | | | | | | 11
12 | 16.5
17.5 | 12.0
13.5 | 14.0
15.5 |
11.5
10.0 | 8.0
6.5 | 9.5
8.0 | | | | | | | | 13 | 19.0 | 15.5 | 17.0 | 10.0 | 6.0 | 8.0 | | | | | | | | 14
15 | 19.0
18.0 | 17.0
15.5 | 17.5
17.0 | 10.0
12.0 | 6.5
8.0 | 8.0
10.0 | | | | | | | | 16 | 16.5 | 13.5 | 15.0 | 12.5 | 9.0 | 11.0 | | | | | | | | 17 | 15.0 | 12.5 | 14.0 | 12.0 | 9.5 | 10.5 | | | | | | | | 18
19 | 13.5
14.0 | 10.5
10.0 | 12.0
12.0 | 11.0
11.5 | 8.0
8.0 | 9.5
9.5 | | | | | | | | 20 | 15.5 | 11.5 | 13.0 | 11.5 | 8.5 | 10.0 | | | | | | | | 21 | 16.0 | 12.0 | 14.0 | 9.5 | 6.5 | 8.0 | | | | | | | | 22
23 | 17.5
18.0 | 13.5
15.0 | 15.5
16.5 | 8.5
9.0 | 5.5
5.5 | 7.0
7.5 | | | | | | | | 24
25 | 19.5
18.0 | 16.0
15.0 | 17.5
16.5 | 11.5
13.5 | 7.5
11.5 | 9.5
12.5 | 26
27 | 15.0
12.0 | 11.5
10.5 | 13.5
11.5 | 12.0 | 10.0 | 11.0 | | | | | | | | 28 | 12.5 | 9.5 | 10.5 | 13.5 | 11.5 | 12.5 | | | | | | | | 29
30 | 12.5
13.5 | 8.0
10.0 | 10.0
11.5 | 13.5
14.5 | 13.0
13.0 | 13.0
14.0 | | | | | | | | 31 | 11.5 | 10.0 | 11.0 | | | | | | | | | | | MONTH | 20.0 | 8.0 | 14.3 | 17.0 | 5.5 | 10.6 | DAY | MAX | MIN | MEAN | | DAY | | MIN FEBRUARY | MEAN | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | | | | MEAN | | MARCH | | | APRIL | | | MAY | | | 1
2 | | FEBRUARY | | 8.5
7.0 | MARCH 3.0 4.0 | 5.5
5.5 | 15.0
15.0 | APRIL
11.0
9.5 | 12.5
12.0 | 18.5
18.0 | MAY 13.5 14.5 | 15.5
16.0 | | 1
2
3
4 | | FEBRUARY | | 8.5 | MARCH
3.0 | 5.5 | 15.0 | APRIL | 12.5 | 18.5 | MAY
13.5 | 15.5 | | 1
2
3 | | FEBRUARY | | 8.5
7.0
9.0 | 3.0
4.0
7.0 | 5.5
5.5
8.0 | 15.0
15.0
17.0 | APRIL
11.0
9.5
11.5 | 12.5
12.0
13.5 | 18.5
18.0
18.0 | MAY
13.5
14.5
14.5 | 15.5
16.0
16.0 | | 1
2
3
4
5 | | FEBRUARY | | 8.5
7.0
9.0
8.0
6.5 | MARCH 3.0 4.0 7.0 4.0 2.5 | 5.5
5.5
8.0
6.5
4.5 | 15.0
15.0
17.0
13.5
10.5 | APRIL
11.0
9.5
11.5
9.5
8.0 | 12.5
12.0
13.5
11.0
9.5 | 18.5
18.0
18.0
17.0
19.0 | MAY 13.5 14.5 14.5 12.0 13.5 | 15.5
16.0
16.0
14.5
16.0 | | 1
2
3
4
5 | | FEBRUARY | | 8.5
7.0
9.0
8.0
6.5
8.0
10.0 | MARCH 3.0 4.0 7.0 4.0 2.5 3.5 5.0 6.5 | 5.5
5.5
8.0
6.5
4.5
5.5
9.0 | 15.0
15.0
17.0
13.5
10.5 | APRIL 11.0 9.5 11.5 9.5 8.0 7.5 6.5 8.5 | 12.5
12.0
13.5
11.0
9.5
9.0
9.0 | 18.5
18.0
18.0
17.0
19.0
20.5
21.5 | MAY 13.5 14.5 14.5 12.0 13.5 14.5 16.0 17.0 | 15.5
16.0
16.0
14.5
16.0 | | 1
2
3
4
5 | | FEBRUARY | | 8.5
7.0
9.0
8.0
6.5
8.0 | MARCH 3.0 4.0 7.0 4.0 2.5 3.5 5.0 | 5.5
5.5
8.0
6.5
4.5
5.5
7.5 | 15.0
15.0
17.0
13.5
10.5
11.5
13.0
13.5 | 11.0
9.5
11.5
9.5
8.0
7.5
6.5 | 12.5
12.0
13.5
11.0
9.5 | 18.5
18.0
18.0
17.0
19.0 | 13.5
14.5
14.5
12.0
13.5 | 15.5
16.0
16.0
14.5
16.0 | | 1
2
3
4
5
6
7
8
9 | | FEBRUARY | | 8.5
7.0
9.0
8.0
6.5
8.0
10.0
11.5
13.0 | 3.0
4.0
7.0
4.0
2.5
3.5
5.0
6.5
9.0
7.0 | 5.5
5.5
8.0
6.5
4.5
5.5
7.5
9.0
11.0 | 15.0
15.0
17.0
13.5
10.5
11.5
13.0
13.5
16.0 | APRIL
11.0
9.5
11.5
9.5
8.0
7.5
6.5
8.5
11.5
13.5 | 12.5
12.0
13.5
11.0
9.5
9.0
9.0
11.0
13.5
15.5 | 18.5
18.0
18.0
17.0
19.0
20.5
21.5
18.5
20.5 | MAY 13.5 14.5 12.0 13.5 14.5 12.0 13.5 | 15.5
16.0
14.5
16.0
14.5
16.0
16.5
18.0
19.0
16.5
17.5 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | 8.5
7.0
9.0
8.0
6.5
8.0
10.0
11.5
13.0
12.5 | 3.0
4.0
7.0
4.0
2.5
3.5
5.0
6.5
9.0
7.0 | 5.5
5.5
8.0
6.5
4.5
5.5
7.5
9.0
11.0
10.5 | 15.0
15.0
17.0
13.5
10.5
11.5
13.0
13.5
16.0
18.5 | APRIL 11.0 9.5 11.5 9.5 8.0 7.5 6.5 8.5 11.5 12.0 12.5 | 12.5
12.0
13.5
11.0
9.5
9.0
9.0
11.0
13.5
15.5 | 18.5
18.0
18.0
17.0
19.0
20.5
21.5
21.5
20.5 | MAY 13.5 14.5 12.0 13.5 14.5 16.0 17.0 15.5 15.5 16.0 | 15.5
16.0
14.5
16.0
16.5
18.0
19.0
16.5
17.5 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | 8.5
7.0
9.0
8.0
6.5
8.0
10.0
11.5
13.0
12.5 | 3.0
4.0
7.0
4.0
2.5
3.5
5.0
6.5
9.0
7.0
5.0
5.5 | 5.5
5.5
8.0
6.5
4.5
7.5
9.0
11.0
7.5
7.5
8.5 | 15.0
15.0
17.0
13.5
10.5
11.5
13.0
13.5
16.0
18.5 | APRIL 11.0 9.5 11.5 9.5 8.0 7.5 6.5 8.5 11.5 12.0 12.5 13.5 | 12.5
12.0
13.5
11.0
9.5
9.0
9.0
11.0
13.5
14.5
13.0
15.5 | 18.5
18.0
18.0
17.0
19.0
20.5
21.5
20.5
20.5 | MAY 13.5 14.5 12.0 13.5 14.5 15.5 16.0 17.0 15.5 15.5 16.0 17.5 | 15.5
16.0
16.0
14.5
16.0
19.0
19.5
17.5
17.5
17.5 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | 8.5
7.0
9.0
8.0
6.5
8.0
10.0
11.5
13.0
12.5 | 3.0
4.0
7.0
4.0
2.5
3.5
5.0
6.5
9.0
7.0 | 5.5
5.5
8.0
6.5
4.5
5.5
7.5
9.0
11.0
10.5 | 15.0
15.0
17.0
13.5
10.5
11.5
13.0
13.5
16.0
18.5 | APRIL 11.0 9.5 11.5 9.5 8.0 7.5 6.5 8.5 11.5 12.0 12.5 | 12.5
12.0
13.5
11.0
9.5
9.0
9.0
11.0
13.5
15.5 | 18.5
18.0
18.0
17.0
19.0
20.5
21.5
21.5
20.5 | MAY 13.5 14.5 12.0 13.5 14.5 16.0 17.0 15.5 15.5 16.0 | 15.5
16.0
14.5
16.0
16.5
18.0
19.0
16.5
17.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | 8.5
7.0
9.0
8.0
6.5
8.0
10.0
11.5
13.0
12.5
10.5
10.5
10.0
9.0
13.0 | 3.0
4.0
7.0
4.0
2.5
3.5
5.0
6.5
9.0
7.0
5.5
8.0
8.0
10.0 | 5.5
5.5
6.5
4.5
5.5
7.5
7.0
11.0
10.5
7.5
8.5
10.5
12.0 | 15.0
15.0
17.0
13.5
10.5
11.5
13.0
13.5
16.0
18.5
14.0
18.5
20.0
22.5 | APRIL 11.0 9.5 11.5 9.5 8.0 7.5 6.5 8.5 11.5 12.0 12.5 13.5 17.0 18.0 | 12.5
12.0
13.5
11.0
9.5
9.0
9.0
11.0
13.5
15.5
14.5
13.0
15.5
17.5
19.0 | 18.5
18.0
18.0
17.0
19.0
20.5
21.5
18.5
20.5
20.0
19.5
19.5
18.5
17.0 | MAY 13.5 14.5 14.5 12.0 13.5 14.5 16.0 17.0 15.5 15.5 15.5 16.0 17.5 15.0 13.0 | 15.5
16.0
14.5
16.0
14.5
16.0
19.0
16.5
17.5
17.5
17.5
18.0
15.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | 8.5
7.0
9.0
8.0
6.5
8.0
10.0
11.5
13.0
12.5
10.0
9.0
13.0
15.0 | 3.0
4.0
7.0
4.0
2.5
3.5
5.0
6.5
9.0
7.0
5.5
8.0
8.0
10.0 | 5.5
5.5
8.0
6.5
4.5
5.5
7.5
9.0
10.5
7.5
8.5
10.5
12.0 | 15.0
15.0
17.0
13.5
10.5
11.5
13.0
13.5
16.0
18.5
14.0
18.5
20.0
22.5 | APRIL 11.0 9.5 11.5 9.5 8.0 7.5 6.5 8.5 11.5 13.5 12.0 12.5 13.5 15.5 17.0 18.0 18.5 | 12.5
12.0
13.5
11.0
9.5
9.0
9.0
11.0
13.5
15.5
14.5
13.0
15.5
17.5
19.0 | 18.5
18.0
18.0
17.0
19.0
20.5
21.5
18.5
20.5
20.5
21.5
18.5
20.5 | MAY 13.5 14.5 12.0 13.5 14.5 16.0 17.0 15.5 15.5 15.5 15.5 15.5 17.0 | 15.5
16.0
14.5
16.0
14.5
16.0
19.0
16.5
17.5
17.5
17.5
18.5
16.0
15.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | | FEBRUARY | | 8.5
7.0
9.0
8.0
6.5
8.0
10.0
11.5
13.0
12.5
10.5
10.0
9.0
13.0
15.0 | 3.0
4.0
7.0
4.0
2.5
3.5
5.0
6.5
9.0
7.0
5.5
8.0
8.0
10.0 | 5.5
5.5
6.5
4.5
5.5
7.5
7.5
7.5
7.5
7.5
10.5
12.0
13.0
9.0
7.0
8.0 | 15.0
15.0
17.0
13.5
10.5
11.5
13.0
13.5
16.0
18.5
14.0
22.5
24.5
25.5
25.5
25.5 | APRIL 11.0 9.5 11.5 9.5 8.0 7.5 6.5 13.5 12.0 12.5 13.5 17.0 18.0 18.5 19.5 | 12.5
12.0
13.5
11.0
9.5
9.0
9.0
11.0
13.5
15.5
14.5
13.0
15.5
17.5
19.0
22.0
22.0
22.0 | 18.5
18.0
18.0
17.0
19.0
20.5
21.5
18.5
20.5
20.0
19.5
19.5
19.5
17.0 | MAY 13.5 14.5 14.5 12.0 13.5 14.5 16.0 17.0 15.5 15.5 16.0 17.5 15.0 13.0 13.5 17.0 13.5 12.0 | 15.5
16.0
14.5
16.0
14.5
16.0
19.0
16.5
17.5
17.5
17.5
18.5
16.0
15.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | | FEBRUARY | | 8.5
7.0
9.0
8.0
6.5
8.0
10.0
11.5
13.0
12.5
10.0
9.0
13.0
15.0
14.5
11.0
7.5
10.0
8.5 | 3.0
4.0
7.0
4.0
2.5
3.5
5.0
6.5
9.0
7.0
5.5
8.0
8.0
10.0 | 5.5
5.5
8.0
6.5
4.5
5.5
7.5
9.0
11.0
10.5
7.5
8.5
12.0
13.0
9.0
7.0
8.0
8.0 | 15.0
15.0
17.0
13.5
10.5
11.5
13.0
13.5
16.0
18.5
20.0
22.5
24.5
25.5
25.5
25.5
21.5 | APRIL 11.0 9.5 11.5 9.5 8.0 7.5 6.5 8.5 11.5 12.0 12.5 13.5 17.0 18.0 18.5 19.5 19.0 18.5 |
12.5
12.0
13.5
11.0
9.5
9.0
9.0
11.5
15.5
14.5
13.0
15.5
17.5
19.0
21.0
22.0
22.0
22.0
20.5 | 18.5
18.0
18.0
17.0
19.0
20.5
21.5
21.5
18.5
20.5
20.0
19.5
17.0
18.5
17.0 | MAY 13.5 14.5 14.5 12.0 13.5 14.5 16.0 17.0 15.5 15.5 15.5 15.0 17.5 15.0 13.5 12.0 | 15.5
16.0
14.5
16.0
19.0
19.0
16.5
17.5
17.5
18.5
16.0
15.0
16.0
13.5
13.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | | FEBRUARY | | 8.5
7.0
9.0
8.0
6.5
8.0
10.0
11.5
13.0
12.5
10.5
10.0
9.0
13.0
15.0 | 3.0
4.0
7.0
4.0
2.5
3.5
5.0
6.5
9.0
7.0
5.5
8.0
8.0
10.0
11.0
7.0
7.0
7.0
7.0 | 5.5
5.5
5.5
4.5
5.5
7.5
7.5
7.5
7.5
8.5
10.5
12.0
13.0
9.0
7.0
8.0
8.0
8.0 | 15.0
15.0
17.0
13.5
10.5
11.5
13.0
13.5
16.0
18.5
14.0
22.5
24.5
25.5
25.5
25.5
21.5 | APRIL 11.0 9.5 11.5 9.5 8.0 7.5 6.5 13.5 12.0 12.5 13.5 17.0 18.0 18.5 19.0 18.5 | 12.5
12.0
13.5
11.0
9.5
9.0
9.0
11.0
13.5
15.5
14.5
13.0
15.5
17.5
19.0
22.0
22.0
22.0
20.5 | 18.5
18.0
18.0
17.0
19.0
20.5
21.5
18.5
20.5
20.0
19.5
19.5
19.5
17.0
18.5
20.0
18.5
17.0 | MAY 13.5 14.5 14.5 12.0 13.5 14.5 16.0 17.0 15.5 15.5 16.0 17.5 15.0 13.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 | 15.5
16.0
14.5
16.0
14.5
16.0
19.0
16.5
17.5
17.5
17.5
18.5
16.0
15.0 | | 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | | FEBRUARY | | 8.5
7.0
9.0
8.0
6.5
8.0
10.0
11.5
13.0
9.0
13.0
15.0
14.5
11.0
7.5
10.0
8.5 | 3.0
4.0
7.0
4.0
2.5
3.5
5.0
6.5
9.0
7.0
5.5
8.0
8.0
10.0
11.0
7.0
7.0
7.0
7.0 | 5.5
5.5
8.0
6.5
4.5
5.5
7.5
9.0
10.5
7.5
8.5
12.0
13.0
9.0
7.0
8.0
8.5
7.0
6.5 | 15.0
15.0
17.0
13.5
10.5
11.5
13.0
13.5
16.0
18.5
20.0
22.5
24.5
25.5
25.5
25.5
21.5 | APRIL 11.0 9.5 11.5 9.5 8.0 7.5 6.5 8.5 11.5 12.0 12.5 13.5 17.0 18.0 18.5 19.5 19.0 18.5 | 12.5
12.0
13.5
11.0
9.5
9.0
9.0
11.0
13.5
15.5
14.5
13.0
15.5
17.5
19.0
22.0
22.0
22.0
22.0
20.5 | 18.5
18.0
18.0
17.0
19.0
20.5
21.5
21.5
20.5
20.5
20.0
19.5
19.5
17.0
18.5
17.0
18.5
17.0 | MAY 13.5 14.5 14.5 12.0 13.5 14.5 16.0 17.0 15.5 15.5 15.5 16.0 17.5 12.0 13.5 12.0 13.5 12.0 13.5 12.0 | 15.5
16.0
14.5
16.0
14.5
16.0
19.0
16.5
17.5
17.5
18.5
16.0
15.0
15.0
13.5
13.0
14.0
15.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | | FEBRUARY | | 8.5
7.0
9.0
8.0
6.5
8.0
10.0
11.5
12.5
10.5
10.0
9.0
13.0
15.0
14.5
11.0
7.5
10.0
8.5 | 3.0
4.0
7.0
4.0
2.5
3.5
5.0
6.5
9.0
7.0
5.5
8.0
10.0
11.0
7.0
7.0
7.0
7.0 | 5.5
5.5
8.0
6.5
4.5
5.5
7.5
9.0
11.0
10.5
7.5
8.5
12.0
13.0
9.0
7.0
8.0
8.5 | 15.0
15.0
17.0
13.5
10.5
11.5
13.0
13.5
16.0
18.5
14.0
18.5
20.0
22.5
24.5
25.5
25.5
25.5
21.5 | APRIL 11.0 9.5 11.5 9.5 8.0 7.5 6.5 8.5 11.5 13.5 12.0 12.5 13.5 15.5 17.0 18.0 18.5 19.5 19.5 19.0 18.5 | 12.5
12.0
13.5
11.0
9.5
9.0
9.0
11.0
13.5
15.5
14.5
13.0
15.5
17.5
19.0
22.0
22.0
22.0
20.5 | 18.5
18.0
17.0
19.0
20.5
21.5
18.5
20.5
20.0
19.5
18.5
19.5
19.5
14.5
14.0 | MAY 13.5 14.5 14.5 12.0 13.5 14.5 16.0 17.0 15.5 15.5 15.5 16.0 17.5 15.0 13.0 13.5 12.0 13.5 12.0 13.5 | 15.5
16.0
14.5
16.0
14.5
16.0
19.0
16.5
17.5
17.5
17.5
18.5
16.0
15.0
16.0
13.0
13.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | | FEBRUARY | | 8.5
7.0
9.0
8.0
6.5
8.0
10.0
11.5
13.0
12.5
10.5
10.0
9.0
13.0
15.0
14.5
11.0
7.5
11.0
8.5 | 3.0
4.0
7.0
4.0
2.5
3.5
5.0
6.5
9.0
7.0
5.5
8.0
8.0
10.0
11.0
7.0
7.0
7.0
7.0
7.0 | 5.5
5.5
8.0
6.5
4.5
5.5
7.5
7.5
7.5
8.5
10.5
12.0
13.0
9.0
8.0
8.0
8.5 | 15.0
15.0
17.0
13.5
10.5
11.5
13.0
13.5
16.0
18.5
14.0
22.5
24.5
25.5
25.5
25.5
21.5 | APRIL 11.0 9.5 11.5 9.5 8.0 7.5 6.5 13.5 12.0 12.5 13.5 17.0 18.0 18.5 19.0 18.5 19.0 18.5 14.0 13.0 11.5 11.5 11.0 12.0 | 12.5
12.0
13.5
11.0
9.5
9.0
9.0
11.0
13.5
15.5
14.5
13.0
21.0
22.0
22.0
22.0
22.0
13.5
14.5 | 18.5
18.0
18.0
17.0
19.0
20.5
21.5
18.5
20.5
21.5
18.5
20.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19 | MAY 13.5 14.5 14.5 12.0 13.5 14.5 16.0 17.0 15.5 15.5 15.5 16.0 17.5 15.0 13.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 | 15.5
16.0
14.5
16.0
14.5
16.0
16.5
17.5
17.5
17.5
18.5
16.0
15.0
15.0
13.0
14.0
15.5
17.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | | FEBRUARY | | 8.5
7.0
9.0
8.0
6.5
8.0
10.0
11.5
10.5
10.0
9.0
13.0
15.0
14.5
11.0
7.5
10.0
8.5 | 3.0
4.0
7.0
4.0
2.5
3.5
5.0
6.5
9.0
7.0
5.5
8.0
10.0
11.0
7.0
7.0
7.0
7.0
7.0
7.0 | 5.5
5.5
5.5
4.5
5.5
7.5
9.0
11.0
10.5
7.5
8.5
10.5
12.0
13.0
9.0
7.0
8.0
8.5
7.5
8.5
8.5
8.5 | 15.0
15.0
17.0
13.5
10.5
11.5
13.0
13.5
16.0
18.5
20.0
22.5
24.5
25.5
25.5
25.5
25.5
21.5 | APRIL 11.0 9.5 11.5 9.5 8.0 7.5 6.5 8.5 11.5 13.5 12.0 12.5 13.5 17.0 18.0 18.5 19.0 18.5 19.0 11.5 11.0 11.0 11.0 | 12.5
12.0
13.5
11.0
9.5
9.0
9.0
11.0
13.5
15.5
14.5
17.5
19.0
22.0
22.0
22.0
22.0
13.5
14.5
13.5
14.5
17.5
19.0 | 18.5
18.0
17.0
19.0
20.5
21.5
18.5
20.5
20.0
19.5
18.5
17.0
18.5
20.0
18.5
17.0
18.5
20.0
18.5
17.0 | MAY 13.5 14.5 14.5 12.0 13.5 14.5 16.0 17.0 15.5 15.5 16.0 17.5 15.5 16.0 17.5 15.0 13.0 13.5 12.0 13.5 12.0 14.5 13.0 14.5 13.0 17.0 17.5 | 15.5
16.0
14.5
16.0
14.5
16.0
19.0
19.0
19.5
17.5
17.5
18.5
17.5
18.5
15.0
15.0
13.0
14.0
15.5
17.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | | FEBRUARY | | 8.5
7.0
9.0
8.0
6.5
8.0
10.0
11.5
13.0
12.5
10.5
10.0
13.0
15.0
14.5
11.0
8.5
10.5
10.0
8.5
10.5
10.5
10.0
8.5 | 3.0
4.0
7.0
4.0
2.5
3.5
5.0
6.5
9.0
7.0
5.5
8.0
8.0
10.0
11.0
7.0
7.0
7.0
7.0
7.0
7.0
8.0
8.0
8.0
8.0
7.0 | 5.5
5.5
8.0
6.5
4.5
5.5
7.5
7.5
10.5
11.0
10.5
7.5
8.5
12.0
13.0
9.0
8.0
8.0
8.5
7.5
8.5
8.5
7.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8 | 15.0
15.0
17.0
13.5
10.5
11.5
13.0
13.5
16.0
18.5
14.0
22.5
24.5
25.5
25.5
25.5
21.5
18.5
15.0
16.5
18.0
14.0 | APRIL 11.0 9.5 11.5 9.5 8.0 7.5 6.5 13.5 12.0 12.5 13.5 17.0 18.0 18.5 19.0 18.5 19.0 11.5 19.0 11.5 11.5 12.0 13.0 13.5 | 12.5
12.0
13.5
11.0
9.5
9.0
9.0
11.0
13.5
15.5
14.5
13.0
22.0
22.0
22.0
22.0
22.0
13.5
14.0
13.5
14.0
13.5 | 18.5 18.0 18.0 17.0 19.0 20.5 21.5 18.5 20.5 20.0 19.5 19.5 18.5 17.0 18.5 20.0 18.5 17.0 18.5 17.0 18.5 17.0 20.5 20.0 20.5 | MAY 13.5 14.5 14.5 12.0 13.5 14.5 16.0 17.0 15.5 15.5 15.5 16.0 17.5 15.0 13.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 18.5 | 15.5
16.0
14.5
16.0
14.5
16.0
16.5
17.5
17.5
17.5
18.5
16.0
15.0
15.0
13.5
13.0
14.0
14.0
15.5
17.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | | FEBRUARY | | 8.5
7.0
9.0
8.0
6.5
8.0
10.0
11.5
13.0
12.5
10.0
9.0
13.0
15.0
14.5
11.0
7.5
10.0
8.5
10.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5 | 3.0
4.0
7.0
4.0
2.5
3.5
5.0
6.5
9.0
7.0
5.5
8.0
8.0
10.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 5.5
5.5
5.5
4.5
5.5
7.5
9.0
110.5
7.5
8.5
12.0
13.0
9.0
7.0
8.0
8.5
7.5
8.5
7.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8 | 15.0
15.0
17.0
13.5
10.5
11.5
13.0
13.5
16.0
18.5
20.0
22.5
24.5
25.5
25.5
21.5
18.5
14.0
16.0
16.5
18.0
16.0 | APRIL 11.0 9.5 11.5 9.5 8.0 7.5 6.5 8.5 11.5 13.5 12.0 12.5 13.5 15.5 17.0 18.0 18.5 19.5 19.0 11.5 11.0
12.0 11.5 11.0 12.0 | 12.5
12.0
13.5
11.0
9.5
9.0
9.0
11.5
15.5
14.5
13.0
15.5
17.5
19.0
22.0
22.0
22.0
22.0
20.5
16.0
13.5
14.0
13.5 | 18.5
18.0
17.0
19.0
20.5
21.5
18.5
20.5
20.0
19.5
19.5
18.5
17.0
18.5
17.0
18.5
14.0
14.5
17.0
18.5
20.0
19.5 | MAY 13.5 14.5 14.5 12.0 13.5 14.5 16.0 17.0 15.5 15.5 15.0 17.5 17.0 13.5 12.0 13.5 12.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 17.5 17.5 | 15.5
16.0
14.5
16.0
14.5
16.0
19.0
16.5
17.5
17.5
18.5
16.0
15.0
13.0
13.0
14.0
15.5
17.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | | FEBRUARY | | 8.5
7.0
9.0
8.0
6.5
8.0
10.0
11.5
13.0
12.5
10.5
10.0
7.5
11.0
7.5
10.0
8.5
10.5
11.0
7.5
10.0
8.5 | 3.0
4.0
7.0
4.0
2.5
3.5
5.0
6.5
9.0
7.0
5.0
8.0
8.0
10.0
11.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 5.5
5.5
5.5
8.0
6.5
4.5
5.5
7.5
9.0
11.0
10.5
7.5
8.5
10.5
12.0
13.0
9.0
7.0
8.0
8.5
7.0
8.5
8.5
8.5
8.5
8.5
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0 | 15.0
15.0
17.0
13.5
10.5
11.5
13.0
13.5
16.0
18.5
20.0
22.5
24.5
25.5
25.5
25.5
25.5
25.5
25.5 | APRIL 11.0 9.5 11.5 9.5 8.0 7.5 6.5 8.5 11.5 13.5 12.0 12.5 13.5 17.0 18.0 18.5 19.0 18.5 19.0 11.5 11.0 12.0 10.0 11.0 12.0 | 12.5
12.0
13.5
11.0
9.5
9.0
9.0
11.0
13.5
15.5
14.5
13.0
22.0
22.0
22.0
22.0
22.0
13.5
14.0
13.5
14.0
13.5 | 18.5 18.0 18.0 17.0 19.0 20.5 21.5 21.5 21.5 18.5 20.5 20.0 19.5 19.5 19.5 14.0 14.5 17.0 18.5 17.0 18.5 20.0 20.5 | MAY 13.5 14.5 14.5 12.0 13.5 16.0 17.0 15.5 15.5 16.0 17.5 15.5 16.0 17.5 15.0 13.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 13.5 17.0 17.5 18.5 19.0 | 15.5
16.0
14.5
16.0
14.5
16.0
19.0
16.5
17.5
17.5
17.5
17.5
18.5
17.5
17.5
17.5
17.5
18.5
17.5
18.0
15.0
15.0
18.5
17.5
17.5
18.0
18.0
18.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19 | ## 01480870 EAST BRANCH BRANDYWINE CREEK BELOW DOWNINGTOWN, PA--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | IR. | | 1
2
3
4
5 | 25.0
24.5
23.5
21.5
23.5 | 20.5
19.5
18.5
18.5
19.0 | 22.5
21.5
20.5
20.0
21.0 | 27.0
28.5
29.5
30.0
29.0 | 22.0
22.5
24.0
24.5
24.5 | 24.0
25.0
26.5
27.0
26.5 | 29.0
29.0
28.0
26.5
26.0 | 23.0
23.0
22.5
22.5
23.0 | 25.5
25.5
25.5
24.0
24.5 | 20.5
20.5
24.0
25.5
24.0 | 17.5
17.5
19.5
21.0
20.0 | 19.0
19.0
21.5
23.0
22.0 | | 6
7
8
9
10 | 24.0

21.5
22.5
24.0 | 19.5

17.5
17.5
19.5 | 22.0

19.5
20.0
21.5 | 26.0

26.5
26.0 | 21.5

21.0
22.5 | 23.5

23.5
24.0 | 26.0
23.5
23.5
24.5
25.0 | 22.0
19.0
18.5
18.5
19.0 | 24.0
21.5
21.0
21.0
22.0 | 23.5
23.5
24.0
24.5
25.0 | 19.0
18.0
18.5
18.5
20.0 | 21.0
20.5
21.0
21.0
22.0 | | 11
12
13
14
15 | 25.0
24.5
23.0
20.5
19.0 | 20.5
22.0
20.5
18.0
18.0 | 22.5
23.0
22.0
19.0
18.5 | 25.0
24.5
23.0
22.0
25.0 | 19.5
18.0
19.0
20.0
19.5 | 22.0
21.0
21.0
21.0
22.0 | 26.0
26.0
27.5
28.0
27.5 | 19.5
21.0
22.0
23.0
23.0 | 22.5
23.5
24.5
25.5
25.0 | 23.5
22.5
22.5
22.5
22.5 | 20.0
18.0
16.0
18.0
21.5 | 22.0
20.0
19.0
20.5
22.0 | | 16
17
18
19
20 | 21.0
22.0
23.0
 | 17.5
18.0
18.5 | 19.0
20.0
20.5
 | 26.5
26.5
26.5
26.0
27.0 | 21.0
20.0
22.5
23.0
22.5 | 23.0
23.0
24.5
24.5
24.5 | 27.5
27.5
28.0
28.0
27.0 | 24.5
23.5
24.0
23.5
24.0 | 25.5
25.5
25.5
25.5
25.0 | 24.0
24.0
23.0
23.0
24.0 | 21.5
20.0
19.0
19.0
19.5 | 22.5
21.5
20.5
21.0
21.5 | | 21
22
23
24
25 |

 |

 |

 | 26.5
27.5
29.0
25.0
25.5 | 23.0
22.5
23.5
23.0
21.5 | 24.5
25.0
25.5
23.5
23.0 | 26.0
26.0
25.0
24.0
25.5 | 21.5
21.0
23.5
22.5
20.5 | 24.0
23.5
24.0
23.0
22.5 | 24.5
24.5

19.5 | 20.5
22.0

16.5 | 22.5
23.0

18.0 | | 26
27
28
29
30
31 |

26.5
26.5 |

21.5
22.0 |

23.5
24.0 | 22.5
22.5
26.0
28.0
28.0
28.5 | 20.5
20.5
21.5
23.0
23.5
23.0 | 21.5
21.5
23.0
25.0
25.5 | 24.0
25.0
22.5
20.0
20.0
22.5 | 21.0
20.5
20.0
18.0
18.5 | 22.5
22.5
21.5
18.5
19.0
20.0 | 19.0
19.0
20.5
20.0
20.5 | 17.5
16.5
18.5
16.5
16.5 | 18.5
17.5
19.5
18.0
18.0 | | MONTH | 26.5 | 17.5 | 21.1 | 30.0 | 18.0 | 23.8 | 29.0 | 18.0 | 23.3 | 25.5 | 16.0 | 20.6 | ## OXYGEN, DISSOLVED (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--|---------------------------------|--|--------------------------------------|---------------------------------|-------------------------------------|------------------------------|--------------------------|----------------------------|----------|----------|----------| | OCTOBER | | | NOVEMBER | | | I | DECEMBER | ! | JANUARY | | | | | 1
2
3
4
5 | 10.0
10.7
10.7
10.8
10.7 | 8.2
8.1
7.8
7.5
7.5 | 8.9
9.1
8.9
8.7
8.7 | 13.8
13.3
12.5
13.4
13.7 | 7.3
6.2
5.8
6.3
7.0 | 9.7
9.0
7.9
8.9
9.4 | 11.2
11.9
12.8
12.9 | 7.1
7.5
8.7
8.8 | 8.4
9.3
10.1
10.2 | | |

 | | 6
7
8
9
10 | 10.2
10.7
11.0
11.6
11.9 | 6.8
7.6
8.3
8.9
8.2 | 8.3
8.9
9.5
10.0 | 13.8
15.0
15.1
14.9
15.5 | 7.5
7.4
7.7
7.2
8.1 | 9.8
10.1
10.3
10 |

 | | | |

 | | | 11
12
13
14
15 | 11.2
12.0
12.2
11.5
9.8 | 7.5
7.1
7.2
6.9
6.5 | 9.0
9.0
9.0
8.5
7.8 | 15.8
16.5
16.6
16.7
16.8 | 8.2
8.9
9.2
8.9
8.3 | 10.8
11.6
11.6
11.6 |

 | |

 |

 |

 | | | 16
17
18
19
20 | 10.5
10.4
11.1
11.0
11.3 | 6.9
7.0
8.2
7.5
7.0 | 8.5
8.4
9.5
9.2
8.6 | 16.3
16.0
16.4
16.0
14.5 | 8.1
8.7
7.6
7.3 | 10.9
10.9
11.5
11.0
9.6 |

 | | |

 |

 | | | 21
22
23
24
25 | 11.6
11.9
11.7
11.0 | 6.5
6.2
5.8
5.8 | 8.5
8.3
7.9
7.6
7.6 | 15.5
15.9
15.7
14.6
12.3 | 8.0
8.8
9.1
7.7 | 10.5
11.3
11.2
10.3 |

 | |

 |

 |

 | | | 26
27
28
29
30
31 | 11.6
12.2
13.1
13.4
13.2
14.0 | 6.4
7.7
8.3
7.9
7.6 | 8.5
9.4
10.1
10.2
9.5
9.8 | 11.8
11.9
9.7
9.6 | 8.0
7.4
7.2
7.1 | 9.3
8.9
8.0
8.0 |

 | |

 |

 | | | | MONTH | 14.0 | 5.8 | 8.9 | 16.8 | 5.8 | 10.2 | | | | | | | ## 01480870 EAST BRANCH BRANDYWINE CREEK BELOW DOWNINGTOWN, PA--Continued OXYGEN, DISSOLVED (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|---|---|---|--|---|---|--|--
--|---|--|--| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 2 | | | | 17.3
17.1 | 12.4
12.0 | 14.2
14.1 | 15.1
16.6 | 9.1
8.6 | 11.3
11.6 | 11.3
9.9 | 7.7
7.2 | 9.7
8.3 | | 3 | | | | 12.5 | 11.5 | 12.0 | 16.8 | 8.2 | 10.7 | 9.1 | 7.4 | 8.6 | | 4
5 | | | | 14.7
15.8 | 11.5
12.7 | 13.0
14.0 | 16.7
16.9 | 8.6
9.3 | 11.8
12.3 | 10.4
10.1 | 8.4
7.9 | 9.5
9.0 | | 6
7 | | | | | | | 17.5
18.5 | 9.5
9.2 | 12.7
13.0 | 10.3
10.3 | 7.5
7.1 | 8.9
8.5 | | 8 | | | | | | | 19.3 | 8.6 | 12.9 | 10.3 | 6.9 | 8.3 | | 9
10 | | | | 12.8
12.4 | 8.0
7.9 | 9.7
9.6 | 18.9
18.3 | 7.4
6.9 | 11.6
11.5 | 9.3
10.7 | 6.8
8.0 | 8.1
9.3 | | 11 | | | | 13.0 | 8.5 | 10.2 | 18.4 | 7.3 | 11.9 | 11.2 | 7.9 | 9.5 | | 12
13 | | | | 13.4
11.5 | 9.0
9.4 | 10.5
10.2 | 16.9
18.9 | 7.4
6.9 | 11.1
11.6 | 11.7
10.2 | 7.9
7.8 | 9.5
8.7 | | 14
15 | | | | 13.1
13.7 | 7.9
7.5 | 10.2
9.9 | 18.2
17.2 | 6.3
5.1 | 10.8
10.1 | 9.2
10.5 | 7.8
8.9 | 8.7
9.6 | | 16 | | | | 13.4 | 7.3 | 9.3 | 15.9 | 4.2 | 8.9 | 10.7 | 8.5 | 9.5 | | 17 | | | | 13.1 | 7.9 | 10.3 | 15.9 | 3.8 | 8.3 | 9.9 | 7.4 | 8.7 | | 18
19 | | | | 12.3
12.4 | 10.0
8.8 | 10.8
10.6 | 14.6
13.7 | 3.6
3.7 | 7.6
7.2 | 9.3
10.5 | 7.4
9.2 | 8.6
9.7 | | 20 | | | | 11.0 | 9.5 | 10.4 | 10.8 | 3.7 | 6.7 | 10.9 | 9.2 | 10.0 | | 21
22 | | | | 12.1
13.1 | 9.8
9.8 | 10.9
11.3 | 10.6
10.8 | 4.9
7.1 | 7.6
8.7 | 11.1
11.3 | 9.3
8.8 | 10.1
10.1 | | 23 | | | | 13.4 | 10.3 | 11.5 | 12.2 | 7.9 | 9.8 | 11.1 | 8.3 | 9.7 | | 24
25 | | | | 13.9
14.4 | 10.3 | 11.6
11.6 | 12.0
10.6 | 7.6
7.5 | 9.5
8.8 | 11.2
11.4 | 7.5
7.4 | 9.3
9.0 | | 26 | | | | 12.7 | 10.0 | 11.0 | 12.0 | 8.6 | 10.2 | 11.2 | 7.6 | 9.0 | | 27
28 | 15.5
16.6 | 9.8
11.6 | 12.1
13.7 | 12.8
14.0 | 10.6
10.1 | 11.5
11.7 | 12.0
9.6 | 8.2
8.1 | 10.0
9.0 | 10.3
11.0 | 7.7
7.4 | 8.7
8.9 | | 29
30 | | | | 14.5
14.4 | 9.3
9.0 | 11.5
11.1 | 10.8
11.7 | 8.8
8.9 | 9.8
10.3 | 11.1
10.9 | 6.9
6.8 | 8.7
8.4 | | 31 | | | | 14.1 | 8.9 | 11.0 | | | | 10.9 | 6.3 | 8.2 | | MONTH | | | | 17.3 | 7.2 | 11.2 | 19.3 | 3.6 | 10.2 | 11.7 | 6.3 | 9.1 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | | MIN
SEPTEMBE | | | 1 | 10.6 | JUNE 6.1 | 7.8 | 9.7 | JULY 6.2 | 7.5 | 9.5 | AUGUST | 7.1 | 8.5 | SEPTEMBE
6.4 | TR 7.5 | | | | JUNE | | | JULY | | | AUGUST | | i | SEPTEMBE | IR. | | 1
2 | 10.6
10.7 | JUNE 6.1 6.1 6.3 6.4 | 7.8
7.9
8.0
8.3 | 9.7
9.5
9.3
9.3 | JULY 6.2 5.9 5.6 5.5 | 7.5
7.4
7.0
6.9 | 9.5
9.6
9.6
8.4 | 5.5
5.5
5.7
6.3 | 7.1
7.1
7.3
7.1 | 8.5
9.3
9.9
9.1 | 6.4
6.6 | 7.5
8.0
7.3
6.9 | | 1
2
3
4
5 | 10.6
10.7
10.8
11.0
9.3 | 6.1
6.1
6.3
6.4
5.8 | 7.8
7.9
8.0
8.3
7.4 | 9.7
9.5
9.3
9.3
8.9 | JULY 6.2 5.9 5.6 5.5 5.6 | 7.5
7.4
7.0
6.9
6.9 | 9.5
9.6
9.6
8.4
8.6 | 5.5
5.5
5.7
6.3
6.1 | 7.1
7.1
7.3
7.1
7.2 | 8.5
9.3
9.9
9.1
9.4 | 6.4
6.6
6.0
5.7
5.8 | 7.5
8.0
7.3
6.9
7.0 | | 1
2
3
4
5 | 10.6
10.7
10.8
11.0
9.3 | 5.8
5.6 | 7.8
7.9
8.0
8.3
7.4 | 9.7
9.5
9.3
9.3
8.9 | JULY 6.2 5.9 5.6 5.5 5.6 | 7.5
7.4
7.0
6.9
6.9 | 9.5
9.6
9.6
8.4
8.6 | 5.5
5.5
5.7
6.3
6.1
6.2
6.2 | 7.1
7.1
7.3
7.1
7.2
7.2
7.5 | 8.5
9.3
9.9
9.1
9.4
9.5 | 6.4
6.6
6.0
5.7
5.8
6.0
6.2 | 7.5
8.0
7.3
6.9
7.0 | | 1
2
3
4
5
6
7
8 | 10.6
10.7
10.8
11.0
9.3
9.8

8.1
9.0 | 5.6
6.1
6.1
6.3
6.4
5.8
5.6

6.7 | 7.8
7.9
8.0
8.3
7.4
7.2

7.4
7.7 | 9.7
9.5
9.3
9.3
8.9
9.6 | 5.2
5.9
5.6
5.5
5.6
6.1 | 7.5
7.4
7.0
6.9
6.9
7.7 | 9.5
9.6
9.6
8.4
8.6
9.0
9.5
9.9 | 5.5
5.5
5.7
6.3
6.1
6.2
6.2
6.8
6.9 | 7.1
7.1
7.3
7.1
7.2
7.2
7.5
7.9
8.0 | 8.5
9.3
9.9
9.1
9.4
9.5
9.3
9.3 | 6.4
6.6
6.0
5.7
5.8
6.0
6.2
6.1
5.9 | 7.5
8.0
7.3
6.9
7.0
7.2
7.4
7.2
7.1 | | 1
2
3
4
5
6
7
8
9 | 10.6
10.7
10.8
11.0
9.3
9.8

8.1
9.0
9.2 | 5.6
6.1
6.1
6.3
6.4
5.8
5.6
6.7
6.7 | 7.8
7.9
8.0
8.3
7.4
7.2

7.4
7.7 | 9.7
9.5
9.3
9.3
8.9
9.6

10.1 | 5.2
5.9
5.6
5.5
5.6
6.1

6.1
5.8 | 7.5
7.4
7.0
6.9
6.9
7.7

7.7
7.4 | 9.5
9.6
9.6
8.4
8.6
9.0
9.5
9.9 | 5.5
5.5
5.7
6.3
6.1
6.2
6.2
6.8
6.9 | 7.1
7.1
7.3
7.1
7.2
7.2
7.5
7.9
8.0
8.1 | 8.5
9.3
9.9
9.1
9.4
9.5
9.3
9.3 | 6.4
6.6
6.0
5.7
5.8
6.0
6.2
6.1 | 7.5
8.0
7.3
6.9
7.0
7.2
7.4
7.2
7.1 | | 1
2
3
4
5
6
7
8
9
10 | 10.6
10.7
10.8
11.0
9.3
9.8

8.1
9.0
9.2 | JUNE 6.1 6.1 6.3 6.4 5.8 5.6 6.7 6.4 6.5 | 7.8
7.9
8.0
8.3
7.4
7.2

7.4
7.7
7.6 | 9.7
9.5
9.3
9.3
8.9
9.6

10.1
9.9 | 5.5
5.6
5.5
5.6
6.1

6.1
5.8 | 7.5
7.4
7.0
6.9
6.9
7.7

7.7
7.4 | 9.5
9.6
9.6
8.4
8.6
9.0
9.5
9.9
10.1 | 5.5
5.5
5.7
6.3
6.1
6.2
6.2
6.8
6.9
6.9 | 7.1
7.1
7.3
7.1
7.2
7.2
7.5
7.9
8.0
8.1 | 8.5
9.3
9.9
9.1
9.4
9.5
9.3
9.5 | 6.4
6.6
6.0
5.7
5.8
6.0
6.2
6.1
5.7 | 7.5
8.0
7.3
6.9
7.0
7.2
7.4
7.2
7.1
7.1 | | 1
2
3
4
5
6
7
8
9
10 | 10.6
10.7
10.8
11.0
9.3
9.8

8.1
9.0
9.2
9.4
8.9
9.1 | 5.8
5.6
6.7
6.4
5.8
5.6
6.7
6.7
6.4
6.5 | 7.8
7.9
8.0
8.3
7.4
7.2

7.4
7.7
7.6
7.7 | 9.7
9.5
9.3
9.3
8.9
9.6

10.1
9.9 | 5.2
5.9
5.6
5.5
5.6
6.1

6.1
5.8
6.4
6.8
6.6 | 7.5
7.4
7.0
6.9
6.9
7.7

7.7
7.4
7.8
8.1
8.2 | 9.5
9.6
9.6
8.4
8.6
9.0
9.5
9.9
10.1 | 5.5
5.5
5.7
6.3
6.1
6.2
6.2
6.8
6.9
6.9
6.5
6.5 | 7.1
7.1
7.3
7.1
7.2
7.2
7.5
7.9
8.0
8.1
8.2
8.1
8.1 | 8.5
9.3
9.9
9.1
9.4
9.5
9.3
9.3
9.5 | 6.4
6.6
6.0
5.7
5.8
6.0
6.2
6.1
5.7
5.7 | 7.5
8.0
7.3
6.9
7.0
7.2
7.4
7.2
7.1
6.8
7.2 | | 1
2
3
4
5
6
7
8
9
10 | 10.6
10.7
10.8
11.0
9.3
9.8

8.1
9.0
9.2 | JUNE 6.1 6.1 6.3 6.4 5.8 5.6 6.7 6.4 6.5 | 7.8
7.9
8.0
8.3
7.4
7.2

7.4
7.7
7.6 | 9.7
9.5
9.3
9.3
8.9
9.6

10.1
9.9 | 5.5
5.6
5.5
5.6
6.1

6.1
5.8 | 7.5
7.4
7.0
6.9
6.9
7.7

7.7
7.4 | 9.5
9.6
9.6
8.4
8.6
9.0
9.5
9.9
10.1 | 5.5
5.5
5.7
6.3
6.1
6.2
6.2
6.8
6.9
6.9 | 7.1
7.1
7.3
7.1
7.2
7.2
7.5
7.9
8.0
8.1 | 8.5
9.3
9.9
9.1
9.4
9.5
9.3
9.5 | 6.4
6.6
6.0
5.7
5.8
6.0
6.2
6.1
5.7 | 7.5
8.0
7.3
6.9
7.0
7.2
7.4
7.2
7.1
7.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 10.6
10.7
10.8
11.0
9.3
9.8

8.1
9.0
9.2
9.4
8.9
9.1
8.3
9.1 | JUNE 6.1 6.3 6.4 5.8 5.6 6.7 6.4 6.5 6.4 6.2 6.3 7.0 7.8 | 7.8
7.9
8.0
8.3
7.4
7.2

7.4
7.7
7.6
7.7
7.3
7.4
7.7
8.3 | 9.7
9.5
9.3
9.3
8.9
9.6

10.1
9.9
10.0
10.3
10.0
10.2 | JULY 6.2 5.9 5.6 5.5 6.1 6.1 5.8 6.4 6.8 6.6 6.4 6.1 | 7.5
7.4
7.0
6.9
6.9
7.7

7.7
7.4
7.8
8.1
8.1
8.0
8.1 | 9.5
9.6
9.6
8.4
8.6
9.0
9.5
9.9
10.1
10.4
10.8
11.0
10.9
10.1 | ************************************** | 7.1
7.1
7.3
7.1
7.2
7.2
7.5
7.9
8.0
8.1
8.1
8.1
7.9
7.2 | 8.5
9.3
9.9
9.1
9.4
9.3
9.3
9.5
9.7
9.8
9.5
8.2 | 6.4
6.6
6.0
5.7
5.8
6.0
6.2
6.1
5.9
5.7
5.4
5.9
5.7 | 7.5
8.0
7.3
6.9
7.0
7.2
7.4
7.2
7.1
7.1
6.8
7.2
7.3
7.0
6.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 10.6
10.7
10.8
11.0
9.3
9.8

8.1
9.0
9.2
9.4
8.9
9.1
8.3
9.1
9.4
9.7
9.9 | 5.8 5.6 6.7 6.4 6.5 6.4 6.5 6.4 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7
6.7 | 7.8
7.9
8.0
8.3
7.4
7.2

7.4
7.7
7.6
7.7
7.6
7.7
8.3
8.4
8.2
8.3 | 9.7
9.5
9.3
9.3
8.9
9.6

10.1
9.9
10.0
10.3
10.3
10.0
10.2 | JULY 6.2 5.9 5.6 5.5 5.6 6.1 6.1 5.8 6.4 6.6 6.4 6.1 6.1 5.3 | 7.5
7.4
7.0
6.9
6.9
7.7

7.7
7.4
7.8
8.1
8.2
8.0
8.1
7.6
7.2 | 9.5
9.6
9.6
8.4
8.6
9.0
9.5
9.9
10.1
10.8
11.0
10.9
10.1 | **AUGUST** 5.5 5.5 5.7 6.3 6.1 6.2 6.8 6.9 6.9 6.9 6.5 6.3 5.8 5.4 5.0 5.2 5.0 | 7.1
7.1
7.3
7.1
7.2
7.2
7.5
7.9
8.1
8.1
7.9
7.2
7.2
7.1 | 8.5
9.3
9.1
9.4
9.5
9.3
9.5
9.3
9.5
9.7
9.8
9.5
8.5
8.9 | 6.4
6.6
6.0
5.7
5.8
6.0
6.2
6.1
5.9
5.7
5.8
5.9
5.2 | 7.5
8.0
7.3
6.9
7.0
7.2
7.4
7.2
7.1
7.1
6.8
7.2
7.3
7.0
6.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 10.6
10.7
10.8
11.0
9.3
9.8

8.1
9.0
9.2
9.4
8.9
9.1
8.3
9.1 | JUNE 6.1 6.3 6.4 5.8 5.6 6.7 6.4 6.5 6.4 6.2 6.3 7.0 7.8 | 7.8
7.9
8.0
8.3
7.4
7.2

7.4
7.7
7.6
7.7
7.3
7.4
7.7
8.3 | 9.7
9.5
9.3
9.3
8.9
9.6

10.1
9.9
10.0
10.3
10.3
10.3
10.0
10.2 | JULY 6.2 5.9 5.6 5.5 6.1 6.1 5.8 6.4 6.8 6.6 6.4 6.1 6.0 | 7.5
7.4
7.0
6.9
6.9
7.7

7.7
7.4
7.8
8.1
8.2
8.1
7.6
7.6 | 9.5
9.6
9.6
8.4
8.6
9.0
9.5
9.9
10.1
10.4
10.8
11.0
10.9
10.1 | 5.5
5.5
5.7
6.3
6.1
6.2
6.2
6.8
6.9
6.9
6.5
6.3
5.4 | 7.1
7.1
7.3
7.1
7.2
7.5
7.9
8.1
8.1
8.1
7.9
7.2 | 8.5
9.3
9.1
9.4
9.5
9.3
9.5
9.3
9.5
9.7
9.8
9.5
8.2 | 6.4
6.6
6.0
5.7
5.8
6.0
6.2
6.1
5.9
5.7
5.8
5.9
5.7 | 7.5
8.0
7.3
6.9
7.0
7.2
7.4
7.2
7.1
7.1
6.8
7.2
7.3
7.0
6.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 10.6
10.7
10.8
11.0
9.3
9.8

8.1
9.0
9.2
9.4
8.9
9.1
8.3
9.1 | JUNE 6.1 6.3 6.4 5.8 5.6 6.7 6.4 6.5 6.4 6.2 6.3 7.0 7.8 7.4 7.3 7.0 | 7.8
7.9
8.0
8.3
7.4
7.2
7.4
7.7
7.6
7.7
7.3
7.4
7.7
8.3
8.4
8.2
8.3 | 9.7
9.5
9.3
9.3
8.9
9.6

10.1
9.9
10.0
10.3
10.3
10.0
10.2
9.8
9.7
9.7 | 5.2
5.9
5.6
5.5
5.6
6.1

6.1
5.8
6.4
6.6
6.4
6.1
6.1
6.3
5.3 | 7.5
7.4
7.0
6.9
6.9
7.7

7.7
7.4
7.8
8.1
8.2
8.0
8.1
7.6
6
7.2
7.1 | 9.5
9.6
9.6
8.4
8.6
9.0
9.5
9.9
10.1
10.4
10.8
11.0
10.9
10.1
10.5
10.3
10.2
10.3 | 5.5
5.5
5.7
6.3
6.1
6.2
6.8
6.9
6.9
6.5
6.3
5.8
5.4
5.0
4.6
4.6 | 7.1
7.1
7.3
7.1
7.2
7.2
7.5
7.9
8.0
8.1
8.2
8.1
8.1
7.9
7.2
7.2
7.1
6.8
6.7
6.8 | 8.5
9.3
9.1
9.4
9.5
9.3
9.5
9.3
9.5
9.7
9.8
9.5
8.9
9.4 | 6.4
6.6
6.0
5.7
5.8
6.0
6.2
6.1
5.9
5.7
5.4
5.9
5.9
5.2
4.9 | 7.5
8.0
7.3
6.9
7.0
7.2
7.4
7.2
7.1
7.1
6.8
7.2
7.3
7.0
6.1
6.5
6.4
6.5
6.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 10.6
10.7
10.8
11.0
9.3
9.8

8.1
9.0
9.2
9.4
8.9
9.1
9.7
9.7
9.9 | 5.6
6.1
6.3
6.4
5.8
5.6

6.7
6.4
6.5
6.4
6.2
7.0
7.8
7.4
7.3
7.0 | 7.8
7.9
8.0
8.3
7.4
7.2

7.4
7.7
7.6
7.7
7.3
7.4
7.7
8.3
8.4
8.2
8.3 | 9.7
9.5
9.3
9.3
8.9
9.6

10.1
9.9
10.0
10.3
10.3
10.0
10.2
9.8
9.7
9.7 | JULY 6.29 5.66 5.56 6.1 6.18 6.4 6.66 6.4 6.00 5.33 5.4 5.3 | 7.5
7.4
7.0
6.9
6.9
7.7
7.4
7.8
8.1
8.2
8.0
8.1
7.6
7.2
7.1 | 9.5
9.6
9.6
8.4
8.6
9.0
9.5
9.9
10.1
10.4
10.8
11.0
10.9
10.1
10.5
10.3
10.2
10.3
11.1 | AUGUST 5.5 5.7 6.3 6.1 6.2 6.8 6.9 6.9 6.5 6.3 5.4 5.0 5.2 5.0 4.6 4.6 5.1 5.3 | 7.1
7.1
7.3
7.1
7.2
7.5
7.9
8.1
8.2
8.1
8.1
7.2
7.2
7.1
6.8
6.8
7.4 | 8.5
9.3
9.1
9.4
9.5
9.3
9.5
9.7
9.5
9.7
9.5
8.5
9.4
9.3
9.4
9.5
8.5
9.3
9.1
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5 | 6.4
6.6
6.0
5.7
5.8
6.0
6.2
6.1
5.9
5.7
5.4
5.8
5.9
4.9
5.3
5.2
4.9 | 7.5
8.0
7.3
6.9
7.0
7.2
7.4
7.1
7.1
6.8
7.2
7.3
7.0
6.1
6.5
6.4
6.5
6.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 10.6
10.7
10.8
11.0
9.3
9.8

8.1
9.0
9.2
9.4
8.9
9.1
8.3
9.1 | 5.6
6.7
6.4
5.8
5.6
6.7
6.4
6.5
6.4
6.5
7.0
7.8
7.4
7.3
7.0 | 7.8
7.9
8.0
8.3
7.4
7.2
7.4
7.7
7.6
7.7
8.3
8.4
8.2
8.3
 | 9.7
9.5
9.3
9.3
8.9
9.6

10.1
9.9
10.0
10.3
10.0
10.2
10.0
10.2
9.8
9.7
9.7
9.8
9.8
9.8
9.7
9.7
8.9 | JULY 6.29 5.66 5.56 6.1 6.11 5.8 6.4 6.66 6.4 6.03 5.33 5.4 5.33 5.40 9 | 7.5
7.4
7.0
6.9
6.9
7.7
7.4
7.8
8.1
8.0
8.1
7.6
7.1
7.1
7.1
7.1
6.7 | 9.5
9.6
9.6
8.4
8.6
9.0
9.5
9.9
10.1
10.4
10.9
10.1
10.5
10.3
10.2
10.3
10.2
10.3
10.2 | **AUGUST** 5.5 5.5 5.7 6.3 6.1 6.2 6.2 6.8 6.9 6.9 6.9 6.5 5.4 5.0 5.2 5.0 4.6 4.6 5.1 5.3 4.8 5.1 | 7.1
7.1
7.3
7.1
7.2
7.2
7.5
8.0
8.1
8.2
8.1
7.9
7.2
7.1
6.7
6.8
7.4
6.6
6.6 | 8.5
9.9
9.1
9.4
9.3
9.3
9.5
9.7
9.5
8.5
8.5
9.3
9.3
9.5
8.5
9.9 | 6.4
6.6
5.7
5.8
6.0
6.2
6.1
5.9
5.7
5.4
5.9
5.7
5.4
5.9
5.2
4.9
4.7
 | 7.5
8.0
7.3
6.9
7.0
7.2
7.4
7.2
7.1
7.1
6.8
7.2
7.3
7.0
6.1
6.5
6.4
6.5
6.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 10.6
10.7
10.8
11.0
9.3
9.8

8.1
9.0
9.2
9.4
8.9
9.1
8.9
9.1
9.7
9.9
 | 5.6
6.1
6.3
6.4
5.8
5.6
6.7
6.4
6.5
6.4
6.2
6.3
7.0
7.8
7.4
7.3
7.0 | 7.8
7.9
8.0
8.3
7.4
7.2

7.4
7.7
7.6
7.7
7.3
7.4
7.7
8.3
8.4
8.2
8.3
 | 9.7
9.5
9.3
9.3
8.9
9.6

10.1
9.9
10.0
10.3
10.3
10.0
10.2
10.0
10.2
9.8
9.7
9.7
9.8
9.7
8.9 | JULY 6.29 5.66 5.55 6.1 6.1 5.8 6.4 6.66 6.4 6.10 5.3 5.3 5.3 5.3 5.3 5.8 | 7.54
7.06.99
6.9
7.7
7.7
7.4
7.8
8.1
8.2
8.1
7.66
7.2
7.1
7.1
6.8
6.7 | 9.5
9.6
9.6
8.4
8.6
9.0
9.5
9.9
10.1
10.4
10.8
11.0
10.9
10.1
10.3
10.2
10.3
10.2
10.3
10.2
10.3
10.2 | AUGUST 5.5 5.7 6.3 6.1 6.2 6.8 6.9 6.9 6.5 6.3 5.4 5.0 4.6 5.1 5.7 | 7.1
7.1
7.3
7.1
7.2
7.5
7.9
8.1
8.1
8.1
7.2
7.2
7.1
6.8
6.7
6.6
6.6
7.1 | 8.5
9.3
9.9
9.1
9.4
9.5
9.3
9.5
9.3
9.5
9.7
9.8
9.5
8.2
8.5
8.9
9.3
9.3 | 5.4
5.4
5.8
6.0
6.2
6.1
5.7
5.8
5.9
5.7
5.4
5.8
5.9
4.9
4.9
4.7

6.7 | 7.5
8.0
7.3
6.9
7.0
7.2
7.4
7.2
7.1
6.8
7.2
7.3
6.1
6.5
6.4
6.5
6.7
6.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 10.6
10.7
10.8
11.0
9.3
9.8

8.1
9.0
9.2
9.4
8.9
9.1
9.4
9.7
9.9
 | 5.6
6.7
6.4
5.8
5.6
6.7
6.4
6.5
6.4
6.5
7.0
7.8
7.4
7.3
7.0 | 7.8
7.9
8.0
8.3
7.4
7.2
7.4
7.7
7.6
7.7
8.3
8.4
8.2
8.3
 | 9.7
9.5
9.3
9.3
8.9
9.6

10.1
9.9
10.0
10.3
10.0
10.2
10.0
10.2
9.8
9.7
9.7
9.8
9.8
9.8
9.7
9.7
8.9 | JULY 6.29 5.66 5.56 6.1 6.11 5.8 6.4 6.66 6.4 6.03 5.33 5.4 5.33 5.40 9 | 7.5
7.4
7.0
6.9
6.9
7.7
7.4
7.8
8.1
8.0
8.1
7.6
7.1
7.1
7.1
7.1
6.7 | 9.5
9.6
9.6
8.4
8.6
9.0
9.5
9.9
10.1
10.4
10.8
11.0
10.9
10.1
10.3
10.2
10.3
10.2
10.3
10.3
10.2 | **AUGUST** 5.5 5.5 5.7 6.3 6.1 6.2 6.2 6.8 6.9 6.9 6.9 6.5 5.4 5.0 5.2 5.0 4.6 4.6 5.1 5.3 4.8 5.1 | 7.1
7.1
7.3
7.1
7.2
7.2
7.5
8.0
8.1
8.2
8.1
7.9
7.2
7.1
6.7
6.8
7.4
6.6
6.6 | 8.5
9.3
9.1
9.4
9.5
9.3
9.5
9.7
9.5
8.5
9.3
9.5
8.5
9.3
9.5
8.5
9.3
9.1
9.5
8.5
9.5
8.5
9.1
9.5
8.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9 | 6.4
6.6
5.7
5.8
6.0
6.2
6.1
5.9
5.7
5.4
5.9
5.7
5.4
5.9
5.2
4.9
4.7
 | 7.5
8.0
7.3
6.9
7.0
7.2
7.4
7.2
7.1
7.1
6.8
7.2
7.3
7.0
6.1
6.5
6.4
6.5
6.5
| | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 10.6
10.7
10.8
11.0
9.3
9.8

8.1
9.0
9.2
9.4
8.9
9.1
8.9
9.1
9.7
9.9
 | 5.6 6.4 6.5 6.4 6.3 7.0 7.8 7.4 7.3 7.0 | 7.8
7.9
8.0
8.3
7.4
7.2

7.4
7.7
7.6
7.7
8.3
8.4
8.2
8.3
 | 9.7
9.5
9.3
9.3
8.9
9.6

10.1
9.9
10.0
10.3
10.3
10.0
10.2
10.0
10.2
9.8
9.7
9.7
9.9
9.8
9.7
9.9 | JULY 6.295.55 5.6 6.1 | 7.54
7.0
6.9
6.9
7.7
7.4
7.8
8.1
8.1
7.6
8.1
7.2
7.1
7.1
7.2
6.8
7.4
7.4
7.5 | 9.5
9.6
9.6
8.4
8.6
9.0
9.5
9.9
10.1
10.4
10.8
11.0
10.9
10.1
10.3
10.2
10.3
10.2
10.3
10.2
10.3
10.2
10.3
10.4
10.8
11.0
10.9
10.1 | AUGUST 5.5 5.7 6.3 6.1 6.2 6.8 6.9 6.9 6.5 6.3 5.4 5.0 4.6 5.1 5.2 5.0 4.6 5.1 5.7 5.4 5.4 5.4 | 7.1
7.1
7.2
7.5
7.9
8.1
8.2
8.1
7.2
7.1
6.8
7.4
6.6
6.6
7.1
6.6
6.6
7.1
6.7 | 8.5
9.3
9.1
9.4
9.5
9.3
9.5
9.7
9.8
9.5
8.5
8.9
9.4
9.3
9.4
9.5
8.5
8.9
9.1
10.0
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5 | 5.4
5.2
6.4
6.6
6.0
5.7
5.8
6.0
6.2
6.1
5.9
5.7
5.4
5.9
5.2
4.9
5.3
5.2
5.3
5.2
6.3
6.3
7.3
7.0 | 7.5
8.0
7.3
6.9
7.0
7.2
7.4
7.2
7.1
6.8
7.2
7.3
7.0
6.1
6.5
6.7
6.6
6.5
6.7
7.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 10.6
10.7
10.8
11.0
9.3
9.8

8.1
9.0
9.2
9.4
8.9
9.1
8.3
9.1
9.7
9.9
 | 5.6 6.4 6.5 6.4 6.5 6.4 6.7 6.4 6.5 6.4 6.2 6.3 7.0 7.8 7.4 7.3 7.0 6.1 6.2 | 7.8
7.9
8.0
8.3
7.4
7.2
7.4
7.7
7.6
7.7
8.3
8.4
8.2
8.3
 | 9.7
9.5
9.3
9.3
8.9
9.6

10.1
9.9
10.0
10.3
10.3
10.0
10.2
10.0
10.2
9.8
9.7
9.7
9.9 | JULY 6.29 5.56 5.6 6.1 6.18 6.86 6.64 6.03 5.34 5.30 5.30 5.30 5.31 5.30 5.31 5.31 5.32 6.17 5.4 | 7.54
7.06.99
6.9
7.7
7.4
7.88.1
8.0
8.1
7.62
7.11
7.11
7.14
7.52
7.0 | 9.5
9.6
9.6
8.4
8.6
9.0
9.5
9.9
10.1
10.4
10.8
11.0
10.9
10.1
10.5
10.3
10.2
10.3
10.2
10.3
10.2
10.3
10.4
9.5
9.9
10.1 | AUGUST 5.5 5.7 6.3 6.1 6.2 6.8 6.9 6.9 6.5 5.4 5.2 5.0 4.6 5.1 3.4.8 5.7 5.4 5.4 6.9 6.9 | 7.1
7.1
7.2
7.5
9.0
8.1
8.2
8.1
8.2
7.2
7.1
6.8
7.4
6.66
7.4
6.66
7.7
7.8 | 8.5
9.3
9.1
9.4
9.5
9.3
9.5
9.7
9.5
8.5
9.3
9.5
8.5
9.3
9.1
9.5
8.5
9.3
9.1
9.5
8.5
9.5
8.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9 | 5.4
5.2
5.3
5.2
4.9
5.3
5.2
4.9
6.1
5.9
5.7
5.4
5.8
5.9
5.2
4.9
6.7
6.3
7.2
7.0
6.3 | 7.5
8.0
7.3
6.9
7.0
7.2
7.4
7.1
6.8
7.2
7.0
6.1
6.5
6.4
6.5
6.6
6.5
7.9
7.5
7.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 10.6
10.7
10.8
11.0
9.3
9.8

8.1
9.0
9.2
9.4
8.9
9.1
8.3
9.1
9.7
9.9
 | JUNE 6.1 6.3 6.4 5.8 5.6 6.7 6.4 6.5 6.4 6.5 7.0 7.8 7.4 7.3 7.0 6.1 | 7.8
7.9
8.0
8.3
7.4
7.2
7.4
7.7
7.6
7.7
8.3
8.4
8.2
8.3
 | 9.7
9.5
9.3
9.3
8.9
9.6

10.1
9.9
10.0
10.3
10.0
10.2
10.0
10.2
9.8
9.7
9.7
9.8
9.8
9.7
9.9 | JULY 6.29 5.66 5.6 6.1 6.18 6.4 6.66 6.4 6.03 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5. | 7.5
7.4
7.0
6.9
6.9
7.7
7.4
7.8
8.1
8.0
8.1
7.6
6.7
7.1
7.1
7.1
6.7
7.4
7.4
7.4
7.4
7.4
7.2 | 9.5
9.6
9.6
8.4
8.6
9.0
9.5
9.9
10.1
10.4
10.9
10.1
10.5
10.3
10.2
10.3
10.2
10.3
10.2
10.3
10.4
8.6
9.6
9.9
10.1 | **AUGUST** 5.5 5.5 5.7 6.3 6.1 6.2 6.2 6.8 6.9 6.9 6.9 6.5 5.4 5.0 5.2 5.4 5.4 5.3 4.6 5.1 5.7 5.4 5.4 6.6 | 7.1
7.1
7.2
7.2
7.5
9.0
8.1
8.2
8.1
7.9
7.2
7.4
6.6
7.4
6.6
7.1
6.9
7.7 | 8.5
9.9
9.1
9.4
9.3
9.3
9.5
9.5
9.5
8.5
8.5
8.5
8.5
8.5
8.8 | 5.4
5.9
5.7
5.4
5.9
5.7
5.4
5.9
5.7
5.4
5.9
5.7
5.4
5.9
5.7
6.1
5.9
6.0
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1 | 7.5
8.0
7.3
6.9
7.0
7.2
7.1
7.1
6.8
7.2
7.3
7.0
6.1
6.5
6.5
6.5
6.7
6.6 | ## 01480870 EAST BRANCH BRANDYWINE CREEK BELOW DOWNINGTOWN, PA--Continued CROSS-SECTION ANALYSES, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
DEPTH
(FEET)
(00003) | | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | | SAMPLE
LOC-
ATION,
CROSS
SECTION
(FT FM
L BANK)
(00009) | |------|------|---|---|------|---|--|------|--| | MAR | | | | | | | | | | 15 | 1306 | 57 | 0.0 | | | | | 0 | | 15 | 1307 | | 0.5 | 14.4 | 8.6 | 320 | 13.5 | 3 | | 15 | 1308 | | 0.5 | 14.4 | 8.6 | 336 | 13.5 | 6 | | 15 | 1309 | | 0.5 | 14.2 | 8.6 | 336 | 13.5 | 9 | | 15 | 1310 | | 0.5 | 14.4 | 8.6 | 336 | 13.5 | 12 | | 15 | 1311 | | 0.5 | 14.3 | 8.6 | 336 | 13.5 | 15 | | 15 | 1312 | | 0.5 | 14.3 | 8.6 | 336 | 13.5 | 18 | | 15 | 1313 | | 2.0 | 14.4 | 8.6 | 335 | 13.5 | 18 | | 15 | 1314 | | 0.5 | 14.4 | 8.6 | 335 | 13.5 | 22 | | 15 | 1315 | | 2.5 | 14.4 | 8.6 | 335 | 13.5 | 22 | | 15 | 1316 | | 0.5 | 14.2 | 8.6 | 335 | 13.5 | 25 | | 15 | 1317 | | 2.0 | 14.4 | 8.6 | 335 | 13.5 | 25 | | 15 | 1318 | | 0.5 | 14.1 | 8.6 | 335 | 13.5 | 29 | | 15 | 1319 | | 0.5 | 14.4 | 8.6 | 335 | 13.7 | 33 | | 15 | 1320 | | 0.5 | 14.4 | 8.6 | 335 | 13.6 | 37 | | 15 | 1321 | | 0.5 | 14.4 | 8.6 | 336 | 13.6 | 41 | | 15 | 1322 | | 0.5 | 14.2 | 8.6 | 334 | 13.6 | 45 | | 15 | 1323 | | 0.5 | 13.9 | 8.5 | 336 | 13.5 | 49 | | 15 | 1324 | | 0.5 | 14.2 | 8.6 | 335 | 13.5 | 53 | | 15 | 1325 | | 0.5 | 14.2 | 8.6 | 336 | 13.5 | 56 | | 15 | 1326 | | 0.5 | 14.2 | 8.5 | 335 | 13.5 | 59 | | 15 | 1327 | | 0.5 | 14.2 | 8.5 | 335 | 13.6 | 62 | | 15 | 1328 | 57 | | | | | | 63 | #### 01481000 BRANDYWINE CREEK AT CHADDS FORD, PA (Pennsylvania Water-Quality Network Station) LOCATION.--Lat 39°52'11", long 75°35'37", Delaware County, Hydrologic Unit 02040205, on left bank 27 ft upstream from Penn Central Railroad bridge at Chadds Ford, 150 ft upstream from Harvey Run, and 1,200 ft downstream from highway bridge on U.S. Highway 1. **DRAINAGE AREA**.--287 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--August 1911 to September 1953, October 1962 to current year. Prior to October 1911, monthly discharge only, published in WSP 1302. **REVISED RECORDS**.--WSP 756: Drainage area. WSP 1202: 1917-18(M), 1919-20, 1922-31(M), 1932-33, 1934(M), 1936, 1938(P), 1939(M), 1942, 1944-46(M), WDR PA-98-1: 1996-97 (M). GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 150.45 ft above National Geodetic Vertical Datum of 1929. Prior to May 21, 1927, nonrecording gage at same site and datum. **REMARKS**.—Records good except those for estimated daily discharges, which are fair. Flow regulated since November 1973 by Marsh Creek Reservoir (station 01480684) about 17 mi upstream. Satellite and landline telemetry at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 EXTREMES OUTSIDE PERIOD OF RECORD.-Flood of Aug. 19, 1955, reached a stage of 14.64 ft, gage datum, discharge, about 16,400 ft³/s. | | | | Discinic | GE, COBIC I | LETTERSE | | AN VALUES | | or to ber in | SWIDER 2002 | , | | |--------|------|------|----------|-------------|----------|------|-----------|------|--------------|-------------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 118 | 95 | 102 | e80 | 231 | 119 | 216 | 219 | 172 | 128 | 55 | 106 | | 2 | 115 | 98 | 101 | e85 | 220 | 114 | 190 | 280 | 160 | 124 | 55 | 158 | | 3 | 108 | 101 | 97 | e85 | 175 | 665 | 176 | 817 | 149 | 118 | 53 | 91 | | 3
4 | 104 | 98 | 97 | e90 | 164 | 281 | 178 | 275 | 145 | 112 | 172 | 73 | | 5 | 101 | 98 | 97 | e90 | 146 | 178 | 172 | 217 | 156 | 110 | 67 | 65 | | 6 | 93 | 96 | 98 | e100 | 139 | 153 | 161 | 195 | 185 | 101 | 57 | 59 | | 7 | 94 | 93 | 95 | 298 | 151 | 147 | 157 | 186 | 1240 | 98 | 54 | 54 | | 8 | 92 | 98 | 103 | 193 | 150 | 152 | 151 | 177 | 291 | 103 | 50 | 52 | | 9 | 95 | 94 | 194 | 144 | 145 | 139 | 154 | 202 | 201 | 103 | 48 | 51 | | 10 | 95 | 95 | 142 | 136 | 144 | 161 | 169 | 231 | 182 | 115 | 47 | 49 | | 11 | 97 | 93 | 122 | 324 | 151 | 140 | 157 | 185 | 171 | 107 | 44 | 47 | | 12 | 95 | 91 | 113 | 458 | 141 | 127 | 151 | 180 | 161 | 93 | 43 | 42 | | 13 | 97 | 91 | 113 | 187 | 138 | 148 | 151 | 371 | 159 | 89 | 43 | 39 | | 14 | 95 | 92 | 132 | 150 | 128 | 171 | 163 | 1010 | 299 | 89 | 40 | 39 | | 15 | 125 | 92 | 175 | 134 | 130 | 153 | 196 | 350 | 346 | 101 | 40 | 42 | | 16 | 109 | 96 | 134 | 128
| 135 | 139 | 159 | 248 | 247 | 95 | 38 | 78 | | 17 | 104 | 95 | 119 | 123 | 131 | 137 | 149 | 217 | 201 | 85 | 37 | 67 | | 18 | 102 | 95 | 196 | 126 | 126 | 225 | 140 | 925 | 185 | 77 | 36 | 55 | | 19 | 100 | 92 | 168 | 122 | 124 | 229 | 140 | 560 | 198 | 74 | 37 | 49 | | 20 | 101 | 99 | 132 | 128 | 124 | 522 | 166 | 307 | 188 | 74 | 39 | 51 | | 21 | 101 | 99 | 117 | 130 | 148 | 681 | 142 | 260 | 162 | 75 | 37 | 50 | | 22 | 98 | 96 | 112 | 126 | 137 | 270 | 170 | 235 | 149 | 72 | 33 | 49 | | 23 | 93 | 95 | 110 | 128 | 126 | 209 | 172 | 216 | 141 | 69 | 36 | 47 | | 24 | 94 | 95 | 157 | 498 | 124 | 186 | 145 | 201 | 144 | 74 | 41 | 54 | | 25 | 102 | 134 | 139 | 659 | 122 | 173 | 148 | 194 | 156 | 72 | 158 | 44 | | 26 | 0.1 | 0.61 | 100 | 0.42 | 104 | 1.67 | 165 | 105 | 1 4 1 | 69 | | 4.1 | | | 91 | 261 | 123 | 243 | 124 | 167 | | 185 | 141 | | 66 | 41 | | 27 | 95 | 139 | e100 | 190 | 125 | 453 | 144 | 189 | 139 | 65 | 54 | 371 | | 28 | 91 | 113 | e95 | 171 | 119 | 258 | 471 | 202 | 197 | 70 | 50 | 287 | | 29 | 92 | 105 | e90 | 163 | | 202 | 393 | 191 | 151 | 70 | 252 | 124 | | 30 | 93 | 105 | e85 | 159 | | 190 | 231 | 183 | 134 | 65 | 125 | 71 | | 31 | 95 | | e80 | 231 | | 191 | | 171 | | 56 | 76 | | | TOTAL | 3085 | 3144 | 3738 | 5879 | 4018 | 7080 | 5477 | 9379 | 6550 | 2753 | 1983 | 2405 | | MEAN | 99.5 | 105 | 121 | 190 | 144 | 228 | 183 | 303 | 218 | 88.8 | 64.0 | 80.2 | | MAX | 125 | 261 | 196 | 659 | 231 | 681 | 471 | 1010 | 1240 | 128 | 252 | 371 | | MIN | 91 | 91 | 80 | 80 | 119 | 114 | 140 | 171 | 134 | 56 | 33 | 39 | e Estimated. #### 01481000 BRANDYWINE CREEK AT CHADDS FORD, PA--Continued | STATIST | ICS OF | MONTHLY MEA | N DATA | FOR WATER | YEARS 19 | 974 - 20 | 02, BY WAT | ER | YEAR (WY) | (SINC | E REGULATION |) | | |------------------------------------|------------------------------------|-----------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------|---------------------------|--------|------------------------------------|-----------------------------------|-------------------------------------|------------------------------------|------------------------------------| | | OCT | NOV | DEC | JAN | FEB | MA | R APR | | MAY | JUN | JUL | AUG | SEP | | MEAN
MAX
(WY)
MIN
(WY) | 266
924
1997
99.5
2002 | 316
751
1997
105
2002 | 453
1634
1997
112
1999 | 529
1664
1979
106
1981 | 531
1308
1979
144
2002 | 65
171
199
19 | 3 1509
4 1983
5 183 | i
i | 511
1097
1989
249
1999 | 376
833
1975
153
1999 | 323
1153
1975
88.8
2002 | 229
562
1996
64.0
2002 | 269
906
1979
80.2
2002 | | SUMMARY | STATI | STICS | FO | R 2001 CAL | ENDAR YEA | AR | FOR 2002 | WA | TER YEAR | | WATER YEARS | 1974 - | 2002 | | ANNUAL I | MEAN | I. MEAN | | 111418
305 | | | 55491
152 | | | | 422
714 | | 1984 | | LOWEST A | ANNUAL
DAILY | MEAN
MEAN | | 2500 | Mar 3 | | 1240 | | Jun 7 | | 152
10600 | Jan 26 | 2002
1978 | | LOWEST I | SEVEN-1 | DAY MINIMUM | | e 80 | Dec 3
Nov | | 33
36
2380 | | Aug 22
Aug 17
Jun 7 | | 33
36
a 26900 | Aug 22
Aug 17
Sep 17 | 2002 | | MAXIMUM
INSTANTA | PEAK S | STAGE
LOW FLOW | | | | | 5
32 | .66 | | | 17.15
8.4 | Sep 17 | 1999 | | 10 PERCI
50 PERCI
90 PERCI | ENT EX | CEEDS | | 625
202
95 | | | 233
126
54 | | | | 800
287
122 | | | | STATIST | CICS OF | MONTHLY | MEAN DATA | FOR WATER | YEARS | 1911-1953, | 1963-1973 | , BY WATI | ER YEAR (W | Y) (PRIO | R TO REGU | JLATION) | |-------------|------------|------------|------------|-------------|-------------|------------|-------------|------------|-------------|------------|-------------|-------------| | | OCT | NOV | DEC | JAN | FEB | B MAR | APR | MAY | JUN | JUL | AUG | SEP | | MEAN
MAX | 219
666 | 301
625 | 348
827 | 444
1020 | 570
1130 | | 530
1043 | 435
946 | 364
1144 | 309
802 | 278
1089 | 230
1050 | | (WY) | 1972 | 1972 | 1973 | 1936 | 1971 | 1920 | 1973 | 1952 | 1972 | 1919 | 1933 | 1971 | | MIN | 67.7 | 98.3 | 114 | 145 | 214 | 247 | 226 | 175 | 149 | 91.1 | 82.1 | 59.4 | | (WY) | 1964 | 1942 | 1966 | 1966 | 1934 | 1931 | 1963 | 1926 | 1963 | 1963 | 1930 | 1932 | | SUMMARI STATISTICS | WAIER IEARS | 196 | | | |--|---|---------------------------------|---------------------------|--| | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 385
625
218
9590
42
45
b 23800
16.56
4.9
1.34
18.23
700
274
118 | Aug
Sep
Sep
Jun
Jun | 24
12
7
22
22 | 1928
1932
1933
1966
1966
1972
1972 | | | | | | | - a From rating curve extended above 13,200 ft³/s on basis of area-velocity study at gage height 16.56 ft. b From rating curve extended above 9,000 ft³/s on basis of area-velocity study. e Estimated. #### 01481000 BRANDYWINE CREEK AT CHADDS FORD, PA--Continued (Pennsylvania Water-Quality Network Station) #### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1963 to current year. #### PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: October 1965 to current year. pH: October 1965 to September 1966, December 1971 to current year. WATER TEMPERATURES: October 1964 to current year. DISSOLVED OXYGEN: October 1971 to current year. SUSPENDED-SEDIMENT DISCHARGE: October 1963 to September 1978. INSTRUMENTATION.--Water-quality monitor since August 1971. **REMARKS.**--Specific conductance record rated good except for period Nov. 21-27, May 1-9, and Sept. 23-27, which are fair. pH record rated good. Water temperature record rated fair. Dissolved oxygen record rated good, except for period Aug. 20 to Sept. 3, which is poor. Data collection discontinued during winter months since 1981 water year. Other interruptions in the record were due to malfunctions of the equipment. EXTREMES FOR PERIOD OF DAILY RECORD.— SPECIFIC CONDUCTANCE: Maximum, 689 microsiemens, Mar. 6, 2001; minimum, 42 microsiemens, Nov. 26, 1979. pH: Maximum, 9.8, Apr. 9, 1975; minimum, 6.1, Feb. 22, 1976. WATER TEMPERATURE: Maximum, 31.0°C, July 4, 2002; minimum, 0.0°C, many days during winters. DISSOLVED OXYGEN: Maximum, 17.1 mg/L, Dec. 5, 1976; minimum, 3.0 mg/L, June 21, 1984. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | AGENCY
COL-
LECTING
SAMPLE
(CODE
NUMBER)
(00027) | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | COLI-
FORM,
FECAL,
0.7
µM-MF
(COLS./
100 ML)
(31625) | |-----------|------|--|---|---|--|---|--|---|---| | MAR 2002 | | | | | | | | | | | 05 | 1515 | 1028 | 1028 | 171 | 13.2 | 7.7 | 284 | 5.2 | 31 | | 18 | 1520 | 1028 | 1028 | 244 | 11.4 | 7.7 | 319 | 7.7 | 155 | | APR | | | | | | | | | | | 23 | 1700 | 1028 | 1028 | 159 | 11.0 | 7.7 | 331 | 14.8 | 24 | | MAY | | | | | | | | | | | 01 | 1600 | 1028 | 1028 | 212 | 11.1 | 7.5 | 305 | 16.7 | 52 | | 14 | 1510 | 1028 | 1028 | 1045 | 8.5 | 7.2 | 180 | 16.9 | 4800 | | 30 | 1230 | 1028 | 1028 | 180 | 11.6 | 7.9 | 323 | 22.4 | 58 | | JUN
10 | 1036 | 1028 | 1028 | 182 | 7.2 | 7.3 | 305 | 21.3 | 212 | | 17 | 1500 | 1028 | 1028 | 191 | 9.3 | 7.3 | 298 | 21.3 | 78 | | 25 | 1540 | 1028 | 1028 | 180 | 9.3 | 8.1 | 330 | 27.3 | 85 | | JUL | 1340 | 1020 | 1020 | 100 | 9.1 | 0.1 | 330 | 27.3 | 0.5 | | 08 | 1515 | 1028 | 1028 | 106 | 10.7 | 8.3 | 369 | 26.1 | 40 | | 15 | 1410 | 1028 | 1028 | 102 | 9.3 | 8.1 | 372 | 25.1 | 31 | | 23 | 1515 | 1028 | 1028 | 68 | 10.7 | 8.5 | 391 | 30.0 | 49 | | AUG | | | | | | | | | | | 06 | 1500 | 1028 | 1028 | 56 | 9.5 | 7.7 | 319 | 27.8 | 55 | | 14 | 1450 | 1028 | 1028 | 38 | 10.5 | 8.3 | 421 | 28.1 | 28 | | 20 | 1540 | 1028 | 1028 | 39 | 9.5 | 8.1 | 437 | 28.6 | 29 | | SEP | | | | | | | | | | | 12 | 1520 | 1028 | 1028 | 40 | 11.4 | 8.3 | 396 | 23.0 | 12 | | 23 | 1510 | 1028 | 1028 | 45 | 11.4 | 8.4 | 398 | 24.0 | 41 | # 01481000 BRANDYWINE CREEK AT CHADDS FORD, PA--Continued (Pennsylvania Water-Quality Network Station) PERIOD OF RECORD.--April 2002 to current year. **REMARKS**.--Other data for the Water-Quality Network can be found on pages 410-425. **COOPERATION.**—Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date APR 2002 | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) |
DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
METHOD,
CODES
(82398) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
TOTAL
RECOV-
ERABLE
(MG/L
AS CA)
(00916) | MAGNE-
SIUM,
TOTAL
RECOV-
ERABLE
(MG/L
AS MG)
(00927) | ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | |------------------------------------|--|---|--|--|--|--|--|--|--|---|--|--|--| | 29
JUN | 1110 | 9813 | 377 | 40 | 10.8 | 7.6 | 220 | 14.0 | 74 | 18.6 | 6.7 | 48 | 20.6 | | 12
AUG | 1030 | 9813 | 162 | 40 | 7.7 | 7.5 | 308 | 23.8 | 100 | 25.2 | 10.2 | 66 | 31.0 | | 20 | 1330 | 9813 | 39 | 40 | 8.8 | 8.1 | 419 | 27.8 | 130 | 32.4 | 12.7 | 88 | 49.2 | | Date | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RESIDUE
AT 105
DEG. C,
DIS-
SOLVED
(MG/L)
(00515) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N)
(00620) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N)
(00615) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | OXYGEN
DEMAND,
BIO-
CHEM-
ICAL,
5 DAY
(MG/L)
(00310) | OXYGEN
DEMAND,
CHEM-
ICAL
(HIGH
LEVEL)
(MG/L)
(00340) | | APR 2002
29 | 15.8 | 186 | <2 | .100 | 2.20 | .030 | 2.4 | .037 | .120 | 5.1 | 5.5 | 2.3 | 20 | | 12
AUG | 23.7 | 226 | <2 | .070 | 2.83 | .030 | 3.5 | .099 | .150 | 3.9 | 4.1 | 1.6 | 11 | | 20 | 31.3 | 302 | 2 | <.020 | 1.52 | .040 | 2.1 | .102 | .140 | 4.3 | 4.6 | 1.4 | <10 | | | FECAL | | | | | | | | | | | | | | Date | COLI-
FORM,
MFC MF,
WATER
(COL/
100 ML)
(31616) | ARSENIC
DIS-
SOLVED
(µG/L
AS AS)
(01000) | ARSENIC
TOTAL
(µG/L
AS AS)
(01002) | CADMIUM
DIS-
SOLVED
(µG/L
AS CD)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µG/L
AS CD)
(01027) | CHRO-
MIUM,
HEXA-
VALENT,
DIS.
(µG/L
AS CR)
(01032) | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(µG/L
AS CR)
(01034) | COPPER,
DIS-
SOLVED
(µG/L
AS CU)
(01040) | COPPER,
TOTAL
RECOV-
ERABLE
(µG/L
AS CU)
(01042) | IRON,
DIS-
SOLVED
(µG/L
AS FE)
(01046) | IRON,
TOTAL
RECOV-
ERABLE
(µG/L
AS FE)
(01045) | LEAD,
DIS-
SOLVED
(µG/L
AS PB)
(01049) | LEAD, TOTAL RECOV- ERABLE (µG/L AS PB) (01051) | | APR 2002 | COLI-
FORM,
MFC MF,
WATER
(COL/
100 ML)
(31616) | DIS-
SOLVED
(µG/L
AS AS)
(01000) | TOTAL
(µG/L
AS AS)
(01002) | DIS-
SOLVED
(µG/L
AS CD)
(01025) | WATER UNFLTRD TOTAL (µG/L AS CD) (01027) | MIUM,
HEXA-
VALENT,
DIS.
(µG/L
AS CR)
(01032) | MIUM,
TOTAL
RECOV-
ERABLE
(µG/L
AS CR)
(01034) | DIS-
SOLVED
(µG/L
AS CU)
(01040) | TOTAL RECOV- ERABLE (µG/L AS CU) (01042) | DIS-
SOLVED
(µG/L
AS FE)
(01046) | TOTAL
RECOV-
ERABLE
(µG/L
AS FE)
(01045) | DIS-
SOLVED
(µG/L
AS PB)
(01049) | TOTAL
RECOV-
ERABLE
(µG/L
AS PB)
(01051) | | | COLI-
FORM,
MFC MF,
WATER
(COL/
100 ML) | DIS-
SOLVED
(µG/L
AS AS) | TOTAL $(\mu_{G/L}$ AS AS) | DIS-
SOLVED
(µG/L
AS CD) | WATER UNFLTRD TOTAL (µG/L AS CD) | MIUM,
HEXA-
VALENT,
DIS.
(µG/L
AS CR) | MIUM,
TOTAL
RECOV-
ERABLE
(µG/L
AS CR) | DIS-
SOLVED
(µG/L
AS CU) | TOTAL
RECOV-
ERABLE
(µG/L
AS CU) | DIS-
SOLVED
(µG/L
AS FE) | TOTAL
RECOV-
ERABLE
(µG/L
AS FE) | DIS-
SOLVED
(µG/L
AS PB) | TOTAL
RECOV-
ERABLE
(µG/L
AS PB) | | APR 2002
29
JUN | COLI-
FORM,
MFC MF,
WATER
(COL/
100 ML)
(31616) | DIS-
SOLVED
(µG/L
AS AS)
(01000) | TOTAL
(µG/L
AS AS)
(01002) | DIS-
SOLVED
(µG/L
AS CD)
(01025) | WATER UNFLTRD TOTAL (µG/L AS CD) (01027) | MIUM,
HEXA-
VALENT,
DIS.
(µG/L
AS CR)
(01032) | MIUM,
TOTAL
RECOV-
ERABLE
(µG/L
AS CR)
(01034) | DIS-
SOLVED
(µG/L
AS CU)
(01040) | TOTAL RECOV- ERABLE (µG/L AS CU) (01042) | DIS-
SOLVED
(µG/L
AS FE)
(01046) | TOTAL
RECOV-
ERABLE
(µG/L
AS FE)
(01045) | DIS-
SOLVED
(µG/L
AS PB)
(01049) | TOTAL
RECOV-
ERABLE
(MG/L
AS PB)
(01051) | | APR 2002
29
JUN
12
AUG | COLI-
FORM,
MFC MF,
WATER
(COL/
100 ML)
(31616) | DIS-
SOLVED
(µG/L
AS AS)
(01000)
<4.0 | TOTAL (µG/L AS AS) (01002) <4 <4 <4 MANGA-NESE, TOTAL RECOV-ERABLE (µG/L AS MN) | DIS-
SOLVED
(µG/L
AS CD)
(01025)
<.20 | WATER UNFLTRD TOTAL (µG/L AS CD) (01027) <.2 <.2 | MIUM,
HEXA-
VALENT,
DIS.
(µG/L
AS CR)
(01032) | MIUM,
TOTAL
RECOV-
ERABLE
(µG/L
AS CR)
(01034) | DIS-
SOLVED
(µG/L
AS CU)
(01040) | TOTAL
RECOV-
ERABLE
(µG/L
AS CU)
(01042)
<4
<4
<4
<4
SILVER,
DIS-
SOLVED | DIS- SOLVED (µG/L AS FE) (01046) 100 80 80 SILVER, TOTAL RECOV- ERABLE | TOTAL RECOV-ERABLE (µG/L AS FE) (01045) 850 360 140 ZINC, DIS-SOLVED | DIS- SOLVED (MG/L AS PB) (01049) <1.0 <1.0 <1.0 ZINC, TOTAL RECOV- ERABLE | TOTAL RECOV-ERABLE (µG/L AS PB) (01051) 1.7 <1.0 <1.0 | | APR 2002
29
JUN
12
AUG | COLI-
FORM,
MFC MF,
WATER
(COL/
100 ML)
(31616)
920
80
50
Date | DIS-
SOLVED (µG/L
AS AS) (01000)
<4.0
<4.0
<4.0
MANGA-
NESE,
DIS-
SOLVED (µG/L
AS MN) | TOTAL (µG/L AS AS) (01002) <4 <4 <4 MANGA-NESE, TOTAL RECOV-ERABLE (µG/L AS MN) | DIS- SOLVED (µG/L AS CD) (01025) <.20 <.20 <.20 MERCURY DIS- SOLVED (µG/L AS HG) | WATER UNFLITRD TOTAL (µG/L AS CD) (01027) <.2 <.2 <.2 <.2 MERCURY TOTAL RECOV- ERABLE (µG/L AS HG) | MIUM,
HEXA-
VALENT,
DIS.
(MG/L
AS CR)
(01032)
<1
<1
<1
<1
NICKEL,
DIS-
SOLVED
(MG/L
AS NI) | MIUM,
TOTAL
RECOV-
ERABLE
(µG/L
AS CR)
(01034)
<4
<4
<4
VICKEL,
TOTAL
RECOV-
ERABLE
(µG/L
AS NI) | DIS- SOLVED (µG/L AS CU) (01040) <4 <4 <4 SELE- NIUM, DIS- SOLVED (µG/L AS SE) AS SE) | TOTAL RECOV- ERABLE (µG/L AS CU) (01042) <4 <4 <4 SILVER, DIS- SOLVED (µG/L AS AG) | DIS- SOLVED (µG/L AS FE) (01046) 100 80 80 SILVER, TOTAL RECOV- ERABLE (µG/L AS AG) | TOTAL RECOV-ERABLE (µG/L AS FE) (01045) 850 360 140 ZINC, DIS-SOLVED (µG/S AS ZN) | DIS-
SOLVED
(µG/L
AS PB)
(01049)
<1.0
<1.0
<1.0
<1.0
EZINC,
TOTAL
RECOV-
ERABLE
(µG/
AS ZN) | TOTAL RECOV-ERABLE (µG/L AS PB) (01051) 1.7 <1.0 <1.0 | | APR 2002
29
JUN
12
AUG | COLI-
FORM,
MPC MF,
WATER
(COL/
100 ML)
(31616)
920
80
50
Date | DIS-
SOLVED (µG/L
AS AS) (01000)
<4.0
<4.0
<4.0
MANGA-
NESE,
DIS-
SOLVED (µG/L
AS MN) (01056) | TOTAL (µG/L AS AS) (01002) <4 <4 <4 <4 MANGA-NESE, TOTAL RECOV-BRABLE (µG/L AS ML) (01055) | DIS- SOLVED (µG/L AS CD) (01025) <.20 <.20 <.20 MERCURY DIS- SOLVED (µG/L AS HG) (71890) | WATER UNFLITED TOTAL (µG/L AS CD) (01027) <.2 <.2 <.2 <.2 MERCURY TOTAL RECOV- ERABLE (µG/L AS HG) (71900) | MIUM,
HEXA-
VALENT,
DIS.
(MG/L
AS CR)
(01032)
<1
<1
<1
<1
VICKEL,
DIS-
SOLVED
(MG/L
AS NI)
(01065) | MIUM,
TOTAL
RECOV-
ERABLE
(MG/L
AS CR)
(01034)
<4
<4
<4
<4
NICKEL,
TOTAL
RECOV-
ERABLE
(MG/L
AS NI)
(01067) | DIS- SOLVED (µG/L AS CU) (01040) <4 <4 <4 SELE- NIUM, DIS- SOLVED (µG/L AS SE) (01145) | TOTAL RECOV-ERABLE (µG/L AS CU) (01042) <4 <4 <4 <4 SILVER, DIS-SOLVED (µG/L AS AG) (01075) | DIS-
SOLVED
(µG/L
AS FE)
(01046)
100
80
80
SILVER,
TOTAL
RECOV-
ERABLE
(µG/I
AS AG)
(01077) | TOTAL RECOV-ERABLE (µG/L AS FE) (01045) 850 360 140 ZINC, DIS-SOLVED (µG/S) AS ZN) (01090) | DIS-
SOLVED
(µG/L
AS
PB)
(01049)
<1.0
<1.0
<1.0
<1.0
EXINC,
TOTAL
RECOV-
ERABLE
(µG/
AS ZN)
(01092) | TOTAL RECOV-ERABLE (µG/L AS PB) (01051) 1.7 <1.0 <1.0 | ## 01481000 BRANDYWINE CREEK AT CHADDS FORD, PA--Continued SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25° CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|------------|------------------------|--------------|---|---|---|--|--|---|---|--|--| | | | OCTOBER | | | NOVEMBER | | | DECEMBER | | | JANUARY | | | 1 | 374 | 333 | 351 | 370 | 353 | 358 | 336 | 329 | 331 | | | | | 2
3 | 377
383 | 371
372 | 374
376 | 383 | 348 | 361 | 335 | 328 | 332 | | | | | 4 | 387 | 377 | 382 | 359 | 345 | 350 | | | | | | | | 5 | 383 | 361 | 373 | 365 | 346 | 353 | | | | | | | | 6 | 372 | 360 | 364 | 374 | 342 | 351 | | | | | | | | 7
8 | 364
364 | 345
345 | 354
356 | 360
371 | 342
354 | 355
360 | | | | | | | | 9 | 371 | 362 | 367 | 377 | 367 | 371 | | | | | | | | 10 | 367 | 353 | 361 | 383 | 365 | 371 | | | | | | | | 11 | 357 | 350 | 353 | 376 | 366 | 371 | | | | | | | | 12
13 | 358
349 | 349
338 | 354
343 | 374
377 | 359
358 | 367
365 | | | | | | | | 14 | 350 | 342 | 346 | 381 | 356 | 361 | | | | | | | | 15 | 348 | 338 | 343 | 361 | 348 | 355 | | | | | | | | 16 | 351 | 333 | 343 | 364 | 347 | 353 | | | | | | | | 17 | 350 | 333 | 340 | 369 | 347 | 354 | | | | | | | | 18
19 | 349
360 | 329
337 | 337
345 | 387
358 | 353
342 | 366
351 | | | | | | | | 20 | 343 | 326 | 334 | 350 | 343 | 346 | | | | | | | | 21 | 349 | 340 | 344 | 355 | 343 | 347 | | | | | | | | 22
23 | 352
364 | 342
351 | 348
354 | 352
350 | 341
340 | 346
345 | | | | | | | | 24 | 358 | 342 | 349 | 352 | 341 | 347 | | | | | | | | 25 | 377 | 347 | 359 | 397 | 340 | 347 | | | | | | | | 26 | 373 | 358 | 366 | 406 | 324 | 365 | | | | | | | | 27 | 377 | 361 | 367 | 334 | 285 | 296 | | | | | | | | 28
29 | 379
384 | 366
367 | 372 | 316
326 | 289
316 | 304 | | | | | | | | 30 | 368 | 357 | 376
362 | 330 | 324 | 323
326 | | | | | | | | 31 | 366 | 355 | 360 | | | | | | | | | | | MONTH | 387 | 326 | 357 | 406 | 285 | 351 | DAY | MAX | MIN | MEAN | | DAY | | MIN
FEBRUARY | MEAN | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | | | | MEAN | | MARCH | | | | | | | | | 1
2 | | FEBRUARY | | 358
372 | MARCH 338 345 | 344
350 | 324
319 | APRIL 309 308 | 316
315 | 310
340 | MAY 291 303 | 302
320 | | 1
2
3 | | FEBRUARY |
 | 358
372
360 | MARCH
338
345
240 | 344
350
277 | 324
319
329 | 309
308
302 | 316
315
309 | 310
340
303 | MAY 291 303 218 | 302
320
250 | | 1
2 | | FEBRUARY | | 358
372 | MARCH 338 345 | 344
350 | 324
319 | APRIL 309 308 | 316
315 | 310
340 | MAY 291 303 | 302
320 | | 1
2
3
4
5 | | FEBRUARY

 | | 358
372
360
277
307 | 338
345
240
237
277 | 344
350
277
258
295 | 324
319
329
321
333 | 309
308
302
311
312 | 316
315
309
314
318 | 310
340
303
286
313 | MAY
291
303
218
261
285 | 302
320
250
279
303 | | 1
2
3
4 | | FEBRUARY |

 | 358
372
360
277 | 338
345
240
237 | 344
350
277
258 | 324
319
329
321 | 309
308
302
311 | 316
315
309
314 | 310
340
303
286 | MAY
291
303
218
261 | 302
320
250
279 | | 1
2
3
4
5 | | FEBRUARY | | 358
372
360
277
307
323
354
347 | MARCH 338 345 240 237 277 306 323 332 | 344
350
277
258
295
315
326
340 | 324
319
329
321
333
319
327
334 | 309
308
302
311
312
309
308
308 | 316
315
309
314
318
314
315
316 | 310
340
303
286
313
327
327
338 | 291
303
218
261
285
312
303
317 | 302
320
250
279
303
319
321
323 | | 1
2
3
4
5 | | FEBRUARY | | 358
372
360
277
307 | MARCH 338 345 240 237 277 306 323 | 344
350
277
258
295
315
326 | 324
319
329
321
333
319
327 | 309
308
302
311
312
309
308 | 316
315
309
314
318
314
315 | 310
340
303
286
313
327
327 | MAY 291 303 218 261 285 312 303 | 302
320
250
279
303
319
321 | | 1
2
3
4
5
6
7
8
9 | | FEBRUARY | | 358
372
360
277
307
323
354
347
347
344 | 338
345
240
237
277
306
323
332
326
321 | 344
350
277
258
295
315
326
340
336
329 | 324
319
329
321
333
319
327
334
337
338 | 309
308
302
311
312
309
308
308
310
320 | 316
315
309
314
318
314
315
316
317
326 | 310
340
303
286
313
327
327
338
362
367 | MAY 291 303 218 261 285 312 303 317 321 323 | 302
320
250
279
303
319
321
323
338
341 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY |

 | 358
372
360
277
307
323
354
347
347
344 | 338
345
240
237
277
306
323
332
326
321 | 344
350
277
258
295
315
326
340
336
329 | 324
319
329
321
333
319
327
334
337
338 | 309
308
302
311
312
309
308
310
320 | 316
315
309
314
318
315
316
317
326 | 310
340
303
286
313
327
327
338
362
367 | MAY 291 303 218 261 285 312 303 317 321 323 320 | 302
320
250
279
303
319
321
323
338
341 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | 358
372
360
277
307
323
354
347
347
344
358
338 | 338
345
240
237
277
306
323
332
326
321
317
323
326 | 344
350
277
258
295
315
326
340
336
329
327
327
330 | 324
319
329
321
333
319
327
334
337
338
344
333
339 | 309
308
302
311
312
309
308
308
310
320
321
321
326 | 316
315
309
314
318
314
315
316
317
326
331
326
329 | 310
340
303
286
313
327
327
338
362
367
340
338
343 | MAY 291 303 218 261 285 312 303 317 321 323 320 319 288 | 302
320
250
279
303
319
321
323
338
341
328
326
321 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | | FEBRUARY | | 358
372
360
277
307
323
354
347
347
344
358
358
352 | MARCH 338 345 240 237 277 306 323 326 321 317 323 326 322 | 344
350
277
258
295
315
326
340
336
329
327
327
327
330
331 | 324
319
329
321
333
319
327
334
337
338
344
333
339
339 | 309
308
302
311
312
309
308
310
320
321
321
326
323 | 316
315
309
314
318
314
315
316
317
326
331
326
329
329 | 310
340
303
286
313
327
327
338
362
367
340
338
343
295 | MAY 291 303 218 261 285 312 303 317 321 323 320 319 288 176 | 302
320
250
279
303
319
321
323
338
341
328
326
321
222 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | 358
372
360
277
307
323
354
347
347
344
358
338
352
322 | 338
345
240
237
277
306
323
332
326
321
317
323
326
322
311 |
344
350
277
258
295
315
326
340
336
329
327
327
330
331
315 | 324
319
329
321
333
319
327
334
337
338
344
333
339
336
329 | 309
308
302
311
312
309
308
308
310
320
321
321
326
323
307 | 316
315
309
314
318
314
315
316
317
326
329
329
329
318 | 310
340
303
286
313
327
327
338
362
367
340
338
343
295
268 | MAY 291 303 218 261 285 312 303 317 321 323 320 319 288 176 219 | 302
320
250
279
303
319
321
323
338
341
328
326
321
222
251 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | 358
372
360
277
307
323
354
347
347
344
358
358
352
322 | MARCH 338 345 240 237 277 306 323 326 321 317 323 326 322 311 310 | 344
350
277
258
295
315
326
340
336
329
327
327
337
331
315 | 324
319
329
321
333
319
327
334
337
338
344
333
339
336
329 | 309
308
302
311
312
309
308
310
320
321
321
321
326
323
307 | 316
315
309
314
318
314
315
316
317
326
331
326
329
318 | 310
340
303
286
313
327
327
338
362
367
340
338
343
295
268 | MAY 291 303 218 261 285 312 303 317 321 323 320 319 288 176 219 | 302
320
250
279
303
319
321
323
338
341
328
326
321
222
251 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | 358
372
360
277
307
323
354
347
347
344
358
338
352
322 | 338
345
240
237
277
306
323
332
326
321
317
323
326
322
311 | 344
350
277
258
295
315
326
340
336
329
327
327
330
331
315 | 324
319
329
321
333
319
327
334
337
338
344
333
339
336
329 | 309
308
302
311
312
309
308
308
310
320
321
321
326
323
307 | 316
315
309
314
318
314
315
316
317
326
329
329
329
318 | 310
340
303
286
313
327
327
338
362
367
340
338
343
295
268 | MAY 291 303 218 261 285 312 303 317 321 323 320 319 288 176 219 | 302
320
250
279
303
319
321
323
338
341
328
326
321
222
251 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | | FEBRUARY | | 358
372
360
277
307
323
354
347
347
344
358
352
322
334
348
393 | MARCH 338 345 240 237 277 306 323 326 321 317 323 326 322 311 310 317 320 324 | 344
350
277
258
295
315
326
340
336
329
327
327
330
331
315
314
321
322
323 | 324
319
329
321
333
319
327
334
337
338
344
333
339
336
329 | 309
308
302
311
312
309
308
310
320
321
321
326
323
307
306
307
314
319 | 316
315
309
314
318
314
315
316
317
326
331
329
318
309
312
329
318 | 310
340
303
286
313
327
327
338
362
367
340
338
343
295
268
287
297
295
259 | MAY 291 303 218 261 285 312 303 317 321 323 320 319 288 176 219 267 274 183 188 | 302
320
250
279
303
319
321
323
338
341
328
326
321
222
251
279
279
279
236
217 | | 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | | FEBRUARY | | 358
372
360
277
307
323
354
347
347
344
358
338
352
322
332
343
348
393
335 | 338
345
240
237
277
306
323
332
326
321
317
323
326
321
317
323
326
322
311 | 344
350
277
258
295
315
326
340
336
329
327
327
330
331
315
314
321
328
352
302 | 324
319
329
321
333
319
327
334
337
338
344
333
329
315
318
327
330
338 | 309
308
302
311
312
309
308
308
310
320
321
321
326
323
307
306
307
314
319
322 | 316
315
309
314
318
314
315
316
317
326
329
329
318
309
312
321
324
331 | 310
340
303
286
313
327
327
338
362
367
340
338
343
295
268
287
297
295
259
292 | MAY 291 303 218 261 285 312 303 317 321 323 320 319 288 176 219 267 274 183 188 259 | 302
320
250
279
303
319
321
323
341
328
326
321
222
251
279
279
236
217
273 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | | FEBRUARY | | 358
372
360
277
307
323
354
347
347
344
358
338
352
322
334
348
393
335
251 | 338
345
240
237
277
306
323
326
321
317
323
326
322
311
310
317
320
324
248 | 344
350
277
258
295
315
326
340
336
329
327
327
330
331
315
314
321
322
302
231 | 324
319
329
321
333
319
327
334
337
338
344
333
329
315
318
327
330
338 | 309
308
302
311
312
309
308
310
320
321
321
326
323
307
306
307
314
319
322 | 316
315
309
314
318
314
315
316
317
326
329
318
309
312
329
318
309
312
321
324
331 | 310
340
303
286
313
327
327
338
362
367
340
338
343
295
268
287
297
295
299
292 | MAY 291 303 218 261 285 312 303 317 321 323 320 319 288 176 219 267 274 183 188 259 | 302
320
250
279
303
319
321
323
338
341
328
326
321
222
251
279
279
279
279
273 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | | FEBRUARY | | 358
372
360
277
307
323
354
347
344
358
338
352
322
334
348
393
335
251
287 | 338
345
240
237
277
306
323
326
321
317
323
326
321
317
323
326
321
317
320
324
248 | 344
350
277
258
295
315
326
340
336
329
327
327
331
315
328
352
352
362
329
321
328
352
362
329 | 324
319
329
321
333
319
327
334
337
338
344
333
329
315
318
327
338
341
346 | 309
308
302
311
312
309
308
310
320
321
321
326
323
307
306
307
314
319
322 | 316
315
309
314
318
314
315
316
317
326
329
329
318
309
312
321
321
321
321
321
321
321
321 | 310
340
303
286
313
327
327
338
362
367
340
338
343
295
268
287
297
295
259
292 | MAY 291 303 218 261 285 312 303 317 321 323 320 319 288 176 219 267 274 183 188 259 291 297 | 302
320
250
279
303
319
321
323
338
341
328
326
321
222
251
279
279
236
217
273 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | | FEBRUARY | | 358
372
360
277
307
323
354
347
344
344
358
338
352
322
334
348
393
335
251
287
304
324 | MARCH 338 345 240 237 277 306 323 326 321 317 323 326 321 317 323 326 322 311 310 317 320 324 248 220 251 283 304 | 344
350
277
258
295
315
326
340
336
329
327
337
331
315
314
321
322
302
231
269
296
315 | 324
319
329
321
333
319
327
338
344
333
339
336
329
315
318
327
338
341
346
348
348
348
348
348 | 309
308
302
311
312
309
308
310
320
321
321
326
323
307
306
307
314
319
322
331
333
327
310 | 316
315
309
314
318
314
315
316
317
326
329
318
309
312
321
324
331
336
339
313 | 310
340
303
286
313
327
327
338
362
367
340
338
343
295
268
287
297
295
299
292 | MAY 291 303 218 261 285 312 303 317 321 323 320 319 288 176 219 267 274 183 188 259 291 297 294 304 | 302
320
250
279
303
319
321
323
338
341
328
326
321
222
251
279
279
279
279
273
297
304
305
312 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | | FEBRUARY | | 358
372
360
277
307
323
354
347
344
344
358
338
352
322
332
334
348
393
393
395 | 338
345
240
237
277
306
323
332
326
321
317
323
326
321
317
323
326
322
311 | 344
350
277
258
295
315
326
340
336
329
327
337
331
315
314
321
328
352
302
231
269
296 | 324
319
329
321
333
319
327
334
337
338
344
333
339
336
329
315
318
327
330
338 | 309
308
302
311
312
309
308
308
310
320
321
321
326
323
307
306
307
314
319
322
331
332 |
316
315
309
314
318
314
315
316
317
326
329
329
329
318
309
312
321
324
331
336
331
331
331
331
331
331
331
331 | 310
340
303
286
313
327
327
338
362
367
340
338
343
295
268
287
297
295
259
292 | MAY 291 303 218 261 285 312 303 317 321 323 320 319 288 176 219 267 274 183 188 259 291 297 292 | 302
320
250
279
303
319
321
323
338
341
328
326
321
222
251
279
236
217
273
297
304
305 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | | FEBRUARY | | 358
372
360
277
307
323
354
347
344
344
358
338
352
322
334
343
343
352
322
334
343
343
343
343
343
344
344
34 | 338
345
240
237
277
306
323
326
321
317
323
326
321
317
320
324
248
220
251
283
304
323 | 344
350
277
258
295
315
326
340
336
329
327
337
330
331
315
314
321
322
302
231
269
296
315
326 | 324
319
329
321
333
319
327
338
344
333
339
336
329
315
318
327
338
341
346
348
348
344
338 | 309
308
302
311
312
309
308
310
320
321
321
326
323
307
306
307
314
319
322
331
333
327
310
322 | 316
315
309
314
318
314
315
316
317
326
329
318
309
312
321
324
331
336
339
312
321
321
321
321
321
321
321
321
321 | 310
340
303
286
313
327
327
338
362
367
340
338
343
295
268
287
297
295
292
303
311
319
320
317 | MAY 291 303 218 261 285 312 303 317 321 323 320 319 288 176 219 267 274 183 188 259 291 297 294 304 302 313 | 302
320
250
279
303
319
321
323
338
341
328
326
321
222
251
279
279
236
217
273
297
304
305
312
311 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27 | | FEBRUARY | | 358
372
360
277
307
323
354
347
344
344
358
338
352
322
334
348
393
335
251
287
304
324
324
324
325 | 338
345
240
237
277
306
323
326
321
317
323
326
321
317
320
322
311
310
317
320
324
248 | 344
350
277
258
295
315
326
340
336
329
327
327
330
331
315
314
321
322
302
231
269
296
315
326
327
237 | 324
319
329
321
333
319
327
334
337
338
344
333
329
315
318
327
338
341
346
348
328
334 | 309
308
302
311
312
309
308
308
310
320
321
321
326
323
307
306
307
314
319
322
331
333
327
310
322 | 316
315
309
314
318
314
315
316
317
326
329
318
329
318
309
312
321
321
321
321
321
321
321
321
321 | 310
340
340
3286
313
327
327
338
362
367
340
338
343
295
268
287
297
295
259
292
303
311
319
320
317 | MAY 291 303 218 261 285 312 303 317 321 323 320 319 288 176 219 267 274 183 188 259 291 297 292 304 302 313 304 | 302
320
250
279
303
319
321
323
338
341
328
326
321
222
251
279
279
236
217
273
297
304
305
311
318
317 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | | FEBRUARY | | 358
372
360
277
307
323
354
347
344
344
358
338
352
322
334
343
343
352
322
334
343
343
343
343
343
344
344
34 | 338
345
240
237
277
306
323
326
321
317
323
326
321
317
320
324
248
220
251
283
304
323 | 344
350
277
258
295
315
326
340
336
329
327
337
330
331
315
314
321
322
302
231
269
296
315
326 | 324
319
329
321
333
319
327
338
344
333
339
336
329
315
318
327
338
341
346
348
348
344
338 | 309
308
302
311
312
309
308
310
320
321
321
326
323
307
306
307
314
319
322
331
333
327
310
322 | 316
315
309
314
318
314
315
316
317
326
329
318
309
312
321
324
331
336
339
312
321
321
321
321
321
321
321
321
321 | 310
340
303
286
313
327
327
338
362
367
340
338
343
295
268
287
297
295
292
303
311
319
320
317 | MAY 291 303 218 261 285 312 303 317 321 323 320 319 288 176 219 267 274 183 188 259 291 297 294 304 302 313 | 302
320
250
279
303
319
321
323
338
341
328
326
321
222
251
279
279
236
217
273
297
304
305
312
311 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | | FEBRUARY | | 358
372
360
277
307
323
354
347
344
344
358
352
322
334
348
393
335
251
287
304
342
342
322
272
293
308 | 338
345
240
237
277
306
323
326
321
317
323
326
322
311
310
317
320
324
248
220
251
283
304
323
319
254
251
270
292 | 344
350
277
258
295
315
326
340
336
329
327
327
330
331
315
314
321
322
302
231
269
296
315
326
327
287
260
285
297 | 324
319
329
321
333
319
327
334
337
338
344
333
329
315
318
327
338
341
346
348
328
334
334
334
334
338 | 309
308
302
311
312
309
308
310
320
321
321
326
323
307
306
307
314
319
322
331
332
327
325
257
241
270 | 316
315
309
314
318
314
315
316
317
326
329
318
309
312
321
321
321
321
321
321
321
321
321 | 310
340
340
3286
313
327
338
362
367
340
338
343
295
268
287
297
295
259
292
303
311
319
320
317
328
327
327
327 | MAY 291 303 218 261 285 312 303 317 321 323 320 319 288 176 219 267 274 183 188 259 291 297 292 304 302 313 304 306 301 321 | 302
320
250
279
303
319
321
323
338
341
328
326
321
222
251
279
279
236
217
273
297
304
305
311
318
317
317
317
317
317
312
325 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | | FEBRUARY | | 358
372
360
277
307
323
354
347
344
344
358
352
322
334
343
343
355
321
287
304
342
342
342
342
342 | 338
345
240
237
277
306
323
326
321
317
323
326
322
311
310
317
320
324
248
220
251
283
304
323 | 344
350
277
258
295
315
326
340
336
329
327
337
330
331
315
314
321
322
302
231
269
296
315
326 | 324
319
329
321
333
319
327
334
337
338
344
333
329
315
318
327
330
338
341
346
348
348
348
348
348
348
348
348
348
348 | 309
308
302
311
312
309
308
308
310
320
321
326
323
307
306
307
314
319
322
331
333
327
310
322 | 316
315
309
314
318
314
315
316
317
326
329
318
309
312
321
324
331
336
337
318
327
337
338
327 | 310
340
303
286
313
327
327
338
362
367
340
338
343
295
268
287
297
295
292
303
311
319
320
317
328
325
327 | MAY 291 303 218 261 285 312 303 317 321 323 320 319 288 176 219 267 274 183 188 259 291 297 294 302 313 304 306 301 | 302
320
250
279
303
319
321
323
338
341
328
326
321
222
251
279
279
236
217
273
297
304
305
312
311
318
317
317
312 | ## 01481000 BRANDYWINE CREEK AT CHADDS FORD, PA--Continued SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25° CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|--|---------------------------------|---------------------------------
---------------------------------| | | | JUNE | | | JULY | | | AUGUST | | 2 | SEPTEMBE | R | | 1
2
3
4
5 | 344
344
349
358
366 | 330
332
336
342
354 | 337
339
343
352
360 | 345
352
361
363
367 | 321
336
351
348
344 | 334
346
354
353
354 | 420
401
417
422
297 | 356
358
382
265
260 | 392
386
396
363
272 | 329
380
333
346
385 | 303
324
316
325
346 | 314
343
321
332
365 | | 6
7
8
9
10 | 376
330
260
295
311 | 297
167
201
260
295 | 350
204
232
279
303 | 384
375
385
394
393 | 359
357
359
373
364 | 365
365
371
382
374 | 353
391
412
417
431 | 297
353
391
402
399 | 321
373
402
411
416 | 389
401
404
 | 381
383
394
 | 384
390
400
 | | 11
12
13
14
15 | 327
337
334
327
310 | 309
325
325
308
262 | 316
329
328
319
283 | 382
378
379
382
381 | 359
357
358
358
362 | 372
369
369
368
368 | 437
430
436
433
443 | 312
330
327
335
422 | 397
412
393
412
430 | 430
416
423
420
433 | 400
395
404
411
413 | 412
405
410
416
420 | | 16
17
18
19
20 | 290
302
307
316
321 | 262
286
295
282
291 | 278
294
299
304
301 | 390
395
388
392
391 | 368
377
368
375
377 | 379
385
377
382
384 | 455
442
440
445
460 | 426
419
427
429
431 | 439
430
432
436
439 | 430
443
412
403
404 | 413
412
369
384
365 | 418
432
385
392
384 | | 21
22
23
24
25 | 306
314
322
340
338 | 295
306
311
319
327 | 301
310
319
332
334 | 405
410
436
408
406 | 386
393
388
388
380 | 393
399
401
397
393 | 448
460
460
450
423 | 435
436
432
414
348 | 441
443
439
430
386 | 410
412
413
416
414 | 382
387
396
398
399 | 392
403
405
410
406 | | 26
27
28
29
30
31 | 337
363
334
334
325 | 331
314
308
317
317 | 334
329
321
324
321 | 416
397
394
391
400
413 | 384
386
373
370
375
380 | 395
391
386
384
390
397 | 348
358
390
395
305
331 | 306
318
357
295
269
304 | 321
333
372
344
282
316 | 420
320
285
281
312 | 313
251
236
236
277 | 399
283
259
260
291 | | MONTH | 376 | 167 | 312 | 436 | 321 | 377 | 460 | 260 | 389 | 443 | 236 | 373 | ## PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEDIAN | |----------------------------------|---------------------------------|--|--|---------------------------------|---------------------------------|---------------------------------|----------------|----------------|----------------|----------|--------|----------| | | | OCTOBER | | N | OVEMBER | 2 | I | ECEMBE | R | | JANUAR | Y | | 1
2
3
4
5 | 7.3
7.4
7.5
7.6
7.9 | 7.1
7.1
7.2
7.2
7.2 | 7.2
7.2
7.2
7.2
7.4 | 7.6

7.4
7.5
7.4 | 7.2

6.9
7.0
7.0 | 7.2

7.0
7.1
7.2 | 7.1
7.2
 | 6.8
6.9
 | 6.9
7.0
 |

 | |

 | | 6
7
8
9
10 | 7.8
7.9
7.9
7.8
7.9 | 7.2
7.2
7.3
7.3
7.3 | 7.4
7.3
7.4
7.5 | 7.6
7.8
7.9
7.8
7.9 | 7.1
7.2
7.2
7.2
7.3 | 7.2
7.3
7.4
7.4
7.4 |

 | |

 |

 | |

 | | 11
12
13
14
15 | 7.9
7.9
7.8
7.6
7.3 | 7.4
7.3
7.2
7.1
7.0 | 7.5
7.5
7.4
7.3
7.1 | 7.8
7.9
8.0
8.0 | 7.2
7.4
7.4
7.4
7.3 | 7.4
7.5
7.6
7.6 |

 | |

 |

 | |

 | | 16
17
18
19
20 | 7.3
7.3
7.4
7.5
7.5 | 7.0
7.1
7.1
7.2
7.2 | 7.1
7.1
7.2
7.2
7.2 | 8.0
8.0
7.8
8.0
8.0 | 7.3
7.2
7.2
7.3
7.3 | 7.5
7.5
7.4
7.5
7.6 |

 | |

 |

 | |

 | | 21
22
23
24
25 | 7.5
7.4
7.4
7.3
7.2 | 7.1
7.1
7.0
6.9
6.9 | 7.2
7.1
7.1
7.0
7.0 | 8.0
8.0
8.0
7.8
7.6 | 7.3
7.3
7.4
7.3
7.0 | 7.6
7.6
7.6
7.5
7.2 |

 | |

 |

 | |

 | | 26
27
28
29
30
31 | 7.2
7.2
7.4
7.6
7.6 | 6.9
7.0
7.1
7.1
7.2
7.2 | 7.0
7.1
7.1
7.2
7.3
7.2 | 7.0
7.2
7.2
7.0
7.0 | 6.8
6.9
6.9
6.9 | 6.9
6.9
7.0
6.9
6.9 |

 | |

 |

 | |

 | | MAX
MIN | 7.9
7.2 | 7.4
6.9 | 7.5
7.0 | 8.0
7.0 | 7.4
6.8 | 7.6
6.9 | | | | | | | ## 01481000 BRANDYWINE CREEK AT CHADDS FORD, PA--Continued PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEDIAN | |---|---|---|---|--|--|--|--|--|---|--|---|---| | | | FEBRUAR | Y | | MARCH | | | APRIL | | | MAY | | | 1 2 | | | | 8.8
8.6 | 7.8
7.7 | 8.3
8.1 | 8.1
8.4 | 7.6
7.7 | 7.8
8.0 | 7.7
7.4 | 7.2
7.3 | 7.4
7.3 | | 3 | | | | 8.0 | 7.5 | 7.6 | 8.5 | 7.7 | 7.9 | 7.4 | 7.2 | 7.2 | | 4
5 | | | | 7.6
7.7 | $7.4 \\ 7.4$ | 7.5
7.6 | 8.6
8.8 | 7.7
7.9 | 8.1
8.3 | 7.3
7.3 | 7.2
7.2 | 7.2
7.2 | | 6 | | | | 7.8 | 7.6 | 7.7 | 8.9 | 7.9 | 8.5 | 7.3 | 7.2 | 7.3 | | 7
8 | | | | 7.9
7.9 | 7.6
7.6 | 7.7
7.7 | 9.0
9.1 | 8.0
8.0 | 8.7
8.7 | 7.4
7.3 | 7.2
7.2 | 7.2
7.2 | | 9
10 | | | | 8.0 | 7.6
7.6 | 7.7
7.8 | 9.0
8.9 | 7.9
7.8 | 8.6
8.3 | 7.3
7.5 | 7.2
7.3 | 7.2
7.3 | | 11 | | | | 8.1 | 7.7 | 7.8 | 8.9 | 7.8 | 8.4 | 7.5 | 7.3 | 7.3 | | 12 | | | | 8.1 | 7.7 | 7.8 | 8.6 | 7.7 | 8.1 | 7.5 | 7.3 | 7.3 | | 13
14 | | | | 7.9
7.9 | 7.6
7.6 | 7.7
7.8 | 8.5
8.6 | 7.5
7.5 | 7.9
8.0 | 7.3
7.3 | 7.2
7.2 | 7.3
7.3 | | 15 | | | | 8.1 | 7.7 | 7.8 | 8.3 | 7.5 | 7.8 | 7.3 | 7.2 | 7.3 | | 16
17 | | | | 8.0
7.8 | 7.6
7.6 | 7.7
7.7 | 8.3
8.2 | 7.3
7.3 | 7.5
7.5 | 7.4
7.4 | 7.3
7.2 | 7.3
7.3 | | 18 | | | | 7.8 | 7.6 | 7.7 | 7.9 | 7.2 | 7.3 | 7.3 | 7.2 | 7.3 | | 19
20 | | | | 7.9
7.7 | 7.7
7.6 | 7.7
7.7 | 7.6
7.3 | 7.2
7.1 | 7.2
7.2 | 7.3
7.3 | 7.2
7.2 | 7.3
7.3 | | 21 | | | | 7.6 | 7.5 | 7.5 | 7.3 | 7.1 | 7.2 | 7.4 | 7.3 | 7.3 | | 22
23 | | | | 7.7
7.8 | 7.5
7.6 | 7.6
7.7 | 7.4
7.7 | 7.2
7.3 | 7.3
7.4 | 7.4
7.5 | 7.3
7.3 | 7.4
7.4 | | 24 | | | | 7.9 | 7.7 | 7.8 | 7.9 | 7.4 | 7.5 | 7.6 | 7.3 | 7.4 | | 25 | | | | 7.9 | 7.7 | 7.8 | 7.5 | 7.4 | 7.4 | 7.8 | 7.3 | 7.5 | | 26
27 | | | | 7.8
7.7 | 7.6
7.6 | 7.7
7.6 | 7.8
8.0 | 7.3
7.4 | 7.5
7.6 | 8.0
7.8 | 7.3
7.3 | $7.4 \\ 7.4$ | | 28
29 | 8.8 | 7.7 | 8.4 | 7.8
8.0 | 7.6
7.6 | 7.7
7.8 | 7.5
7.3 | 7.3
7.2 | 7.4
7.3 | 7.9
8.3 | 7.3
7.3 | 7.5
7.6 | | 30 | | | | 8.0 | 7.6 | 7.7 | 7.5 | 7.3 | 7.3 | 8.5 | 7.3 | 7.7 | | 31 | | | | 7.8 | 7.6 | 7.7 | | | | 8.6 | 7.3 | 7.6 | | MAX
MIN | | | | 8.8
7.6 | 7.8
7.4 | 8.3
7.5 | 9.1
7.3 | 8.0
7.1 | 8.7
7.2 | 8.6
7.3 | 7.3
7.2 | 7.7
7.2 | DAY | MAX | MIN | MEDIAN | | DAY | MAX | MIN
JUNE |
MEDIAN | MAX | MIN
JULY | MEDIAN | MAX | MIN
AUGUST | | MAX | MIN
SEPTEMB | | | 1 | 8.4 | JUNE 7.3 | 7.6 | 8.0 | JULY 7.2 | 7.3 | 8.1 | AUGUST | 7.4 | 7.5 | SEPTEMB 7.2 | ER 7.3 | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMB | ER | | 1
2
3
4 | 8.4
8.3 | JUNE 7.3 7.2 | 7.6
7.5 | 8.0
8.1 | JULY 7.2 7.3 | 7.3
7.4 | 8.1
8.0 | 7.2
7.2 | 7.4
7.4 | 7.5
7.6 | 7.2
7.4 | 7.3
7.4 | | 1
2
3
4
5 | 8.4
8.3
7.8
7.8
8.0 | 7.3
7.2
7.2
7.3
7.3 | 7.6
7.5
7.4
7.4
7.5 | 8.0
8.1
8.1
8.0
8.1 | 7.2
7.3
7.3
7.2
7.2 | 7.3
7.4
7.3
7.3
7.3 | 8.1
8.0
8.2
7.6
7.3 | 7.2
7.2
7.1
7.1
7.0 | 7.4
7.4
7.4
7.4
7.1 | 7.5
7.6
7.9
8.0
8.0 | 7.2
7.4
7.3
7.3
7.2 | 7.3
7.4
7.4
7.3
7.4 | | 1
2
3
4
5 | 8.4
8.3
7.8
7.8
8.0
7.8 | 7.3
7.2
7.2
7.3
7.3
7.3 | 7.6
7.5
7.4
7.4
7.5
7.4 | 8.0
8.1
8.1
8.0
8.1 | 7.2
7.3
7.3
7.2
7.2
7.2 | 7.3
7.4
7.3
7.3
7.3
7.3 | 8.1
8.0
8.2
7.6
7.3
7.9
8.2 | 7.2
7.2
7.1
7.1
7.0
7.0 | 7.4
7.4
7.4
7.1
7.1 | 7.5
7.6
7.9
8.0
8.0 | 7.2
7.4
7.3
7.3
7.2
7.3
7.2 | 7.3
7.4
7.4
7.3
7.4
7.4
7.5 | | 1
2
3
4
5
6
7
8
9 | 8.4
8.3
7.8
7.8
8.0
7.8
7.2
7.1 | 7.3
7.2
7.2
7.3
7.3
7.3
7.1
7.1 | 7.6
7.5
7.4
7.5
7.4
7.1
7.1 | 8.0
8.1
8.1
8.0
8.1
8.0
8.1
8.4 | 7.2
7.3
7.3
7.2
7.2
7.2
7.2
7.3
7.3 | 7.3
7.4
7.3
7.3
7.3
7.3
7.4
7.5
7.4 | 8.1
8.0
8.2
7.6
7.3
7.9
8.2
8.3
8.5 | 7.2
7.2
7.1
7.1
7.0
7.0
7.2
7.3 | 7.4
7.4
7.4
7.1
7.2
7.5
7.6
7.7 | 7.5
7.6
7.9
8.0
8.0
8.1
8.3 | 7.2
7.4
7.3
7.3
7.2
7.3
7.3
7.3 | 7.3
7.4
7.4
7.3
7.4
7.4
7.5
7.6 | | 1
2
3
4
5
6
7
8
9 | 8.4
8.3
7.8
7.8
8.0
7.8
7.2
7.1
7.3 | 7.3
7.2
7.2
7.3
7.3
7.3
7.1
7.0
7.1
7.1 | 7.6
7.5
7.4
7.5
7.4
7.1
7.1
7.2
7.3 | 8.0
8.1
8.0
8.1
8.0
8.1
8.4
8.3 | 7.2
7.3
7.3
7.2
7.2
7.2
7.2
7.3
7.3
7.3 | 7.3
7.4
7.3
7.3
7.3
7.4
7.5
7.4 | 8.1
8.0
8.2
7.6
7.3
7.9
8.2
8.3
8.5 | 7.2
7.2
7.1
7.1
7.0
7.0
7.2
7.3
7.3 | 7.4
7.4
7.4
7.1
7.2
7.5
7.6
7.7 | 7.5
7.6
7.9
8.0
8.0
8.1
8.3
8.3 | 7.2
7.4
7.3
7.3
7.2
7.3
7.3
7.3 | 7.3
7.4
7.4
7.3
7.4
7.5
7.6 | | 1
2
3
4
5
6
7
8
9 | 8.4
8.3
7.8
7.8
8.0
7.2
7.1
7.3
7.4 | 7.3 7.2 7.2 7.3 7.3 7.3 7.1 7.0 7.1 7.1 7.2 7.3 | 7.6
7.5
7.4
7.4
7.5
7.4
7.1
7.1
7.2
7.3 | 8.0
8.1
8.1
8.0
8.1
8.0
8.1
8.4
8.3
8.2 | 7.2 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.3 7.3 7.3 7.3 | 7.3
7.4
7.3
7.3
7.3
7.4
7.5
7.4
7.4 | 8.1
8.0
8.2
7.6
7.3
7.9
8.2
8.3
8.5
8.6 | 7.2
7.2
7.1
7.1
7.0
7.0
7.2
7.3
7.3
7.3 | 7.4
7.4
7.4
7.1
7.2
7.5
7.6
7.7 | 7.5
7.6
7.9
8.0
8.0
8.1
8.3
8.3 | 7.2
7.4
7.3
7.3
7.2
7.3
7.3
7.3
7.3 | 7.3
7.4
7.4
7.3
7.4
7.5
7.6 | | 1
2
3
4
5
6
7
8
9
10 | 8.4
8.3
7.8
7.8
8.0
7.8
7.2
7.1
7.3
7.4
7.5 | 7.3
7.2
7.3
7.3
7.3
7.3
7.1
7.0
7.1
7.1
7.2
7.3
7.3 | 7.6
7.5
7.4
7.5
7.4
7.1
7.1
7.2
7.3
7.3 | 8.0
8.1
8.0
8.1
8.0
8.1
8.4
8.3
8.2 | 7.2 7.3 7.3 7.2 7.2 7.2 7.2 7.3 7.3 7.3 7.3 7.3 7.3 | 7.3
7.4
7.3
7.3
7.3
7.4
7.5
7.4
7.5 | 8.1
8.0
8.2
7.6
7.3
7.9
8.2
8.3
8.5
8.6
8.7 | 7.2
7.2
7.1
7.1
7.0
7.0
7.2
7.3
7.3
7.3
7.3 | 7.4
7.4
7.4
7.1
7.2
7.5
7.6
7.7
7.7 | 7.5
7.6
7.9
8.0
8.0
8.1
8.3
8.3

8.5
8.5 | 7.2 7.4 7.3 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.3
7.4
7.4
7.3
7.4
7.5
7.6
 | | 1
2
3
4
5
6
7
8
9
10 | 8.4
8.3
7.8
7.8
8.0
7.8
7.2
7.1
7.3
7.4 | 7.3 7.2 7.2 7.3 7.3 7.3 7.1 7.0 7.1 7.1 7.2 7.3 7.3 | 7.6
7.5
7.4
7.4
7.5
7.4
7.1
7.1
7.2
7.3 | 8.0
8.1
8.0
8.1
8.0
8.1
8.2
8.3 | 7.2
7.3
7.3
7.2
7.2
7.2
7.2
7.3
7.3
7.3 | 7.3
7.4
7.3
7.3
7.3
7.3
7.4
7.5
7.4
7.4 | 8.1
8.0
8.2
7.6
7.3
7.9
8.2
8.3
8.5
8.6 | 7.2
7.2
7.1
7.1
7.0
7.0
7.0
7.3
7.3 | 7.4
7.4
7.4
7.1
7.2
7.5
7.6
7.7
7.7 | 7.5
7.6
7.9
8.0
8.0
8.1
8.3
8.3
8.3 | 7.2 7.4 7.3 7.2 7.3 7.3 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.3
7.4
7.4
7.3
7.4
7.5
7.6
7.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 8.4
8.3
7.8
7.8
8.0
7.8
7.2
7.1
7.3
7.4
7.5
7.3
7.3
7.3 | 7.3 7.2 7.3 7.3 7.1 7.0 7.1 7.1 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.6
7.5
7.4
7.4
7.5
7.4
7.1
7.1
7.2
7.3
7.3
7.3
7.3
7.3 | 8.0
8.1
8.0
8.1
8.0
8.1
8.4
8.3
8.2
8.2
8.2
8.3
8.2 | 7.2
7.3
7.3
7.2
7.2
7.2
7.2
7.3
7.3
7.3
7.3
7.3
7.3 | 7.3
7.4
7.3
7.3
7.3
7.4
7.5
7.4
7.5
7.5
7.5
7.5
7.5 | 8.1
8.2
7.6
7.3
7.9
8.2
8.3
8.5
8.6
8.7
8.7
8.7 | 7.2
7.2
7.1
7.1
7.0
7.0
7.2
7.3
7.3
7.3
7.3
7.3
7.2
7.2 | 7.4
7.4
7.4
7.1
7.2
7.5
7.6
7.7
7.7
7.8
7.8
7.9 | 7.5
7.6
7.9
8.0
8.1
8.3
8.3
8.3
8.5
8.5
8.5
8.5 | 7.2 7.4 7.3 7.3 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.3
7.4
7.4
7.3
7.4
7.5
7.6

7.6
7.7
7.8
7.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 8.4
8.3
7.8
7.8
8.0
7.8
7.2
7.1
7.3
7.4
7.5
7.3
7.3
7.3 | 7.3 7.2 7.3 7.3 7.3 7.1 7.0 7.1 7.1 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.6
7.5
7.4
7.4
7.5
7.4
7.1
7.1
7.2
7.3
7.3
7.3
7.3
7.3 | 8.0
8.1
8.0
8.1
8.0
8.1
8.2
8.3
8.2
8.3
8.2
8.3 | 7.2
7.3
7.3
7.2
7.2
7.2
7.2
7.3
7.3
7.3
7.3
7.3
7.3 | 7.3
7.4
7.3
7.3
7.3
7.3
7.4
7.5
7.4
7.4
7.5
7.5
7.5 | 8.1
8.0
8.2
7.6
7.3
7.9
8.2
8.3
8.5
8.6
8.7
8.7
8.7
8.7 | 7.2 7.2 7.1 7.0 7.0 7.3 7.3 7.3 7.2 7.2 7.2 7.2 | 7.4
7.4
7.4
7.1
7.2
7.5
7.6
7.7
7.7
7.7
7.8
7.8
7.8
7.9 | 7.5
7.6
7.9
8.0
8.1
8.3
8.3
8.3

8.5
8.5
8.5
8.4
8.2 | 7.2 7.4 7.3 7.3 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.3
7.4
7.4
7.3
7.4
7.5
7.6
7.6
7.7
7.7
7.7
7.7
7.7
7.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 8.4
8.3
7.8
7.8
8.0
7.8
7.2
7.1
7.3
7.4
7.5
7.3
7.3
7.3
7.6
7.7 | 7.3 7.2 7.3 7.3 7.1 7.0 7.1 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.4 7.4 | 7.6
7.5
7.4
7.4
7.5
7.4
7.1
7.1
7.2
7.3
7.3
7.3
7.3
7.3
7.3
7.3 | 8.0
8.1
8.0
8.1
8.0
8.1
8.4
8.3
8.2
8.2
8.3
8.2
8.3
8.4
8.4
8.4 | 7.2
7.3
7.3
7.3
7.2
7.2
7.2
7.2
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3 | 7.3
7.4
7.3
7.3
7.3
7.4
7.5
7.4
7.5
7.5
7.5
7.6
7.5 | 8.1
8.2
7.6
7.3
7.9
8.2
8.3
8.5
8.6
8.7
8.7
8.7
8.7
8.6 | 7.2 7.2 7.1 7.1 7.0 7.0 7.3 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.1 | 7.4
7.4
7.4
7.1
7.2
7.5
7.7
7.7
7.7
7.8
7.8
7.9
7.8
7.7 | 7.5
7.6
7.9
8.0
8.1
8.3

8.5
8.5
8.4
8.2
8.0
8.2
8.6 | 7.2 7.4 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.3
7.4
7.4
7.3
7.4
7.5
7.6

7.6
7.7
7.7
7.8
7.6
7.7 | | 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | 8.4
8.3
7.8
8.0
7.8
7.2
7.1
7.3
7.4
7.5
7.3
7.3
7.3
7.4
7.7 | 7.3
7.2
7.3
7.3
7.3
7.1
7.0
7.1
7.1
7.2
7.3
7.3
7.3
7.3
7.3
7.4
7.4 | 7.6
7.5
7.4
7.4
7.5
7.4
7.1
7.1
7.2
7.3
7.3
7.3
7.3
7.3
7.3
7.3 | 8.0
8.1
8.0
8.1
8.0
8.1
8.4
8.3
8.2
8.2
8.3
8.2
8.3
8.4
8.4 | 7.2 7.3 7.3 7.2 7.2 7.2 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.3
7.4
7.3
7.3
7.3
7.4
7.5
7.4
7.4
7.5
7.5
7.5
7.5
7.5 | 8.1
8.0
8.2
7.6
7.3
7.9
8.2
8.3
8.5
8.6
8.7
8.7
8.7
8.7
8.6
8.5
8.4
8.4 | 7.2 7.2 7.1 7.0 7.0 7.3 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 | 7.4
7.4
7.4
7.1
7.2
7.5
7.6
7.7
7.7
7.8
7.8
7.8
7.8
7.9 | 7.5
7.6
7.9
8.0
8.0
8.1
8.3
8.3
8.3

8.5
8.5
8.5
8.4
8.2 | 7.2 7.4 7.3 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.3
7.4
7.4
7.3
7.4
7.5
7.6
7.7
7.7
7.8
7.6
7.5
7.6
7.7 | |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 8.4
8.3
7.8
7.8
8.0
7.8
7.2
7.1
7.3
7.4
7.5
7.3
7.3
7.3
7.6
7.7
7.8
8.0 | 7.3 7.2 7.3 7.3 7.1 7.0 7.1 7.1 7.2 7.3 7.3 7.3 7.3 7.3 7.4 7.4 7.4 7.4 | 7.6
7.5
7.4
7.4
7.5
7.4
7.1
7.2
7.3
7.3
7.3
7.3
7.3
7.3
7.5
7.5 | 8.0
8.1
8.0
8.1
8.0
8.1
8.3
8.2
8.2
8.3
8.2
8.3
8.4
8.4
8.4 | 7.2 7.3 7.3 7.2 7.2 7.2 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.3
7.4
7.3
7.3
7.3
7.4
7.5
7.4
7.5
7.5
7.5
7.5
7.5
7.5 | 8.1
8.0
8.2
7.6
7.3
7.9
8.2
8.3
8.5
8.6
8.7
8.7
8.7
8.7
8.6
8.3
8.4
8.4 | 7.2 7.2 7.1 7.1 7.0 7.0 7.2 7.3 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 | 7.4
7.4
7.4
7.1
7.2
7.5
7.6
7.7
7.7
7.8
7.8
7.8
7.9
7.5
6
7.6 | 7.5
7.6
7.9
8.0
8.1
8.3
8.3
8.5
8.5
8.5
8.5
8.7
8.6
8.6 | 7.2 7.4 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.3
7.4
7.4
7.3
7.4
7.5
7.6
7.6
7.7
7.7
7.7
7.8
7.6 | | 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | 8.4
8.3
7.8
7.8
8.0
7.8
7.2
7.1
7.3
7.4
7.5
7.3
7.3
7.3
7.6
7.7
7.8 | 7.3 7.2 7.2 7.3 7.3 7.1 7.0 7.1 7.1 7.2 7.3 7.3 7.3 7.3 7.4 7.4 7.4 7.4 7.4 | 7.6 7.5 7.4 7.1 7.1 7.1 7.2 7.3 7.3 7.3 7.3 7.3 7.5 7.5 7.5 | 8.0
8.1
8.0
8.1
8.0
8.1
8.3
8.2
8.2
8.3
8.2
8.3
8.4
8.4
8.4
8.4 | 7.2 7.3 7.3 7.2 7.2 7.2 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.3
7.4
7.3
7.3
7.3
7.4
7.5
7.4
7.4
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.1
8.2
7.6
7.3
7.9
8.2
8.3
8.5
8.6
8.7
8.7
8.7
8.7
8.6
8.3
8.4
8.4 | 7.2 7.2 7.1 7.1 7.0 7.0 7.3 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 | 7.4
7.4
7.4
7.1
7.2
7.5
7.6
7.7
7.7
7.7
7.8
7.8
7.8
7.8
7.9
7.5
7.6
7.6 | 7.5
7.6
7.9
8.0
8.1
8.3

8.5
8.5
8.4
8.2
8.0
8.2
8.6
8.7 | 7.2 7.4 7.3 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.3
7.4
7.4
7.3
7.4
7.5
7.6
7.7
7.7
7.8
7.6
7.5
7.6
7.7
7.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 8.4
8.3
7.8
7.8
8.0
7.8
7.2
7.1
7.3
7.4
7.5
7.3
7.3
7.4
7.6
7.7
7.8
8.0
8.1 | 7.3 7.2 7.3 7.3 7.1 7.0 7.1 7.1 7.2 7.3 7.3 7.3 7.3 7.3 7.4 7.4 7.4 7.4 | 7.6
7.5
7.4
7.4
7.5
7.4
7.1
7.2
7.3
7.3
7.3
7.3
7.3
7.3
7.5
7.5 | 8.0
8.1
8.0
8.1
8.0
8.1
8.3
8.2
8.2
8.3
8.2
8.3
8.4
8.4
8.4 | 7.2 7.3 7.3 7.2 7.2 7.2 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.3
7.4
7.3
7.3
7.3
7.4
7.5
7.4
7.5
7.5
7.5
7.5
7.5
7.5 | 8.1
8.0
8.2
7.6
7.3
7.9
8.2
8.3
8.5
8.6
8.7
8.7
8.7
8.7
8.6
8.3
8.4
8.4
8.4 | 7.2 7.2 7.1 7.0 7.0 7.3 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 | 7.4
7.4
7.4
7.1
7.2
7.5
7.6
7.7
7.7
7.8
7.8
7.8
7.9
7.5
6
7.6 | 7.5
7.6
7.9
8.0
8.1
8.3
8.3
8.3

8.5
8.5
8.5
8.4
8.2
8.2
8.2
8.6
8.7 | 7.2 7.4 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.3
7.4
7.4
7.3
7.4
7.5
7.6
7.6
7.7
7.7
7.7
7.8
7.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 8.4
8.3
7.8
7.8
8.0
7.8
7.2
7.1
7.3
7.4
7.5
7.3
7.3
7.3
7.6
7.7
7.8
7.7
7.8
8.0
8.1
8.2 | 7.3 7.2 7.3 7.3 7.1 7.0 7.1 7.2 7.3 7.3 7.3 7.3 7.3 7.4 7.4 7.4 7.4 7.4 7.3 7.3 7.3 7.3 | 7.6
7.5
7.4
7.4
7.5
7.4
7.1
7.2
7.3
7.3
7.3
7.3
7.3
7.3
7.5
7.5
7.5
7.5
7.5
7.5 | 8.0
8.1
8.0
8.1
8.0
8.1
8.3
8.2
8.2
8.3
8.2
8.3
8.4
8.4
8.4
8.4
8.4
8.4
8.4 | 7.2 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.3
7.3
7.3
7.3
7.3
7.4
7.5
7.4
7.5
7.5
7.6
7.5
7.6
7.5
7.5
7.5
7.6
7.5
7.5
7.6 | 8.1
8.2
7.6
7.3
7.9
8.2
8.3
8.5
8.6
8.7
8.7
8.7
8.7
8.6
8.3
8.4
8.4
8.4
8.4
8.4
7.9
7.6 | 7.2 7.2 7.1 7.0 7.0 7.3 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 | 7.4
7.4
7.4
7.1
7.2
7.5
7.7
7.7
7.8
7.8
7.9
7.8
7.6
6
7.6
6
7.6
6
7.6
7.4
7.4 | 7.5
7.6
7.9
8.0
8.1
8.3

8.5
8.5
8.4
8.2
8.0
8.2
8.6
8.7
8.6
8.7 | 7.2 7.4 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.3 7.4 7.4 7.5 7.6 7.7 7.7 7.8 7.6 7.5 7.6 7.7 7.7 8 7.6 7.7 7.8 7.6 7.7 7.7 7.6 7.6 7.6 7.7 7.7 7.6 7.6 | | 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | 8.4
8.3
7.8
7.8
8.0
7.8
7.2
7.1
7.3
7.4
7.5
7.3
7.3
7.3
7.7
7.8
8.0
8.1
8.2
7.9
7.5 | 7.3 7.2 7.2 7.3 7.3 7.1 7.0 7.1 7.1 7.2 7.3 7.3 7.3 7.3 7.3 7.4 7.4 7.4 7.4 7.4 7.3 7.3 7.3 7.3 7.3 7.2 7.3 7.3 7.2 7.3 7.3 7.2 7.2 7.3 7.3 7.2 7.3 7.3 7.2 7.2 7.3 7.3 7.2 7.3 7.3 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.6 7.5 7.4 7.1 7.1 7.1 7.2 7.3 7.3 7.3 7.3 7.3 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.7 | 8.0
8.1
8.0
8.1
8.0
8.1
8.2
8.2
8.3
8.2
8.3
8.2
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4 | 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.3
7.4
7.3
7.3
7.3
7.4
7.5
7.4
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.4
7.4
7.4
7.4 | 8.1
8.0
8.2
7.6
7.3
7.9
8.2
8.3
8.6
8.7
8.7
8.7
8.6
8.2
8.3
8.4
8.4
8.4
8.4
8.4
8.7
7.6
7.6
7.6
7.6
7.6
7.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7 | 7.2 7.2 7.1 7.0 7.0 7.3 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 | 7.4
7.4
7.4
7.1
7.2
7.5
7.6
7.7
7.8
7.8
7.8
7.6
7.6
7.6
7.6
7.6
7.4
7.3 | 7.5
7.6
7.9
8.0
8.1
8.3
8.3
8.3
8.5
8.5
8.5
8.5
8.6
8.7
8.6
8.7
8.6
8.4 | 7.2 7.4 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.4 7.3 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.5 7.7 7.5 | 7.3
7.4
7.4
7.5
7.6
7.7
7.7
7.7
7.8
7.6
7.5
7.6
7.7
7.7
7.7
7.7
7.7
7.7
7.6
7.6
7.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | 8.4
8.3
7.8
7.8
8.0
7.8
7.2
7.1
7.3
7.4
7.5
7.3
7.3
7.3
7.6
7.7
7.8
8.0
8.1
8.2
7.9 | 7.3 7.2 7.3 7.3 7.1 7.0 7.1 7.2 7.3 7.3 7.3 7.3 7.3 7.4 7.4 7.4 7.4 7.4 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.6 7.5 7.4 7.1 7.1 7.1 7.2 7.3 7.3 7.3 7.3 7.3 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 | 8.0
8.1
8.0
8.1
8.0
8.1
8.4
8.3
8.2
8.2
8.3
8.2
8.3
8.4
8.4
8.4
8.4
8.4
8.4
8.4 | 7.2 7.3 7.3 7.2 7.2 7.2 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.3
7.4
7.3
7.3
7.3
7.4
7.4
7.5
7.5
7.5
7.6
7.6
7.5
7.5
7.5
7.4
7.4
7.4
7.4 | 8.1
8.2
7.6
7.3
7.9
8.2
8.3
8.5
8.6
8.7
8.7
8.7
8.7
8.6
8.4
8.4
8.4
8.4
8.4
8.9
7.6 | 7.2 7.2 7.1 7.0 7.0 7.2 7.3 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 | 7.4
7.4
7.4
7.1
7.2
7.5
7.7
7.7
7.8
7.8
7.8
7.9
7.5
6
7.6
6
7.6
6
7.6
7.4
7.3 | 7.5
7.6
7.9
8.0
8.1
8.3

8.5
8.5
8.4
8.2
8.0
8.2
8.6
8.7
8.6
8.7 | 7.2 7.4 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.3
7.4
7.4
7.3
7.4
7.5
7.6
7.7
7.7
7.8
7.6
7.5
7.6
7.7
7.7
7.7
7.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 8.4
8.3
7.8
7.8
8.0
7.8
7.2
7.1
7.3
7.4
7.5
7.3
7.3
7.3
7.7
7.8
8.0
8.1
8.2
8.1
8.2
7.5
7.7 | 7.3 7.2 7.3 7.3 7.1 7.0 7.1 7.2 7.3 7.3 7.3 7.3 7.4 7.4 7.4 7.4 7.4 7.3 7.3 7.3 7.3 7.2 7.2 7.2 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 | 7.6
7.5
7.4
7.4
7.5
7.4
7.1
7.2
7.3
7.3
7.3
7.3
7.3
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.0
8.1
8.0
8.1
8.0
8.1
8.3
8.2
8.2
8.3
8.2
8.3
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4
8.4 | 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.3
7.3
7.3
7.3
7.3
7.4
7.4
7.5
7.4
7.5
7.6
6
7.5
7.5
7.5
7.5
7.5
7.6
7.5
7.5
7.4
7.5
7.4
7.5
7.4
7.5
7.4
7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 8.1
8.2
7.6
7.3
7.9
8.2
8.3
8.5
8.6
8.7
8.7
8.7
8.6
8.5
8.4
8.4
8.4
8.4
8.4
8.7
9.7
6 | 7.2 7.2 7.1 7.0 7.0 7.3 7.3 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 |
7.4
7.4
7.4
7.1
7.2
7.5
6
7.7
7.7
7.8
8
7.9
7.8
7.6
6
7.6
6
7.6
6
7.4
7.4
7.4
7.4
7.4
7.4
7.5
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.5
7.6
7.9
8.0
8.1
8.3

8.5
8.5
8.4
8.2
8.0
8.2
8.6
8.7
8.6
8.7
8.6
8.7 | 7.2 7.4 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.3 7.4 7.4 7.5 7.6 7.7 7.7 7.8 7.6 7.5 7.6 7.7 7.7 8 7.6 7.7 7.7 7.6 7.6 7.7 7.7 7.6 7.6 7.7 7.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 8.4
8.3
7.8
7.8
8.0
7.8
7.2
7.1
7.3
7.4
7.5
7.3
7.3
7.3
7.6
7.7
7.8
8.0
8.1
8.2
8.1 | 7.3 7.2 7.3 7.1 7.0 7.1 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.4 7.4 7.4 7.4 7.4 7.3 7.3 7.3 7.3 7.2 7.3 7.3 7.2 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 | 7.6 7.5 7.4 7.1 7.1 7.1 7.2 7.3 7.3 7.3 7.3 7.3 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 | 8.0
8.1
8.0
8.1
8.0
8.1
8.3
8.2
8.2
8.3
8.2
8.3
8.4
8.4
8.4
8.4
8.4
8.4
8.7
7.7
8.2 | 7.2 7.3 7.3 7.2 7.2 7.2 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.3
7.4
7.3
7.3
7.4
7.4
7.5
7.5
7.6
7.6
7.5
7.5
7.6
7.5
7.4
7.4
7.4
7.4
7.4 | 8.1
8.2
7.6
7.3
7.9
8.2
8.3
8.6
8.7
8.7
8.7
8.6
8.5
8.4
8.4
8.4
8.4
8.4
8.7
7.6
7.6 | 7.2 7.2 7.1 7.0 7.0 7.3 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 | 7.4
7.4
7.4
7.1
7.2
7.5
7.7
7.7
7.8
7.8
7.9
7.5
6
7.6
6
7.6
6
7.6
7.4
7.4
7.3
7.3 | 7.5
7.6
7.9
8.0
8.1
8.3
8.3
8.5
8.5
8.5
8.4
8.2
8.0
8.2
8.6
8.7
8.6
8.7
8.6
8.7 | 7.2 7.4 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.3
7.4
7.4
7.3
7.4
7.5
7.6
7.7
7.7
7.8
7.6
7.5
7.6
7.7
7.7
7.7
7.6
7.6
7.6
7.7
7.7
7.8
7.6 | ## 01481000 BRANDYWINE CREEK AT CHADDS FORD, PA--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|--------------|------------------------|--------------|--|---|---|--|---|--|--|--|--| | | | OCTOBER | | | NOVEMBER | 1 | | DECEMBER | ł. | | JANUAR | Y | | 1 2 | 14.0
15.5 | 13.5
13.0 | 14.0
14.0 | 11.5 | 9.0 | 10.0 | 14.0
13.0 | 12.5
10.0 | 13.5
11.5 | | | | | 3 | 17.0 | 14.0 | 15.5 | 14.5 | 13.0 | 13.5 | | | | | | | | 4
5 | 18.0
18.5 | 15.5
16.0 | 17.0
17.5 | 13.5
12.5 | 12.0
10.0 | 12.5
11.0 | | | | | | | | 6 | 18.0 | 16.0 | 17.5 | 10.5 | 9.0 | 9.5 | | | | | | | | 7
8 | 16.0
14.0 | 14.0
12.0 | 15.0
13.0 | 10.0
10.0 | 8.5
8.5 | 9.0
9.0 | | | | | | | | 9
10 | 12.5
12.5 | 10.5
10.5 | 11.5
11.5 | 10.0
9.5 | 9.0
7.5 | 9.5
8.5 | | | | | | | | 11 | 14.0 | 11.0 | 12.5 | 9.0 | 7.5 | 8.0 | | | | | | | | 12
13 | 15.0
17.0 | 13.0
14.5 | 14.0
15.5 | 7.5
6.5 | 6.0
5.0 | 7.0
6.0 | | | | | | | | 14 | 17.5 | 16.0 | 17.0 | 6.5 | 4.5 | 5.5 | | | | | | | | 15 | 18.0 | 16.5 | 17.5 | 7.5 | 5.5 | 6.5 | | | | | | | | 16
17 | 17.0
15.0 | 14.5
13.0 | 15.5
14.0 | 9.0
9.0 | 7.0
8.0 | 8.0
8.5 | | | | | | | | 18
19 | 13.5
12.0 | 11.5
10.0 | 12.5
11.0 | 8.5
8.0 | 7.0
7.0 | 8.0
7.5 | | | | | | | | 20 | 13.0 | 10.5 | 11.5 | 8.5 | 7.0 | 8.0 | | | | | | | | 21
22 | 13.5
15.0 | 11.0
13.0 | 12.5
14.0 | 7.5
6.0 | 6.0
4.5 | 6.5
5.5 | | | | | | | | 23 | 16.0 | 14.5 | 15.0 | 6.0 | 4.5 | 5.0 | | | | | | | | 24
25 | 17.5
17.5 | 15.5
16.0 | 16.5
16.5 | 8.0
11.0 | 5.5
8.0 | 6.5
9.5 | | | | | | | | 26 | 16.0 | 13.0 | 14.5 | 12.5 | 11.0 | 12.0 | | | | | | | | 27 | 13.0 | 10.5 | 11.5 | 11.5 | 10.5 | 11.0 | | | | | | | | 28
29 | 11.0
10.0 | 9.0
8.0 | 10.0
9.0 | 12.0
12.5 | 12.0 | 11.5
12.0 | | | | | | | | 30
31 | 10.5
10.0 | 8.5
9.0 | 9.5
9.5 | 13.5 | 12.5 | 13.0 | | | | | | | | MONTH | 18.5 | 8.0 | 13.7 | 14.5 | 4.5 | 8.9 | DAY | MAX | MIN | MEAN | | DAY | | MIN
FEBRUARY | MEAN | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | 1 | | FEBRUARY | | 5.5 | MARCH 2.5 | 4.0 | 13.0 | APRIL | 12.0 | 16.5 | MAY
13.5 | 15.0 | | 1
2
3 | | FEBRUARY | | 5.5
5.5
8.0 | MARCH
2.5
3.0
5.5 | 4.0
4.5
7.0 | 13.0
13.0
15.5 | 11.5
10.5
12.0 | 12.0
12.0
13.5 | 16.5
17.0
17.0 | MAY
13.5
15.5
16.0 | 15.0
16.5
16.5 | | 1
2 | | FEBRUARY | | 5.5
5.5 | MARCH 2.5 3.0 | 4.0
4.5 | 13.0
13.0 | APRIL
11.5
10.5 | 12.0
12.0 | 16.5
17.0 | MAY 13.5 15.5 | 15.0
16.5 | | 1
2
3
4
5 | | FEBRUARY | | 5.5
5.5
8.0
7.5
4.5 | MARCH 2.5 3.0 5.5 4.5 3.0 2.5 | 4.0
4.5
7.0
6.0
3.5 | 13.0
13.0
15.5
13.0
11.5 | APRIL
11.5
10.5
12.0
11.0
9.5 | 12.0
12.0
13.5
12.0
10.5 | 16.5
17.0
17.0
16.5
17.5 | MAY
13.5
15.5
16.0
14.0
15.0 | 15.0
16.5
16.5
15.5
16.5 | | 1
2
3
4
5 | | FEBRUARY | | 5.5
5.5
8.0
7.5
4.5 | 2.5
3.0
5.5
4.5
3.0 | 4.0
4.5
7.0
6.0
3.5 | 13.0
13.0
15.5
13.0
11.5 | 11.5
10.5
12.0
11.0
9.5
8.0
7.0 | 12.0
12.0
13.5
12.0
10.5 | 16.5
17.0
17.0
16.5
17.5 | MAY
13.5
15.5
16.0
14.0
15.0 | 15.0
16.5
16.5
15.5
16.5 | | 1
2
3
4
5
6
7
8
9 | | FEBRUARY | | 5.5
5.5
8.0
7.5
4.5
5.0
7.0
9.0 | MARCH 2.5 3.0 5.5 4.5 3.0 2.5 3.5 5.5 7.5 | 4.0
4.5
7.0
6.0
3.5
3.5
5.5
7.5
9.5 | 13.0
13.0
15.5
13.0
11.5
10.0
10.5
12.0
14.5 | APRIL
11.5
10.5
12.0
11.0
9.5
8.0
7.0
8.0
11.0 | 12.0
12.0
13.5
12.0
10.5
9.0
8.5
10.0 | 16.5
17.0
17.0
16.5
17.5 | MAY 13.5 15.5 16.0 14.0 15.0 16.0 17.0 18.5 16.5 | 15.0
16.5
16.5
15.5
16.5
17.0
18.5
19.5
18.0 | | 1
2
3
4
5
6
7
8
9 | | FEBRUARY | | 5.5
5.5
8.0
7.5
4.5
5.0
7.0
9.0
11.0 | MARCH 2.5 3.0 5.5 4.5 3.0 2.5 3.5 5.5 7.5 8.5 | 4.0
4.5
7.0
6.0
3.5
3.5
5.5
7.5
9.5 | 13.0
13.0
15.5
13.0
11.5
10.0
10.5
12.0
14.5 | APRIL
11.5
10.5
12.0
11.0
9.5
8.0
7.0
8.0
11.0
13.5 | 12.0
12.0
13.5
12.0
10.5
9.0
8.5
10.0
13.0 | 16.5
17.0
17.0
16.5
17.5
18.5
20.0
20.5
19.5 | 13.5
15.5
16.0
14.0
15.0
16.0
17.0
18.5
16.5 | 15.0
16.5
16.5
15.5
16.5
17.0
18.5
19.5
18.0 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | 5.5
5.5
8.0
7.5
4.5
5.0
7.0
9.0
11.0
11.5 | 2.5
3.0
5.5
4.5
3.0
2.5
3.5
5.5
7.5
8.5 | 4.0
4.5
7.0
6.0
3.5
3.5
7.5
9.5
10.0 | 13.0
13.0
15.5
13.0
11.5
10.0
10.5
12.0
14.5
17.0 | APRIL 11.5 10.5 12.0 11.0 9.5 8.0 7.0 8.0 11.0 13.5 | 12.0
12.0
13.5
12.0
10.5
9.0
8.5
10.0
13.0
15.0 | 16.5
17.0
17.0
16.5
17.5
18.5
20.0
20.5
19.5
19.0 | 13.5
15.5
16.0
14.0
15.0
16.0
17.0
18.5
16.5
16.5 | 15.0
16.5
16.5
15.5
16.5
17.0
18.5
19.5
18.5
18.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | | FEBRUARY | | 5.5
5.5
8.0
7.5
4.5
5.0
7.0
9.0
91.0
11.5
8.5
7.5
7.5
10.5 |
2.5
3.0
5.5
4.5
3.0
2.5
3.5
7.5
8.5
6.0
5.5
6.5
7.0 | 4.0
4.5
7.0
6.0
3.5
3.5
5.5
7.5
9.5
10.0
7.5
6.5
7.0 | 13.0
13.0
15.5
13.0
11.5
10.0
10.5
12.0
14.5
17.0
15.5
16.5 | APRIL 11.5 10.5 12.0 11.0 9.5 8.0 7.0 8.0 11.0 13.5 13.5 13.5 13.5 | 12.0
12.0
13.5
12.0
10.5
9.0
8.5
10.0
13.0
15.0 | 16.5
17.0
17.0
16.5
17.5
18.5
20.0
20.5
19.5
19.0 | MAY 13.5 15.5 16.0 14.0 15.0 16.0 17.0 18.5 16.5 16.5 16.5 17.5 18.5 | 15.0
16.5
16.5
15.5
16.5
17.0
18.5
19.5
18.0
17.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | 5.5
5.5
8.0
7.5
4.5
5.0
7.0
9.0
11.5
8.5
7.5
7.5
10.5 | 2.5
3.0
5.5
4.5
3.0
2.5
3.5
5.5
7.5
8.5 | 4.0
4.5
7.0
6.0
3.5
5.5
7.5
9.5
10.0
7.5
6.5
7.0
9.0 | 13.0
13.0
15.5
13.0
11.5
10.0
10.5
12.0
14.5
17.0
17.0
15.5
16.5
18.5
21.0 | APRIL 11.5 10.5 12.0 11.0 9.5 8.0 7.0 8.0 11.0 13.5 13.5 13.5 13.0 15.5 18.0 | 12.0
12.0
13.5
12.0
10.5
9.0
8.5
10.0
13.0
15.5
14.0
14.5
17.0 | 16.5
17.0
17.0
16.5
17.5
18.5
20.0
20.5
19.5
19.0
19.5
19.5
19.5 | 13.5
15.5
16.0
14.0
15.0
16.0
17.0
18.5
16.5
16.5
16.5
16.5 | 15.0
16.5
16.5
15.5
16.5
17.0
18.5
19.5
18.0
17.5
18.5
19.0
17.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | | FEBRUARY | | 5.5
5.5
8.0
7.5
4.5
5.0
7.0
9.0
911.0
11.5
8.5
7.5
7.5
7.5
10.5 | 2.5
3.0
5.5
4.5
3.0
2.5
3.5
5.5
7.5
8.5
6.0
5.5
6.0
9.5 | 4.0
4.5
7.0
6.0
3.5
3.5
5.5
7.5
9.5
10.0
7.5
6.5
7.0
9.0
11.5 | 13.0
13.0
15.5
13.0
11.5
10.0
10.5
12.0
14.5
17.0
17.0
15.5
16.5
18.5
21.0 | APRIL 11.5 10.5 12.0 11.0 9.5 8.0 7.0 8.0 11.0 13.5 13.5 13.5 13.5 13.5 13.5 13.5 | 12.0
12.0
13.5
12.0
10.5
9.0
8.5
10.0
13.0
15.0
15.5
14.0
14.5
17.0
19.5 | 16.5
17.0
17.0
16.5
17.5
18.5
20.0
20.5
19.5
19.0 | MAY 13.5 15.5 16.0 14.0 15.0 16.0 17.0 18.5 16.5 16.5 16.5 14.5 15.5 14.5 | 15.0
16.5
16.5
15.5
16.5
17.0
18.5
19.5
18.0
17.5
18.5
19.0
17.0
15.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | | FEBRUARY | | 5.5
5.5
8.0
7.5
4.5
5.0
7.0
9.0
11.5
7.5
7.5
10.5
13.0
14.0
12.0 | 2.5
3.0
5.5
4.5
3.0
2.5
3.5
5.5
7.5
8.5
6.0
9.5
12.0
8.0
7.0 | 4.0
4.5
7.0
6.0
3.5
3.5
5.5
7.5
9.5
10.0
7.5
6.5
7.0
9.0
11.5 | 13.0
13.0
15.5
13.0
11.5
10.0
10.5
12.0
14.5
17.0
17.0
15.5
18.5
21.0
23.0
24.5
25.0 | APRIL 11.5 10.5 12.0 11.0 9.5 8.0 7.0 8.0 11.0 13.5 13.5 13.5 13.0 15.5 18.0 | 12.0
12.0
13.5
12.0
10.5
9.0
8.5
10.0
13.0
15.0
14.5
17.0
19.5
21.0
22.5
23.5 | 16.5
17.0
17.0
16.5
17.5
18.5
20.0
20.5
19.5
19.0
19.5
19.5
19.5
17.0 | 13.5
15.5
16.0
14.0
15.0
16.0
17.0
18.5
16.5
16.0
17.5
18.5
14.5 | 15.0
16.5
16.5
15.5
16.5
17.0
18.5
18.0
17.5
18.5
19.0
17.0
15.5
16.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | 5.5
5.5
8.0
7.5
4.5
5.0
7.0
9.0
11.0
11.5
8.5
7.5
7.5
10.5
13.0 | 2.5
3.0
5.5
4.5
3.0
2.5
3.5
5.5
7.5
8.5
6.0
5.5
6.5
7.0
9.5 | 4.0
4.5
7.0
6.0
3.5
3.5
5.5
7.5
9.5
10.0
7.5
6.5
7.0
9.0
11.5 | 13.0
13.0
15.5
13.0
11.5
10.0
10.5
12.0
14.5
17.0
17.0
15.5
16.5
18.5
21.0 | APRIL 11.5 10.5 12.0 11.0 9.5 8.0 7.0 8.0 11.0 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 | 12.0
12.0
13.5
12.0
10.5
9.0
8.5
10.0
13.0
15.0
15.5
14.0
14.5
17.0
19.5 | 16.5
17.0
17.0
16.5
17.5
18.5
20.0
20.5
19.5
19.5
19.5
19.5
19.5
19.5 | 13.5
15.5
16.0
14.0
15.0
16.0
17.0
18.5
16.5
16.5
16.5
17.5
18.5
18.5
18.5 | 15.0
16.5
16.5
15.5
16.5
17.0
18.5
19.5
18.0
17.5
18.5
19.0
17.0
17.0
17.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | | FEBRUARY | | 5.5
5.5
8.0
7.5
4.5
5.0
7.0
9.0
11.0
11.5
8.5
7.5
7.5
10.5
13.0
14.0
12.0
8.0
8.0
8.0 | 2.5
3.0
5.5
4.5
3.0
2.5
3.5
5.5
7.5
8.5
6.0
5.5
7.0
9.5 | 4.0
4.5
7.0
6.0
3.5
3.5
5.5
9.5
10.0
7.5
6.5
7.0
9.0
11.5
13.0
9.5
7.5
7.5 | 13.0
13.0
15.5
13.0
11.5
10.0
10.5
12.0
14.5
17.0
17.0
15.5
18.5
21.0
23.0
24.5
25.0
23.5 | APRIL 11.5 10.5 12.0 11.0 9.5 8.0 7.0 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 | 12.0
12.0
13.5
12.0
10.5
9.0
8.5
10.0
13.0
15.0
14.5
17.0
19.5
21.0
22.5
23.5
23.5
22.0 | 16.5
17.0
17.0
16.5
17.5
18.5
20.0
20.5
19.5
19.0
19.5
19.5
17.0
18.0
20.0
19.5
17.0 | 13.5
15.5
16.0
14.0
15.0
16.0
17.0
18.5
16.5
16.5
16.5
17.5
18.5
14.5 | 15.0
16.5
16.5
15.5
16.5
17.0
18.5
18.0
17.5
18.5
19.0
17.0
15.5
16.5
18.5
19.0
17.0 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | | FEBRUARY | | 5.5
5.5
8.0
7.5
4.5
5.0
7.0
9.0
11.5
8.5
7.5
7.5
10.5
13.0
14.0
12.0
8.0
8.0
8.0
8.5
7.0 | 2.5
3.0
5.5
4.5
3.0
2.5
3.5
5.5
6.5
6.5
7.0
9.5
12.0
8.0
7.0
7.0
7.0 | 4.0
4.5
7.0
6.0
3.5
3.5
5.5
7.5
10.0
7.5
6.5
7.0
9.0
11.5
13.0
9.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7 | 13.0
13.0
15.5
13.0
11.5
10.0
10.5
12.0
14.5
17.0
17.0
15.5
16.5
21.0
23.0
24.5
25.0
23.5 | APRIL 11.5 10.5 12.0 11.0 9.5 8.0 7.0 8.0 11.0 13.5 13.5 13.5 13.5 13.5 13.5 13.0 15.5 18.0 19.5 20.5 21.5 20.5 | 12.0
12.0
13.5
12.0
10.5
9.0
8.5
10.0
13.0
15.0
14.5
17.0
14.5
17.0
22.5
23.5
23.0
22.0 | 16.5
17.0
17.0
16.5
17.5
18.5
20.0
20.5
19.5
19.0
19.5
19.5
17.0
18.0
20.0
14.5
14.0 | 13.5
15.5
16.0
14.0
15.0
16.0
17.0
18.5
16.5
16.5
17.5
18.5
17.5
14.5 | 15.0
16.5
16.5
15.5
16.5
17.0
18.5
18.0
17.5
18.5
19.0
17.5
16.5
16.0
13.5
13.5
13.5
13.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | | FEBRUARY | | 5.5
5.5
8.0
7.5
4.5
5.0
7.0
9.0
11.0
11.5
8.5
7.5
7.5
10.5
13.0
14.0
8.0
8.0
8.0 | 2.5
3.0
5.5
4.5
3.0
2.5
3.5
5.5
6.0
5.5
6.5
6.5
7.0
9.5 | 4.0
4.5
7.0
6.0
3.5
3.5
7.5
9.5
10.0
7.5
7.0
9.0
11.5
13.0
9.5
7.5
7.5
7.5
7.5 | 13.0
13.0
15.5
13.0
11.5
10.0
10.5
12.0
14.5
17.0
17.0
15.5
16.5
18.5
21.0
23.0
24.5
25.0
23.5 | APRIL 11.5 10.5 12.0 11.0 9.5 8.0 7.0 8.0 11.0 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 | 12.0
12.0
13.5
12.0
10.5
9.0
8.5
10.0
13.0
15.0
15.5
14.0
19.5
21.0
22.5
23.0
22.0 | 16.5
17.0
17.0
16.5
17.5
18.5
20.0
20.5
19.5
19.0
19.5
19.5
17.0
18.0
20.0
19.5
17.0 | 13.5
15.5
16.0
14.0
15.0
16.0
17.0
18.5
16.5
16.5
14.5
17.5
14.5
15.5
14.5 | 15.0
16.5
16.5
15.5
16.5
17.0
18.5
18.5
18.0
17.5
18.5
19.0
17.0
15.5
16.5
19.0
17.5
13.5
13.5
13.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | | FEBRUARY | | 5.5
5.5
8.0
7.5
4.5
5.0
7.0
9.0
11.0
11.5
8.5
7.5
7.5
13.0
8.0
8.0
8.0
8.5
7.0
8.5
7.5
7.5 | 2.5 3.0 5.5 4.5 3.0 2.5 3.5 5.5 7.5 8.5 6.0 5.5 7.0 9.5 12.0 8.0 7.0 7.0 6.5 5.5 4.5 5.5 6.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 4.0
4.5
7.0
6.0
3.5
3.5
5.5
9.5
10.0
7.5
6.5
7.0
9.0
11.5
13.0
9.5
7.5
7.5
8.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 13.0
13.0
15.5
13.0
11.5
10.0
10.5
12.0
14.5
17.0
17.0
15.5
18.5
21.0
23.0
24.5
25.0
25.0
25.0
25.0
25.0
25.0
25.0
25 | APRIL 11.5 10.5 12.0 11.0 9.5 8.0 7.0 13.5 13.5 13.5 13.5 13.5 13.5 13.0 15.5 18.0 19.5 20.5 21.5 20.5 16.0 14.0 12.0 12.5 10.5 | 12.0
12.0
13.5
12.0
10.5
9.0
8.5
15.0
13.0
15.0
14.5
17.0
19.5
21.0
22.5
23.5
23.0
22.0 | 16.5
17.0
17.0
16.5
17.5
18.5
20.0
20.5
19.5
19.0
19.5
17.0
18.0
20.0
19.5
17.0
18.0
20.0
19.5
17.0 | MAY 13.5 15.5 16.0 14.0 15.0 16.0 17.0 18.5 16.5 16.5 14.5 17.5 18.5 14.5 15.6 17.5 14.5 15.6
17.5 14.5 15.7 18.0 17.5 18.0 | 15.0
16.5
16.5
15.5
16.5
17.0
18.5
18.0
17.5
18.5
19.0
17.0
15.5
16.0
13.5
13.5
13.5
17.5
17.5
19.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | | FEBRUARY | | 5.5
5.5
5.5
4.5
4.5
5.0
7.0
9.0
11.0
11.5
8.5
7.5
7.5
13.0
14.0
8.0
8.0
8.0
8.5
7.5
7.5 | 2.5
3.0
5.5
4.5
3.0
2.5
3.5
5.5
7.5
8.5
6.0
5.5
7.0
9.5
12.0
8.0
7.0
7.0
7.0
7.0
7.0 | 4.0
4.5
7.0
6.0
3.5
3.5
5.5
9.5
10.0
7.5
6.5
7.0
9.0
11.5
8.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 13.0
13.0
15.5
13.0
11.5
10.0
10.5
12.0
14.5
17.0
17.0
15.5
18.5
21.0
23.0
24.5
25.0
23.5
25.0
23.5 | APRIL 11.5 10.5 12.0 11.0 9.5 8.0 7.0 8.0 11.0 13.5 13.5 13.5 13.5 13.5 13.5 13.5 14.0 15.5 18.0 19.5 20.5 21.5 20.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21 | 12.0
12.0
13.5
12.0
10.5
9.0
8.5
10.0
13.0
15.0
15.5
14.0
19.5
21.0
22.5
23.0
22.0
18.0
15.0
21.0
22.5
23.5
23.0
22.0 | 16.5
17.0
17.0
16.5
17.5
18.5
20.0
20.5
19.5
19.0
19.5
19.5
17.0
18.0
20.0
19.5
17.0 | MAY 13.5 15.5 16.0 14.0 15.0 16.0 17.0 18.5 16.5 16.5 14.5 17.5 14.5 15.6 17.5 14.5 15.6 17.5 14.5 15.8 18.5 18.5 | 15.0
16.5
16.5
16.5
15.5
16.5
17.0
18.5
18.0
17.5
18.5
19.0
17.0
15.5
16.5
13.5
13.5
13.5
13.5
15.5
19.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | | FEBRUARY | | 5.5
5.5
8.0
7.5
4.5
5.0
7.0
9.0
11.0
11.5
8.5
7.5
7.5
10.5
13.0
8.0
8.0
8.0
8.0
8.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7 | 2.5 3.0 5.5 4.5 3.0 2.5 3.5 5.5 7.5 8.5 6.0 5.5 7.0 9.5 12.0 8.0 7.0 7.0 6.5 5.5 4.5 5.0 6.0 7.0 6.5 8.5 | 4.0
4.5
7.0
6.0
3.5
3.5
5.5
9.5
10.0
7.5
7.0
9.0
11.5
13.0
9.5
7.5
7.5
8.0
7.5
7.5
7.5
8.0
7.5
7.5
8.0
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 13.0
13.0
15.5
13.0
11.5
10.0
10.5
12.0
14.5
17.0
17.0
23.0
24.5
21.0
23.0
24.5
25.0
25.0
25.0
25.0
25.0
25.0
25.0
25 | APRIL 11.5 10.5 12.0 11.0 9.5 8.0 7.0 8.0 11.0 13.5 13.5 13.5 13.5 13.5 13.5 13.0 15.5 14.0 19.5 20.5 21.5 20.5 14.0 12.0 12.0 12.0 12.5 13.5 13.5 | 12.0
12.0
13.5
12.0
10.5
9.0
8.5
10.0
13.0
15.0
14.5
17.0
19.5
21.0
22.5
23.5
23.0
22.0
18.0
13.5
14.0
13.5
14.0 | 16.5
17.0
17.0
16.5
17.5
18.5
20.0
20.5
19.5
19.0
19.5
17.0
18.0
20.0
19.5
14.5
14.0 | MAY 13.5 15.5 16.0 14.0 15.0 16.0 17.0 18.5 16.5 16.5 16.0 17.5 18.5 14.5 15.6 17.5 14.5 15.6 17.5 14.0 17.5 12.5 12.0 12.0 14.0 15.5 18.0 18.5 18.5 18.5 | 15.0
16.5
16.5
15.5
16.5
17.0
18.5
18.0
17.5
18.5
19.0
17.0
15.5
16.5
16.5
13.5
13.5
13.5
13.5
19.5 | | 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | | FEBRUARY | | 5.5
5.5
8.0
7.5
4.5
5.0
7.0
9.0
11.0
11.5
8.5
7.5
10.5
13.0
8.0
8.0
8.0
8.0
7.5
8.5
7.5 | 2.5
3.0
5.5
4.5
3.0
2.5
3.5
5.5
6.5
7.0
9.5
12.0
8.0
7.0
7.0
7.0
6.5
5.5
4.5
5.0
6.0
7.0
7.0
7.0
7.0
6.5
5.0
6.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7 | 4.0
4.5
7.0
6.0
3.5
3.5
7.5
9.0
11.5
13.0
9.0
7.5
7.0
7.5
7.0
7.5
6.5
7.0
7.5
7.0
7.5
7.0
7.5
7.0
7.5
7.0
7.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 13.0
13.0
13.0
11.5
10.0
10.5
12.0
14.5
17.0
17.0
23.0
24.5
25.0
25.0
25.0
25.0
14.5
14.5
14.5
14.5 | APRIL 11.5 10.5 12.0 11.0 9.5 8.0 7.0 8.0 11.0 13.5 13.5 13.5 13.5 13.5 13.0 15.5 18.0 19.5 20.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21 | 12.0
12.0
13.5
12.0
10.5
9.0
8.5
10.0
13.0
15.0
14.0
14.5
17.0
19.5
21.0
22.5
23.5
23.5
23.5
22.0
18.0
13.5
14.0
13.5 | 16.5
17.0
17.0
16.5
17.5
18.5
20.0
20.5
19.5
19.0
19.5
19.5
19.0
19.5
19.5
17.0
18.0
20.0
19.5
14.0
14.0
13.5
14.0
20.0
20.0 | 13.5
15.5
16.0
14.0
15.0
16.0
17.0
18.5
16.5
16.5
17.5
18.5
12.5
12.5
12.0
12.5
12.0
12.5
18.5
18.5 | 15.0
16.5
16.5
15.5
16.5
17.0
18.5
19.5
18.5
19.0
17.5
16.5
16.0
13.5
13.5
13.5
17.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19 | ## 01481000 BRANDYWINE CREEK AT CHADDS FORD, PA--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5 | 25.5
24.5
24.0
22.5
23.5 | 22.5
22.0
21.0
20.5
20.5 | 24.0
23.5
22.5
21.5
22.0 | 27.5
28.5
30.5
31.0
30.5 | 24.5
25.5
27.0
28.0
27.0 | 26.0
27.0
28.0
29.0
29.0 | 30.5
31.0
31.0
28.5
28.0 | 26.0
26.5
26.5
26.5 | 28.0
28.0
28.5
27.5
27.0 | 20.5
20.5
23.5
25.5
25.5 | 20.0
19.0
20.0
22.0
22.5 | 20.0
20.0
21.5
23.5
23.5 | | 6
7
8
9
10 | 25.0
22.5
21.0
22.0
23.5 | 22.5
19.5
18.5
19.0
20.0 | 23.5
20.0
19.5
20.5
22.0 | 28.0
26.0
26.5
27.5
28.0 | 25.0
23.5
23.0
24.0
25.5 | 26.5
24.5
24.5
25.5
26.0 | 28.5
27.0
26.5
27.0
27.5 | 25.0
23.0
22.0
21.0
22.0 | 26.5
25.0
24.0
24.0
24.5 | 25.0
25.0
25.0
 | 21.5
20.5
20.5
 | 23.0
22.5
22.5
 | | 11
12
13
14
15 | 25.0
25.5
25.0
22.0
18.5 | 21.0
23.0
22.0
18.5
18.0 | 23.0
24.5
23.5
20.0
18.5 | 27.0
26.5
25.5
24.0
26.0 | 23.5
22.5
22.5
23.0
22.5 | 25.0
24.0
23.5
23.0
24.0 | 28.0
28.5
29.5
29.5
29.5 | 22.5
23.5
25.0
25.5
26.0 | 25.0
26.0
27.0
27.5
28.0 | 25.0
23.5
23.0
23.0
23.0 | 22.0
19.5
18.5
19.5
21.5 | 23.0
21.5
21.0
21.0
22.0 | | 16
17
18
19
20 | 20.5
21.5
23.0
23.5
23.5 | 17.5
19.0
19.5
20.5
20.5 | 19.0
20.5
21.0
21.5
22.0 | 27.5
28.0
28.5
29.5
29.5 | 24.0
24.0
25.0
26.0
26.0 | 25.0
25.5
26.5
27.5
27.0 | 29.5
29.5
30.0
30.0
29.0 | 27.0
26.5
26.5
27.0
27.0 | 28.5
28.0
28.5
28.5
28.0 | 24.0
24.5
24.0
24.0
24.5 | 22.0
22.0
21.0
20.0
20.5 | 23.0
23.0
22.5
22.0
22.5 | | 21
22
23
24
25 | 24.5
25.5
26.0
26.5
27.5 | 21.0
21.5
22.5
23.5
24.5 | 23.0
23.5
24.0
25.0
26.0 | 29.5
29.5
30.5
27.5
27.5 | 26.0
25.5
26.5
26.0
24.5 | 27.5
27.5
28.0
27.0
26.0 | 28.5
27.5
27.0
26.5
26.0 | 25.0
24.5
25.5
25.0
24.0 | 27.0
26.0
26.5
25.5
25.0 | 25.0
25.5
24.5
23.0
21.5 | 21.0
22.5
22.0
19.5
19.5 | 23.0
23.5
23.5
21.5
20.5 | | 26
27
28
29
30
31 | 28.5
29.0
27.5
27.0
27.5 | 25.5
26.5
25.5
24.0
24.5 | 27.0
27.5
26.5
25.5
26.0 | 25.0
24.5
27.0
29.0
30.0
30.5 | 23.5
23.0
23.0
25.0
26.5
26.0 | 24.5
23.5
24.5
26.5
28.0
28.0 | 26.0
26.5
24.5
22.5
20.0
22.5 | 23.5
23.0
22.5
19.5
19.5 | 24.5
24.5
24.0
21.0
19.5
20.5 | 20.0
18.5
20.0
20.0
20.0 | 18.5
17.5
18.5
18.0
17.5 | 19.5
18.0
19.5
19.0
19.0 | | MONTH | 29.0 | 17.5 | 22.9 | 31.0 | 22.5 | 26.1 | 31.0 | 19.0 | 25.9 | 25.5 | 17.5 | 21.6 | ## OXYGEN, DISSOLVED (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--|---|-------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|------------------|----------------|----------------|----------|----------|----------| | | | OCTOBER | | | NOVEMBER | 1 | I | DECEMBER | | | JANUARY | | | 1
2
3
4
5 | 10.4
11.0
11.2
11.5
12.1 | 9.1
9.2
9.1
8.8
8.6 | 9.6
9.9
9.9
9.8
9.9 | 13.3

12.0
12.4
12.5 | 10.2

8.5
8.6
9.0 | 11.3

9.7
10
10.4 | 10.7
11.3
 | 8.4
8.8
 | 9.2
9.8
 |

 |

 |

 | | 6
7
8
9
10 |
11.6
12.2
12.8
13.1
13.4 | 8.3
8.8
9.7
10.5
10.7 | 9.6
10.2
10.8
11.4
11.6 | 13.1
14.0
14.2
14.0
14.1 | 9.8
10.3
10.6
10.3
10.5 | 11.0
11.7
11.9
11.7
11.8 |

 |

 | |

 | | | | 11
12
13
14
15 | 13.1
12.8
11.9
11.3
9.7 | 10.4
9.6
9.0
8.1
7.6 | 11.3
10.8
10.1
9.3
8.5 | 13.9
14.2
14.7
14.8
14.9 | 10.6
11.2
11.7
11.9 | 11.8
12.3
12.8
13.0
12.8 |

 | |

 |

 | | | | 16
17
18
19
20 | 10.0
10.2
10.9
11.9 | 7.5
8.0
8.6
9.2
9.5 | 8.5
8.9
9.5
10.2
10.4 | 14.4
14.0
13.8
 | 11.1
10.4
10.4
 | 12.3
11.8
11.8
 |

 |

 |

 |

 |

 |

 | | 21
22
23
24
25 | 11.7
11.6
11.5
11.0
10.2 | 9.3
8.8
8.3
8.0
7.2 | 10.2
9.8
9.4
8.9
8.3 | 13.4
13.3
13.2
12.1 | 10.3
10.9
10.8
9.5 | 11.6
11.9
11.7
10.7 | |

 | |

 | | | | 26
27
28
29
30
31 | 10.6
11.0
12.1
12.4
13.0
12.9 | 7.4
8.3
9.2
10.0
10.4
10.3 | 8.6
9.3
10.3
11.0
11.3 | 9.6
10.5
11.2
10.0
10.1 | 8.8
9.0
8.9
8.6
8.5 | 9.2
9.6
9.7
9.1
9.0 | |

 |

 | |

 | | | MONTH | 13.4 | 7.2 | 10.0 | 14.9 | 8.5 | 11.2 | | | | | | | ## 01481000 BRANDYWINE CREEK AT CHADDS FORD, PA--Continued OXYGEN, DISSOLVED (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|--|--|--|---|--|---|--|---|---|---|--|--| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 |

 |

 |

 | 14.6
14.6
12.3
11.9
13.2 | 12.3
12.3
10.5
10.5
11.6 | 13.3
13.2
11.0
11.2
12.4 | 11.8
12.5
12.1
12.8
13.3 | 9.4
9.7
9.4
9.2
10.1 | 10.3
10.9
10.4
10.9
11.6 | 11.1
9.6
8.4
9.5
9.7 | 8.5
7.9
7.8
8.2
8.3 | 9.5
8.6
8.2
8.8
8.8 | | 6
7
8
9 | | | | 13.5
13.2
12.7
12.0 | 12.3
11.5
10.9
9.9 | 12.8
12.4
11.7
10.9 | 13.7
14.3
14.2
13.2 | 10.8
11.1
11.0
9.9 | 12.3
12.6
12.4
11.3 | 9.6
9.4
9.4
8.0 | 7.9
7.6
7.2
7.1 | 8.6
8.4
7.9
7.6 | | 10
11
12
13
14
15 | |

 | | 11.5
12.6
12.7
11.6
11.9 | 9.5
10.4
11.0
10.6
10.3
9.5 | 10.4
11.4
11.6
11.1
11.0
10.5 | 12.9
12.8
11.2
12.5
12.1
10.9 | 8.8
8.7
8.8
8.9
8.2
7.7 | 10.6
10.6
10.5
9.9
9.1 | 9.7
9.8
9.8
8.4
8.9
9.4 | 8.0
7.9
7.9
7.7
7.7
8.7 | 8.7
8.7
8.5
8.0
8.4
9.0 | | 16
17
18
19
20 |

 |

 |

 | 10.6
10.5
11.6
12.1
11.2 | 9.0
9.1
10.3
11.0
10.7 | 9.6
9.9
11.0
11.4
10.9 | 11.4
11.2
10.7
10.2
8.5 | 6.9
6.5
6.0
5.8
5.8 | 8.8
8.4
7.8
7.4
6.9 | 9.9
9.3
9.5
10.1
10.5 | 8.6
8.1
7.9
9.5
9.5 | 9.1
8.6
8.7
9.8
10.0 | | 21
22
23
24
25 | |

 |

 | 11.2
11.8
12.6
12.4
12.3 | 10.4
10.4
11.4
11.4 | 10.9
11.2
11.9
11.9 | 8.3
9.8
11.0
11.7
10.2 | 6.3
7.4
8.7
9.1
8.8 | 7.2
8.4
9.7
10.2
9.2 | 11.0
11.3
11.2
11.3
11.5 | 9.9
9.9
9.5
8.9
8.2 | 10.3
10.4
10.2
9.9
9.7 | | 26
27
28
29
30
31 | 14.1
 | 11.4
 | 12.6
 | 11.4
11.2
12.1
11.9
11.5
10.7 | 10.8
10.8
10.8
10.4
9.8
9.2 | 11.1
11.0
11.3
11.1
10.5 | 12.1
12.5
9.7
9.5
11.1 | 9.1
9.3
8.7
8.5
8.9 | 10.5
10.7
9.0
9.0
9.7 | 12.0
11.6
12.2
13.0
12.3
12.6 | 8.0
8.1
8.1
7.9
7.4
6.8 | 9.5
9.8
10
10.1
9.6
9.3 | | MONTH | | | | 14.6 | 9.0 | 11.3 | 14.3 | 5.8 | 9.9 | 13.0 | 6.8 | 9.1 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | MAX | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMB | | | DAY 1 2 3 4 5 | MAX
11.9
11.8
10.6
10.8
11.0 | | MEAN
8.8
8.6
8.3
8.5
8.6 | 9.7
9.8
9.7
9.5
9.4 | | 7.4
7.3
7.0
6.6
6.5 | 9.3
9.1
9.5
8.2
7.7 | | MEAN 6.6 6.4 6.4 6.6 6.1 | 9.1
9.5
10.5
10.4
10.2 | | | | 1
2
3
4 | 11.9
11.8
10.6
10.8 | JUNE 6.3 6.2 6.4 6.6 | 8.8
8.6
8.3
8.5 | 9.7
9.8
9.7
9.5 | JULY 5.9 5.8 5.4 5.0 | 7.4
7.3
7.0
6.6 | 9.3
9.1
9.5
8.2 | 4.7
4.5
4.1
4.6 | 6.6
6.4
6.4
6.6 | 9.1
9.5
10.5
10.4 | 7.7
8.2
7.4
6.7 | 8.2
8.8
8.9
8.1 | | 1
2
3
4
5
6
7
8
9 | 11.9
11.8
10.6
10.8
11.0
10.0
7.5
7.4
7.8 | JUNE 6.3 6.2 6.4 6.6 6.8 6.3 6.2 6.8 6.7 | 8.8
8.6
8.3
8.5
8.6
7.5
7.0
7.2
7.2 | 9.7
9.8
9.7
9.5
9.4
9.4
9.9 | 5.9
5.8
5.4
5.0
4.9
5.2
5.6
6.0 | 7.4
7.3
7.0
6.6
6.5
6.9
7.3
7.8
7.4 | 9.3
9.1
9.5
8.2
7.7
9.7
9.8
10.2 | 4.7
4.5
4.1
4.6
4.9
4.6
5.4
5.8
5.9 | 6.6
6.4
6.4
6.6
6.1
6.5
7.3
7.7
8.1 | 9.1
9.5
10.5
10.4
10.2 | 7.7
8.2
7.4
6.7
6.5 | 8.2
8.8
8.9
8.1
7.9
7.9
8.1
8.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 11.9
11.8
10.6
10.8
11.0
10.0
7.5
7.4
7.8
8.4
8.3
8.0
7.4
7.8 | JUNE 6.3 6.2 6.4 6.6 6.8 6.3 6.2 6.6 6.3 6.7 6.6 | 8.8
8.6
8.3
8.5
8.6
7.5
7.0
7.2
7.2
7.3 | 9.7
9.8
9.7
9.5
9.4
9.9
10.9
10.0
9.7
9.9
10.2 | 5.9
5.8
5.0
4.9
5.2
5.6
6.0
5.6
5.7
5.8 | 7.4
7.3
7.0
6.6
6.5
6.9
7.3
7.8
7.4
7.1 | 9.3
9.1
9.5
8.2
7.7
9.7
9.8
10.2
10.7
10.9 | 4.7
4.5
4.1
4.6
4.9
4.6
5.4
5.9
6.1
6.1
5.9 | 6.6
6.4
6.6
6.1
6.5
7.3
8.3
8.4
8.4 | 9.1
9.5
10.5
10.4
10.2
10.6
11.0
11.1

11.2
11.6 | 7.7
8.2
7.4
6.7
6.5
6.4
6.4
6.5

5.9
6.1
6.1
6.0 | 8.2
8.8
8.9
8.1
7.9
7.9
8.1
8.3

8.0
8.3
8.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 11.9
11.8
10.6
10.8
11.0
10.0
7.5
7.4
7.8
8.4
8.3
8.0
7.4
7.8
8.5 | JUNE 6.3 6.2 6.4 6.6 6.8 6.3 6.2 6.7 6.6 6.3 6.7 7.7 7.9 7.6 7.5 | 8.8
8.6
8.3
8.5
8.6
7.5
7.0
7.2
7.2
7.3
7.4
7.0
6.6
7.3
8.0
8.4
8.2 | 9.7
9.8
9.7
9.5
9.4
9.9
10.0
9.7
9.9
10.2
9.4
8.9
10.4 | 5.9
5.8
5.0
4.9
5.2
5.6
6.0
5.6
5.7
5.8
5.8
5.9
6.0
5.7 | 7.4
7.3
7.0
6.6
6.5
6.9
7.3
7.4
7.1
7.2
7.4
7.0
7.5 | 9.3
9.1
9.5
8.2
7.7
9.7
9.8
10.2
10.7
10.9
11.0
11.4
11.4
11.9
11.0 | 4.7
4.5
4.1
4.6
4.9
4.6
5.4
5.9
6.1
6.1
5.9
6.1
6.1
5.8
5.6
4.9 | 6.6
6.4
6.6
6.1
6.5
7.3
8.3
8.4
8.5
7.8 | 9.1
9.5
10.5
10.4
10.2
10.6
11.0
11.1

11.2
11.6
10.5
9.9
11.0
11.9 | 7.7
8.2
7.4
6.7
6.5
6.4
6.4
6.4
6.5
5.9
6.1
6.1
6.0
5.8 | 8.2
8.8
8.9
8.1
7.9
7.9
8.1
8.3
8.5
7.8
7.5
7.9
8.4
8.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 11.9
11.8
10.6
10.8
11.0
10.0
7.5
7.4
7.8
8.4
8.3
8.7
9.3
9.3
9.4
9.4
9.7
9.9 | JUNE 6.3 6.4 6.6 6.8 6.3 6.2 6.7 6.6 6.3 6.7 7.7 7.9 7.66 7.55 7.1 6.8 6.5 | 8.8
8.6
8.3
8.5
8.6
7.5
7.0
7.2
7.2
7.3
7.4
7.0
6.6
7.3
8.0
8.4
8.2
8.3
8.2
8.3 | 9.7
9.8
9.7
9.5
9.4
9.4
9.9
10.0
9.7
9.9
10.2
10.1
10.1
10.1
10.2 | 5.9 5.4 5.0 4.9 5.2 5.6 6.0 5.6 5.7 5.8
5.9 6.0 5.7 5.6 6.0 5.7 5.8 | 7.4
7.3
6.6
6.5
6.9
7.3
7.4
7.1
7.2
7.4
7.0
7.5
7.6
7.6
7.5
7.6
7.8
8.1
7.4 | 9.3
9.1
9.5
8.2
7.7
9.7
9.8
10.2
10.7
10.9
11.0
11.4
11.9
11.0
10.6
9.8
10.0
10.2
10.5 | 4.7
4.5
4.1
4.6
4.9
4.6
5.4
5.9
6.1
6.1
5.8
5.9
6.1
6.1
5.8
4.9
4.6
4.5
4.3
4.3
4.3 | 6.6
6.4
6.6
6.1
6.5
7.3
8.3
8.4
8.5
7.6
7.2
7.2
7.1 | 9.1
9.5
10.5
10.4
10.2
10.6
11.0
11.1

11.2
11.6
10.5
9.9
11.0
11.9
12.6
12.6 | 7.7
8.2
7.4
6.7
6.5
6.4
6.4
6.4
6.5
5.9
6.1
6.0
5.8
5.8
6.4
6.3
6.3
6.1
6.3
6.1 | 8.2
8.8
8.9
8.1
7.9
7.9
8.1
8.3

8.0
8.3
8.5
7.5
7.9
8.4
8.8
8.7 | ## 01481000 BRANDYWINE CREEK AT CHADDS FORD, PA--Continued ## CROSS-SECTION ANALYSES, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SAM-
PLING
DEPTH
(FEET)
(00003) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SAMPLE
LOC-
ATION,
CROSS
SECTION
(FT FM
L BANK)
(00009) | |------|------|---|---|--|--|---|---|--| | SEP | | | | | | | | | | 27 | 1117 | 603 | 0 | | | | | 0 | | 27 | 1118 | | 1 | 8.6 | 7.6 | 307 | 17.1 | 0 | | 27 | 1124 | | 1 | 8.7 | 7.6 | 302 | 17.1 | 13 | | 27 | 1126 | | 1 | 8.8 | 7.6 | 301 | 17.1 | 23 | | 27 | 1129 | | 1 | 8.8 | 7.6 | 299 | 17.1 | 33 | | 27 | 1133 | | 1 | 8.9 | 7.6 | 298 | 17.1 | 43 | | 27 | 1136 | | 1 | 8.7 | 7.6 | 300 | 17.1 | 53 | | 27 | 1138 | | 1 | 8.9 | 7.6 | 296 | 17.1 | 63 | | 27 | 1141 | | 1 | 8.9 | 7.6 | 295 | 17.1 | 73 | | 27 | 1143 | | 1 | 8.8 | 7.6 | 296 | 17.1 | 83 | | 27 | 1145 | 577 | 1 | 8.8 | 7.6 | 300 | 17.1 | 93 | #### LAKES AND RESERVOIRS IN CHRISTINA RIVER BASIN 01480399 CHAMBERS LAKE NEAR WAGONTOWN.--Lat 40°01'40", long 75°51'03", Chester County, Hydrologic Unit 02040205, at Hibernia Dam on Birch Run, 0.6 mi upstream from gaging station on Birch Run (station 01480400), 0.9 mi upstream from mouth, and 1.4 mi northwest of Wagontown. DRAINAGE AREA, 4.5 mi². PERIOD OF RECORD, May 1997 to current year. GAGE, non-recording gage. Manual measurement from top of concrete riser at upstream flank of Hibernia Dam. Datum of gage is sea level (levels by Chester County Water Resources Authority, Chester County Parks and Recreation Department). REMARKS.-Reservoir formed by earthfill dam with principle spillway at elevation 587.5 ft, capacity 2,000 acre-ft. Dam crest at elevation 596.5 ft. Normal elevation 580 ft, capacity 1,226 acre feet. Reservoir is used for water supply, flood control, and recreation. Figures given herein represent total contents. COOPERATION .-- Records provided by Chester County Water Resources Authority, in cooperation with City of Coatesville Authority and Chester County Parks and Recreation Department. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 1,440 acre-ft, March 22, 2000, elevation, 582.76 ft; minimum contents, acre-ft, Dec. 28, 1998, elevation, 572.42 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 1,240 acre-ft, June 7, elevation, 580.68 ft; minimum contents, 666 acre-ft, Sept. 26, elevation, 572.58 ft. 01480684 MARSH CREEK LAKE NEAR DOWNINGTOWN.--Lat 40°03'24", long 75°43'06", Chester County, Hydrologic Unit 02040205, on right bank at dam on Marsh Creek, 0.3 mi upstream from mouth, and 3.2 mi north of Downingtown. DRAINAGE AREA, 20.1 mi². PERIOD OF RECORD, November 1973 to current year. GAGE, Water-stage recorder. Datum of gage is sea level (levels by Pennsylvania Department of Environmental Protection). REMARKS.--Reservoir formed by earthfill dam with concrete spillway at elevation 359.5 ft. Storage began November 1973. Total capacity, 22,190 acre-ft, elevation 373 ft. Reservoir is used for water supply, flood control, and recreation. Figures given herein represent contents above lowest gate sill at elevation 289.5 ft. COOPERATION.--Records provided by Pennsylvania Department of Environmental Protection. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 16,500 acre-ft, Sept. 18, 1999, elevation, 363.49 ft; minimum contents (after first filling), 10,410 acre-ft, Mar. 3, 1976, elevation, 351.75 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 14,938 acre-ft, May 19, elevation, 360.87 ft; minimum contents, 12,899 acre-ft, Jan. 6, elevation, 356.98 ft. MONTHEND ELEVATION, IN FEET ABOVE SEA LEVEL, AND CONTENTS AT 2400 HRS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 Change in Changein Contents Contents contents contents | | Elevation | (acre- | (equivalent | Elevation (acre- (equivalent | | |-------------|-----------|-------------|---------------|------------------------------|---| | Date | (feet) | feet) | in ft^3/s) | (feet) feet) in ft^3/s) | | | | 0148039 | 99 Chambers | Lake | 01480684 Marsh Creek Lake | - | | Sept. 30 | 579.50 | 1,142 | | 358.76 13,790 | | | Oct. 31 | 577.80 | 1,024 | -2.0 | 358.03 13,420 -6.0 | | | Nov. 30 | 576.78 | 945 | -1.3 | 357.36 13,090 -5.6 | | | Dec. 31 | 575.50 | 855 | -1.3 | 357.17 12,990 -1.6 | | | CAL YR 2001 | | | 46 | 0.8 | | | Jan. 31 | 576.29 | 910 | +.81 | 358.10 13,460 +7.6 | | | Feb. 28 | 575.59 | 861 | 90 | 358.10 13,460 0 | | | Mar. 31 | 577.70 | 1,016 | +2.6 | 359.90 14,400 +15.3 | | | Apr. 30 | 578.90 | 1,103 | +1.3 | 360.26 14,600 -3.4 | | | May 31 | 579.90 | 1,168 | +1.1 | 360.34 14,650 +0.8 | | | June 30 | 580.00 | 1,175 | +.17 | 360.07 14,500 -2.5 | | | July 31 | 579.10 | 1,116 | 98 | 359.09 13,960 -8.8 | | | Aug. 31 | 576.62 | 933 | -3.1 | 358.45 13,630 -5.4 | | | Sept. 30 | 572.68 | 671 | -4.4 | 358.04 13,430 -3.4 | | | WTR YR 2002 | | | 65 | 0.5 | | #### 01482800 DELAWARE RIVER AT REEDY ISLAND JETTY, DE LOCATION.--Lat 39°30'03", long 75°34'07", New Castle County, Delaware, Hydrologic Unit 02040205, on dock on streamward side of jetty about 0.4 mi downstream from Reedy Island near Port Penn. **DRAINAGE AREA**.--11,200 mi², approximately. PERIOD OF RECORD.--Water year 1997 to current year. #### PERIOD OF DAILY RECORD.-- SPECIFIC CONDUCTANCE: October 1963 to current year. pH: February 1970 to current year. WATER TEMPERATURES: February 1970 to current year. DISSOLVED OXYGEN: February 1970 to current year. INSTRUMENTATION.--Water-quality monitor since February 1970. Probes interfaced with a data collection platform since the 1986 water year. Probes placed in situ since July 1998. **REMARKS.**--Specific conductance and pH records rated good. Water temperature record rated good, except for periods Oct. 1-21 and Nov. 3-12, which are fair. Dissolved oxygen record rated poor, except for periods Oct. 1-13, Nov. 3-12, Feb. 3-9, Apr. 26 to May 11, May 26 to July 19, Aug. 11-23, Aug. 31 to Sept. 8, and Sept. 22-30, which are fair. Interruptions in the record were due to malfunctions of the equipment. #### EXTREMES FOR PERIOD OF DAILY RECORD.-- SPECIFIC CONDUCTANCE: Maximum, 35,600 microsiemens, Nov. 15, 1978; minimum, 100 microsiemens, several days in 1969, 1970, 1974 and 1979. pH: Maximum, 8.9, Mar. 4, 1980; minimum, 5.4, Dec. 31, 1972. WATER TEMPERATURE: Maximum, 32.5°C, July 23, 1987; minimum, 0.0°C, many days during winters. DISSOLVED OXYGEN: Maximum, 17.1 mg/L, Dec. 16, 19, 1976; minimum, 0.3 mg/L, Sept. 16, 17, 1971. #### EXTREMES FOR CURRENT YEAR.-- SPECIFIC CONDUCTANCE: Maximum, 22,900 microsiemens, Sept. 3; minimum, 555 microsiemens, May 18. pH: Maximim 8.0, Mar. 11-14; minimum, 6.9, Apr. 18-21, June 1, 2, July 19. WATER TEMPERATURE: Maximum, 30.5°C, Aug. 1; minimum recorded, 3.0°C, Jan. 7-10. #### SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25° CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|---|---|--|---|---|---|--|--|--|--|--|--| | | | OCTOBER | | N | OVEMBER | | I | DECEMBER | | | JANUARY | | | 1 | 21900 | 13400 | 18000 | 19700 | 13000 | 15800 | 19200 | 13600 | 15800 | 17100 | 9080 | 11800 | | 2 | 22200 | 13100 | 16800 | 19300 | 12900 | 15500 | 19700 | 13000 | 15000 | 18200 | 9390 | 12300 | | 3 | 19400 | 12900 | 15600 | 18200 | 11600 | 14400 | 19200 | 13200 | 15300 | 18200 | 9790 | 12900 | | 4 | 18600 | 12000 | 15200 | 19800 | 12200 | 14600 | 18400 | 12900 | 15000 | 19600 | 10200 | 14800 | | 5 | 19100 | 12800 | 15200 | 17500 | 12100 | 14500 | 18000 | 12400 | 14600 | 19600 | 11100 | 15000 | | 6 | 18000 | 11300 | 14300 | 19800 | 12100 | 14800 | 19100 | 12400 | 15000 | 19000 | 11500 | 14600 | | 7 | 17400 | 11200 | 13500 | 19400 | 12500 | 15300 | 17500 | 12700 | 14400 | 18800 | 11300 | 15100 | | 8 | 18200 | 11200 | 13600 | 21000 | 11900 | 15600 | 19200 | 12600 | 14900 | 20000 | 11900 | 15200 | | 9 | 19100 | 10900 | 14500 | 19800 | 12600 | 15500 | 19100 | 13200 | 15500 | 20300 | 12300 |
15400 | | 10 | 18900 | 11600 | 14700 | 19800 | 12400 | 15900 | 19000 | 13000 | 15800 | 18900 | 11100 | 14300 | | 11 | 18500 | 10900 | 13500 | 19500 | 12100 | 14400 | 18800 | 12900 | 15700 | 20500 | 12200 | 15300 | | 12 | 19500 | 9980 | 13800 | 20000 | 12700 | 15500 | 20100 | 13800 | 16000 | 18900 | 11800 | 14600 | | 13 | 18900 | 10800 | 14100 | 19700 | 12500 | 15200 | 20800 | 14000 | 16500 | 18500 | 11700 | 14300 | | 14 | 18600 | 11500 | 14400 | 19200 | 12700 | 15200 | 19100 | 14000 | 15800 | 15100 | 10400 | 12200 | | 15 | 18600 | 11900 | 14500 | 19500 | 12600 | 14900 | 18000 | 12800 | 14800 | 16900 | 9140 | 12300 | | 16 | 17300 | 11700 | 13700 | 19600 | 13100 | 15400 | 19700 | 13400 | 15400 | 17200 | 10000 | 13200 | | 17 | 16400 | 10100 | 13200 | 19800 | 12900 | 15400 | 20600 | 13800 | 16200 | 18000 | 10300 | 13300 | | 18 | 15000 | 9160 | 11300 | 21700 | 13500 | 16500 | 18300 | 12700 | 15000 | 17900 | 10500 | 13500 | | 19 | 16700 | 9720 | 12100 | 20100 | 14200 | 16200 | 19300 | 12700 | 15400 | 18000 | 10500 | 13300 | | 20 | 15700 | 9680 | 12100 | 17800 | 13000 | 15200 | 18300 | 12400 | 14700 | 18200 | 11700 | 15100 | | 21 | 16900 | 9680 | 12600 | 21300 | 13000 | 16100 | 16200 | 10400 | 12500 | 19100 | 11800 | 15300 | | 22 | 15800 | 10100 | 12100 | 19700 | 13700 | 16400 | 19600 | 9670 | 14900 | 16500 | 10700 | 13400 | | 23 | 18300 | 9770 | 12700 | 19900 | 13500 | 16000 | 20700 | 11500 | 16800 | 17700 | 9640 | 12900 | | 24 | 17700 | 10300 | 13400 | 21200 | 13900 | 16800 | 18900 | 12100 | 15600 | 19200 | 10500 | 14200 | | 25 | 16000 | 10500 | 13300 | 20800 | 14800 | 17400 | 19500 | 11600 | 15300 | 19000 | 11500 | 15000 | | 26
27
28
29
30
31 | 16600
17000
19900
19600
19900 | 9870
8800
9750
12000
12600
13100 | 12600
12200
14200
15900
15400
16000 | 19300
19400
20200
21000
20700 | 13800
14100
13800
14500
14700 | 16300
16300
16300
16700
16800 | 19000
20900
20500
19800
18900
17300 | 11600
12100
11600
10400
9860
9600 | 15200
16400
15000
13600
12900
12200 | 19000
18100
19200
19800
19200
19600 | 10900
10300
10900
11100
11900
11400 | 14300
13100
14100
14700
14300
14500 | | MONTH | 22200 | 8800 | 14000 | 21700 | 11600 | 15700 | 20900 | 9600 | 15100 | 20500 | 9080 | 14000 | ## 01482800 DELAWARE RIVER AT REEDY ISLAND JETTY, DE--Continued SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25° CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|--|---|--|--|--|---|--|---|---|---|---
---| | | | FEBRUAR: | Z . | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 19200
16600
16900
17400
17500 | 11900
11000
10900
11100
10100 | 15400
12700
13300
13400
12500 | 12700 | 8200
8390
9780
8290
7900 | 11000
11100
13000
10400
9420 | 11000
10000
8860
6340
8400 | 4690
4510
3300
3060
3220 | 6760
5880
5270
4220
4950 | 9430
8760
7700
5590
5810 | 3560
3590
2610
1800
1770 | 5070
5600
3930
3150
3330 | | 6
7
8
9
10 | 18500
19100
18700
17900
18600 | 10900
9830
9720
10600
10200 | 13000 | 12800
15200
15400
12000 | 5890 | 9410
8160
9900
10600
9350 | 11600
13200
12200
10400 | 3440
4880
6190
4630
4200 | 6340
7760
9160
7980
6030 | 7700
6490
9330
9330
8140 | 2080
1900
1880
2520
2330 | 4340
3730
3750
4800
4120 | | 11
12
13
14
15 | 17400
19000
15600
15800
14500 | 8770
9050
8860
8810
8180 | 12300
12900
11800
11200
11100 | 14900
14000 | 4790
5050
5840
6990
7480 | 7070
8550
9430
10200
9340 | 11200
11200
11200
9450
10900 | 3820
4590
4680
4820
4810 | 6750
7380
7250
6570
6730 | 7120
7270
6550
7530
3740 | 2150
2220
2250
1760
909 | 3380
3510
3830
3480
1740 | | 16
17
18
19
20 | 14300
15300
16500
18900
17900 | 7630
8180
8700
9160
10500 | 10500
11200
11300
14300
13900 | 15600
15200 | 7270
7680
8420
7860
8700 | 9010
9960
11500
11200
12100 | 11100
10200
9940
9790
10300 | 4640
4340
3980
4200
3830 | 6670
6150
5740
6040
5600 | 4610
5120
4640
6340
5820 | 824
642
555
615
897 | 1460
1300
1230
2660
2390 | | 21
22
23
24
25 | 16500
17700
16900
17900
19600 | 10100
10000
9380
9470
10400 | 14400 | 12500
12200
14400 | 7820
6380
6750
5530
6000 | 10100
8030
9810
8020
9290 | 8150

 | 3770

 | 5540

 | 6800
7240
8230
8020
7720 | 920
901
1120
1250
1320 | 2590
2640
2940
2840
2870 | | 26
27
28
29
30
31 | 18400
18400
14100
 | 11400
11100
8850
 | 14000
13600
11300
 | 13800
14100
12200 | 7040
7510
6880
6300
5690
5190 | 11000
10400
9230
8760
7840
6910 | 12000
11700
12300
10200 | 4870
5150
4490
4120 | 7220
7420
6870
6140 | 8480
7690
7100
6130
6330
5730 | 1600
1620
1700
1650
1680
1760 | 3330
3080
3040
2940
2890
2750 | | MONTH | 19600 | 7630 | 13000 | 18000 | 4790 | 9680 | 13200 | 3060 | 6500 | 9430 | 555 | 3180 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | | MIN
JULY | MEAN | MAX | MIN
AUGUST | | | MIN
SEPTEMBE | | | DAY 1 2 3 4 5 | MAX
4440
5940
7140
9970
9780 | | 2280
2500
3550
5730
5250 | 7440
6910 | JULY
1720
1910 | 3500
3220
3690
 | 17600
19100
18900
19300
18900 | | 13500
14500
14500
14000
13600 | | | | | 1
2
3
4 | 4440
5940
7140
9970 | JUNE 1590 1370 1370 2460 | 2280
2500
3550
5730 | 7440
6910
7360 | JULY
1720
1910
1840 | 3500
3220
3690
 | 17600
19100
18900
19300 | AUGUST
10200
10800
11400
10600 | | | 15400
14500
14800
15100 | 18100
17400
18300
17600
17300
17700
17900
17900
18000 | | 1
2
3
4
5
6
7
8
9
10 | 4440
5940
7140
9970
9780
9220
13200
13200
10300
7820
7990
7520 | JUNE 1590 1370 1370 2460 2710 2090 2170 3420 2600 2030 1850 1620 | 2280
2500
3550
5730
5250
4180
4720
6580
4540
3220
3390
3180 | 7440
6910
7360

17000
17000
16000 | JULY 1720 1910 1840 5090 6200 6180 6960 7200 | 3500
3220
3690

9970
10100
9320
11000
11500 | 17600
19100
18900
19300
18900
19700
19700
19700
20000 | AUGUST 10200 10800 11400 10500 9810 10900 11800 12300 12500 12700 12600 | 13500
14500
14500
14000
13600
12300
14100
14500
15300
15300 | 21300
21900
22900
22200
21900
21900
21400
22200
22000
22200
22200
22300 | 15400
14500
14800
15100
14400
15100
15100
15500
15700
16100
15600 | 18100
17400
18300
17600
17300
17900
17900
18000
18300 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 4440
5940
7140
9970
9780
9220
13200
13200
10300
7820
7990
7520
7100
8890 | JUNE 1590 1370 1370 2460 2710 2090 2170 3420 2600 2030 1850 1620 1810 1930 | 2280
2500
3550
5730
5250
4180
4720
6580
4540
3220
3390
3180
3260
4010 | 7440
6910
7360

17000
17000
16000
15800
17100
16600
16100 | JULY 1720 1910 1840 5090 6200 6180 6960 7200 8510 8530 | 3500
3220
3690

9970
10100
9320
11000
11500
11600
11300 | 17600
19100
18900
19300
18900
19700
19700
19700
20000
19300
19200
18100
18800 | AUGUST 10200 10800 11400 10500 9810 10900 11800 12300 12500 12700 12600 12400 12500 | 13500
14500
14500
14000
13600
12300
14100
15100
15300
15300
14700
14800 | 21300
21900
22900
22200
21900
22000
21400
22200
22000
22300
21800
21000 | 15400
14500
14800
15100
14400
15100
15500
15100
15500
14800
15700
16100
16600
16300
16300 | 18100
17400
18300
17600
17300
17900
17900
18000
18300
18600
17900
18400
17600 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 4440
5940
7140
9970
9780
9220
13200
13200
7820
7520
7100
8890
8330
7700
6610
4740 | JUNE 1590 1370 1370 2460 2710 2090 2170 3420 2600 2030 1850 1620 1810 1930 1930 2090 1830 1660 1660 1690 | 2280
2500
3550
5730
5250
4180
4720
6580
4540
3220
3390
3180
3260
4010
4030
3810
3240
2850
2560 | 7440
6910
7360

17000
17000
16000
15800
17100
16600
16100
16500
16800
16800
16400 | JULY 1720 1910 1840 5090 6200 6180 6960 7200 8510 8530 8530 9070 9210 9570 9700 | 3500
3220
3690

9970
10100
9320
11000
11500
11600
11300
11800
11400
12200
12200
12100 |
17600
19100
18900
19300
18900
19700
19700
20000
19300
19200
18100
18800
17600
18200
19000
19400 | 10200
10800
11400
10500
9810
10900
11800
12300
12500
12700
12400
12500
12400
12500
11400
11400
11800
12100 | 13500
14500
14500
14500
14000
13600
12300
14100
15100
15300
15000
14700
14800
14200 | 21300
21900
22900
22200
21900
21900
22000
21400
22200
22300
21800
21000
20600
19400
20800
21700
21700 | 15400
14500
14800
15100
14400
15100
15500
15500
15500
16100
15600
16300
15900
15400
14400
14400
14400
14900
15000 | 18100
17400
18300
17600
17300
17900
17900
18900
18900
18900
18400
17600
17200 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 4440
5940
7140
9970
9780
9220
13200
13200
10300
7820
7520
7100
8890
8330
7700
6610
4740
5790
5810
6560 | 1590 1370 1370 2460 2710 2090 2170 3420 2600 2030 1850 1620 1810 1930 1930 2090 1830 1660 1690 1500 1430 1340 1330 1360 | 2280
2500
3550
5730
5250
4180
4720
6580
4540
3220
3390
3180
3260
4010
4030
3810
3240
2850
2390
2280
2120
2200
2260 | 7440
6910
7360

17000
17000
16000
15800
17100
16100
16500
16800
16400
17700
17700
17700
17700
15600
13300 | JULY 1720 1910 1840 5090 6200 6180 6960 7200 8510 8530 8530 9070 9210 9570 9710 9440 9820 10100 8960 7910 | 3500
3220
3690

9970
10100
9320
11500
11500
11800
11400
12200
12200
12100
12100
12100
12100
12100
9980 | 17600
19100
18900
19300
18900
19700
19700
20000
19700
20000
19300
19200
18100
18800
17600
18200
19400
19400
19400
19700
19700
19700
19700
19700
19700
19700 | 10200
10800
11400
10500
9810
10900
11800
12300
12500
12700
12400
12500
12400
11400
11400
11400
11400
11400
12400
12400 | 13500
14500
14500
14500
14000
13600
12300
14100
15100
15300
14700
14800
14200
13700
14400
14200
14600
15300
15300
14400
15300
15300
14400
15600 | 21300
21900
22900
22900
21900
21900
21900
21400
22200
22300
21800
21000
20600
19400
21700
21700
21700
21300 | 15400
14500
14800
15100
14400
15100
15500
15500
15500
15600
15700
16100
15900
15400
14400
14400
14400
15000
15400 | 18100
17400
18300
17600
17300
17900
17900
18900
18900
18900
18400
17600
17200
16500
16400
17200
17400
17400
17000
17400
17000
16700
16700
16700
16700
16700
16700
17100 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 4440
5940
7140
9970
9780
9220
13200
10300
7820
7100
8890
8330
7700
6610
5610
4740
5790
5590
5810
5810
6560
5880
7020
6920
5970
6840
7640 | 1590 1370 1370 2460 2710 2090 2170 3420 2600 2030 1850 1620 1810 1930 1930 1660 1690 1500 1430 1340 1330 1360 1430 1550 1690 1430 | 2280
2500
3550
5730
5250
4180
4720
6580
4540
3220
3390
3180
3260
4010
4030
3810
3240
2850
2390
2280
2120
2200
2260
2450
2960
2910
2310
2690
2690
3500 | 7440 6910 7360 17000 17000 16000 15800 17100 16100 15700 16800 16400 17700 | JULY 1720 1910 1840 5090 6200 6180 6960 7200 8530 8530 8530 9070 9210 9570 9700 9440 9820 10100 8960 7910 9570 9440 9820 10100 8960 7910 9570 9440 | 3500
3220
3690

9770
10100
9320
11000
11500
11500
11800
11400
12200
12200
12100
12100
12100
12100
12100
12100
12100
12100
12100
12100
12100
12100
12100
12100
12100
12100
12100
12100
12100
12100
12100
12100
12100
12100
12100
12100
12100
12100
12100 | 17600
19100
18900
19300
18900
19700
19700
20000
19700
20000
19300
19200
18100
18800
19400
19400
19400
19500
18500
18100
18500 | 10200
10800
11400
10600
10500
9810
10900
11800
12300
12500
12700
12600
12400
12500
12400
12500
12400
12500
12400
12500
12700
12400
12900
12000 | 13500
14500
14500
14500
14000
13600
12300
14100
15300
15300
15300
14700
14200
14200
14400
14200
15300
15300
14400
15300
15300
14400
15300
15300
15300
15300
15300
14400
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300
15300 | 21300
21900
22900
22900
21900
21900
22000
21400
22200
22300
21800
21000
20600
19400
21700
21700
21300
19800
19800
19800
19800
19800
20200
21100
21500
19800
21500
19800
21500
21200
20700 | 15400
14500
14800
15100
14400
15100
15500
15500
15500
16100
15700
16300
15400
14400
14400
14400
15000
15400
15300
15400
15400 |
18100
17400
18300
17600
17300
17900
17900
18000
18000
18400
17900
18400
17200
16500
16400
17200
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400
17400 | ## 01482800 DELAWARE RIVER AT REEDY ISLAND JETTY, DE--Continued PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEDIAN | |---|--|---|--|---|--|--|---|--|---|---|---|---| | | | OCTOBER | | | NOVEMBER | | I | DECEMBER | | | JANUAR | Y | | 1 2 | | | | | | | 7.6
7.6 | 7.5
7.5 | 7.5
7.6 | 7.7
7.7 | 7.6
7.6 | 7.6
7.6 | | 3 | | | | | | | 7.6 | 7.5 | 7.6 | 7.7 | 7.6 | 7.7 | | 4
5 | | | | | | | 7.6
7.6 | 7.5
7.5 | 7.6
7.5 | 7.7
7.7 | 7.6
7.7 | 7.7
7.7 | | 6 | | | | | | | 7.6 | 7.5 | 7.5 | 7.7 | 7.6 | 7.7 | | 7
8 | | | | | | | 7.6
7.6 | 7.5
7.5 | 7.5
7.6 | 7.7
7.7 | 7.6
7.6 | 7.7
7.7 | | 9
10 | | | | | | | 7.6
7.6 | 7.5
7.5 | 7.6
7.6 | 7.7
7.7 | 7.6
7.6 | 7.7
7.7 | | 11 | | | | | | | 7.6 | 7.6 | 7.6 | 7.7 | 7.6 | 7.7 | | 12 | | | | | | | 7.6 | 7.6 | 7.6 | 7.7 | 7.6 | 7.6 | | 13
14 | | | | 7.8
7.8 | 7.8
7.6 | 7.8
7.8 | 7.6
7.6 | 7.6
7.6 | 7.6
7.6 | 7.7
7.7 | 7.6
7.6 | 7.6
7.6 | | 15 | | | | 7.7 | 7.6 | 7.7 | 7.6 | 7.6 | 7.6 | 7.7 | 7.6 | 7.6 | | 16
17 | | | | 7.7
7.7 | 7.6
7.6 | 7.7
7.6 | 7.6
7.6 | 7.6
7.6 | 7.6
7.6 | 7.7
7.7 | 7.6
7.6 | 7.6
7.6 | | 18 | | | | 7.7 | 7.6 | 7.6 | 7.7 | 7.6 | 7.6 | 7.7 | 7.6 | 7.6 | | 19
20 | | | | 7.6
7.6 | 7.6
7.6 | 7.6
7.6 | 7.7
7.6 | 7.6
7.6 | 7.6
7.6 | 7.7
7.7 | 7.6
7.6 | 7.6
7.7 | | 21 | | | | 7.6 | 7.6 | 7.6 | 7.7 | 7.6 | 7.6 | 7.7 | 7.6 | 7.7 | | 22
23 | | | | 7.6 | 7.6 | 7.6 | 7.7
7.8 | 7.7 | 7.7 | 7.7
7.7 | 7.6 | 7.6 | | 24 | | | | 7.6 | 7.6
7.6 | 7.6
7.6 | 7.5 | 7.5
7.5 | 7.5 | 7.7 | 7.6
7.6 | 7.6
7.6 | | 25 | | | | 7.7 | 7.6 | 7.6 | 7.5 | 7.5 | 7.5 | 7.7 | 7.6 | 7.7 | | 26
27 | | | | 7.6
7.6 | 7.6
7.6 | 7.6
7.6 | 7.5
7.6 | 7.5
7.5 | 7.5
7.5 | 7.7
7.7 | 7.6
7.6 | 7.6
7.6 | | 28 | | | | 7.6 | 7.6 | 7.6 | 7.6 | 7.5 | 7.5 | 7.7 | 7.6 | 7.6 | | 29
30 | | | | 7.6
7.6 | 7.6
7.6 | 7.6
7.6 | 7.6
7.7 | 7.5
7.6 | 7.5
7.6 | 7.7
7.7 | 7.6
7.6 | 7.6
7.6 | | 31 | | | | | | | 7.7 | 7.6 | 7.6 | 7.7 | 7.6 | 7.6 | | MAX
MIN | | | | 7.8
7.6 | 7.8
7.6 | 7.8
7.6 | 7.8
7.5 | 7.7
7.5 | 7.7
7.5 | 7.7
7.7 | 7.7
7.6 | 7.7
7.6 | DAY | MAX | MIN | MEDIAN | | DAY | MAX | MIN I | | MAX | MIN
MARCH | MEDIAN | MAX | MIN APRIL | MEDIAN | MAX | MIN
MAY | MEDIAN | | 1 | 7.6 | FEBRUAR 7.5 | Y 7.6 | 7.8 | MARCH 7.6 | 7.7 | 7.6 | APRIL 7.4 | 7.4 | 7.3 | MAY 7.2 | 7.2 | | | | FEBRUAR | Y | | MARCH | | | APRIL | | | MAY | 7.2
7.3 | | 1
2
3
4 | 7.6
7.6
7.6
7.6 | 7.5
7.6
7.6
7.6 | 7.6
7.6
7.6
7.6
7.6 | 7.8
7.8
7.9
7.8 | MARCH
7.6
7.6
7.7
7.6 | 7.7
7.7
7.8
7.7 | 7.6
7.5
7.4
7.3 | 7.4
7.3
7.3
7.2 | 7.4
7.4
7.3
7.3 | 7.3
7.3
7.3
7.3 | MAY 7.2 7.2 7.1 7.1 | 7.2
7.3
7.2
7.2 | | 1
2
3
4
5 | 7.6
7.6
7.6
7.6
7.7 | 7.5
7.6
7.6
7.6
7.6
7.6 | 7.6
7.6
7.6
7.6
7.6
7.6 | 7.8
7.8
7.9
7.8
7.8 | MARCH
7.6
7.6
7.7
7.6
7.6 | 7.7
7.7
7.8
7.7
7.7 | 7.6
7.5
7.4
7.3
7.4 | 7.4
7.3
7.3
7.2
7.3 | 7.4
7.4
7.3
7.3
7.3 | 7.3
7.3
7.3
7.3
7.2 | MAY 7.2 7.2 7.1 7.1 7.0 | 7.2
7.3
7.2
7.2
7.2 | | 1
2
3
4
5 | 7.6
7.6
7.6
7.6
7.7
7.7 | 7.5
7.6
7.6
7.6
7.6
7.6
7.6 | 7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.8
7.8
7.9
7.8
7.8
7.8 | 7.6
7.6
7.7
7.6
7.6
7.6 | 7.7
7.7
7.8
7.7
7.7
7.7 | 7.6
7.5
7.4
7.3
7.4
7.5 | 7.4
7.3
7.3
7.2
7.3
7.3
7.3 | 7.4
7.4
7.3
7.3
7.3
7.3 | 7.3
7.3
7.3
7.3
7.2
7.2 | MAY 7.2 7.2 7.1 7.1 7.0 7.1 7.0 | 7.2
7.3
7.2
7.2
7.2
7.2 | | 1
2
3
4
5 | 7.6
7.6
7.6
7.7 | 7.5
7.6
7.6
7.6
7.6
7.6 | 7.6
7.6
7.6
7.6
7.6
7.6 | 7.8
7.8
7.9
7.8
7.8 | 7.6
7.6
7.7
7.6
7.6
7.6 | 7.7
7.7
7.8
7.7
7.7 | 7.6
7.5
7.4
7.3
7.4 | 7.4
7.3
7.3
7.2
7.3 | 7.4
7.4
7.3
7.3
7.3 | 7.3
7.3
7.3
7.3
7.2 | 7.2
7.2
7.1
7.1
7.0 | 7.2
7.3
7.2
7.2
7.2 | | 1
2
3
4
5 | 7.6
7.6
7.6
7.7
7.7
7.7
7.7 | 7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.8
7.8
7.8
7.8
7.8
7.8
7.8 | 7.6
7.6
7.7
7.6
7.6
7.6
7.6
7.6 | 7.7
7.7
7.8
7.7
7.7
7.7
7.7 | 7.6
7.5
7.4
7.3
7.4
7.4
7.5 | 7.4
7.3
7.3
7.2
7.3
7.3
7.3
7.3 | 7.4
7.4
7.3
7.3
7.3
7.3
7.4 | 7.3
7.3
7.3
7.3
7.2
7.2
7.2
7.2 | 7.2
7.2
7.1
7.1
7.0
7.1
7.0 | 7.2
7.3
7.2
7.2
7.2
7.2
7.1 | | 1
2
3
4
5
6
7
8
9
10 |
7.6
7.6
7.6
7.7
7.7
7.7
7.7
7.7
7.7 | 7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.7
7.7 | 7.8
7.8
7.9
7.8
7.8
7.8
7.8
7.8
7.9
7.9 | 7.6
7.6
7.7
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.7
7.7
7.8
7.7
7.7
7.7
7.7
7.8
7.8
7.7 | 7.6
7.5
7.4
7.3
7.4
7.5
7.5
7.5
7.5
7.3 | 7.4 7.3 7.3 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.4
7.4
7.3
7.3
7.3
7.3
7.4
7.4
7.3
7.2 | 7.3
7.3
7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.1 | 7.2
7.2
7.1
7.1
7.0
7.1
7.0
7.0
7.0
7.0
7.1 | 7.2
7.3
7.2
7.2
7.2
7.2
7.1
7.1
7.1 | | 1
2
3
4
5
6
7
8
9
10 | 7.6
7.6
7.6
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.7
7.7 | 7.8
7.8
7.9
7.8
7.8
7.8
7.9
7.9
7.9
8.0
8.0 | 7.6
7.6
7.7
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.7
7.7
7.8
7.7
7.7
7.7
7.8
7.8
7.7
7.6
7.7 | 7.6
7.5
7.4
7.3
7.4
7.5
7.5
7.5
7.3
7.3 | 7.4
7.3
7.3
7.2
7.3
7.3
7.3
7.3
7.3
7.3
7.2
7.2 | 7.4
7.4
7.3
7.3
7.3
7.3
7.4
7.4
7.4
7.2
7.2 | 7.3
7.3
7.3
7.3
7.2
7.2
7.2
7.2
7.1 | 7.2
7.2
7.1
7.1
7.0
7.0
7.1
7.0
7.1
7.0
7.1 | 7.2
7.3
7.2
7.2
7.2
7.1
7.1
7.1
7.1 | | 1
2
3
4
5
6
7
8
9
10 | 7.6
7.6
7.6
7.7
7.7
7.7
7.7
7.7
7.7 | 7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.7
7.7 | 7.8
7.8
7.9
7.8
7.8
7.8
7.9
7.9
7.9 | 7.6
7.6
7.7
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.7
7.7
7.8
7.7
7.7
7.7
7.8
7.8
7.7 | 7.6
7.5
7.4
7.3
7.4
7.5
7.5
7.5
7.3 | 7.4
7.3
7.3
7.2
7.3
7.3
7.3
7.3
7.3
7.3
7.2 | 7.4
7.4
7.3
7.3
7.3
7.3
7.4
7.4
7.4
7.2 | 7.3
7.3
7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.2
7.1 | MAY 7.2 7.2 7.1 7.1 7.0 7.1 7.0 7.1 7.0 7.1 7.0 | 7.2
7.3
7.2
7.2
7.2
7.2
7.1
7.1
7.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 7.6
7.6
7.6
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.7
7.7 | 7.8
7.8
7.9
7.8
7.8
7.8
7.9
7.9
7.9
8.0
8.0
8.0 | 7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.7
7.7
7.8
7.7
7.7
7.7
7.8
7.8
7.7
7.6
7.7 | 7.6
7.5
7.4
7.3
7.4
7.5
7.5
7.5
7.3
7.3
7.2
7.1 | 7.4
7.3
7.3
7.2
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.2
7.2
7.0
7.0 | 7.4
7.4
7.3
7.3
7.3
7.4
7.4
7.4
7.2
7.2
7.2
7.1 | 7.3
7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.1
7.2
7.2
7.3
7.3 | 7.2
7.2
7.1
7.1
7.0
7.0
7.0
7.1
7.0
7.1
7.1 | 7.2
7.3
7.2
7.2
7.2
7.1
7.1
7.1
7.1
7.2
7.2
7.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 7.6
7.6
7.6
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.7
7.7 | 7.8
7.8
7.8
7.8
7.8
7.9
7.9
7.9
7.9
7.9
7.9 | 7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.7
7.7
7.8
7.7
7.7
7.7
7.8
7.7
7.8
7.7
7.6
7.7
7.7
7.8 | 7.6
7.5
7.4
7.3
7.4
7.5
7.5
7.5
7.3
7.3
7.2
7.1 | 7.4
7.3
7.3
7.2
7.3
7.3
7.3
7.3
7.3
7.3
7.2
7.2
7.1
7.0
7.0
7.0 | 7.4
7.4
7.3
7.3
7.3
7.4
7.4
7.4
7.2
7.2
7.2
7.1
7.1 | 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.3 7.3 7.3 7.3 7.3 | MAY 7.2 7.2 7.1 7.1 7.0 7.1 7.0 7.1 7.0 7.1 7.1 7.0 7.1 7.1 7.1 7.1 7.1 7.2 | 7.2
7.3
7.2
7.2
7.2
7.1
7.1
7.1
7.1
7.2
7.2
7.2
7.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 7.6
7.6
7.6
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.7
7.7 | 7.8
7.8
7.8
7.8
7.8
7.8
7.9
7.9
7.9
7.9
7.9
7.9
7.9 | 7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.7
7.7
7.8
7.7
7.7
7.7
7.7
7.8
7.8
7.7
7.6
7.7
7.8
7.7
7.7 | 7.6
7.5
7.4
7.3
7.4
7.5
7.5
7.5
7.3
7.3
7.3
7.2
7.1
7.1 | 7.4
7.3
7.3
7.2
7.3
7.3
7.3
7.3
7.3
7.3
7.2
7.2
7.1
7.0
7.0
7.0
7.0 | 7.4
7.4
7.3
7.3
7.3
7.4
7.4
7.3
7.2
7.2
7.2
7.1
7.0
7.1 | 7.3
7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.1
7.2
7.2
7.3
7.3
7.3 | MAY 7.2 7.2 7.1 7.1 7.0 7.1 7.0 7.1 7.0 7.1 7.0 7.1 7.0 7.2 7.2 7.2 7.2 7.2 | 7.2
7.3
7.2
7.2
7.2
7.1
7.1
7.1
7.1
7.2
7.2
7.2
7.2
7.2 | | 1 2 3 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 | 7.6
7.6
7.6
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.7
7.7 | 7.8
7.8
7.8
7.8
7.8
7.9
7.9
7.8
8.0
8.0
8.0
7.9
7.9
7.9 | 7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.7
7.7
7.8
7.7
7.7
7.7
7.8
7.8
7.7
7.6
7.7
7.7
7.8
7.7 | 7.6 7.5 7.4 7.3 7.4 7.5 7.5 7.5 7.3 7.3 7.2 7.1 7.2 7.2 7.1 7.3 7.2 | 7.4
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.2
7.1
7.0
7.0
7.0
7.0
6.9
6.9 | 7.4
7.4
7.3
7.3
7.3
7.4
7.4
7.4
7.2
7.2
7.1
7.0
7.1 | 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.3 7.3 7.3 7.3 7.3 7.3 | MAY 7.2 7.2 7.1 7.0 7.1 7.0 7.0 7.1 7.0 7.1 7.1 7.2 7.2 7.2 7.2 7.2 7.2 | 7.2
7.3
7.2
7.2
7.2
7.1
7.1
7.1
7.2
7.2
7.2
7.2
7.2
7.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | 7.6
7.6
7.6
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.7
7.7 | 7.8
7.8
7.8
7.8
7.8
7.8
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9 | 7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.7
7.7
7.8
7.7
7.7
7.7
7.8
7.8
7.7
7.6
7.7
7.8
7.7
7.7
7.7 | 7.6
7.5
7.4
7.3
7.4
7.5
7.5
7.5
7.3
7.3
7.3
7.1
7.1
7.2
7.1
7.2
7.2
7.2
7.2 | 7.4
7.3
7.3
7.2
7.3
7.3
7.3
7.3
7.3
7.3
7.2
7.2
7.1
7.0
7.0
7.0
7.0
7.0
6.9
6.9 | 7.4
7.4
7.3
7.3
7.3
7.4
7.4
7.3
7.2
7.2
7.2
7.1
7.0
7.1 | 7.3
7.3
7.3
7.2
7.2
7.2
7.2
7.2
7.1
7.2
7.2
7.3
7.3
7.3
7.3 | MAY 7.2 7.2 7.1 7.1 7.0 7.1 7.0 7.1 7.0 7.1 7.0 7.1 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.1 | 7.2
7.3
7.2
7.2
7.2
7.1
7.1
7.1
7.1
7.2
7.2
7.2
7.2
7.2
7.2 | | 1 2 3 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | 7.6
7.6
7.6
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.7
7.7 | 7.8
7.8
7.8
7.8
7.8
7.9
7.9
7.9
7.8
8.0
8.0
8.0
7.9
7.9
7.8
7.8
7.8
7.8 | 7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.7
7.7
7.8
7.7
7.7
7.7
7.8
7.8
7.7
7.6
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.6 7.5 7.4 7.3 7.4 7.5 7.5 7.5 7.3 7.3 7.2 7.1 7.1 7.2 7.1 7.2 7.1 7.2 7.1 | 7.4 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.2 7.1 7.0 7.0 7.0 7.0 6.9 6.9 6.9 6.9 | 7.4
7.4
7.3
7.3
7.3
7.4
7.4
7.4
7.3
7.2
7.2
7.2
7.1
7.0
7.1 | 7.3 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.1 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | MAY 7.2 7.2 7.1 7.0 7.1 7.0 7.1 7.0 7.1 7.0 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 | 7.2
7.3
7.2
7.2
7.2
7.1
7.1
7.1
7.1
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 7.6
7.6
7.6
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.7
7.7 | 7.8
7.8
7.8
7.8
7.8
7.9
7.9
7.9
7.9
7.8
8.0
8.0
8.0
7.9
7.9
7.8
7.8
7.8 | 7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.7
7.7
7.8
7.7
7.7
7.7
7.7
7.8
7.8
7.7
7.6
7.7
7.7
7.7
7.7
7.7
7.7 | 7.6 7.5 7.4 7.3 7.4 7.5 7.5 7.5 7.3
7.3 7.3 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 | 7.4
7.3
7.3
7.2
7.3
7.3
7.3
7.3
7.3
7.2
7.2
7.1
7.0
7.0
7.0
7.0
7.0
6.9
6.9 | 7.4
7.4
7.3
7.3
7.3
7.4
7.4
7.2
7.2
7.2
7.1
7.0
7.1
7.1
7.0
7.0 | 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.1 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | MAY 7.2 7.1 7.1 7.0 7.1 7.0 7.1 7.0 7.1 7.0 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 | 7.2
7.3
7.2
7.2
7.2
7.1
7.1
7.1
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 7.6
7.6
7.6
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.7
7.7 | 7.8
7.8
7.9
7.8
7.8
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.8
7.9
7.8
7.7
7.7
7.7 | 7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.7
7.7
7.8
7.7
7.7
7.7
7.8
7.7
7.8
7.7
7.8
7.7
7.7 | 7.6 7.5 7.4 7.3 7.4 7.5 7.5 7.3 7.3 7.3 7.3 7.2 7.1 7.1 7.2 7.2 7.1 7.1 7.2 7.2 7.1 7.1 | 7.4
7.3
7.3
7.2
7.3
7.3
7.3
7.3
7.3
7.3
7.2
7.2
7.1
7.0
7.0
7.0
7.0
6.9
6.9
6.9 | 7.4
7.4
7.3
7.3
7.3
7.4
7.4
7.3
7.2
7.2
7.2
7.1
7.0
7.1
7.1
7.0
7.0 | 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.1 7.2 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | MAY 7.2 7.2 7.1 7.0 7.1 7.0 7.1 7.0 7.1 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 | 7.2
7.3
7.2
7.2
7.2
7.1
7.1
7.1
7.1
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | | 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | 7.6
7.6
7.6
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.7
7.7 | 7.8
7.8
7.8
7.8
7.8
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.8
7.8
7.7
7.7
7.7
7.7
7.7 | 7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.7
7.7
7.8
7.7
7.7
7.7
7.7
7.8
7.7
7.8
7.7
7.8
7.7
7.7 | 7.6 7.5 7.4 7.3 7.4 7.5 7.5 7.5 7.3 7.3 7.3 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.2 7.1 7.3 7.2 7.1 7.3 7.2 | 7.4 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.0 7.0 7.0 7.0 7.0 7.0 6.9 6.9 6.9 6.9 6.9 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 7.4
7.4
7.3
7.3
7.3
7.4
7.4
7.2
7.2
7.2
7.1
7.0
7.1
7.1
7.0
7.0
7.0 | 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.1 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | MAY 7.2 7.1 7.1 7.0 7.1 7.0 7.1 7.0 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 | 7.2
7.3
7.2
7.2
7.1
7.1
7.1
7.1
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 7.6
7.6
7.6
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.7
7.7 | 7.8
7.8
7.8
7.8
7.8
7.9
7.9
7.9
7.9
7.9
7.9
7.8
7.9
7.8
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.7
7.7
7.8
7.7
7.7
7.7
7.8
7.8
7.7
7.6
7.7
7.8
7.7
7.7
7.7
7.7
7.6
7.6
7.6
7.6
7.6
7.6 | 7.6 7.5 7.4 7.3 7.4 7.5 7.5 7.3 7.3 7.3 7.3 7.2 7.1 7.1 7.2 7.2 7.1 7.1 7.2 7.2 7.1 7.3 7.3 7.3 7.3 7.3 7.3 | 7.4
7.3
7.3
7.2
7.3
7.3
7.3
7.3
7.3
7.3
7.2
7.2
7.0
7.0
7.0
7.0
6.9
6.9
6.9
6.9 | 7.4
7.4
7.3
7.3
7.3
7.4
7.4
7.3
7.2
7.2
7.2
7.1
7.0
7.1
7.1
7.0
7.0
7.0 | 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | MAY 7.2 7.2 7.1 7.0 7.1 7.0 7.1 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 | 7.2
7.3
7.2
7.2
7.1
7.1
7.1
7.1
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | 7.6
7.6
7.6
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.7
7.7 | 7.8
7.8
7.8
7.8
7.8
7.9
7.9
7.9
7.8
8.0
8.0
8.0
7.9
7.9
7.8
7.8
7.7
7.7
7.7
7.7 | 7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.8
7.7
7.6
7.7
7.7
7.7
7.7
7.7
7.7
7.6
7.6 | 7.6 7.5 7.4 7.3 7.4 7.5 7.5 7.5 7.3 7.3 7.2 7.1 7.1 7.2 7.1 7.2 7.1 7.3 7.2 7.1 7.3 7.2 7.1 7.3 7.2 7.1 7.3 7.2 7.1 7.3 7.2 7.1 7.3 7.2 7.1 7.3 7.2 7.1 7.3 7.2 7.1 7.3 7.2 7.1 7.3 7.2 7.1 7.3 7.2 7.1 7.3 7.2 7.1 7.3 7.2 7.1 7.3 7.2 7.1 7.3 7.2 7.1 7.3 7.2 | 7.4 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.0 7.0 7.0 7.0 7.0 7.0 6.9 6.9 6.9 6.9 6.9 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 7.4
7.4
7.3
7.3
7.3
7.4
7.4
7.4
7.2
7.2
7.2
7.1
7.0
7.1
7.0
7.0
7.0
7.0 | 7.3 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.1 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.2
7.2
7.1
7.1
7.0
7.1
7.0
7.1
7.1
7.1
7.1
7.1
7.2
7.2
7.2
7.2
7.1
7.1
7.1
7.1 | 7.2
7.3
7.2
7.2
7.2
7.1
7.1
7.1
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | | 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 7.6
7.6
7.6
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.5
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.7
7.7 | 7.8
7.8
7.8
7.8
7.8
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.8
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.7 | 7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | 7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.8
7.7
7.8
7.7
7.7 | 7.6 7.5 7.4 7.4 7.5 7.5 7.5 7.3 7.3 7.2 7.1 7.1 7.2 7.2 7.1 7.2 7.4 7.4 7.4 7.4 7.4 7.4 7.3 7.3 7.3 | 7.4 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.0 7.0 7.0 7.0 7.0 7.0 6.9 6.9 6.9 6.9 6.9 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 7.4
7.4
7.3
7.3
7.3
7.4
7.4
7.2
7.2
7.2
7.1
7.0
7.1
7.1
7.0
7.0
7.0
7.0
7.0 | 7.3 7.3 7.3 7.2 7.2 7.2 7.2 7.2 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 7.2
7.1
7.1
7.0
7.1
7.0
7.1
7.0
7.1
7.1
7.1
7.1
7.1
7.2
7.2
7.2
7.2
7.2
7.1
7.1
7.1 | 7.2
7.3
7.2
7.2
7.1
7.1
7.1
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | ## 01482800 DELAWARE RIVER AT REEDY ISLAND JETTY, DE--Continued PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEDIAN | |----------------------------------|------------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|--|---------------------------------|---------------------------------|---------------------------------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMB | ER | | 1
2
3
4
5 | 7.0
7.0
7.1
7.2
7.2 | 6.9
6.9
7.0
7.0 | 7.0
7.0
7.0
7.0
7.1 | 7.3
7.3
7.3
 | 7.2
7.2
7.2
 | 7.3
7.2
7.2
 | 7.3
7.3
7.2
7.4
7.3 | 7.1
7.1
7.1
7.1
7.2 | 7.2
7.2
7.2
7.2
7.2 | 7.3
7.3
7.2
7.2 | 7.2
7.2
7.1
7.1
7.1 | 7.2
7.2
7.2
7.1
7.1 | | 6
7
8
9
10 | 7.2
7.3
7.3
7.2
7.2 | 7.0
7.1
7.1
7.0
7.1 | 7.1
7.1
7.2
7.1
7.1 | 7.5
7.3
7.3 |
7.1
7.1
7.1 | 7.3
7.2
7.2 | 7.3
7.4
7.3
7.3
7.3 | 7.1
7.2
7.2
7.2
7.2 | 7.2
7.3
7.3
7.2
7.2 | 7.2
7.1
7.1
7.2
7.2 | 7.0
7.0
7.0
7.1
7.1 | 7.1
7.1
7.1
7.1
7.1 | | 11
12
13
14
15 | 7.2
7.2
7.2
7.3
7.3 | 7.0
7.0
7.1
7.1
7.1 | 7.1
7.1
7.1
7.2
7.2 | 7.4
7.4
7.3
7.3 | 7.2
7.3
7.2
7.2
7.1 | 7.3
7.3
7.3
7.2
7.2 | 7.5
7.4
7.3
7.2
7.2 | 7.1
7.3
7.2
7.1
7.1 | 7.4
7.4
7.3
7.2
7.2 | 7.3
7.3
7.3
7.3
7.2 | 7.1
7.2
7.2
7.2
7.1 | 7.1
7.3
7.3
7.2
7.2 | | 16
17
18
19
20 | 7.3
7.3
7.2
7.2
7.2 | 7.2
7.2
7.2
7.2
7.2 | 7.3
7.2
7.2
7.2
7.2 | 7.2
7.1
7.1
7.2
7.1 | 7.0
7.0
7.0
6.9
7.0 | 7.1
7.0
7.0
7.1
7.1 | 7.2
7.2
7.3
7.3
7.3 | 7.1
7.1
7.2
7.1
7.2 | 7.2
7.2
7.2
7.2
7.2 | 7.2
7.3
7.3
7.3
7.3 | 7.1
7.1
7.2
7.2
7.2 | 7.2
7.2
7.2
7.2
7.3 | | 21
22
23
24
25 | 7.2
7.2
7.2
7.2
7.2 | 7.2
7.1
7.1
7.0
7.1 | 7.2
7.2
7.2
7.2
7.2 | 7.2
7.3
7.2
7.2
7.2 |
7.0
7.0
7.0
7.0
7.0 | 7.1
7.1
7.2
7.1
7.2 | 7.4
7.4
7.3
7.4
7.3 | 7.2
7.2
7.2
7.3
7.2 | 7.2
7.3
7.3
7.3
7.2 | 7.3
7.3
7.2
7.3
7.3 | 7.2
7.2
7.1
7.1
7.2 | 7.3
7.2
7.2
7.3
7.2 | | 26
27
28
29
30
31 | 7.2
7.2
7.2
7.3
7.3 | 7.1
7.1
7.1
7.2
7.2 | 7.2
7.2
7.2
7.2
7.3 | 7.2
7.2
7.2
7.2
7.2
7.2 | 7.1
7.0
7.0
7.1
7.1 | 7.1
7.1
7.1
7.2
7.1
7.2 | 7.2
7.2
7.3
7.4
7.2
7.2 | 7.2
7.1
7.2
7.2
7.2
7.1 | 7.2
7.2
7.2
7.3
7.2
7.2 | 7.3
7.4
7.3
7.5
7.4 | 7.2
7.2
7.2
7.3
7.3 | 7.2
7.2
7.3
7.4
7.3 | | MAX
MIN
YEAR | 7.3
7.0
MAX
MIN
MEDIAN | 7.2
6.9 | MAX | 7.5
7.1
IMUM 8.0
IMUM 7.8
IMUM 7.8 | 7.3
6.9
MINIMU
MINIMU
MINIMU | м 6.9 | 7.5
7.2 | 7.3
7.1 | 7.4
7.2 | 7.5
7.1 | 7.3
7.0 | 7.4
7.1 | ## WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--------------------------------------|---------------------------------|---------------------------------|--| | | | OCTOBER | | 1 | NOVEMBER | ı | 1 | DECEMBER | 1 | | JANUARY | | | 1
2
3
4
5 | 19.0
19.0
19.5
19.5 | 18.5
18.0
18.5
18.5 | 18.5
18.5
19.0
19.0 | 14.5
15.0
15.0
15.0 | 14.0
14.5
14.5
14.5
13.5 | 14.5
14.5
15.0
15.0 | 13.0
13.0
13.0
13.0 | 13.0
12.5
12.0
12.5
12.5 | 13.0
13.0
12.5
12.5
12.5 | 5.0
4.5
4.0
4.0 | 4.0
3.5
3.5
3.5
3.5 | 4.5
4.0
4.0
3.5
3.5 | | 6
7
8
9
10 | 19.5
19.0
18.0
17.5
17.5 | 19.0
17.5
17.0
17.0
16.5 | 19.5
18.5
17.5
17.0
17.0 | 14.0
13.5
13.5
13.5
13.5 | 13.0
13.0
13.0
12.5
12.5 | 13.5
13.5
13.0
13.0 | 13.0
13.0
13.0
12.5
12.0 | 12.5
12.5
12.0
11.5
11.5 | 12.5
13.0
12.5
12.0
11.5 | 4.0
4.0
4.0
3.5
3.5 | 3.5
3.0
3.0
3.0
3.0 | 3.5
3.5
3.5
3.5
3.5 | | 11
12
13
14
15 | 17.5
18.0
18.5
18.5 | 17.0
17.0
17.5
17.5 | 17.0
17.5
18.0
18.0 | 12.5
12.5
12.5
12.0
12.5 | 12.0
12.0
11.5
11.5 | 12.5
12.0
12.0
12.0
12.0 | 12.0
11.5
11.5
11.5
11.5 | 11.5
11.0
11.0
11.5
10.5 | 11.5
11.5
11.5
11.5 | 4.0
4.0
4.0
4.0 | 3.5
3.5
3.5
3.5
3.5 | 3.5
3.5
4.0
3.5
4.0 | | 16
17
18
19
20 | 18.5
18.0
17.0
16.5
16.5 | 18.0
16.5
16.0
15.5
16.0 | 18.0
17.5
16.5
16.0
16.0 | 12.5
12.0
12.5
12.5
12.5 | 12.0
12.0
12.0
12.0
11.5 | 12.0
12.0
12.0
12.0
12.0 | 11.0
11.0
11.0
10.5
10.5 | 10.0
10.5
10.0
10.0
9.0 | 10.5
10.5
10.5
10.0 | 4.0
4.0
4.0
4.0
4.0 | 4.0
4.0
4.0
3.5
3.5 | 4.0
4.0
4.0
4.0
3.5 | | 21
22
23
24
25 | 17.0
17.0
17.0
18.0
18.0 | 16.0
16.5
16.5
17.0
17.0 | 16.5
17.0
17.0
17.5
17.5 | 12.0
11.5
11.5
11.5
12.0 | 11.0
11.0
11.0
11.0 | 11.5
11.5
11.5
11.5
12.0 | 10.0
9.0
8.5
8.5 | 8.0
8.0
8.0
8.0
7.5 | 9.0
8.5
8.5
8.5
8.0 | 4.0
4.0
4.0
4.5
5.0 | 3.5
3.5
3.5
4.0
4.0 | 3.5
4.0
4.0
4.0
4.5 | | 26
27
28
29
30
31 | 17.0
16.0
15.5
15.0
15.0 | 16.0
15.0
14.5
14.0
14.5 | 17.0
16.0
15.0
14.5
14.5 | 12.5
12.5
12.5
12.5
13.0 | 12.0
12.0
12.0
12.5
12.5 | 12.0
12.0
12.5
12.5
13.0 | 8.0
7.5
7.0
7.0
6.5
6.0 | 7.5
7.0
6.5
6.0
5.5
4.5 | 7.5
7.0
6.5
6.5
5.5 | 5.0
5.5
5.5
6.0
6.0 | 4.0
4.5
5.0
5.5 | 4.5
4.5
5.0
5.0
5.5
6.0 | | MONTH | 19.5 | 14.0 | 17.2 | 15.0 | 11.0 | 12.7 | 13.0 | 4.5 | 10.1 | 6.0 | 3.0 | 4.0 | ## 01482800 DELAWARE RIVER AT REEDY ISLAND JETTY, DE--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|--|---|--|--|--|--|--|--|--|--|--|--| | | | FEBRUAR | Y | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 6.5
6.5
6.0
6.0 | 6.0
5.5
5.5
4.5
4.5 | 6.0
6.0
6.0
5.5
5.0 | 6.5
6.5
7.0
7.0
6.5 | 6.0
6.5
5.5
5.0 | 6.5
6.5
7.0
6.5
6.0 | 10.0
10.5
11.5
11.5 | 9.5
9.5
10.0
10.5 | 10.0
10.0
10.5
11.0
10.5 | 16.0
16.0
16.5
17.0
17.5 | 15.0
15.0
15.5
15.5 | 15.5
15.5
16.0
16.0
16.5 | | 6
7
8
9
10 | 5.0
5.0
5.5
5.5 | 4.5
4.5
4.5
4.5
5.0 | 5.0
5.0
5.0
5.0
5.5 | 6.5
7.0
7.5
8.0
8.0 | 5.5
6.0
6.0
6.5
7.0 | 6.0
6.5
6.5
7.0
7.5 | 11.0
11.5
11.5
12.0
13.0 | 10.0
10.0
10.0
10.5
11.5 | 10.5
10.5
10.5
11.0
12.0 | 17.0
18.0
18.5
17.5
18.5 | 16.0
16.5
17.0
17.0 | 16.5
17.0
17.5
17.5
18.0 | | 11
12
13
14
15 | 5.5
5.5
5.5
5.5 | 5.0
4.5
5.0
4.5
4.5 | 5.5
5.0
5.0
5.0 | 8.0
7.5
7.5
8.5
9.0 | 6.5
6.5
7.0
7.0
7.5 | 7.0
7.0
7.0
7.5
8.0 | 13.0
12.5
13.0
14.0
15.0 | 12.0
12.0
12.0
12.5
13.0 | 12.0
12.5
12.5
13.0
14.0 | 18.5
18.5
19.0
18.5
18.5 | 17.5
18.0
18.0
18.0
17.5 | 18.0
18.0
18.5
18.5 | | 16
17
18
19
20 | 5.5
5.5
5.5
6.0 | 5.0
5.0
4.5
4.5
5.5 | 5.0
5.5
5.0
5.0 | 9.0
8.5
8.5
8.5 | 8.5
8.0
8.0
8.0 | 8.5
8.5
8.5
8.5 | 15.5
16.0
18.5
17.5
18.0 | 14.0
14.5
15.0
15.5
16.5 | 14.5
15.5
16.0
16.5
17.0 | 18.5
19.0
19.0
18.0
18.0 | 17.5
18.0
17.5
17.5
17.0 | 18.0
18.5
18.0
17.5
17.5 | | 21
22
23
24
25 | 6.5
6.5
7.0
7.0 | 5.5
6.0
6.0
6.0 | 6.0
6.5
6.5
6.5 | 9.5
8.5
8.0
9.0
9.0 | 8.5
7.0
7.0
7.5
7.5 | 8.5
8.0
7.5
8.0
8.0 | 17.0

 | 16.0

 | 16.5

 | 17.5
18.5
18.5
18.5 | 17.0
16.5
17.0
17.0
18.0 | 17.0
17.0
17.5
18.0
18.5 | | 26
27
28
29
30
31 | 7.5
7.0
7.0
 | 6.5
6.5
5.5
 | 7.0
7.0
6.5
 | 8.0
8.5
9.0
9.0
9.5 | 8.0
8.0
7.5
8.5
9.0
9.5 | 8.0
8.5
8.5
9.0
9.5 | 16.0
15.5
15.5
15.0 | 14.5
15.0
15.0
14.5 | 15.0
15.0
15.0
15.0 | 19.0
19.5
20.0
20.5
21.5
22.0 | 18.0
18.5
19.0
19.5
20.0
21.0 | 18.5
19.0
19.5
20.0
20.5
21.0 | | MONTH | 7.5 | 4.5 | 5.6 | 10.0 | 5.0 | 7.6 | 18.5 | 9.5 | 13.1 | 22.0 | 15.0 | 17.8 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX |
MIN
JUNE | MEAN | MAX | MIN | MEAN | MAX | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMBE | | | DAY 1 2 3 4 5 | MAX
23.0
23.0
23.0
23.0
23.5 | | MEAN 22.0 22.5 22.5 22.5 22.5 | 28.0
28.5
29.5 | | 27.0
27.5
28.0 | 30.5
29.5
29.5
30.0
29.5 | | MEAN 28.5 28.5 29.0 29.0 29.0 | 25.0
24.5
25.0
25.5
25.0 | SEPTEMBE | | | 1
2
3
4 | 23.0
23.0
23.0
23.0 | JUNE 21.5 22.0 22.0 22.0 | 22.0
22.5
22.5
22.5
22.5 | 28.0
28.5
29.5 | JULY 26.5 27.0 27.5 | 27.0
27.5
28.0 | 30.5
29.5
29.5
30.0 | 28.0
28.0
28.5
28.5 | 28.5
28.5
29.0
29.0 | 25.0
24.5
25.0
25.5 | 24.0
23.5
24.0
24.0 | 24.5
24.0
24.0 | | 1
2
3
4
5
6
7
8
9 | 23.0
23.0
23.0
23.0
23.5
24.0
23.5
23.5
23.5 | JUNE 21.5 22.0 22.0 22.0 22.0 22.5 22.5 22.5 22 | 22.0
22.5
22.5
22.5
22.5
23.5
23.0
23.5
22.5 | 28.0
28.5
29.5

28.0
28.0 | JULY 26.5 27.0 27.5 26.5 26.5 | 27.0
27.5
28.0

27.0
27.0 | 30.5
29.5
29.5
30.0
29.5
29.0
28.0
28.0 | 28.0
28.0
28.5
28.5
28.5
28.5
28.0
27.0
27.0
26.5 | 28.5
28.5
29.0
29.0
29.0
28.5
27.5
27.5
27.5 | 25.0
24.5
25.0
25.5
25.0
25.5
25.0
25.5 | 24.0
23.5
24.0
24.0
24.5
24.0
24.5
24.0
24.5 | 24.5
24.0
24.0
24.5
24.5
24.5
24.5
24.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 23.0
23.0
23.0
23.0
23.5
24.0
23.5
23.5
23.5
24.0
24.5
24.0
23.5 | JUNE 21.5 22.0 22.0 22.0 22.0 22.5 22.5 22.5 22 | 22.0
22.5
22.5
22.5
22.5
23.0
22.5
23.0
22.5
23.0
24.0
24.0
24.0
23.5 | 28.0
28.5
29.5

28.0
28.0
28.0
27.5
27.0
26.5
26.5 | JULY 26.5 27.0 27.5 26.5 26.5 27.0 26.0 25.5 26.0 26.0 | 27.0
27.5
28.0

27.0
27.0
27.0
26.5
26.5
26.0 | 30.5
29.5
29.5
30.0
29.5
29.0
28.0
28.0
27.5
27.5
27.0
27.5 | 28.0
28.5
28.5
28.5
28.5
28.5
26.5
27.0
27.0
26.5
26.5
26.5
27.0
27.0 | 28.5
28.5
29.0
29.0
29.0
27.5
27.5
27.5
27.0
27.0
27.0
27.5
27.5 | 25.0
24.5
25.0
25.5
25.0
25.5
25.0
25.5
25.5
25 | 24.0
23.5
24.0
24.5
24.0
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.0
24.0 | 24.5
24.0
24.0
24.5
24.5
24.5
24.5
25.0
25.0
25.0
24.0
24.0
24.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 23.0
23.0
23.0
23.0
23.5
24.0
23.5
23.5
23.5
24.0
24.5
24.0
23.5
23.5
24.0
24.0
23.5 | JUNE 21.5 22.0 22.0 22.0 22.0 22.5 22.5 22.5 23.0 23.5 23.5 23.5 23.5 23.0 22.5 | 22.0
22.5
22.5
22.5
22.5
23.0
22.5
23.0
22.5
23.0
24.0
24.0
23.5
23.0
23.5
23.0 | 28.0
28.5
29.5

28.0
28.0
28.0
27.5
27.0
26.5
26.5
26.5
27.5
27.5
27.5 | JULY 26.5 27.0 27.5 26.5 26.5 27.0 26.0 25.5 26.0 26.0 25.5 | 27.0
27.5
28.0

27.0
27.0
27.0
26.5
26.5
26.0
26.0
26.0
26.5
26.5
26.5
27.0
27.5 | 30.5
29.5
29.5
30.0
29.5
29.0
28.0
28.0
27.5
27.5
28.5
28.5
28.5
29.0
29.5 | 28.0
28.5
28.5
28.5
28.5
28.5
27.0
27.0
26.5
26.5
26.5
27.0
27.0
27.0
27.5
28.0
27.0
27.5 | 28.5
28.5
29.0
29.0
29.0
27.0
27.5
27.0
27.0
27.0
27.5
28.0
28.5
28.5
28.5
29.0 | 25.0
24.5
25.0
25.5
25.0
25.5
25.0
25.5
25.5
24.5
24.5
24.5
24.5
25.0
25.0
25.0 | 24.0
23.5
24.0
24.5
24.0
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5 | 24.5
24.0
24.0
24.5
24.5
24.5
24.5
25.0
25.0
25.0
24.0
24.0
24.0
24.5
24.5
24.5
24.5
24.5
24.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
20
20
20
20
20
20
20
20
20
20
20
20
20 | 23.0
23.0
23.0
23.5
24.0
23.5
23.5
23.5
24.0
24.5
24.0
23.5
24.0
23.5
24.0
25.0
25.0
25.0
25.0
27.0
27.0
27.5
28.0 | JUNE 21.5 22.0 22.0 22.0 22.5 22.5 22.5 22.5 23.0 23.5 23.5 23.5 23.5 23.0 22.5 23.0 23.5 23.5 23.0 23.5 23.5 23.0 23.5 23.6 23.5 23.0 23.5 23.6 23.5 23.0 23.5 23.6 23.5 23.6 23.6 23.7 23.7 23.5 23.6 23.6 23.7 23.7 23.7 23.7 23.7 23.7 23.7 23.7 | 22.0
22.5
22.5
22.5
22.5
23.0
22.5
23.0
24.0
24.0
24.0
23.5
23.0
23.5
24.0
24.5
24.0
24.5
24.5
24.5
25.5
26.5
26.5
26.5
26.5
26.5 | 28.0
28.5
29.5

28.0
28.0
28.0
27.5
26.5
26.5
26.5
26.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28 | JULY 26.5 27.0 27.5 26.5 26.5 27.0 26.0 25.5 26.0 26.0 25.5 27.0 26.5 27.0 26.5 27.0 26.5 27.0 26.5 27.0 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27. | 27.0
27.5
28.0

27.0
27.0
27.0
26.5
26.5
26.0
26.0
26.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.0
27.0 | 30.5
29.5
29.5
30.0
29.5
30.0
28.0
28.0
27.5
27.0
27.5
28.5
28.5
28.5
29.0
29.5
29.5
29.5
29.5
29.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28 | 28.0
28.5
28.5
28.5
28.5
28.5
28.5
27.0
27.0
26.5
26.5
26.5
27.0
27.5
28.0
28.0
28.0
28.0
28.5
28.5
28.5
28.5 | 28.5
28.5
29.0
29.0
29.0
27.5
27.5
27.0
27.0
27.0
27.5
28.0
28.5
28.5
28.5
29.0
28.5
28.5
28.0
28.0
28.0
28.5 | 25.0
24.5
25.0
25.5
25.0
25.5
25.5
25.5
24.5
24.5
24.5
24.5
24.5 | 24.0
24.5
24.0
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5 | 24.5
24.5
24.5
24.5
24.5
24.5
24.5
25.0
25.0
25.0
24.0
24.0
24.0
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 23.0
23.0
23.0
23.0
23.5
24.0
23.5
23.5
24.0
24.5
24.0
23.5
24.0
25.0
25.0
25.0
26.5
27.0
27.0
27.5 | 21.5 22.0 22.0 22.0 22.0 22.5 22.5 22.5 23.0 22.5 23.0 22.5 23.0 22.5 23.0 22.5 23.0 22.5 23.0 23.5 23.0 23.5 23.0 23.0 23.0 | 22.0
22.5
22.5
22.5
22.5
23.0
22.5
23.0
23.5
24.0
23.5
23.0
23.5
24.0
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5 | 28.0
28.5
29.5

28.0
28.0
28.0
27.5
27.5
26.5
26.5
26.5
27.5
28.5
28.5
28.5
28.0
28.5
27.5
28.5
28.5
28.0
28.5 | JULY 26.5 27.0 27.5 26.5 26.5 27.0 26.0 25.5 26.0 26.0 25.5 27.0 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27. | 27.0
27.5
28.0

27.0
27.0
27.0
27.0
26.5
26.5
26.0
26.0
26.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5 | 30.5
29.5
29.5
30.0
29.5
29.0
28.0
27.5
27.5
28.0
27.5
28.5
28.5
29.0
29.5
29.5
29.5
29.5
29.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28 | 28.0
28.5
28.5
28.5
28.5
28.5
28.0
27.0
26.5
26.5
26.5
27.0
27.0
27.5
28.0
28.0
28.0
28.5
28.5
28.0
27.5
28.0
27.5
28.5 | 28.5
28.5
29.0
29.0
29.0
27.5
27.5
27.0
27.0
27.0
27.5
28.0
28.5
28.5
29.0
29.0
28.5
28.5
28.0
28.0
28.0
28.0
28.0
28.0 | 25.0
24.5
25.0
25.5
25.0
25.5
25.0
25.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5 | 24.0
24.5
24.0
24.5
24.5
24.0
24.5
24.5
24.5
24.5
24.5
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0 | 24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5 | ## 01482800 DELAWARE RIVER AT REEDY ISLAND JETTY, DE--Continued OXYGEN, DISSOLVED (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|--|--|--|-----------------------------------|---------------------------------|---------------------------------|--|--|---|---|--|---| | | | OCTOBER | | 1 | NOVEMBER | | | DECEMBER | | | JANUARY | | | 1
2
3
4
5 |
7.4
7.4
7.4
7.7
7.5 | 6.9
7.0
7.1
7.1
7.1 | 7.2
7.2
7.2
7.3
7.3 |

9.7
9.9 |

8.7
8.8 |

9.2
9.4 | 9.6
9.7
9.5
9.4
9.4 | 8.8
8.8
8.7
8.5
8.2 | 9.2
9.3
9.1
9.0
8.9 | 10.3
10.2
10.3
10.1
10.0 | 9.7
9.6
9.8
9.7
9.7 | 10.0
10.0
10.1
9.9
9.9 | | 6
7
8
9
10 | 7.9
8.0
8.2
8.2 | 7.2
7.2
7.3
7.3
7.5 | 7.5
7.5
7.7
7.8
7.8 | 9.9
10.0
10.0
9.9
9.6 | 8.9
9.2
8.5
8.3
7.5 | 9.3
9.6
9.2
9.1
9.0 | 9.3
9.3
9.2
9.2
9.1 | 8.2
7.8
7.0
7.7 | 8.8
8.8
8.7
8.7 | 10.0
10.0
10.2
10.3
10.3 | 9.7
9.6
9.8
9.8
9.9 | 9.9
9.9
10.0
10.1 | | 11
12
13
14
15 | 8.3
8.3
8.8
8.5
8.4 | 7.5
7.5
7.5
7.5
7.3 | 7.9
7.9
8.2
8.0
7.8 | 9.7

 | 7.8

 | 8.8

 | 8.9
9.1
8.9
8.9
9.2 | 7.7
8.0
7.4
7.4
7.0 | 8.5
8.6
8.4
8.5
8.5 | 10.2
10.3
10.4
10.6
10.6 | 9.9
9.9
10.1
10.2
10.1 | 10.1
10.2
10.2
10.4
10.4 | | 16
17
18
19
20 | 8.5
8.7
8.8
8.7
8.6 | 7.6
7.5
7.9
7.4
7.4 | 8.0
8.0
8.5
8.3 |

8.6
8.6 |

8.0
8.2 |

8.3
8.3 | |

 |

 | 10.6
10.6
10.5
10.6
10.7 | 10.1
10.2
10.1
10.2
10.2 | 10.4
10.4
10.3
10.4
10.4 | | 21
22
23
24
25 |

 |

 |

 | 8.6
8.5
8.6
8.8 | 7.6
7.3
7.6
8.1
8.3 | 8.2
8.2
8.4
8.4 |

9.9
9.9 | 9.5
9.0 |

9.7
9.6 | 10.6
10.6
10.9
10.8
10.8 | 9.7
10.2
9.2
9.5
9.3 | 10.3
10.4
10.4
10.3
10.3 | | 26
27
28
29
30
31 | |

 |

 | 9.1
9.1
9.0
9.2
9.4 | 8.3
8.5
8.3
8.7
8.8 | 8.6
8.8
8.9
9.1 | 10.0
9.9
9.9
10.0
10.1
10.2 | 9.4
9.2
9.3
9.4
9.6
9.6 | 9.8
9.7
9.7
9.8
9.9 | 10.7
10.7
10.3
10.4
10.6
10.8 | 9.3
9.6
9.7
9.9
10.1
10.4 | 10.2
10.1
10.1
10.2
10.4
10.6 | | MONTH | 8.8 | 6.9 | 7.8 | 10.0 | 7.3 | 8.8 | 10.2 | 7.0 | 9.1 | 10.9 | 9.2 | 10.2 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | | MIN
FEBRUARY | | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | DAY 1 2 3 4 5 | | | | MAX | | MEAN | MAX
12.0
11.9
11.5
11.3
11.1 | | MEAN 11.6 11.6 11.3 11.0 10.6 | MAX
8.5
8.4
8.5
8.4
8.3 | | MEAN
8.3
8.3
8.2
8.2
8.1 | | 1
2
3
4 | 10.8
11.1
11.2
11.4 | 10.4
10.7
10.8
10.5 | 10.7
10.9
11.0
10.9 | | MARCH |

 | 12.0
11.9
11.5
11.3 | 10.9
11.3
10.9
10.4 | 11.6
11.6
11.3
11.0 | 8.5
8.4
8.5
8.4 | 7.8
7.9
7.6
8.1 | 8.3
8.3
8.2
8.2 | | 1
2
3
4
5
6
7
8
9 | 10.8
11.1
11.2
11.4
11.3
11.3
11.3 | 10.4
10.7
10.8
10.5
10.5
10.6
10.6
10.5 | 10.7
10.9
11.0
10.9
11.0
11.0
11.0 |

 | MARCH |

 | 12.0
11.9
11.5
11.3
11.1
10.7
10.2
9.4 | 10.9
11.3
10.9
10.4
9.6
9.7
8.9
8.5
8.5 | 11.6
11.6
11.3
11.0
10.6
10.2
9.7
9.0
9.0 | 8.5
8.4
8.5
8.4
8.3
8.1
8.2
8.0 | 7.8
7.9
7.6
8.1
7.6
7.7
7.5
7.2
7.2 | 8.3
8.3
8.2
8.2
8.1
8.1
7.9
7.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 10.8
11.1
11.2
11.4
11.3
11.3
11.3
11.3
11.0 | 10.4
10.7
10.8
10.5
10.5
10.5
10.6
10.7
10.7 | 10.7
10.9
11.0
10.9
11.0
11.0
11.0
11.0
10.9 | | MARCH |

 | 12.0
11.9
11.5
11.3
11.1
10.7
10.2
9.4
9.8
10.0
9.4 | APRIL 10.9 11.3 10.9 10.4 9.6 9.7 8.9 8.5 8.5 8.9 8.6 8.5 8.5 8.5 | 11.6
11.6
11.3
11.0
10.6
10.2
9.7
9.0
9.5
9.7
9.2
9.3 | 8.5
8.4
8.5
8.4
8.3
8.1
8.2
8.0
7.9
8.4
7.8
7.6 | 7.8
7.9
7.6
8.1
7.6
7.7
7.5
7.2
7.2
6.8
6.3
7.1
7.1 | 8.3
8.3
8.2
8.1
7.9
7.8
7.6
7.6
7.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 10.8
11.1
11.2
11.4
11.3
11.3
11.3
11.3
11.0
11.1
10.9
10.7
10.6
10.4 | 10.4
10.7
10.8
10.5
10.5
10.5
10.6
10.7
10.7
10.7
10.6
10.3
10.2
10.1
10.0 | 10.7
10.9
11.0
10.9
11.0
11.0
11.0
11.0
11.0 | | MARCH | | 12.0
11.9
11.5
11.3
11.1
10.7
10.2
9.4
9.8
10.0
9.4
10.2
10.1
9.7 | APRIL 10.9 11.3 10.9 10.4 9.6 9.7 8.9 8.5 8.5 8.9 8.9 8.6 8.5 8.4 8.0 7.7 7.1 7.7 | 11.6
11.6
11.3
11.0
10.6
10.2
9.7
9.0
9.5
9.7
9.2
9.3
9.7
9.1
8.3
8.2
8.1
8.2 | 8.5
8.4
8.5
8.4
8.3
8.3
8.1
8.0
7.9
8.4
7.6
7.6
7.7 | 7.8
7.9
7.6
8.1
7.6
7.7
7.5
7.2
7.2
6.8
6.3
7.1
7.0
7.2
7.2 | 8.3
8.2
8.2
8.1
7.9
7.8
7.6
7.6
7.4
7.4
7.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 10.8 11.1 11.2 11.4 11.3 11.3 11.3 11.0 11.1 10.9 10.7 10.6 10.4 | 10.4
10.7
10.8
10.5
10.5
10.5
10.7
10.7
10.7
10.6
10.3
10.2
10.1
10.0 | 10.7 10.9 11.0 10.9 11.0 11.0 11.0 11.0 11.0 | | MARCH | | 12.0
11.9
11.5
11.3
11.1
10.7
10.2
9.4
9.8
10.0
9.4
10.2
10.1
9.7
8.5
8.4
8.4
8.4 | APRIL 10.9 11.3 10.9 10.4 9.6 9.7 8.9 8.5 8.5 8.9 8.9 8.6 8.5 8.4 8.0 7.7 7.1 7.7 7.0 7.7 | 11.6
11.6
11.3
11.0
10.6
10.2
9.7
9.0
9.5
9.7
9.2
9.3
9.7
9.1
8.3
8.2
8.1
8.2
8.1 | 8.5
8.4
8.3
8.3
8.1
8.2
8.0
7.9
8.4
7.6
7.6
7.7 | 7.8
7.9
7.6
8.1
7.6
7.7
7.5
7.2
7.2
6.8
6.3
7.1
7.0
7.2
7.2
7.1 | 8.3
8.2
8.2
8.1
7.9
7.8
7.6
7.6
7.4
7.4
7.5 | ## 01482800 DELAWARE RIVER AT REEDY ISLAND JETTY, DE--Continued OXYGEN, DISSOLVED (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|---------------------------------|---------------------------------|---------------------------------| | | | JUNE | | | JULY | | | AUGUST | | 5 | SEPTEMBE | R | | 1
2
3
4
5 | 6.8
6.9
7.1
7.0 | 6.3
6.3
6.0
6.4 | 6.6
6.7
6.7
6.8 | 6.8
6.9
6.6
 | 6.0
5.9
5.0
 | 6.4
6.5
6.2
 | 6.1
6.2
6.1
6.2
6.5 | 4.8
4.2
5.0
5.0 | 5.4
5.5
5.6
5.7
5.6 | 7.0
7.3
7.2
7.2
7.2 | 6.1
6.4
6.3
6.5
6.4 | 6.7
6.9
6.9
6.9 | | 6
7
8
9
10 | 6.9
7.1
7.0
6.9 | 5.2
6.4
5.9
6.3 | 6.6
6.9
6.7
6.7 |
6.7
6.6
6.8 |
5.1
5.4
5.7 | 6.2
6.2
6.3 | 6.6
6.8
6.8
7.0 | 4.8
5.2
5.3
5.5
5.7 | 5.4
5.8
5.8
6.1
6.3 | 7.4
7.1
 | 6.4
6.4
 | 7.0
6.9
 | | 11
12
13
14
15 | 6.8
6.8
6.8
6.8 | 6.2
6.2
6.3
6.3 | 6.5
6.6
6.5
6.5 | 6.8
7.6
7.6
7.4
7.2 | 5.1
6.5
7.0
6.5
5.3 | 6.4
7.1
7.3
7.1
6.3 | 7.2
7.5
7.5
7.3
7.1 | 6.0
6.0
5.9
5.8 | 6.5
6.6
6.5
6.4
6.3 |

 | | | | 16
17
18
19
20 | 6.7
6.7
6.7
6.8
6.9 | 6.2
6.3
6.3
5.9
6.3 | 6.5
6.5
6.6
6.6 | 6.4
6.1
5.9
7.0
6.5 | 5.0
4.9
4.9
5.3
4.5 | 5.8
5.5
5.5
6.2
5.9 | 6.7
6.1
6.4
6.8 | 5.5
4.7
5.1
5.2
5.5 | 6.0
5.5
5.5
5.7
5.9 |

 |

 |

 | | 21
22
23
24
25 | 6.9
6.9
6.8
6.6 | 6.3
6.3
6.3
5.9 | 6.6
6.6
6.6
6.4 | 5.9
5.7
5.7
5.8
5.7 | 4.7
4.3
4.3
4.5
4.4 | 5.5
5.3
5.3
5.2
5.1 | 6.7
6.9
7.0
8.4
8.0 | 5.7
5.9
6.0
6.1
6.0 | 6.1
6.2
6.3
7.0
6.8 | 7.0
7.0
7.0 |
6.5
6.6
6.3 |
6.8
6.8
6.8 | | 26
27
28
29
30
31 | 6.5
6.6
6.8
6.8 | 5.5
5.5
6.0
5.9
5.9 | 6.2
6.2
6.4
6.5
6.4 | 5.6
5.9
5.7
5.8
6.1 | 3.8
4.4
4.6
4.5
4.4
4.9 | 5.1
5.2
5.2
5.2
5.3
5.4 | 7.9
7.8
7.6
7.3
7.4
6.9 | 6.1
6.1
5.9
6.0
4.4
5.6 | 6.8
6.7
6.6
6.6
6.3
6.4 | 7.0
7.1
7.2
7.0
6.8 | 6.4
6.6
6.7
6.5
 | 6.9
6.9
7.0
6.8
6.7 | | MONTH | 7.1 | 5.2 | 6.6 | 7.6 | 3.8 | 5.9 | 8.4 | 4.2 | 6.1 | 7.4 | 6.1 | 6.9 | As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in
low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites. Records collected at crest-stage partial-record stations are presented in the following table. Discharge measurements made at low-flow partial-record sites and at miscellaneous sites and for special studies are given in separate tables. #### **Crest-stage partial-record stations** The following table contains annual maximum discharges for crest-stage stations. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained but is not published herein. The years given in the period of record represent water years for which the annual maximum has been determined. #### Annual maximum discharge at crest-stage partial-record stations during water year 2002 | | | | Water y | ear 2002 m | aximum | Period of record maximum | | | |---|---|------------------------|-------------|------------------------|--------------------------------|--------------------------|------------------------|--------------------------------| | Station name
and
number | Location
and
drainage area | Period
of
Record | Date | Gage
height
(ft) | Discharge (ft ³ /s) | Date | Gage
height
(ft) | Discharge (ft ³ /s) | | | | DELAWAR | E RIVER BA | SIN | | | | | | | | LACKAWAX | EN RIVER B | ASIN | | | | | | Dyberry Creek
above Reservoir
near Honesdale,
Pa. (01429300) | Lat 41°39'26", long 75°17'12", Wayne County, Hydrologic Unit 02040103, on right bank 955 ft downstream from bridge on West Branch Dyberry Creek at Tanners Falls, Pa., 0.2 mi downstream from confluence of the East and West Branches of Dyberry Creek, and 6 mi north of Dyberry, Pa. Datum of gage is 1,023.43 ft above sea level. Drainage area is 45.8 mi ² . | 1975-2002 | 5-14-02 | 8.85 | 1,500 | 9-27-85 | 11.75 | 5,140 | | | | VANDERM | IARK CREEK | BASIN | | | | | | Vandermark Creek
at Milford, Pa.
(01438300) | Lat 41°19'35", long 74°47'50",
Pike County, Hydrologic Unit
02040104, at stone bridge on
Broad Street in Milford, Pa.,
and 0.4 mi upstream of
mouth.Datum of gage is 490.50
ft above sea level. Drainage
area is 5.36 mi ² . | 1962-2002 | 2002 | <2.15 ^a | <69 ^a | 9-16-99 | 3.36 ^b | 566 | | | | BRODHE | EAD CREEK I | BASIN | | | | | | Mill Creek at Mountainhome, Pa. (01440300) | Lat 41°09'50", long 75°16'00",
Monroe County, Hydrologic
Unit 02040104, at concrete
bridge on macadam road,
0.5 mi east of Mountainhome,
Pa., and 1.5 mi upstream of
mouth. Drainage area is
5.84 mi ² . | 1961-2002 | 3-27-02 | 7.72 | 163 | 7-28-69 | 12.65 | 1,650 | $\textbf{Annual maximum discharge at crest-stage partial-record stations during water year 2002} \\ - \textbf{Continued}$ | | | | Water y | ear 2002 m | aximum | Period of record maximum | | | | |--|--|----------------------------------|--|------------------------|--------------------------------|--------------------------|------------------------|--------------------------------|--| | Station name
and
number | Location
and
drainage area | Period
of
Record | Date | Gage
height
(ft) | Discharge (ft ³ /s) | Date | Gage
height
(ft) | Discharge (ft ³ /s) | | | | <u>D</u> | ELAWARE RI | VER BASIN | -Continued | | | | | | | | | LEHIGH | RIVER BASI | IN | | | | | | | Lehigh River at
Allentown, Pa.
(01451192) | Lat 40°36'23", long 75°27'17",
Lehigh County, Hydrologic
Unit 02040106, on upstream
side of bridge on Hamilton
Street in Allentown, Pa., 200 ft
downstream from lock and
dam, and 0.7 mi upstream from
Little Lehigh Creek. Datum of
gage, 200 ft above sea level.
Drainage area is 1,033 mi ² . | 1977-81*
1982-94
1995-2002 | 5-29-02 | 40.50 | 8,520 | 1-20-96 | 48.25 | 45,600 | | | | | NESHAMIN | Y CREEK BA | ASIN | | | | | | | Neshaminy Creek
near Penns Park,
Pa.
(01465200) | Lat 40°15'06", long 75°00'31",
Bucks County, Hydrologic Unit
02040201, on left bank at
bridge over main stem of
Neshaminy Creek on Second
Street Pike (Rt. 232) at Penns
Park, Pa. Drainage area is 157
mi ² | 2002 | 5-18-02 | 11.20 | 4,150 | 5-18-02 | 11.20 | 4,150 | | | | | SCHUYLKI | LL RIVER BA | ASIN | | | | | | | Schuylkill River at
Birdsboro, Pa.
(01471660) | Lat 40°16'05", long 75°48'40",
Berks County, Hydrologic Unit
02040203, on railroad bridge,
on right bank 1,000 ft upstream
from bridge on SR 82 in Birds-
boro, Pa. Datum of gage, sea
level. Drainage area is 976 mi ² . | 1981-94
1996
1999-2002 | 2002 | <47.30 ^a | <5,820 ^a | 4-16-83 | 158.72 | 30,700 | | | Schuylkill River at
Phoenixville, Pa.
(01472162) | Lat 40°08'07", long 75°30'32",
Chester County, Hydrologic
Unit 02040203, on the down-
stream end of the left bank
wingwall of Reading Railroad
bridge across the mouth of
French Creek at Phoenixville,
Pa. (station 014721612). Datum
of gage, sea level. Drainage
area is 1,280 mi ² . | 1971-94
1996
1999-2002 | 2002 | <81.53 ^a | <16,400 ^a | 6-23-72 | 100.58 | 79,100 | | | | WEST | | A RIVER BA
NE CREEK B
ANDYWINE (| BASIN | SIN | | | | | | Sucker Run near
Coatesville, Pa.
(01480610) | Lat 39°58'20", long 75°51'03",
Chester County, Hydrologic
Unit 02040205, at concrete
bridge on South Park Avenue
on SR 372, 1.6 mi upstream of
mouth, and 2.0 mi west of
Coatesville, Pa. Drainage area
is 2.57 mi ² . | 1964-2002 | 2002 | <4.81 ^a | <140 ^a | 7-21-79 | 8.49 | 1,500 | | Operated as a low-flow partial-record station. Annual maximum did not reach minimum recording range of gage. Peak gage height for period of record is 3.65 ft, Sept. 25, 1975. ${\bf Miscellaneous\ sites}$ Discharge measurements made at miscellaneous sites during water year 2002 | | | | | | Measurements | | | |------------------------------------|---------------------|---|--|--|---|--|--| | Stream | Tributary to | Location | Drainage
area
(mi ²) | Measured previously (water years) | Date | Discharge
(ft ³ /s) | | | | | DELAWARE RIVER BASIN Co | ntinued | | | | | | | | EQUINUNK CREEK BASIN | 1 | | | | | | 01427200
Equinunk Creek | Delaware River | Lat 41°50'15", long 75°13'55", Wayne
County, Hydrologic Unit 02040101, at
highway bridge 700 ft downstream from
South Branch Equinunk Creek, and 1.4
mi above mouth and Equinunk, Pa. | 56.3 | 1946-57*
1978-91*
1992-2001 | 7-08-02
7-18-02
8-16-02 | 12
4.3
2.7 | | | | | LACKAWAXEN RIVER BAS | IN | | | | | | 01431600
Wallenpaupack
Creek | Lackawaxen
River | Lat 41°20'10", long 75°20'25", Wayne
County, Hydrologic Unit 02040103, at
bridge on dirt road 2.6 mi south of inter-
section of State Routes 84 and 191,
0.2 mi upstream from Rock Port Creek,
and at East Sterling, Pa. | 69.5 | 1944-57
1978-81
1989-2001 | 10-17-01
12-05-01
2-27-02
4-10-02
5-08-02
6-26-02
8-07-02 | 23
70
59
149
155
82
18 | | | 01432110
Lackawaxen
River | Delaware River | Lat 41°28'33", long 75°02'12", Pike
County, Hydrologic Unit 02040103, at
mouth, and downstream from bridge on
SR 590, at Rowland, Pa. Regulated by
lakes and reservoirs upstream. | 588 | 1949 ^{a}
1989-2001 | 10-17-01
12-05-01
2-27-02
4-10-02
5-08-02
8-07-02 | 62
85
234
461
638
55 | | | | | SHOHOLA CREEK BASIN | | | | | | | 01432500
Shohola Creek | Delaware River | Lat 41°27'20", long 74°55'25", Pike
County, Hydrologic Unit 02040104, 1.7
mi upstream from mouth, and 1.4 mi
south of Shohola, Pa. Prior to 1959 at
highway bridge 0.4 mi upstream. | 83.6 | 1920-28≠
1957-80
1981-91*
1992-2001 | 7-10-02
7-25-02
8-20-02 | 44
72
12 | | | 0143839602
Sawkill Creek | Delaware River | Lat 41°19'00", long 74°47'59", Pike
County, Hydrologic Unit 02040104, at
bridge on River Road, 1,000 dt upstream
from mouth, at Milford, Pa. | 24.7 | |
4-23-02
6-04-02
7-15-02
8-29-02 | 32
27
7.7
9.2 | | | 01438700
Raymondskill
Creek | Delaware River | Lat 41°18'11", long 74°51'21", Pike
County, Hydrologic Unit 02040104, at
bridge on SR 2009, 2.0 mi upstream
from mouth, and 2.4 mi southwest of
Milford, Pa. | 20.4 | 1947-57 | 4-23-02
6-04-02
7-15-02
8-28-02 | 30
29
3.5
1.0 | | | 01438754
Adams Creek | Delaware River | Lat 41°15'40", long 74°53'24", Pike County, Hydrologic Unit 02040104, at bridge on SR 2001, 3.0 mi upstream from mouth, and near Edgemere, Pa. | 3.71 | | 4-23-02
6-04-02
7-15-02
8-28-02 | 7.1
7.7
0.92
0.28 | | | 01438892
Dingmans Creek | Delaware River | Lat 41°13'47", long 74°53'50", Pike
County, Hydrologic Unit 02040104, at
bridge on Doodle Hollow Road, 2.3 mi
upstream from mouth, and near Ding-
mans Ferry, Pa. | 13.9 | | 4-23-02
6-04-02
7-15-02
8-28-02 | 22
16
1.4
0.63 | | | 01439092
Hornbecks Creek | Delaware River | Lat 41°11'45", long 74°54'36", Pike
County, Hydrologic Unit 02040104, at
culvert on Emery Road 2.0 mi upstream
from mouth, and near Dingmans Ferry,
Pa. | 6.43 | | 4-24-02
6-05-02
7-15-02
7-15-02
8-28-02 | 9.0
5.0
0.12
0.13
0.10 | | $\textbf{Discharge measurements made at miscellaneous sites during water year 2002} \\ -- Continued$ | | | | | | | rements | |------------------------------|------------------|--|--|---|---|--| | Stream | Tributary to | Location | Drainage
area
(mi ²) | Measured
previously
(water years) | Date | Discharge (ft ³ /s) | | | | DELAWARE RIVER BASIN Co | ntinued | | | | | | | SHOHOLA CREEK BASIN | ſ | | | | | 01439400
Toms Creek | Delaware River | Lat 41°07'33", long 74°57'20", Pike
County, Hydrologic Unit 02040104, at
bridge on Toms Creek Road, 0.4 mi
upstream from mouth, at Egypt Mills,
Pa. | 9.34 | 1970-72 | 4-22-02
6-05-02
7-16-02
8-28-02 | 18
12
1.8
1.1 | | 01439570
Sand Hill Creek | Bush Kill | Lat 41°05'06", long 75°00'32", Monroe
County, Hydrologic Unit 02040104, at
abandoned footbridge, 0.3 mi upstream
from mouth, at Bushkill, Pa. | 3.46 | | 4-22-02
6-05-02
7-16-02
8-28-02 | 2.5
0.64
0.0
0.0 | | 01439680
Little Bush Kill | Bush Kill | Lat 41°05'52", long 75°00'15", Pike
County, Hydrologic Unit 02040104, at
bridge on East Sugar Mountain Road,
0.7 mi upstream from mouth, at Bush-
kill, Pa. | 32.6 | | 4-24-02
6-05-02
6-05-02
7-16-02
8-28-02 | 55
53
58
5.4
2.8 | | | | BRODHEAD CREEK BASI
POHOPOCO CREEK BASI | | | | | | 01450020
Pohopoco Creek | Lehigh River | Lat 40°49'05", long 75°40'27", Carbon
County, Hydrologic Unit 02040106,
200 ft upstream of Parryville Dam, at
Parryville, Pa., and 0.25 mi above
mouth. | 111 | 1992-1998≠ ^c
1999-2001 | 10-03-01
12-10-01
1-31-02
3-13-02
4-24-02
6-12-02 | 47
34
76
163
129
128 | | | | NESHAMINY CREEK BASI | N | | | | | 01465460
Iron Works Creek | Mill Creek | Lat 40°11'54", long 75°00'40", Bucks
County, Hydrologic Unit 02040201, at
lower Holland Road bridge 300 ft east of
Bustleton Pike, and 1.3 mi south of
Richboro, Pa. | 3.69 | 1981*
1982-86
1991-2001 | 10-03-01
1-10-02
4-04-02
6-25-02
9-30-02 | .34
.42
1.75
1.84
.91 | | | | SCHUYLKILL RIVER BASI | N | | | | | †01472190
Pickering Creek | Schuylkill River | Lat 40°06'33", long 75°31'42", Chester County, Hydrologic Unit 02040203, at bridge on Creek Road at SR 29, 0.3 mi downstream from Conrail bridge, 1.0 mi south of Phoenixville, Pa., and 2.6 mi upstream from Pickering Creek Dam. | 31.4 | 1967-68≠
1975-2001
1981-84* | 10-19-01
10-24-01
12-11-01
1-16-02
3-22-02
4-23-02
6-04-02
7-31-02 | 10.6
11.3
14.6
15.3
30.5
20.0
13.5
6.77 | | 01473110
Skippack Creek | Perkiomen Creek | Lat 40°10'17", long 75°25'52", Montgomery County, Hydrologic Unit 02040203, at bridge on State Route 363, and 0.4 mi east of Evansburg, Pa. | 52.9 | 1995-2001 | 10-25-01
12-12-01
1-17-02
3-22-02
4-24-02
6-06-02 | 8.88
13.3
23.4
119
18.4
14.4 | Discharge measurements made at miscellaneous sites during water year 2002—Continued | | | | | | Measur | <u>ements</u> | |--|---------------------|--|--|---|--|--| | Stream | Tributary to | Location | Drainage
area
(mi ²) | Measured
previously
(water years) | Date | Discharge
(ft ³ /s) | | | | DELAWARE RIVER BASIN Co | ntinued | | | | | | | CHRISTINA RIVER BASIN | 1 | | | | | 01478230
Middle Branch
White Clay Creek | White Clay Creek | Lat 39°45'02", long 75°46'19", Chester County, Hydrologic Unit 02040205, at bridge on Sharpless Road, 2.0 mi south of Landenberg, Pa., and 6.0 mi south of Avondale, Pa. Formerly published as "White Clay Creek". | 25.5 | 1989-2001 | 10-15-01
11-09-01
12-19-01
1-31-02
3-21-02
4-30-02
6-20-02
7-30-02
9-02-02 | 14.7
9.7
15.9
25.2
39.6
22.6
10.8
3.9
3.6
3.5 | | 01480424
West Branch
Brandywine
Creek | Brandywine
Creek | Lat 40°01'19", long 75°50'53", Chester County, Hydrologic Unit 02040205, on downstream side of concrete bridge on Wagontown Road, .75 mi northwest of Wagontown, Pa. | 31.9 | | 1-25-02
3-08-02
4-26-02
5-21-02
6-24-02
8-07-02
9-19-02 | 47.3
13.2
16.1
22.0
10.5
4.3
5.3 | | | | BIG ELK CREEK BASIN | | | | | | 01494990
Big Elk Creek | Elk River | Lat 39°43'50", long 75°50'55", Chester County, Hydrologic Unit 02060002, at bridge on Lewisville Road, 1.5 mi east of Lewisville, Pa., and 9.2 mi north of Elkton, Md. | 41.0 | 1989-2001 | 10-15-01
11-08-01
12-18-01
1-31-02
3-20-02
4-29-02
6-19-02
8-07-02
9-10-02 | 18.4
16.0
27.3
30.4
44.6
45.0
18.6
4.0
5.9 | Operated as a low-flow partial-record station. Operated as a continuous-record gaging station. Operated as a water-quality partial-record station since 1974. Prior to October 1988 at latitude 41°28'19", longitude 75°02'25". Operated as a rated vertical staff gage September 21, 1994 to April 17, 2001; converted to a continuous-record daily discharge gage April 18, 2001. The results of discharge measurements made from 1992 through 1998 water years are available in office files. ## Low-flow partial record sites Measurements of streamflow made at low-flow partial-record stations located in the area covered by this report are provided in the following table. The measurements were made during a period of base flow when streamflow is primarily the result of ground-water discharge. These measurements, when correlated with the simultaneous discharge of a nearby stream where historical continuous-record streamflow data are available, will give an indication of the low-flow status of the measured stream. The column headed "Period of Record" shows the water years in which measurements were made at the same, or practically the same, site. The column headed "Unit Area Discharge" shows the result of the measured discharge divided by the drainage area at the low-flow site. This value is commonly used to make hydrologic comparisons among drainage basins and shows the relative discharge per square mile at each site. A unit area discharge value of 0.10 cubic feet per second per square mile ((ft³/s)/mi²) is sometimes used as a rule of thumb to estimate the 7-day, 10-year (Q7,10) flow value. The 7-day, 10-year flow value is often used to develop limits for permitted withdrawals or discharges to streams. To compare these measured low-flow values to the computed 7-day, 10-year flow value, visit the USGS-PA Flow Statistics web site at http://pa.water.er.usgs.gov/flowstats/ or, for stream data not available at the web site, refer to methods described in *Comparison of Methods for Computing Streamflow Statistics for Pennsylvania Streams* (USGS Water-Resources Investigations Report 99-4068), authored by Ehlke and Reed, to determine the 7-day, 10-year flow value. #### Discharge measurements made at low-flow partial-record sites during water year 2002 | | | | | | | Measurement | <u>s</u> | |-------------------|--|--|--|--|---------|---|-----------------------------------| | Station
Number | Station Name | Location | Drainage
area
(mi ²) | Period
of
Record | Date | Unit Area
Discharge
((ft ³ /s)/mi ²) | Discharge
(ft ³ /s) | | | | DELAWARE RIVER B | ASINCon | tinued | | | | | | | LEHIGH RIVE | R
BASIN | | | | | | 01451110 | Hokendauqua
Creek near
Northampton | Lat 40°42'50", long 75°29'45",
Northampton County, Hydrologic Unit
02040106, at bridge on county road, 1.7
mi north of Northampton, and 3.3 mi
upstream from mouth. | 38.1 | 1970-78,
1981-91,
2002 | 9-10-02 | .09 | 3.58 | | 01451165 | Catasauqua Creek
at Catasauqua | Lat 40°38'52", long 75°28'06", Lehigh
County, Hydrologic Unit 02040106, at
bridge on North Daulphin Street, Cata-
sauqua, 0.1 mi upstream from mouth. | 15.7 | 1970-78,
1981-91,
2002 | 9-10-02 | .12 | 1.90 | | 01451900 | Jordan Creek near
Stetlersville | Lat 40°37'46", long 75°33'13", Lehigh
County, Hydrologic Unit 02040106, at
covered bridge on rural road, 0.5 mi
north of Stetlersville. | 70.4 | 1967-69 ^a ,
1981-91,
2002 | 9-10-02 | 0 | no flow | | 01452300 | East Branch
Monocacy
Creek near Bath | Lat 40°43'10", long 75°22'10",
Northampton County, Hydrologic Unit
02040106, on left bank 25 ft down-
stream from bridge on LR 40863, 1.5 mi
southeast of Bath, and 2.5 mi upstream
from mouth. | 5.35 | 1962-69≠,
1969-81 ^b ,
1982-88,
2002 | 9-10-02 | 0 | no flow | | 01457790 | Cooks Creek at
Durham Fur-
nace | Lat 40°34'56", long 75°12'20", Bucks
County, Hydrologic Unit 02040105, on
east side of Red Brick Road, 0.1 minorth
of State Highway 212, 0.5 mi upstream
from mouth and Durham Furnace. | 29.4 | 1934, 1944,
1949-50,
1970-78,
1981-87,
1990-93≠,
2002 | 9-09-02 | .19 | 5.61 | | 01458900 | Tinicum Creek
near Ottsville | Lat 40°28'14", long 75°08'13", Bucks
County, Hydrologic Unit 02040105, at
concrete bridge on gravel road, 0.9 mi
below confluence of Rapp Creek and
Beaver Creek, 1.5 mi east of Ottsville,
and 5.3 mi above mouth. | 14.7 | 1971-81 ^b ,
1982-88,
1990-93≠,
2002 | 9-09-02 | .03 | 0.38 | $\textbf{Discharge measurements made at low-flow partial-record sites during water year 2002} \\ - \textbf{Continued}$ | | | | | | | Measurement | <u>s</u> | |-------------------|--|--|--|--|---------|---|--------------------------------| | Station
Number | Station Name | Location | Drainage
area
(mi ²) | Period
of
Record | Date | Unit Area
Discharge
((ft ³ /s)/mi ²) | Discharge (ft ³ /s) | | | | TOHICKON CRE | EEK BASIN | | | | | | 01459100 | Beaver Run tribu-
tary at Quaker-
town | Lat 40°26'37", long 75°19'42", Bucks
County, at concrete weir upstream from
twin concrete-arch culvert on Erie Ave-
nue at intersection with Elm Street in
Quakertown, 0.2 mi upstream from
mouth. | 2.42 | 1961-68,
1981-91,
2002 | 9-09-02 | 0 | no flow | | 01459150 | Tohickon Creek
near Quaker-
town | Lat 40°26'33", long 75°18'33", Bucks
County, Hydrologic Unit 02040105,
1,000 ft downstream from county high-
way bridge and 1.0 mi east of Quaker-
town. | 27.5 | 1970-78,
1981-91,
2002 | 9-09-02 | .12 | 3.43 | | | | JERICHO CREI | EK BASIN | | | | | | 01462300 | Jericho Creek at
Washington
Crossing | Lat 40°18'40", long 74°54'23", Bucks
County, Hydrologic Unit 02040105, at
bridge on State Highway 32, 0.3 mi
upstream from mouth, and 2.5 mi north-
west of Washington Crossing. | 9.52 | 1971-91,
2002 | 9-10-02 | 0 | no flow | | | | NESHAMINY CR | EEK BASIN | 1 | | | | | 01464900 | Park Creek near
Warrington | Lat 40°13'24", long 75°08'42", Bucks
County, at mouth, 0.3 mi upstream from
bridge on State Highway 611 cross Little
Neshaminy Creek, and 2.0 mi southwest
of Warrington. | 11.8 | 1946-57,
1981-91,
2002 | 9-10-02 | .07 | 0.84 | | 01465100 | Mill Creek at
Rushland | Lat 40°15'30", long 75°01'06", Bucks
County, Hydrologic Unit 02040201, at
bridge on L.R. 09047 at Rushland. | 21.6 | 1950,
1981-91,
2002 | 9-10-02 | .03 | 0.58 | | | | POQUESSING CR | REEK BASIN | 1 | | | | | 01465790 | Byberry Creek at
Chalfont Road,
Philadelphia | Lat 40°04'54", long 74°58'57", Philadel-
phia County, Hydrologic Unit 02040202,
on right bank 200 ft downstream from
Chalfont Road Bridge, 0.2 mi down-
stream from Walton Run, at Philadel-
phia. | 5.34 | 1964-78≠,
1981-91,
2002 | 9-10-02 | .07 | 0.35 | | | | FRANKFORD CR | EEK BASIN | 1 | | | | | 01467084 | Rock Creek above
Curtis Arbore-
tum near Phila-
delphia | Lat 40°04'54", long 75°09'03", Montgomery County, Hydrologic Unit 02040202, on right bank 60 ft upstream from stonearch bridge, 1,600 ft upstream from Washington Lane, Cheltenham Township, and about 1.2 mi upstream from mouth. | 1.15 | 1971-78≠,
1981-91,
2002 | 9-10-02 | .24 | 0.28 | | | | SCHUYLKILL RI | VER BASIN | 1 | | | | | 01467470 | Schuylkill River
at Port Carbon | Lat 40°41'40", long 76°09'50", Schuylkill
County, Hydrologic Unit 02040203, at
bridge 550 ft upstream from Mill Creek,
at Port Carbon. | 27.1 | 1949-50,
1963-64 ^a ,
1981-91,
2002 | 9-10-02 | .22 | 6.02 | | 01469090 | Bear Creek at Jef-
ferson | Lat 40°35'09", long 76°08'03", Schuylkill County, at bridge on T662, 2.0 mi west of Auburn. | 10.4 | 1965 ^a ,
1981-91,
2002 | 9-09-02 | .09 | 0.91 | $\textbf{Discharge measurements made at low-flow partial-record sites during water year 2002} \\ - \textbf{Continued}$ | | | | | | | Measurement | <u>S</u> | |-------------------|---|--|--|--|---------|---|--------------------------------| | Station
Number | Station Name | Location | Drainage
area
(mi ²) | Period
of
Record | Date | Unit Area
Discharge
((ft ³ /s)/mi ²) | Discharge (ft ³ /s) | | | | SCHUYLKILL RIVER | BASINCo | ontinued | | | | | 01469290 | Pine Creek at Barnesville | Lat 40°49'09", long 76°01'06", Schuylkill
County, 0.1 mi south of State Highway
45, and 0.8 mi east of Barnesville. | 7.33 | 1964 ^a ,
1981-91,
2002 | 9-09-02 | .15 | 1.11 | | 01470700 | Maiden Creek
near Lenharts-
ville | Lat 40°35'10", long 75°53'40", Berks
County, Hydrologic Unit 02040203, at
Zettlemoyers bridge, 1.0 mi north of
Lenhartsville. | 75.7 | 1943-57,
1981-91,
2002 | 9-11-02 | .07 | 5.60 | | 01470720 | Maiden Creek
tributary at
Lenhartsville | Lat 40°34'23", long 75°52'34", Berks
County, Hydrologic Unit 02040203, at
bridge on U.S. Highway 22, 0.5 mi east
of Lenhartsville, and 0.5 mi upstream
from mouth. | 7.46 | 1961-65 ^b ,
1965-91,
2002 | 9-11-02 | .05 | 0.37 | | 01470758 | Moselem Creek
near Shoemak-
ersville | Lat 40°30'10", long 75°52'47", Berks
County, Hydrologic Unit 02040203, at
bridge on county road, 0.35 mi upstream
from mouth, 2.8 mi west of Moselem
Springs, and 5 mi east of Shoemakers-
ville. | 13.5 | 1970-78,
1981-91,
2002 | 9-11-02 | .76 | 10.3 | | 01470760 | Maiden Creek
near East Berk-
ley | Lat 40°25'57", long 75°56'19", Berks
County, Hydrologic Unit 02040203, at
bridge on SR 61, 1.7 mi northwest of
Temple. | 192 | 1908, 1909
2002 | 9-12-02 | .06 | 12.4 | | 01470763 | Willow Creek
near Temple | Lat 40°25'37", long 75°56'21", Berks
County, Hydrologic Unit 02040203,
800 ft upstream from mouth at bridge on
SR 61 near Temple. | 21.6 | 2002 | 9-11-02 | .22 | 4.75 | | 01470800 | Tulpehocken
Creek at Bern-
ville | Lat 40°25'32", long 75°06'49", Berks
County, at a single-span concrete high-
way bridge on L.R. 06047, 600 ft
upstream from confluence with Northkill
Creek, and 0.5 mi south of Bernville. | 84.8 | 1944, 1951,
1955, 1957,
1972-77 ^a ,
1981-91,
2002 | 9-10-02 | .31 | 26.6 | | 01471520 | Wyomissing
Creek at West
Reading | Lat 40°19'41", long 75°56'41", Berks
County, at West Reading, and 180 ft
upstream from mouth. | 15.6 | 1948-53 ^c ,
1981-91,
2002 | 9-10-02 | .42 | 6.61 | | 01471620 | Allegheny Creek
at Gibralter | Lat 40°17'06", long 75°52'25", Berks
County, 600 ft upstream from Schuylkill
Canal, at Gibralter. | 17.9 | 1967 ^a ,
1981-91,
2002 | 9-11-02 | .20 | 3.57 | | 01471800 | Pine Creek near
Manatawny | Lat 40°24'43", long 75°44'02", Berks
County, Hydrologic Unit 02040203, at
steel bridge on macadam road, at Lob-
achsville, 0.5 mi upstream from mouth,
0.5 mi below West Branch Pine Creek
and 2 mi north of Manatawny. | 9.61 | 1970-81 ^{b} ,
1982-91,
2002 | 9-11-02 | .10 | 0.95 | | 01471900 | Manatawny Creek
at Earlville | Lat 40°19'05", long 75°44'01", Berks
County, Hydrologic Unit 02040203, at
bridge on State Highway 562 at Ear-
lville, and 2.7 mi south of Spangsville. | 61.6 | 1947-57,
1981-91,
2002 | 9-11-02 | .21 | 13.0 | | 01472100 | Pigeon Creek at
Parker Ford | Lat 40°11'48", long 75°35'13", Chester
County, Hydrologic Unit 02040203, 50
ft downstream from bridge on State
Highway 724, at Parker Ford | 13.9 | 1944-57,
1981-91,
2002 | 9-11-02 | .13 | 1.85 | $\textbf{Discharge measurements made at low-flow partial-record sites during water year 2002} \\ - \textbf{Continued}$ | | | | | | <u>Measurements</u> | | <u>s</u> | |-------------------
--|---|--|---|---------------------|---|--------------------------------| | Station
Number | Station Name | Location | Drainage
area
(mi ²) | Period
of
Record | Date | Unit Area
Discharge
((ft ³ /s)/mi ²) | Discharge (ft ³ /s) | | | | SCHUYLKILL RIVER | BASINCo | ntinued | | | | | 01472130 | French Creek near
St. Peters | Lat 40°11'03", long 75°45'10", Chester County, at highway bridge, 1.2 mi northwest of St. Peters. | 11.8 | 1932-33,
1981-91,
2002 | 9-09-02 | .07 | 0.82 | | 01472150 | French Creek at
Coventryville | Lat 40°11'03", long 75°45'10", Chester County, at highway bridge, 0.1 mi south of State Highway 23, at Coventryville, 0.3 mi downstream from South Branch, 0.6 mi southwest of Pottstown. | 36.9 | 1951-69,
1981-91,
2002 | 9-10-02 | .13 | 4.91 | | 01472175 | Unnamed tribu-
tary to Picker-
ing Creek near
Ludwigs Cor-
ner | Lat 40°06'06", long 75°39'32", Chester County, at bridge on rural road, 2.1 mi southeast of Ludwigs Corner. | 1.87 | 1967-68 ^a ,
1981-91,
2002 | 9-10-02 | .12 | 0.23 | | 01472280 | Macoby Creek at
Green Lane | Lat 40°20'22", long 75°28'20", Chester
County, at bridge on State Highway 29,
at Green Lane, and 0.1 mi upstream from
mouth. | 17.4 | 1949,
1981-91,
2002 | 9-11-02 | .02 | 0.30 | | 01472450 | Unami Creek at
Sumneytown | Lat 40°19'34", long 75°27'00", Montgomery County, at bridge on State Highway 63, at Sumneytown. | 47.0 | $1946 \neq^{\mathbf{a}},$ $1951 \neq^{\mathbf{a}},$ $1981-91,$ 2002 | 9-11-02 | .03 | 1.56 | | 01472800 | East Branch
Perkiomen
Creek near Har-
leyville | Lat 40°16'25", long 75°24'55", Montgomery County, Hydrologic Unit 02040203, at bridge on LR 46023, and 1.5 mi southwest of Harleysville. | 56.4 | 1958-69,
1981-88,
2002 | 9-11-02 | 1.15 | 64.8 ^d | | 01473100 | Zacharias Creek
near Skippack | Lat 40°12'26", long 75°21'57", Montgomery County, at concrete weir, 1.2 mi southeast of Skippack. | 7.27 | 1960-80 ^b ,
1981-91,
2002 | 9-11-02 | .04 | 0.27 | | 01473200 | Trout Creek near
Valley Forge | Lat 40°05'30", long 75°25'22", Chester County, at bridge on Richard Road, 750 ft upstream from bridge on State Highway 23, and 2.2 mi east of Valley Forge. | 6.55 | 1946-57,
1981-91,
2002 | 9-11-02 | 0 | no flow | | | | CHRISTINA RI | VER BASIN | 1 | | | | | 01478150 | East Branch
White Clay
Creek at Lan-
denberg | Lat 39°46'40", long 75°46'28", Chester County, Hydrologic Unit 02040205, at county highway bridge at Landenberg, 1.4 mi downstream from Egypt Run and 4 mi southeast of West Grove. | 25.6 | 1970-78,
1981-91,
2002 | 9-10-02 | .21 | 5.46 | | 01479700 | West Branch Red
Clay Creek near
Kennett Square | Lat 39°48'39", long 75°45'18", Chester
County, Hydrologic Unit 02040205, at
county highway bridge on Kaolin Road,
1 mi upstream from East Branch Red
Clay Creek, 1.4 mi east of Kaolin and
2.5 mi south of Kennett Square. | 16.9 | 1970-78,
1980-91,
2002 | 9-10-02 | .29 | 4.85 | | 01480630 | Buck Run near
Doe Run | Lat 39°55'46", long 75°48'36", Chester County, Hydrologic Unit 02040205, 1,300 ft downstream from bridge on county road, 0.65 mi upstream from Doe Run, and 2.0 mi southwest of Mortonville. | 24.4 | 1949, 1955,
1981-91,
2002 | 9-10-02 | .16 | 3.85 | Discharge measurements made at low-flow partial-record sites during water year 2002—Continued | | | | | | | Measurement | <u>s</u> | |-------------------|--|---|--|-------------------------------|---------|---|-----------------------------------| | Station
Number | Station Name | Location | Drainage
area
(mi ²) | Period
of
Record | Date | Unit Area
Discharge
((ft ³ /s)/mi ²) | Discharge
(ft ³ /s) | | | | CHRISTINA RIVER | BASINCon | tinued | | | | | 01480665 | East Branch Bran-
dywine Creek
at Dorlan | Lat 40°03'08", long 75°43'28", Chester County, Hydrologic Unit 02040205, 300 ft upstream from bridge on private road, 0.3 mi upstream from Marsh Creek, and 0.5 mi northwest of Dorlan. | 33.4 | 1967-68≠,
1981-91,
2002 | 9-09-02 | .14 | 4.56 | [≠] Operated as a continuous-record gaging station. a Operated as a miscellaneous station. b Operated as a crest-stage partial-record station. c Published as Wyomissing Creek near Reading. d Includes Distributary from Bradshaw Reservoir (pumpage from Delaware River). # ANALYSIS OF SAMPLES COLLECTED AT SPECIAL-STUDY SITES PENNSYLVANIA WATER-QUALITY NETWORK The Pennsylvania Water-Quality Network (WQN) is a statewide, fixed station water-quality sampling system currently operated by the Department of Environmental Protection (PaDEP), Bureau of Water Supply and Wastewater Management in cooperation with the United States Geological Survey (USGS). It is designed to assess both the quality of Pennsylvania's surface waters and the effectiveness of the water quality management program by accomplishing three basic objectives: - * Monitor temporal water-quality trends in major surface streams throughout the Commonwealth of Pennsylvania. - * Monitor temporal water-quality trends in selected reference waters. Major streams are defined as interstate waters and intrastate streams with drainage areas of roughly 200 mi² or greater. These waters are sampled at or near their mouths to measure overall quality before flows enter the next higher order stream or before exiting the Commonwealth. In this way, trends can be established and the effectiveness of water-quality management programs can be assessed by watershed. Samples are collected on fixed time intervals resulting in coverage of a range of flow regimes. All samples collected from April 1, 2002 through September 30, 2002 were collected by the USGS and analyzed by the PaDEP laboratory in Harrisburg. Most of the current WQN standard sites are co-located with USGS gage stations and others are equipped with a wire weight gage. Currently the network consists of 123 standard stream sites, and 27 reference stream sites distributed across the Commonwealth. This report contains only those sites in the Delaware River basin. The locations of these sites can be found in figures 6-9. Other data for the WQN can be found in the annual Water Data Reports PA-02-2 and PA-02-3. Standard stations are sampled bimonthly for physical and chemical parameters and stream discharge or a stage reading. Reference stations are sampled monthly for physical and chemical parameters and stream discharge or a stage reading. For additional information, contact Andrew Reif at the U.S. Geological Survey, 111 Great Valley Parkway, Malvern, PA 19355; 610-647-9008, (email: agreif@usgs.gov). # ANALYSIS OF SAMPLES COLLECTED AT SPECIAL-STUDY SITES PENNSYLVANIA WATER-QUALITY NETWORK TABLE 3.--Pennsylvania Water-Quality Network (WQN) station list. | Station
number | WQN
No. | Location | Latitude | Longitude | Drainage
area
(mi ²) | | |-------------------|------------|---|--------------|-------------|--|--| | 01426500 | 104 | West Branch Delaware River at Hale Eddy, NY | 42° 00' 11" | 75° 23' 02" | 595 | | | a01427510 | 185 | Delaware River at Callicoon, NY | 41° 45' 24" | 75° 03' 28" | 1,820 | | | 01429301 | 336 | Dyberry Creek at Tanners Falls near Dyberry, PA | 41° 39' 11" | 75° 16' 55" | 46.4 | | | 01431600 | 141 | Wallenpaupack Creek at East Sterling, PA | 41° 20' 10" | 75° 20' 25" | 69.5 | | | 01432119 | 147 | Lackawaxen River at mouth at Lackawaxen, PA | 41° 29' 12" | 74° 59' 31" | 597 | | | a01434000 | 103 | Delaware River at Port Jervis, NY | 41° 22' 14" | 74° 41' 52" | 3,070 | | | 01438760 | 192 | Adams Creek near Dingmans Ferry, PA | 41° 14' 22" | 74° 52' 02" | 8.2 | | | a01439500 | 139 | Bush Kill at Shoemakers, PA | 41° 05' 17" | 75° 02' 17" | 117 | | | 01440650 | 138 | Brodhead Creek near East Stroudsburg, PA | 41° 02' 10" | 75° 12' 34" | 121 | | | a01442500 | 137 | Brodhead Creek at Minisink Hills, PA | 40° 59' 55" | 75° 08' 35" | 259 | | | a01446500 | 148 | Delaware River at Belvidere, NJ | 40° 49' 36'' | 75° 05' 02" | 4,535 | | | 01447300 | 190 | Choke Creek near Thornhurst, PA | 41° 09' 40" | 75° 36' 10" | 8.06 | | | a01447500 | 126 | Lehigh River at Stoddartsville, PA | 41° 07' 49" | 75° 37' 33" | 91.7 | | | a01447720 | 142 | Tobyhanna Creek near Blakeslee, PA | 41° 05' 05" | 75° 36' 21" | 118 | | | 01449375 | 191 | Wild Creek above Penn Forest Reservoir near Kresgeville, PA | 40° 56' 24" | 75° 35' 04" | 5.4 | | | 01451070 | 125 | Lehigh River at Treichlers, PA | 40° 44' 03" | 75° 32' 28" | 928 | | | 01452040 | 130 | Jordan Creek at mouth at Allentown | 40° 36' 06" | 75° 27' 43" | 82.3 | | | a01454700 | 123 | Lehigh River at Glendon, PA | 40° 40' 09" | 75° 14' 12" | 1,359 | | | 01457790 | 187 | Cooks Creek at Durham Furnace, PA | 40° 34' 56" | 75° 12' 20" | 29.4 | | | 01458900 | 186 | Tinicum Creek near Ottsville, PA | 40° 28' 14" | 75° 08' 13" | 14.7 | | | a01463500 | 101 | Delaware River at Trenton, NJ | 40° 13' 18" | 74° 46' 42" | 6,780 | | | a01465500 | 121 | Neshaminy Creek near Langhorne, PA | 40° 10' 26" | 74° 57' 26" | 210 | | | a01470500 | 113 | Schuylkill
River at Berne, PA | 40° 31' 21" | 75° 59' 55" | 355 | | | a01471000 | 117 | Tulpehocken Creek near Reading, PA | 40° 22' 08" | 75° 58' 46" | 211 | | | a01472000 | 111 | Schuylkill River at Pottstown, PA | 40° 14' 30" | 75° 39' 07" | 1,147 | | | 01472150 | 156 | French Creek at Coventryville, PA | 40° 10' 16'' | 75° 41' 26" | 36.9 | | | 01473030 | 116 | Perkiomen Creek at Arcola near Collegeville, PA | 40° 09' 11" | 75° 27' 21" | 300 | | | 01473170 | 154 | Valley Creek at Wilson Road near Valley Forge, PA | 40° 04' 53" | 75° 27' 25" | 22.0 | | | a01473900 | 193 | Wissahickon Creek at Fort Washington, PA | 40° 07' 26" | 75° 13' 13" | 40.8 | | | a01474000 | 115 | Wissahickon Creek at Mouth at Philadelphia, PA | 40° 00' 55" | 75° 12' 26" | 64.0 | | | 01474010 | 110 | Schuylkill River at Falls Bridge at Philadelphia, PA | 40° 00' 30" | 75° 11' 52" | 1,893 | | | a01478245 | 149 | White Clay Creek near Strickersville, PA | 39° 44′ 51" | 75° 46' 15" | 59.2 | | | a01479820 | 150 | Red Clay Creek near Kennett Square, PA | 39° 49' 00" | 75° 41' 31" | 28.3 | | | a01481000 | 105 | Brandywine Creek at Chadds Ford, PA | 39° 52' 11" | 75° 35' 37" | 287 | | | 01494990 | 256 | Big Elk Creek near Lewisville, PA | 39° 43' 48" | 75° 50' 54" | 41.0 | | ^aOther water-quality data for this station can be found in the continuous station records section of this report. # ANALYSIS OF SAMPLES COLLECTED AT SPECIAL-STUDY SITES PENNSYLVANIA WATER-QUALITY NETWORK ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 ## MISCELLANEOUS STATION ANALYSES | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | PRESS-
URE
OSMOTIC
WATER
UNFLTRD
MOSM/KG
(82550) | SAM-
PLING
METHOD,
CODES
(82398) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | CALCIUM
TOTAL
RECOV-
ERABLE
(MG/L
AS CA)
(00916) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | |--|--|---|---|--|--|--|--|--|---|--|---|--|---| | | 01426500 West Branch Delaware River at Hale Eddy, NY (LAT 42 00 11N LONG 075 23 02W) | | | | | | | | | | | | | | APR 2002
23 | 1015 | 9813 | 177 | | 40 | 12.2 | 7.6 | 82 | 6.2 | 25 | 6.54 | 6.9 | 1.83 | | JUN
06 | 1115 | 9813 | 775 | | 40 | 9.3 | 7.3 | 64 | 17.7 | 23 | 6.15 | 6.5 | 1.67 | | AUG
06 | 1000 | 9813 | 845 | | 40 | 11.5 | 8.1 | 88 | 10.7 | 27 | 7.91 | 7.7 | 2.02 | | 01429301 Dyberry Creek at Tanners Falls near Dyberry, PA (LAT 41 39 11N LONG 075 16 55W) | | | | | | | | | | | | | | | APR 2002
23 | 1430 | 9813 | 54 | 5.0 | 30 | 11.9 | 7.8 | 60 | 8.3 | 26 | | 9.1 | | | MAY
14 | 1400 | 9813 | 338 | <1.0 | 30 | 12.3 | 7.1 | 45 | 10.4 | 16 | | 5.4 | | | JUN
18 | 1400 | 9813 | 94 | 1.0 | 30 | 10.4 | 7.5 | 54 | 16.2 | 24 | | 8.1 | | | JUL
15 | 1400 | 9813 | 9.7 | 35 | 30 | 10.6 | 8.1 | 74 | 20.9 | 31 | | 10.9 | | | AUG
06 | 1300 | 9813 | 6.4 | 37 | 30 | 9.7 | 8.1 | 80 | 21.3 | 34 | | 12.0 | | | SEP
05 | 1430 | 9813 | 6.4 | 3.0 | 30 | 10.6 | 7.9 | 92 | 18.9 | 36 | | 12.5 | | | 01431600 Wallenpaupack Creek at East Sterling, PA (LAT 41 20 10N LONG 075 20 25W) | | | | | | | | | | | | | | | APR 2002
04 | 1440 | 9813 | 190 | | 30 | 12.4 | 7.2 | 65 | 7.4 | 19 | 6.08 | 6.0 | .93 | | JUN
05 | 1450 | 9813 | 128 | | 30 | 9.8 | 7.4 | 67 | 18.9 | 20 | 6.55 | 6.4 | .95 | | AUG
07 | 1430 | 9813 | 17 | == | 30 | 9.7 | 8.1 | 102 | 20.2 | 30 | 9.16 | 9.6 | 1.30 | | | | 01432119 | Lackawax | en River a | at mouth a | at Lackawa | xen, PA | (LAT 41 2 | 9 12N LON | G 074 59 | 31W) | | | | APR 2002
04 | 1220 | 9813 | 2000 | | 30 | 12.9 | 7.5 | 78 | 7.0 | 21 | | 6.8 | | | JUN
05 | 1400 | 9813 | 1410 | | 30 | 10.6 | 8.8 | 90 | 18.1 | 24 | | 7.8 | | | AUG
07 | 1200 | 9813 | 56 | | 30 | 9.8 | 7.8 | 108 | 19.4 | 28 | | 8.9 | | | 01438760 Adams Creek near Dingmans Ferry, PA (LAT 41 14 22N LONG 074 52 02W) | | | | | | | | | | | | | | | APR 2002 | | | | | | | | | | | | | | | 15
MAY | 1400 | 9813 | 24 | 4.0 | 30 | 10.5 | 7.0 | 89 | 14.4 | 19 | 4.71 | 4.7 | 1.75 | | 15
JUN | 1330 | 9813 | 44 | <1.0 | 30 | 10.8 | 6.7 | 78 | 11.6 | 15 | == | 3.8 | == | | 06
JUL | 0900 | 9813 | 12 | <1.0 | 30 | 9.3 | 6.6 | 68 | 18.1 | 18 | | 4.6 | | | 02
AUG | 1430 | 9813 | 3.4 | <1.0 | 30 | 9.1 | 7.2 | 72 | 20.9 | 19 | | 4.8 | | | 06
SEP | 0840 | 9813 | 1.1 | 29 | 30 | 9.0 | 7.4 | 83 | 19.1 | 22 | | 5.7 | | | 05 | 1230 | 9813 | .63 | 3.0 | 30 | 9.9 | 8.1 | 754 | 17.2 | 25 | | 6.3 | | ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | MAGNE-
SIUM,
TOTAL
RECOV-
ERABLE
(MG/L
AS MG)
(00927) | ACIDITY
TOTAL
HEATED
(MG/L
AS
CAC03) | ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
TOTAL
(MG/L
AS F)
(00951) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RESIDUE
AT 105
DEG. C,
DIS-
SOLVED
(MG/L)
(00515) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N)
(00620) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N)
(00615) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | PHOS-PHORUS
ORTHO
TOTAL
(MG/L
AS P)
(70507) | |------------------|--|---|---|--|--|--|---|--|---|---|---|--|--| | | | 01426500 | West Bra | nch Delaw | are River | at Hale | Eddy, NY | (LAT 42 0 | 0 11N LONG | g 075 23 0 | 2W) | | | | APR 2002
23 | 1.9 | .0 | 15 | | | 8.2 | 56 | 10 | <.020 | .26 | <.040 | .55 | <.01 | | JUN
06 | 1.8 | 1.4 | 16 | | | 7.4 | 54 | 12 | <.020 | .24 | <.040 | .47 | .02 | | AUG
06 | 2.0 | .0 | 16 | | | 7.7 | 56 | <2 | <.020 | .59 | <.040 | .70 | .01 | | | 01 | .429301 D | yberry Cre | ek at Tar | ners Fall | ls near Dy | yberry, PA | A (LAT 41 | 39 11N L | ONG 075 1 | 6 55W) | | | | APR 2002
23 | .8 | | 22 | 4.2 | <.2 | 7.5 | 32 | <2 | <.020 | .07 | <.040 | .28 | .01 | | MAY
14 | .6 | | 11 | 2.3 | <.2 | 6.5 | 44 | 30 | <.020 | .08 | <.040 | .42 | .02 | | JUN
18 | .8 | | 16 | 2.4 | <.2 | 6.2 | 54 | 6 | <.020 | .10 | <.040 | .34 | .01 | | JUL
15 | .9 | | 26 | 3.8 | <.2 | 6.8 | 52 | 12 | <.020 | .06 | <.040 | .15 | <.01 | | AUG
06 | 1.1 | | 28 | 4.2 | <.2 | 6.4 | 44 | 4 | <.020 | .05 | <.040 | .18 | <.01 | | SEP
05 | 1.1 | | 32 | 4.9 | <.2 | 7.1 | 76 | <2 | .070 | .05 | <.040 | .18 | <.01 | | | | 01431600 | Wallenpa | upack Cre | eek at Eas | st Sterli | ng, PA (I | LAT 41 20 | 10N LONG | 075 20 25 | W) | | | | APR 2002
04 | . 9 | 513 | 9 | | | 7.6 | 54 | 2 | <.020 | .27 | <.040 | .46 | <.01 | | JUN
05 | .9 | .0 | 11 | | | 6.7 | 56 | <2 | <.020 | .22 | <.040 | .37 | <.01 | | AUG
07 | 1.4 | .0 | 18 | | | 7.0 | 76 | 6 | .060 | .24 | <.040 | .28 | .02 | | | | 01432119 | Lackawaxe | en River a | at mouth a | at Lackawa | axen, PA | (LAT 41 2 | 9 12N LON | G 074 59 | 31W) | | | | APR 2002 | | | 1.4 | | | 0 0 | 0.4 | | 000 | 0.1 | 0.40 | 50 | 0.1 | | 04
JUN | 1.1 | == | 14 | | == | 9.3 | 94 | 6 | <.020 | . 21 | <.040 | .52 | .01 | | 05
AUG | 1.2 | | 16 | | | 8.2 | 58 | <2 | <.020 | <.04 | <.040 | .25 | .01 | | 07 | 1.3 | 01439 | 17 | | | 8.0 | 30 | 4 1 1 4 2 2 | .060 | .04 | <.040 | .23 | .01 | | APR 2002 | | 01438 | /60 Adams | creek ne | ar Dingma | ans Ferry | , PA (LAI | Г 41 14 22 | N LONG U/ | 4 52 UZW) | | | | | 15
MAY | 1.7 | .0 | 7 | 17.3 | <.2 | 8.6 | 126 | <2 | <.020 | .06 | <.040 | .26 | .01 | | 15
JUN | 1.5 | | 7 | 11.8 | <.2 | 7.8 | 98 | <2 | <.020 | .05 | <.040 | .24 | .01 | | 06 | 1.6 | | 8 | 10.4 | <.2 | 6.9 | 758 | 4 | <.020 | .12 | <.040 | .26 | <.01 | | JUL
02
AUG | 1.7 | | 11 | 11.5 | <.2 | 6.8 | 68 | <2 | <.020 | .18 | <.040 | .25 | <.01 | | 06
SEP | 1.9 | | 15 | 8.5 | <.2 | 8.2 | 50 | <2 | <.020 | .27 | <.040 | .42 | .01 | | 05 | 2.2 | | 16 | 9.0 | <.2 | 8.4 | 58 | <2 | <.020 | .18 | <.040 | .45 | <.01 | #### WATER-QUALITY DATA, WATER YEAR
OCTOBER 2001 TO SEPTEMBER 2002 | Date | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | OXYGEN
DEMAND,
BIO-
CHEM-
ICAL,
5 DAY
(MG/L)
(00310) | FECAL
COLI-
FORM,
MFC MF,
WATER
(COL/
100 ML)
(31616) | ARSENIC
DIS-
SOLVED
(µG/L
AS AS)
(01000) | CADMIUM
DIS-
SOLVED
(µG/L
AS CD)
(01025) | COPPER,
DIS-
SOLVED
(µG/L
AS CU)
(01040) | COPPER,
TOTAL
RECOV-
ERABLE
(µG/L
AS CU)
(01042) | IRON,
DIS-
SOLVED
(µG/L
AS FE)
(01046) | IRON,
TOTAL
RECOV-
ERABLE
(µG/L
AS FE)
(01045) | LEAD,
DIS-
SOLVED
(µG/L
AS PB)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µG/L
AS PB)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μG/L
AS MN)
(01056) | |----------------|---|--|---|--|---|---|---|--|---|--|---|--|---| | | | 01426500 | West Br | anch Delav | vare River | at Hale | Eddy, NY | (LAT 42 00 | 11N LONG | 075 23 0 | 2W) | | | | APR 2002
23 | .015 | | .8 | | | | <4 | <4 | 30 | 90 | <1.0 | <1.0 | 20 | | JUN
06 | .024 | | .5 | | | | <4 | <4 | 70 | 320 | <1.0 | <1.0 | 60 | | AUG
06 | .012 | | .9 | | | | <4 | <4 | <20 | 320 | <1.0 | <1.0 | 10 | | | 01 | 429301 Dy | berry Cr | eek at Tai | nners Fall | ls near Dy | berry, PA | (LAT 41 | 39 11N LO | ONG 075 16 | 5 55W) | | | | APR 2002 | | _ | _ | | | | _ | | | | | | | | 23
MAY | .017 | | .8 | <20 | | | <4 | <4 | 60 | 80 | <1.0 | <1.0 | 20 | | 14
JUN | .030 | | 1.4 | 550 | | | <4 | <4 | 60 | 360 | <1.0 | <1.0 | 10 | | 18 | .020 | | .9 | 40 | <4.0 | <.20 | <4 | <4 | 90 | 180 | <1.0 | <1.0 | 10 | | JUL
15 | .013 | | .5 | 100 | <4.0 | <.20 | <4 | <4 | 80 | 140 | <1.0 | <1.0 | 20 | | AUG
06 | .014 | | .8 | 180 | <4.0 | <.20 | <4 | <4 | 40 | 100 | <1.0 | <1.0 | 20 | | SEP
05 | .023 | | .7 | 80 | <4.0 | <.20 | <4 | <4 | 40 | 100 | <1.0 | <1.0 | 30 | | | | 01431600 | Wallenp | aupack Cr | eek at Eas | st Sterlin | ng, PA (I | AT 41 20 1 | ON LONG | 075 20 25V | v) | | | | APR 2002 | | | | | | | | | | | | | | | 04
JUN | .011 | | 2.1 | | | | <4 | <4 | 40 | 100 | <1.0 | <1.0 | 10 | | 05
AUG | .014 | | 1.1 | | | | <4 | <4 | 50 | 140 | <1.0 | <1.0 | 20 | | 07 | .012 | | 1.2 | | | | <4 | <4 | 30 | 160 | <1.0 | <1.0 | 30 | | | | 01432119 | Lackawax | en River a | at mouth a | at Lackawa | axen, PA | (LAT 41 29 | 12N LONG | 3 074 59 3 | 31W) | | | | APR 2002
04 | .020 | 3.3 | | | | | | <10 | | 80 | | <1.0 | | | 05 | .020 | 3.8 | | | | | | <10 | | 150 | | <1.0 | | | AUG
07 | .010 | 3.8 | | == | == | | == | <10 | == | 120 | | <1.0 | | | | | 014387 | 60 Adam | s Creek no | ear Dingma | ans Ferry | PA (LAT | 41 14 221 | LONG 074 | 4 52 02W) | | | | | APR 2002 | | | | | | | | | | | | | | | 15
MAY | .010 | | .6 | <20 | | | <4 | <4 | 20 | 110 | <1.0 | <1.0 | <2.0 | | 15
JUN | .014 | | 1.5 | 20 | | | <4 | <4 | 30 | 180 | <1.0 | <1.0 | 3.8 | | 06
JUL | .016 | | .3 | 40 | <4.0 | <.20 | <4 | <4 | 40 | 120 | <1.0 | <1.0 | <2.0 | | 02 | .020 | | 1.4 | <20 | <4.0 | <.20 | <4 | <4 | 20 | 90 | <1.0 | <1.0 | <2.0 | | AUG
06 | .015 | | 1.0 | <20 | <4.0 | <.20 | <4 | <4 | <20 | 70 | <1.0 | <1.0 | <2.0 | | SEP
05 | <.010 | | .7 | 60 | <4.0 | <.20 | <4 | <4 | <20 | <20 | <1.0 | <1.0 | <2.0 | #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(µG/L
AS MN)
(01055) | NICKEL,
DIS-
SOLVED
(µG/L
AS NI)
(01065) | NICKEL,
TOTAL
RECOV-
ERABLE
(µG/L
AS NI)
(01067) | ZINC,
DIS-
SOLVED
(µG/L
AS ZN)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µG/L
AS ZN)
(01092) | PHENOLS
TOTAL
(μG/L)
(32730) | |--|--|---|--|---|---|--| | 01426500 | West Bran | ch Delawa: | re River | at Hale E | ddy, NY | (LAT 42 00 11N LONG 075 23 02W) | | APR 2002
23
JUN | 30 | <4.0 | <4.0 | <5.0 | <5.0 | | | 06
AUG | 100 | <4.0 | <4.0 | <5.0 | <5.0 | | | 06 | 50 | <4.0 | <4.0 | <5.0 | <5.0 | | | 01429301 | Dyberry C | reek at Ta | anners Fa | lls near | Dyberry, | PA (LAT 41 39 11N LONG 075 16 55W) | | APR 2002
23
MAY | 30 | <4.0 | <4.0 | <5.0 | <5.0 | <5 | | 14
JUN | 60 | <4.0 | <4.0 | <5.0 | <5.0 | <5 | | 18
JUL | 30 | <4.0 | <4.0 | <5.0 | <5.0 | <5 | | 15 | 40 | <4.0 | <4.0 | <5.0 | <5.0 | <5 | | AUG
06
SEP | 40 | <4.0 | <4.0 | <5.0 | <5.0 | <5 | | 05 | 40 | <4.0 | <4.0 | <5.0 | <5.0 | <5 | | 01431600 | Wallenpau | pack Creel | k at East | Sterling | , PA (LA | AT 41 20 10N LONG 075 20 25W) | | APR 2002
04
JUN | 30 | <4.0 | <4.0 | <5.0 | <5.0 | | | 05
AUG | 50 | <4.0 | <4.0 | 130 | | | | | | 11.0 | | | | | | 07 | 40 | <4.0 | <4.0 | <5.0 | <5.0 | | | 07
01432119 | | <4.0 | <4.0 | | | (LAT 41 29 12N LONG 074 59 31W) | | 01432119
APR 2002
04 | | <4.0 | <4.0 | | | | | 01432119
APR 2002
04
JUN
05 | Lackawaxe | <4.0 | <4.0
t Mouth a | t Lackawa: | xen, PA | (LAT 41 29 12N LONG 074 59 31W) | | 01432119
APR 2002
04
JUN | Lackawaxe | <4.0
n River a | <4.0
t Mouth a
<50 | t Lackawa:
 | xen, PA | (LAT 41 29 12N LONG 074 59 31W) | | 01432119 APR 2002 04 JUN 05 AUG | 20
40
30 | <4.0
on River at | <4.0
t Mouth a
<50
<50
<50 | t Lackawa:

 | <10
<10
<10 | (LAT 41 29 12N LONG 074 59 31W) | | 01432119 APR 2002 04 JUN 05 AUG 07 01438760 APR 2002 15 | 20
40
30 | <4.0
on River at | <4.0
t Mouth a
<50
<50
<50 | t Lackawa:

 | <10
<10
<10 | (LAT 41 29 12N LONG 074 59 31W) | | 01432119 APR 2002 04 JUN 05 AUG 07 01438760 APR 2002 15 MAY 15 | Lackawaxe 20 40 30 Adams Cre | <4.0 n River a | <4.0
t Mouth a
<50
<50
<50
ingmans F | t Lackawa

erry, PA | <pre>xen, PA <10 <10 <10 (LAT 41)</pre> | (LAT 41 29 12N LONG 074 59 31W) 14 22N LONG 074 52 02W) | | 01432119 APR 2002 04 JUN 05 AUG 07 01438760 APR 2002 15 MAY 15 JUN 06 | Lackawaxe 20 40 30 Adams Cre | <4.0 n River and ek near D. | <4.0 t Mouth a <50 <50 <50 ingmans F | t Lackawa

erry, PA
6.1 | <pre>xen, PA <10 <10 <10 (LAT 41 6.8</pre> | (LAT 41 29 12N LONG 074 59 31W) 14 22N LONG 074 52 02W) | | 01432119 APR 2002 04 JUN 05 AUG 07 01438760 APR 2002 15 MAY 15 JUN 06 JUL 02 | Lackawaxe 20 40 30 Adams Cre 10 20 | <4.0 n River at ek near D <4.0 <4.0 | <4.0 t Mouth a <50 <50 <50 ingmans F <4.0 <4.0 |

erry, PA
6.1
<5.0 | <pre><pre><= xen, PA <10 <10 <10 (LAT 41 6.8 <5.0</pre></pre> | (LAT 41 29 12N LONG 074 59 31W) 14 22N LONG 074 52 02W) <5 <5 | | 01432119 APR 2002 04 JUN 05 AUG 07 01438760 APR 2002 15 MAY 15 JUN 06 JUL | 20
40
30
Adams Cre | <4.0 n River and ek near D <4.0 <4.0 <4.0 | <4.0 t Mouth a <50 <50 <50 ingmans F <4.0 <4.0 <4.0 |

erry, PA
6.1
<5.0 | <pre>xen, PA <10 <10 <10 <10 (LAT 41 6.8 <5.0 <5.0</pre> | (LAT 41 29 12N LONG 074 59 31W) 14 22N LONG 074 52 02W) <5 <5 <5 | #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | PRESS-
URE
OSMOTIC
WATER
UNFLTRD
MOSM/KG
(82550) | SAM-
PLING
METHOD,
CODES
(82398) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300)
Stroudsbu | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | CALCIUM
TOTAL
RECOV-
ERABLE
(MG/L
AS CA)
(00916) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | |----------------|--------|---|---|--|--|---|---|--|---|--|---|--|---| | APR 2002 | | 014406 | 50 Brodile | au creek i | lear East | Stroudsbu | irg, PA (. | LAI 41 UZ | TON LONG | 0/5 12 34 | w) | | | | 15
JUN | 1540 | 9813 | 267 | | 30 | 10.7 |
7.3 | 87 | 15.1 | 22 | 5.82 | 6.0 | 1.50 | | 04
AUG | 0000 | 9813 | 180 | | 30 | 10.3 | 7.2 | 82 | 15.2 | 21 | 5.86 | 5.8 | 1.55 | | 06 | 1400 | 9813 | 21 | == | 30 | 9.3 | 8.6 | 121 | 23.8 | 26 | 7.17 | 7.3 | 1.86 | | | | 014 | 47300 Ch | oke Creek | near Tho | rnhurst, F | PA (LAT 4 | 1 09 40N | LONG 075 | 36 10W) | | | | | APR 2002
01 | 1400 | 9813 | 22 | 3.0 | 30 | 11.3 | 4.6 | 31 | 9.6 | 6 | 1.17 | 1.2 | .64 | | MAY
14 | 0940 | 9813 | 83 | <1.0 | 30 | 10.3 | 4.3 | 42 | 9.5 | 5 | 1.13 | 1.1 | .57 | | JUN
18 | 1120 | 9813 | 14 | 1.0 | 30 | 9.9 | 4.9 | 24 | 13.4 | 5 | .97 | 1.0 | .52 | | JUL
10 | 1210 | 9813 | 2.4 | 20 | 30 | 8.1 | 5.1 | 17 | 20.0 | 4 | .82 | . 9 | .44 | | AUG
08 | 1040 | 9813 | .99 | <1.0 | 30 | 9.4 | 5.5 | 16 | 16.1 | 4 | .84 | .9 | .45 | | SEP
04 | 1350 | 9813 | .94 | 2.0 | 30 | 10.7 | 5.5 | 16 | 21.1 | 4 | .85 | .9 | .46 | | | 014493 | 75 Wild C | Creek abov | e Penn For | est Rese | rvoir near | Kresgevi | lle PA (I | AT 40 56 2 | 24n Long (|)75 35 04W |) | | | APR 2002
15 | 1030 | 9813 | 28 | 5.0 | 30 | 11.2 | 5.6 | 42 | 11.1 | 7 | 1.73 | 1.8 | .63 | | MAY
15 | 0940 | 9813 | 20 | <1.0 | 30 | 11.0 | 4.9 | 73 | 9.4 | 8 | 1.73 | 1.9 | .75 | | JUN
06 | 1210 | 9813 | 13 | 2.0 | 30 | 9.2 | 6.1 | 60 | 14.0 | 9 | 2.09 | 2.2 | .80 | | AUG
05 | 1300 | 9813 | 2.3 | 20 | 30 | 8.5 | 6.8 | 65 | 21.0 | 10 | 2.25 | 2.3 | .86 | | SEP
04 | 1040 | 9813 | 1.6 | 3.0 | 30 | 11.0 | 6.9 | 61 | 18.7 | 9 | 2.25 | 2.2 | .86 | | 01 | 1010 | | | | | chlers, PA | | | ONG 075 3 | | 2.23 | 2.2 | .00 | | APR 2002 | | | | | | | - (| | | , | | | | | 23
JUN | 1010 | 9813 | 1950 | | 30 | 12.6 | 7.0 | 105 | 8.0 | 26 | | 6.8 | | | 26
AUG | 1040 | 9813 | 919 | | 30 | 8.8 | 7.2 | 113 | 22.6 | 33 | | 8.4 | | | 27 | 0910 | 9813 | 335 | | 30 | 8.4 | 7.3 | 135 | 22.4 | 42 | | 11.0 | | | | | 0145204 | 0 Jordan | Creek at | mouth at | Allentowr | n, PA (LA | т 40 36 0 | 6N LONG 0 | 75 27 43W |) | | | | APR 2002
23 | 1210 | 9813 | 106 | | 30 | 13.3 | 8.5 | 284 | 11.2 | 110 | | 29.0 | | | JUN
26 | 1220 | 9813 | 43 | | 30 | 10.0 | 8.2 | 417 | 23.8 | 160 | | 42.3 | | | AUG
27 | 1050 | 9813 | 7.4 | | 30 | 9.0 | 8.0 | 802 | 20.0 | 290 | | 72.5 | | ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | MAGNE-
SIUM,
TOTAL
RECOV-
ERABLE
(MG/L
AS MG)
(00927) | ACIDITY
TOTAL
HEATED
(MG/L
AS
CAC03) | ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
TOTAL
(MG/L
AS F)
(00951) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RESIDUE
AT 105
DEG. C,
DIS-
SOLVED
(MG/L)
(00515) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N)
(00620) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N)
(00615) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | PHOS-PHORUSORTHOTOTAL(MG/LASP)(70507) | |-----------------------|--|---|---|--|--|--|---|--|---|---|---|--|---------------------------------------| | | | 014406 | 50 Brodhe | ad Creek r | near East | Stroudsbu | ırg, PA (| LAT 41 02 | 10N LONG | 075 12 34 | W) | | | | APR 2002
15
JUN | 1.6 | .0 | 10 | == | | 8.1 | 120 | 10 | <.020 | .17 | <.040 | .35 | .02 | | 04
AUG | 1.5 | .0 | 11 | | | 7.8 | 72 | <2 | <.020 | .16 | <.040 | .39 | <.01 | | 06 | 1.9 | .0 | 16 | | | 7.4 | 40 | <2 | <.020 | .19 | <.040 | .28 | .01 | | | | 014 | 47300 Chc | ke Creek | near Tho | rnhurst, F | PA (LAT 4 | 41 09 40N | LONG 075 | 36 10W) | | | | | APR 2002
01 | .6 | 27 | 1 | 4.0 | <.2 | 5.4 | 42 | <2 | <.020 | <.04 | <.040 | .17 | <.01 | | MAY
14 | .6 | 19 | 0 | 4.4 | <.2 | 5.6 | 34 | 18 | <.020 | <.04 | <.040 | .39 | .01 | | JUN
18 | .5 | 23 | 1 | 2.1 | <.2 | 4.0 | 52 | 2 | <.020 | <.04 | <.040 | .14 | .01 | | JUL
10 | . 5 | 29 | 2 | 1.4 | <.2 | 3.4 | 12 | 8 | <.020 | <.04 | <.040 | .20 | <.01 | | AUG
08 | . 5 | 32 | 2 | 1.2 | <.2 | 3.3 | 22 | 4 | <.020 | <.04 | <.040 | .19 | <.01 | | SEP
04 | . 5 | 28 | 2 | 1.3 | <.2 | 3.5 | 22 | <2 | .040 | <.04 | <.040 | .16 | <.01 | | | 014493 | 75 Wild C | reek above | Penn For | est Reser | voir near | Kresgevi | lle, PA (| LAT 40 56 | 24N LONG | 075 35 04W | 1) | | | APR 2002 | _ | | | | | | | | | | | | | | 15
MAY | .7 | 15 | 3 | 8.4 | <.2 | 3.6 | 66 | 4 | <.020 | <.04 | <.040 | .31 | .02 | | 15
JUN | . 8 | 3.0 | 3 | 13.8 | <.2 | 2.8 | 52 | <2 | <.020 | <.04 | <.040 | <.06 | .01 | | 06
AUG | .8 | 3.4 | 4 | 13.8 | <.2 | 2.1 | 62 | 2 | <.020 | .04 | <.040 | .12 | .01 | | 05
SEP | . 9 | 8.6 | 5 | 15.3 | <.2 | 1.2 | 60 | 4 | <.020 | .05 | <.040 | .08 | <.01 | | 04 | .8 | 11 | 5 | 14.4 | <.2 | 1.6 | 442 | <2 | .030 | .04 | <.040 | .10 | .01 | | | | 014 | :51070 Leh | igh River | at Trei | chlers, PA | A (LAT 40 | 0 44 03N I | ONG 075 3 | 2 28W) | | | | | APR 2002
23 | 2.3 | | 11 | | | 13.0 | 102 | <2 | <.020 | .61 | <.040 | .76 | <.01 | | JUN
26 | 2.9 | | 13 | | | 16.5 | 64 | 4 | <.020 | .50 | <.040 | .61 | .01 | | AUG
27 | 3.6 | | 18 | == | | 20.1 | 108 | 8 | <.020 | .45 | <.040 | .78 | .01 | | | | 0145204 | 0 Jordan | Creek at | mouth at | Allentown | ı, PA (LA | AT 40 36 C | 6N LONG 0 | 75 27 43W |) | | | | APR 2002
23 | 8.3 | | 62 | | | 29.8 | 176 | <2 | <.020 | 3.70 | <.040 | 4.0 | .04 | | JUN
26 | 14.0 | | 112 | | | 48.4 | 252 | <2 | <.020 | 3.00 | <.040 | 3.2 | .03 | | AUG
27 | 26.3 | | 226 | | | 124 | 552 | 8 | <.020 | 1.80 | <.040 | 2.1 | .05 | #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | OXYGEN
DEMAND,
BIO-
CHEM-
ICAL,
5 DAY
(MG/L)
(00310) | FECAL
COLI-
FORM,
MFC MF,
WATER
(COL/
100 ML)
(31616) | ARSENIC DIS- SOLVED (µG/L AS AS) (01000) | CADMIUM
DIS-
SOLVED
(µG/L
AS CD)
(01025) | COPPER,
DIS-
SOLVED
(µG/L
AS CU)
(01040) | COPPER,
TOTAL
RECOV-
ERABLE
(µG/L
AS CU)
(01042) | IRON,
DIS-
SOLVED
(µG/L
AS FE)
(01046) | IRON,
TOTAL
RECOV-
ERABLE
(µG/L
AS FE)
(01045) | LEAD,
DIS-
SOLVED
(µG/L
AS PB)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µG/L
AS PB)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(µG/L
AS MN)
(01056) | |-----------------------|---|--|---|--|--|---|---|--|---|--|---|--|---| | | | 0144065 | 0 Brodhe | ead Creek | near East | Stroudsbu | irg, PA (| LAT 41 02 | 10N LONG | 075 12 340 | 1) | | | | APR 2002
15
JUN | .022 | | .8 | == | == | | <4 | <4 | 50 | 150 | <1.0 | <1.0 | <10 | | 04
AUG | .013 | | 1.0 | | | | <4 | <4 | 30 | 70 | <1.0 | <1.0 | <10 | | 06 | .020 | | .7 | | | | <4 | <4 | <20 | 40 | <1.0 | <1.0 | <10 | | | | 0144 | 17300 Ch | oke Creek | near Thor | nhurst, F | PA (LAT 4 | 1 09 40N | LONG 075 | 36 10W) | | | | | APR 2002
01 | <.010 | | .8 | <20 | | | <4 | <4 | 50 | 70 | <1.0 | <1.0 | 80 | | MAY
14 | .012 | | 1.0 | 70 | | | <4 | <4 | 120 | 210 | <1.0 | <1.0 | 120 | | JUN
18
JUL | .010 | | .8 | 20 | <4.0 | <.20 | <4 | <4 | 150 | 190 | <1.0 | <1.0 | 90 | | 10
AUG | <.010 | == | 1.2 | <20 | <4.0 | <.20 | <4 | <4 | 150 | 200 | <1.0 | <1.0 | 40 | | 08
SEP | .010 | == | 2.0 | 40 | <4.0 | <.20 | <4 | <4 | 230 | 290 | <1.0 | <1.0 | 20 | | 04 | <.010 | == | 1.1 | <20 | <4.0 | <.20 | <4 | <4 | 110 | 140 | <1.0 | <1.0 | 20 | | | 014493 | 75 Wild Cr | reek abov | e Penn For | est Reser | voir near | Kresgevil | lle, PA (1 | LAT 40 56 | 24N LONG (| 75 35 04W |) | | | APR 2002
15 | .010 | | 1.1 | 420 | | | <4 | <4 | 70 | 190 | <1.0 | <1.0 | 40 | | MAY
15 | <.010 | | .8 | 20 | | | <4 | <4 | <20 | 50 | <1.0 | <1.0 | 10 | | JUN
06 | .010 | | .5 | 140 | <4.0 | <.20 | <4 | <4 | 40 | 100 | <1.0 | <1.0 | <10 | | AUG
05 | .013 | | 1.7 | 10 | <4.0 | <.20 | <4 | <4 | 20 | 60 | <1.0 | <1.0 | <10 | | SEP
04 | <.010 | | .9 | <20 | <4.0 | <.20 | <4 | <4 | 20 | 60 | <1.0 | <1.0 | <10 | | | | 0145 | 51070 Le | high Rive | r at Treio | chlers, PA | A (LAT 40 | 44 03N L | ONG 075 3 | 2 28W) | | | | | APR 2002 | | | | | | | | | | | | | | | 23
JUN | .010 | 2.0 | | | | | | <10 | | 130 | | <1.0 | | | 26
AUG | .020 | 2.7 | == | | == | == | == | <10 | | 370 | == | <1.0 | == | | 27 | .020 | 2.3 | | | | | | <10 | | 190 | | <1.0 | | | | | 01452040 |)
Jordan | Creek at | mouth at | Allentowr | ı, PA (LA | T 40 36 0 | 6N LONG 0 | 75 27 43W |) | | | | APR 2002
23
JUN | .070 | 2.2 | | | | | | <10 | | 140 | | <1.0 | | | 26
AUG | .050 | 2.3 | | | | | | <10 | | 180 | | <1.0 | | | 27 | .100 | 3.2 | | | | | | <10 | | 110 | | 2.5 | | #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(µG/L
AS MN)
(01055) | NICKEL,
DIS-
SOLVED
(µG/L
AS NI)
(01065) | NICKEL,
TOTAL
RECOV-
ERABLE
(µG/L
AS NI)
(01067) | ZINC,
DIS-
SOLVED
(µG/L
AS ZN)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µG/L
AS ZN)
(01092) | PHENOLS
ΤΟΤΑL
(μG/L)
(32730) | | | | | |-----------------------------|--|---|--|---|--|---------------------------------------|------------|-----------|-------------|------| | 01440650 | Brodhead | Creek near | r East St | roudsburg | , PA (LAT | г 41 02 101 | N LONG 075 | 12 34W) | | | | APR 2002
15
JUN
04 | 30
10 | <4.0
<4.0 | <4.0
<4.0 | 7.0
<5.0 | 5.2 | | | | | | | AUG
06 | 10 | <4.0 | <4.0 | <5.0 | <5.0 | | | | | | | 01447300 | Choke Cre | ek near Tl | hornhurst | , PA (LA | г 41 09 40 | ON LONG 075 | 5 36 10W) | | | | | APR 2002
01
MAY | 80 | <4.0 | <4.0 | 20 | 20 | 5 | | | | | | 14 | 130 | <4.0 | 5.5 | 20 | 20 | 13 | | | | | | JUN
18 | 90 | <4.0 | <4.0 | 20 | 20 | <5 | | | | | | JUL
10 | 40 | <4.0 | <4.0 | 8.7 | 8.4 | <5 | | | | | | AUG
08 | 30 | <4.0 | <4.0 | 7.5 | 8.2 | <5 | | | | | | SEP
04 | 20 | <4.0 | <4.0 | 6.7 | 5.6 | <5 | | | | | | 01449375 | Wild Cree | ek above Po | enn Fores | t Reservo | ir near Kı | resgeville | , PA (LAT | 40 56 24N | LONG 075 35 | 04W) | | APR 2002
15 | 60 | <4.0 | <4.0 | 50 | 60 | <5 | | | | | | 15
JUN | 20 | <4.0 | <4.0 | 30 | 30 | <5 | | | | | | 06
AUG | 20 | <4.0 | <4.0 | 20 | 20 | <5 | | | | | | 05
SEP | 10 | <4.0 | <4.0 | 10 | 10 | <5 | | | | | | 04 | <10 | <4.0 | <4.0 | 10 | 10 | <5 | | | | | | 01451070 | Lehigh Ri | ver at Tr | eichlers, | PA (LAT | 40 44 031 | N LONG 075 | 32 28W) | | | | | APR 2002
23
JUN | 60 | | <50 | | 80 | | | | | | | 26
AUG | 50 | | <50 | | 70 | | | | | | | 27 | 70 | | <50 | | 50 | | | | | | | 01452040 | Jordan Cr | reek at mo | uth at Al | lentown, 1 | PA (LAT | 40 36 06N I | LONG 075 2 | 7 43W) | | | | APR 2002
23 | 10 | | <50 | | <10 | | | | | | | JUN
26 | 10 | | <50 | == | <10 | | | | | | | AUG
27 | 40 | | <50 | | 10 | | | | | | #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | PRESS-
URE
OSMOTIC
WATER
UNFLTRD
MOSM/KG
(82550) | SAM-
PLING
METHOD,
CODES
(82398) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | CALCIUM
TOTAL
RECOV-
ERABLE
(MG/L
AS CA)
(00916) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | |----------------|------|---|---|--|--|--|--|---|---|--|---|--|---| | | | 0145 | 7790 Coo | ks Creek a | t Durham | Furnace, | PA (LAT | 40 34 56N | LONG 075 | 12 20W) | | | | | APR 2002
30 | 1330 | 9813 | 37 | 8.0 | 30 | 12.9 | 8.6 | 219 | 11.6 | 94 | | 22.3 | | | MAY
23 | 0840 | 9813 | 36 | 73 | 30 | 11.4 | 7.6 | 243 | 10.4 | 100 | | 22.7 | | | JUN
24 | 1110 | 9813 | 19 | 7.0 | 30 | 9.9 | 8.2 | 280 | 19.3 | 130 | | 29.9 | | | JUL
23 | 1020 | 9813 | 9.9 | 3.0 | 30 | 9.2 | 8.2 | 307 | 20.2 | 160 | | 35.1 | | | AUG
26 | 0920 | 9813 | 6.6 | 7.0 | 30 | 8.8 | 7.9 | 310 | 17.0 | 160 | | 33.1 | | | | | 0145 | 8900 Tin | icum Creek | near Ot | tsville, E | PA (LAT 4 | 0 28 14N | LONG 075 | 08 13W) | | | | | APR 2002 | | | | | | | | | | | | | | | 30
MAY | 1040 | 9813 | 41 | 5.0 | 30 | 12.6 | 7.9 | 145 | 10.4 | 58 | | 12.4 | | | 23
JUN | 1140 | 9813 | 9.0 | 73 | 30 | 11.6 | 7.8 | 253 | 12.6 | 100 | | 23.4 | | | 24
JUL | 1350 | 9813 | 4.2 | 6.0 | 30 | 10.5 | 8.5 | 258 | 23.0 | 110 | | 27.4 | | | 23
AUG | 1230 | 9813 | .39 | 3.0 | 30 | 13.4 | 8.8 | 475 | 26.6 | 220 | | 52.9 | | | 26 | 1200 | 9813 | .60 | 8.0 | 30 | 11.9 | 8.4 | 501 | 21.0 | 240 | | 56.8 | | | | | 0147 | 72150 Fre | nch Creek | at Coven | tryville, | PA (LAT | 40 10 16N | LONG 075 | 41 26W) | | | | | APR 2002
11 | 1120 | 9813 | 17 | 6.0 | 30 | 13.2 | 7.8 | 165 | 11.2 | 61 | | 15.6 | | | MAY
15 | 1220 | 9813 | 60 | <1.0 | 30 | 11.0 | 7.4 | 125 | 13.4 | 47 | | 12.0 | | | JUN
11 | 1220 | 9813 | 15 | 30 | 30 | 10.6 | 7.9 | 161 | 21.0 | 21 | | <.03 | | | JUL
11 | 1230 | 9813 | 7.4 | 2.0 | 30 | 10.5 | 8.3 | 166 | 20.8 | 60 | | 16.0 | | | AUG
14 | 1050 | 9813 | 3.8 | 15 | 30 | 9.1 | 8.0 | 172 | 23.2 | 65 | | 17.6 | | | SEP
03 | 1250 | 9813 | 9.5 | 5.0 | 30 | 10.8 | 8.4 | 181 | 19.8 | 66 | | 17.7 | | | | 01 | L473030 F | erkiomen | Creek at A | Arcola ne | ar College | eville, PA | (LAT 40 | 09 11N L | ONG 075 2 | 7 21W) | | | | APR 2002 | | | | | | | | | | | | | | | 09
JUN | 1300 | 9813 | 157 | | 40 | 15.4 | 8.8 | 405 | 13.2 | 120 | | 29.4 | | | 27
AUG | 1140 | 9813 | 165 | | 40 | 7.5 | 7.7 | 308 | 28.2 | 82 | | 21.0 | | | 27 | 1140 | 9813 | 118 | | 40 | 8.4 | 7.9 | 397 | 23.6 | 100 | | 26.0 | | | | 014 | 173170 Va | alley Cree | k at Wilso | on Road n | ear Valley | Forge, F | PA (LAT 4 | 0 04 53N 1 | LONG 075 | 27 25W) | | | | APR 2002
10 | 1030 | 9813 | 16 | | 30 | 13.3 | 8.4 | 661 | 13.2 | 260 | | 55.6 | | | JUN
12 | 1235 | 9813 | 16 | | 30 | 10.2 | 8.3 | 666 | 20.4 | 260 | | 56.3 | | | AUG
14 | 1400 | 9813 | 7.3 | | 30 | 11.1 | 8.5 | 633 | 24.0 | 260 | | 49.4 | | | | | | | | | | | | | | | | | #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | MAGNE-
SIUM,
TOTAL
RECOV-
ERABLE
(MG/L
AS MG)
(00927) | ACIDITY
TOTAL
HEATED
(MG/L
AS
CAC03) | ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
TOTAL
(MG/L
AS F)
(00951) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RESIDUE
AT 105
DEG. C,
DIS-
SOLVED
(MG/L)
(00515) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N)
(00620) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N)
(00615) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | PHOS-PHORUS
ORTHOTOTAL (MG/LAS P) | |-----------------------|--|---|---|--|--|--|---|--|---|---|---|--|--------------------------------------| | | | 0145 | 7790 Cook | s Creek a | at Durham | Furnace, | PA (LAT | 40 34 56N | LONG 075 | 12 20W) | | | | | APR 2002
30
MAY | 9.3 | | 68 | 12.4 | <.2 | 16.3 | 130 | <2 | <.020 | 1.72 | <.040 | 1.9 | .02 | | 23
JUN | 11.1 | | 82 | 11.0 | <.2 | 17.4 | 142 | 6 | <.020 | 2.03 | <.040 | 2.1 | .02 | | 24
JUL | 14.0 | | 102 | 10.6 | <.2 | 16.1 | 250 | 4 | <.020 | 2.07 | <.040 | 2.1 | .02 | | 23
AUG | 17.4 | | 122 | 8.2 | <.2 | 16.3 | 226 | <2 | <.020 | 1.77 | <.040 | 2.0 | .02 | | 26 | 17.6 | | 128 | 8.8 | <.2 | 16.2 | 208 | <2 | <.020 | 1.75 | <.040 | 1.9 | .01 | | | | 0145 | 8900 Tini | cum Creel | near Ott | tsville, | PA (LAT 4 | 10 28 14N | LONG 075 | 08 13W) | | | | | APR 2002
30 | 6.5 | | 40 | 8.0 | <.2 | 17.1 | 118 | 4 | <.020 | . 26 | <.040 | .72 | .02 | | MAY
23 | 11.1 | | 56 | 9.0 | <.2 | 51.2 | 158 | 2 | <.020 | .89 | <.040 | 1.0 | .02 | | JUN
24 | 10.8 | | 64 | 8.7 | <.2 | 44.6 | 234 | 4 | <.020 | .67 | <.040 | .80 | .01 | | JUL | | | 94 | 13.2 | | 126 | 366 | 2 | <.020 | | <.040 | .33 | .01 | | 23
AUG | 21.4 | | | | <.2 | | | | | .12 | | | | | 26 | 22.5 | | 108 | 17.1 | <.2 | 124 | 378 | <2 | <.020 | .50 | <.040 | .50 | <.01 | | | | 0147 | 2150 Frer | ich Creek | at Covent | tryville, | PA (LAT | 40 10 161 | LONG 075 | 41 26W) | | | | | APR 2002
11 | 5.3 | |
42 | 12.9 | <.2 | 13.0 | 148 | 10 | <.020 | 1.05 | <.040 | 1.3 | .01 | | MAY
15 | 4.2 | | 30 | 8.5 | <.2 | 11.8 | 98 | | <.020 | .94 | <.040 | 1.5 | .02 | | JUN
11 | 5.0 | | 44 | 11.7 | <.2 | 11.4 | 152 | <2 | <.020 | 1.22 | <.040 | 1.7 | .03 | | JUL
11 | 4.9 | | 48 | 11.1 | <.2 | 11.3 | 136 | <2 | <.020 | .85 | <.040 | 1.0 | .02 | | AUG
14 | 5.1 | | 56 | 9.7 | <.2 | 10.9 | 110 | 10 | <.020 | .31 | <.040 | .56 | .02 | | SEP
03 | 5.3 | | 44 | 13.3 | <.2 | 18.1 | 124 | <2 | .110 | .81 | <.040 | 1.3 | .02 | | | 01 | 473030 P | erkiomen (| Creek at A | Arcola nea | ar Colleg | eville, PA | A (LAT 40 | 09 11N L | ONG 075 2 | 7 21W) | | | | APR 2002 | | | | | | | | | | | | | | | 09
JUN | 11.1 | | 68 | | | 35.5 | 284 | 4 | <.020 | 1.40 | <.040 | 1.8 | .02 | | 27
AUG | 7.3 | | 56 | | | 26.7 | 190 | 4 | <.020 | 1.37 | <.040 | 1.6 | .08 | | 27 | 9.0 | | 64 | | | 34.4 | 294 | 6 | <.020 | 1.12 | <.040 | 1.6 | .11 | | | 014 | 73170 Va | lley Cree | c at Wilso | on Road ne | ear Valle | y Forge, I | PA (LAT 4 | 0 04 53N | LONG 075 | 27 25W) | | | | APR 2002
10
JUN | 30.5 | == | 204 | 76.6 | == | 27.8 | 450 | 14 | <.020 | 1.81 | .010 | 1.9 | == | | 12 | 29.9 | | 210 | 70.1 | | 26.4 | 422 | <2 | <.020 | 1.78 | .010 | 2.1 | | | AUG
14 | 32.6 | | 206 | 59.4 | | 24.9 | 370 | 14 | <.020 | 1.54 | .020 | 1.7 | | #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | OXYGEN
DEMAND,
BIO-
CHEM-
ICAL,
5 DAY
(MG/L)
(00310) | FECAL
COLI-
FORM,
MFC MF,
WATER
(COL/
100 ML)
(31616) | ARSENIC
DIS-
SOLVED
(µG/L
AS AS)
(01000) | CADMIUM
DIS-
SOLVED
(µG/L
AS CD)
(01025) | DIS-
SOLVED
(µG/L
AS CU)
(01040) | COPPER,
TOTAL
RECOV-
ERABLE
(µG/L
AS CU)
(01042) | IRON,
DIS-
SOLVED
(µG/L
AS FE)
(01046) | IRON,
TOTAL
RECOV-
ERABLE
(µG/L
AS FE)
(01045) | LEAD,
DIS-
SOLVED
(µG/L
AS PB)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µG/L
AS PB)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(µG/L
AS MN)
(01056) | |----------------|---|--|---|--|---|---|--|--|---|--|---|--|---| | | | 0145 | 7790 Coo | ks Creek | at Durham | Furnace, | PA (LAT | 40 34 56N | LONG 075 | 12 20W) | | | | | APR 2002
30 | .024 | | 1.1 | 280 | | | <4 | <4 | 30 | 190 | <1.0 | <1.0 | 3.4 | | MAY
23 | .018 | | <.2 | 260 | <4.0 | <.20 | <4 | <4 | 30 | 70 | <1.0 | <1.0 | 2.3 | | JUN
24 | .031 | == | 1.0 | 240 | <4.0 | <.20 | <4 | <4 | <20 | 110 | <1.0 | <1.0 | <2.0 | | JUL
23 | .016 | == | .6 | 120 | <4.0 | <.20 | <4 | <4 | 50 | 50 | <1.0 | <1.0 | <2.0 | | AUG | | | | | | | | | | | | | | | 26 | .025 | | .7 | <20 | <4.0 | <.20 | <4 | <4 | <20 | 50 | <1.0 | <1.0 | <2.0 | | | | 01458 | 8900 Tin | icum Cree | k near Ott | tsville, F | PA (LAT 4 | 0 28 14N 1 | LONG 075 | 08 13W) | | | | | APR 2002
30 | .027 | | 1.1 | 200 | | | <4 | <4 | 130 | 450 | <1.0 | <1.0 | 2.9 | | MAY
23 | .014 | | <.2 | 20 | <4.0 | <.20 | <4 | <4 | 50 | 150 | <1.0 | <1.0 | <2.0 | | JUN
24 | .022 | | 1.0 | 100 | <4.0 | <.20 | <4 | <4 | 20 | 50 | <1.0 | <1.0 | 3.0 | | JUL
23 | .015 | | 1.2 | 10 | <4.0 | <.20 | <4 | <4 | <20 | <20 | <1.0 | <1.0 | 4.1 | | AUG
26 | .013 | | . 4 | 50 | <4.0 | <.20 | <4 | <4 | <20 | 20 | <1.0 | <1.0 | 10 | | | | 01473 | 2150 Fre | nch Creek | at Covent | tryville, | DA (I.AT | 40 10 16N | LONG 075 | 41 26W) | | | | | APR 2002 | | 01171 | 1100 110 | 01001 | ac covern | | (| 10 10 101 | 20110 075 | 11 2011, | | | | | 11
MAY | .024 | | 1.4 | 100 | | | <4 | <4 | 120 | 250 | <1.0 | <1.0 | 20 | | 15 | .043 | | 1.3 | 880 | | | <4 | <4 | 150 | 730 | <1.0 | <1.0 | 20 | | JUN
11 | .036 | | 1.3 | 600 | <4.0 | <.20 | <4 | <4 | 90 | 400 | <1.0 | <1.0 | 20 | | JUL
11 | .034 | | 1.8 | 200 | <4.0 | <.20 | <4 | <4 | 70 | 270 | <1.0 | <1.0 | 20 | | AUG
14 | .032 | == | 1.4 | 60 | <4.0 | <.20 | <4 | <4 | 40 | 160 | <1.0 | <1.0 | 20 | | SEP
03 | .025 | | 1.1 | 180 | <4.0 | <.20 | <4 | <4 | 100 | 190 | <1.0 | <1.0 | 9.9 | | | 01 | .473030 Pe | erkiomen | Creek at . | Arcola nea | ar College | eville, PA | (LAT 40 | 09 11N L | ONG 075 27 | 21W) | | | | APR 2002 | | | | | | | | | | | | | | | 09
JUN | .050 | 3.9 | == | | | == | | <10 | | 120 | | <1.0 | | | 27
AUG | .100 | 3.3 | | | | | | <10 | | 140 | | <1.0 | | | 27 | .160 | 3.8 | | | | | | <10 | | 170 | | <1.0 | | | | 014 | 173170 Va | lley Cree | k at Wils | on Road ne | ear Valley | Forge, P | A (LAT 4 | 0 04 53N 1 | LONG 075 2 | 7 25W) | | | | APR 2002
10 | .010 | 1.9 | 1.7 | == | <4.0 | <.20 | <4 | <4 | 30 | 80 | <1.0 | <1.0 | 4.5 | | JUN | | | | | | | | | | | | | | | 12
AUG | .030 | 1.7 | 1.5 | | <4.0 | <.20 | <4 | < 4 | <20 | 160 | <1.0 | <1.0 | 6.4 | | 14 | .020 | 1.5 | 1.4 | == | <4.0 | <.20 | <4 | <4 | 20 | 80 | <1.0 | <1.0 | 4.4 | #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(µG/L
AS MN)
(01055) | NICKEL,
DIS-
SOLVED
(µG/L
AS NI)
(01065) | NICKEL,
TOTAL
RECOV-
ERABLE
(µG/L
AS NI)
(01067) | ZINC,
DIS-
SOLVED
(µG/L
AS ZN)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µG/L
AS ZN)
(01092) | PHENOLS
TOTAL
(µG/L)
(32730) | | |-----------------------|--|---|--|---|--|---------------------------------------|----------------------------| | 01457790 | Cooks Cre | eek at Durl | ham Furna | ce, PA (1 | LAT 40 34 | 56N LONG 0 | 75 12 20W) | | APR 2002
30
MAY | 10 | <4.0 | <4.0 | == | <5.0 | <5 | | | 23
JUN | <10 | <4.0 | <4.0 | <5.0 | 5.2 | <5 | | | 24
JUL | <10 | <4.0 | <4.0 | <5.0 | <5.0 | <5 | | | 23 | <10 | <4.0 | <4.0 | <5.0 | <5.0 | <5 | | | AUG
26 | <10 | <4.0 | <4.0 | <5.0 | <5.0 | <5 | | | 01458900 | Tinicum (| Creek near | Ottsvill | e, PA (Li | AT 40 28 1 | 14N LONG 07 | 5 08 13W) | | APR 2002 | | | | | | _ | | | 30
MAY | <10 | <4.0 | <4.0 | 6.2 | 8.4 | <5 | | | 23
JUN | <10 | <4.0 | <4.0 | 5.7 | 7.7 | <5 | | | 24
JUL | <10 | <4.0 | <4.0 | <5.0 | <5.0 | <5 | | | 23
AUG | <10 | <4.0 | <4.0 | <5.0 | <5.0 | 15 | | | 26 | 20 | <4.0 | <4.0 | <5.0 | 20 | <5 | | | 01472150 | French Ci | reek at Co | ventryvil | le, PA (1 | LAT 40 10 | 16N LONG 0 | 75 41 26W) | | APR 2002
11 | 20 | <4.0 | <4.0 | <5.0 | <5.0 | <5 | | | MAY
15 | 40 | <4.0 | <4.0 | <5.0 | 6.3 | <5 | | | JUN
11 | 30 | <4.0 | <4.0 | <5.0 | 5.2 | <5 | | | JUL
11 | 20 | <4.0 | <4.0 | <5.0 | <5.0 | <5 | | | AUG
14 | 20 | <4.0 | <4.0 | <5.0 | <5.0 | <5 | | | SEP | 10 | <4.0 | <4.0 | 10 | 10 | <5 | | | 03 | | | | | | | 00 1137 7 0379 055 05 0137 | | | Perklomen | 1 Creek at | Arcola n | ear Colle | geville, i | PA (LAT 40 | 09 11N LONG 075 27 21W) | | APR 2002
09 | 20 | | <50 | | <10 | | | | JUN
27 | 30 | | <50 | | <10 | | | | AUG
27 | 30 | | <50 | | 20 | | | | 01473170 | Valley C | reek at Wi | lson Road | near Val | ley Forge | , PA (LAT | 40 04 53N LONG 075 27 25W) | | APR 2002 | | | | | | | | | 10
JUN | <10 | <4.0 | <4.0 | <5.0 | <5.0 | <5 | | | 12
AUG | 10 | <4.0 | <4.0 | <5.0 | <5.0 | <5 | | | 14 | <10 | <4.0 | <4.0 | | | <5 | | #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | PRESS-
URE
OSMOTIC
WATER
UNFLTRD
MOSM/KG
(82550) | SAM-
PLING
METHOD,
CODES
(82398) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | CALCIUM
TOTAL
RECOV-
ERABLE
(MG/L
AS CA)
(00916) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | |------------------|--|---|---|--|--|--|---|--|---|---|---|--
---| | APR 2002 | 014 | /4010 Sci | nuyikili k | iver at F | alis Brid | ge, Phila | детрита, | PA (LAT 4 | 10 00 30N | LONG U/5 | 11 52W) | | | | 08 | 1350 | 9813 | 1540 | | 40 | 12.6 | 8.0 | 367 | 12.0 | 120 | | 30.0 | | | JUN
13
AUG | 1400 | 9813 | 1410 | | 40 | 7.8 | 7.6 | 392 | 24.6 | 140 | == | 33.0 | == | | 15 | 1120 | 9813 | 73 | | 40 | 8.2 | 8.1 | 690 | 29.2 | 210 | | 45.3 | | | | | 0149 | 4990 Big | Elk Creek | near Lev | wisville, | PA (LAT | 39 43 48N | LONG 075 | 50 54W) | | | | | APR 2002
24 | 0920 | 9813 | 7.8 | | 30 | 12.2 | 7.5 | 173 | 9.6 | 61 | | 14.3 | | | JUN
25 | 1030 | 9813 | 10 | | 30 | 10.4 | 8.3 | 176 | 23.6 | 58 | | 12.3 | | | AUG
28 | 0825 | 9813 | 5.2 | | 30 | 7.3 | 7.4 | 175 | 22.2 | 53 | | 12.0 | | | | | | | | MISCE | LLANEOUS | S STATION | | S | | | | | | Date | MAGNE-
SIUM,
TOTAL
RECOV-
ERABLE
(MG/L
AS MG)
(00927) | ACIDITY
TOTAL
HEATED
(MG/L
AS
CAC03) | ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
TOTAL
(MG/L
AS F)
(00951) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RESIDUE
AT 105
DEG. C,
DIS-
SOLVED
(MG/L)
(00515) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N)
(00620) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N)
(00615) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | PHOS-
PHORUS
ORTHO
TOTAL
(MG/L
AS P)
(70507) | | | 014 | 74010 Sch | nuylkill R | iver at F | alls Brid | ge, Phila | delphia, | PA (LAT 4 | 10 00 30N | LONG 075 | 11 52W) | | | | APR 2002
08 | 12.2 | | 60 | | .2 | 45.5 | 250 | <2 | .110 | 2.84 | .080 | 3.6 | .17 | | JUN
13
AUG | 13.7 | == | 74 | | <.2 | 49.7 | 310 | 4 | .110 | 3.02 | .120 | 3.9 | .26 | | 15 | 22.8 | == | 102 | | .2 | 103 | 446 | 8 | .030 | 4.24 | .090 | 4.7 | .61 | | | | 0149 | 4990 Big | Elk Creek | near Lev | wisville, | PA (LAT | 39 43 48N | LONG 075 | 50 54W) | | | | | APR 2002
24 | 6.2 | | 32 | | | 10.0 | 120 | <2 | <.020 | 3.28 | <.040 | 3.3 | <.01 | | JUN
25 | 6.6 | | 36 | | | 8.9 | 134 | 10 | <.020 | 2.63 | <.040 | 2.8 | .02 | | AUG
28 | 5.6 | | 40 | | | 10.3 | 92 | 10 | .290 | 1.39 | <.040 | 1.8 | .03 | #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 #### MISCELLANEOUS STATION ANALYSES | Date | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | OXYGEN
DEMAND,
BIO-
CHEM-
ICAL,
5 DAY
(MG/L)
(00310) | FECAL
COLI-
FORM,
MFC MF,
WATER
(COL/
100 ML)
(31616) | ARSENIC
DIS-
SOLVED
(µG/L
AS AS)
(01000) | CADMIUM
DIS-
SOLVED
(µG/L
AS CD)
(01025) | COPPER,
DIS-
SOLVED
(µG/L
AS CU)
(01040) | COPPER,
TOTAL
RECOV-
ERABLE
(µG/L
AS CU)
(01042) | IRON,
DIS-
SOLVED
(µG/L
AS FE)
(01046) | IRON,
TOTAL
RECOV-
ERABLE
(µG/L
AS FE)
(01045) | LEAD,
DIS-
SOLVED
(µG/L
AS PB)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µG/L
AS PB)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(µG/L
AS MN)
(01056) | |--|---|--|---|--|---|---|---|--|---|--|---|--|---| | | 014 | 74010 Sch | uylkill F | River at F | alls Brid | ge, Phila | delphia, 1 | PA (LAT 4 | 0 00 30N | LONG 075 | 11 52W) | | | | APR 2002
08
JUN
13
AUG
15 | .220
.270
.720 | 3.0
3.9
4.7 |
 | | |
 |
 | <10
<10
<10 |
 | 160
200
80 | | <1.0
<1.0
<1.0 |
 | | | | 01494 | 4990 Big | Elk Cree | k near Lev | visville, | PA (LAT | 39 43 48N | LONG 075 | 50 54W) | | | | | APR 2002
24
JUN
25
AUG
28 | .030 | 2.6
2.2
3.9 |

 |

 |

 |

 |

 | <10
<10
<10 |

 | 320
300
410 |

 | <1.0
<1.0
<1.0 |

 | | | | | | | | | | | | | | | | | | Date | ERABLE
(µG/L
AS MN) | DIS-
SOLVED
(µG/L
AS NI) | RECOV-
ERABLE
(µG/L
AS NI) | ZINC,
DIS-
SOLVED
(µG/L
AS ZN)
(01090) | ERABLE
(µG/L
AS ZN) | TOTAL (µG/L) | | |---------|-----------------------|---------------------------|-----------------------------------|-------------------------------------|---|---------------------------|-----------------------|----| | 0147401 | O Schuylkill R | iver at Fa | lls Bridge | e, Philade | lphia, PA | (LAT 40 C | 0 30N LONG 075 11 52W | () | | | APR 2002
08
JUN | 90 | | <50 | | <10 | <5 | | | | 13
AUG | 80 | | <50 | | 10 | <5 | | | | 15 | 60 | | <50 | | <10 | <5 | | | 01494 | .990 Big Elk Cr | eek near I | ewisville | e, PA (LA | г 39 43 48N | LONG 075 | 50 54W) | | | | APR 2002
24
JUN | 50 | | <50 | | <10 | | | | | 25 | 30 | | <50 | | <10 | | | | | AUG
28 | 140 | == | <50 | == | <10 | | | | | | | | | | | | | Traditionally, wastewater has been treated and discharged to streams. However, a rapidly growing suburban population in southeastern Pennsylvania is generating an increasing quantity of wastewater. Discharge to streams often degrades stream-water quality. A government-wide move is underway to limit the quantity of nutrients discharged to streams. In addition, many streams are being designated as high or exceptional value streams. An alternative to stream discharge is land application of treated effluent. An increasing number of communities in Pennsylvania are implementing land-treatment systems to dispose of treated sewage effluent. Disposal of treated effluent by spraying onto the land surface recharges the ground-water system and provides an extra purifying step in the wastewater treatment process and does not directly degrade stream-water quality. The USGS, in cooperation with the Chester County Water Resources Authority and the Pennsylvania Department of Environmental Protection (PaDEP), conducted a study on the effects of treated sewage effluent sprayed on the land surface in New Garden Township, Chester County, Pennsylvania. New Garden Township did not contribute funding to the study, but graciously allowed the use of their spray-irrigation site as a study site. The New Garden Township site lies west of Kennett Square Borough just north of Baltimore Pike (fig. 10). The site covers approximately 58 acres. The PaDEP issued a permit for a maximum application rate of 300,000 gallons of effluent per day. Application began in May of 1999. The USGS collected data at the site through December 2001. The objectives of this study were to determine the percentage of applied effluent that recharges the ground-water system and the percentage that was lost to evapotranspiration using a monthly water-budget approach, to characterize the effect of land treatment on ground-water and surface-water quality, and to determine the fate and transport of nitrogen as it moved from effluent into soil, soil water, ground water, crops and the atmosphere by determining and quantifying a nitrogen budget. The site was intensively instrumented in order to reach project objectives. The USGS drilled 6 shallow (CH5173, CH5175, CH5177, CH5179, CH5180, and CH5181) and 4 bedrock wells (CH5172, CH5174, CH5176, and CH5178) at the New Garden Township site to monitor ground-water quality and ground-water-level fluctuations within the spray application area. A deep (CH5182) and shallow (CH5183) well pair acted as control wells outside the application area. Data for water year 2002 for these wells are presented in this report on pages 472-496. A system of suction lysimeters was installed at four locations in the application area with additional lysimeters installed as control lysimeters outside the application area (fig. 10). Lysimeters were installed at depths ranging from 3 to 15 feet. Lysimeter data are presented in this report, pages 428-435. A surface-water flow-measuring station (01479678) was installed on the stream located downgradient in respect to ground-water-flow directions to measure the quantity of streamflow leaving the approximately 45 acre site (0.07 mi²). A stilling well was installed in a pond (station 01479677) downgradient of the spray fields to measure pond level fluctuations. A flume (station 01479676) was installed at the lowest elevation point of the field site above the pond. A swale directed overland flow from part of the study site (0.03 mi²) through the flume and stage was recorded electronically. Data for these surface-water sites can be found on pages 318-328. Ground-water and surface-water sampling on a monthly basis were used to characterize changes in ground-water and surface-water quality. Storm samples were also collected using an automatic sampler at the flume station 01479676. Treated sewage effluent and precipitation were sampled on a monthly basis to quantify nutrient inputs to the site. Other data collected electronically at the site included precipitation amounts, numerous other
meteorological parameters such as wind speed and wind direction, soil moisture, and applied effluent. Soil and plant samples were collected in the application field and in control areas in order to determine the mass of nitrogen in the soil-plant system. System design engineers and regulators are in need of data on monthly and seasonal variations in recharge and evapotranspiration for use in designing and managing spray irrigation systems. Quantifying monthly evapotranspiration rates will provide additional field data to assist regulators in permitting new spray irrigation systems. Results from the monthly water budgets could potentially change the present regulations regarding application rates. For water managers, the monthly water budgets could provide a ground-water recharge percentage for issuances of water-use credits. Assessments of nutrient loading to ground water and surface water would quantify the percentage of nutrients applied to the land surface that enters and moves through the ground-water system to the surface-water system. For additional information, contact Curtis Schreffler at the U.S. Geological Survey, 215 Limekiln Road, New Cumberland, PA; 717-730-6900 (electronic mail: clschref@usgs.gov). Figure 10.--Locations of ground-water wells, surface-water sites, and soil suction-lysimeter nests for the spray irrigation project in New Garden Township, Chester County. **TABLE 4.**--Description of soil suction lysimeters located at the Spray Irrigation Project site. **REMARKS**.--Lysimeter locations Lys#1 and Lys#2 are located in the spray field. Lysimeter locations Lys#3 and Lys#4 are located outside of the spray zones. See figure 10 for location of lysimeters at field site. | | | | | | DEPTH | |-----------|-----|-------|-----------|-----------|---------| | LYSIMETER | | | LATITUDE | LONGITUDE | OF WELL | | NEST | LOC | AL ID | (DEGREES) | (DEGREES) | (FEET) | | | | | | | | | Lys#1 | CH | 5211 | 395045 | 0754347 | 3.0 | | | CH | 5212 | 395045 | 0754347 | 7.0 | | | CH | 5213 | 395045 | 0754347 | 11.0 | | | | | | | | | Lys#2 | CH | 5215 | 395048 | 0754347 | 3.0 | | | CH | 5216 | 395048 | 0754347 | 7.0 | | | CH | 5217 | 395048 | 0754347 | 11.0 | | | CH | 5218 | 395048 | 0754347 | 15.0 | | | | | | | | | Lys#3 | CH | 5219 | 395052 | 0754345 | 3.0 | | | CH | 5564 | 395052 | 0754345 | 6.0 | | | CH | 5565 | 395052 | 0754345 | 9.5 | | | CH | 5566 | 395052 | 0754345 | 13.0 | | | | | | | | | Lys#4 | CH | 5568 | 395100 | 0754346 | 7.0 | | | CH | 5570 | 395100 | 0754346 | 15.0 | #### 395045075434703 -- CH 5211 ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | AGENCY
ANA-
LYZINO
SAMPLI
(CODI
NUMBEI
(00028 | COL-
G LECTII
E SAMPLI
E (CODI | REC
NG UCTI
E POTE
E TIA
R) (MV | ON WATE
O- WHOI
ON FIEI
ON- (STAN
L ARI
O) UNIT | LE CIFILD CON- ID- DUCT O ANCE CS) (µS/0 | C TEMPER
T- ATURI
E WATER
CM) (DEG (| E SOLVED
R (MG/L
C) AS CL) | (MG/L | |-----------------------|---------------------|---|---|--|--|--|---|----------------------------------|-------| | OCT 2001
11
NOV | 1015 | 9813 | 1028 | | 6.2 | 2 437 | 7 | 53.6 | <.020 | | 29 | 1030 | 9813 | 1028 | | | | | 58.7 | <.020 | | DEC 12 | 0800 | 9813 | 1028 | 227 | | | 7.3 | 63.4 | <.020 | | | Date | | AS N) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | DIS-
SOLVED
(MG/L
AS N) | | (µG/L | | | | | OCT 20
11
NOV | | .34 | .23 | <.040 | 1.4 | | | | | | 29
DEC | • | .55 | .17 | <.040 | | | | | | | 12 | | .44 | .23 | < .040 | | 200 | 30 | | #### 395045075434704 -- CH 5212 | | | | | OXID- | PH | | | | NITRO- | |----------|------|---------|---------|---------|---------|---------|---------|---------|---------| | | | AGENCY | AGENCY | ATION | WATER | SPE- | | CHLO- | GEN, | | | | ANA- | COL- | RED- | WHOLE | CIFIC | | RIDE, | AMMONIA | | | | LYZING | LECTING | UCTION | FIELD | CON- | TEMPER- | DIS- | DIS- | | | | SAMPLE | SAMPLE | POTEN- | (STAND- | DUCT- | ATURE | SOLVED | SOLVED | | Date | Time | (CODE | (CODE | TIAL | ARD | ANCE | WATER | (MG/L | (MG/L | | | | NUMBER) | NUMBER) | (MV) | UNITS) | (µS/CM) | (DEG C) | AS CL) | AS N) | | | | (00028) | (00027) | (00090) | (00400) | (00095) | (00010) | (00940) | (00608) | | OCT 2001 | | | | | | | | | | | OCT 2001 | 1000 | 0012 | 1000 | | | | | 71 0 | . 000 | | 11 | 1020 | 9813 | 1028 | | | | | 71.8 | <.020 | | NOV | 1040 | 0012 | 1000 | 075 | 6 0 | 274 | 12.6 | FF 1 | . 000 | | 29 | 1040 | 9813 | 1028 | 275 | 6.0 | 374 | 13.6 | 55.1 | <.020 | | DEC | 0000 | 0010 | 1000 | 0.45 | - 0 | | 0 0 | FO 1 | 000 | | 12 | 0820 | 9813 | 1028 | 247 | 5.8 | | 8.0 | 52.1 | <.020 | | | | NT.LKO- | NT.I.KO- | |----------|---------|---------|----------| | | NITRO- | GEN, | GEN, | | | GEN | NITRATE | NITRITE | | | DIS- | DIS- | DIS- | | | SOLVED | SOLVED | SOLVED | | Date | (MG/L | (MG/L | (MG/L | | | AS N) | AS N) | AS N) | | | (00602) | (00618) | (00613) | | OCT 2001 | | | | | 11 | .78 | . 57 | < .040 | | NOV | . 70 | . 5 / | 1.010 | | 29 | .92 | .67 | < .040 | | DEC | | | | | 12 | 1.1 | .71 | < .040 | | | | | | #### 395045075434705 -- CH 5213 ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | AGENCY
COL-
LECTING
SAMPLE
(CODE
NUMBER)
(00027) | OXID-
ATION
RED-
UCTION
POTEN-
TIAL
(MV)
(00090) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | |----------------|------|---|--|---|---|--|---|--|--| | OCT 2001
11 | 1030 | 9813 | 1028 | | | | | 91.9 | <.020 | | NOV | | | | 070 | | 400 | 14.2 | | | | 29
DEC | 1050 | 1028 | 1028 | 270 | 5.8 | 420 | 14.3 | | | | 12 | 0830 | 1028 | 1028 | 264 | 5.7 | 420 | 9.7 | | | | | | Date | NITROGEN DIS- SOLVED (MG/L AS N) (00602 | NITRATE
DIS-
SOLVED
(MG/L
AS N) | GEN, NITRIT DIS- SOLVE (MG/L AS N) | E
D | | | | | | | OCT 2001
11 | 1.6 | 1.30 | <.040 | | | | | | | | 29
DEC | | | | | | | | | | | 12 | | | | | | | | #### 395048075434703 -- CH 5215 #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | WATER-QUALITY DATA, WATER TEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | | | | | | | |-----------------------|---|---|---|---|---|--|---|---|--|--| | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | | OXID-
ATION
RED-
UCTION
POTEN-
TIAL
(MV)
(00090) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | ANCE (µS/CM | WATER) (DEG C) | SOLVED
(MG/L
AS CL) | (MG/L | | | OCT 2001
11
NOV | 1045 | 9813 | 1028 | | 6.2 | 633 | | 104 | <.020 | | | 29 | 1115 | 9813 | 1028 | 258 | 6.3 | 577 | 12.5 | 101 | <.020 | | | DEC 12 | 0845 | 9813 | 1028 | 239 | 6.4 | 563 | 8.5 | 103 | <.020 | | | Date | GH
DIS
SOLV
(MC
AS | FRO- G. EN NIT: S- D. /ED SO: G/L (M. N) AS | EN, G RATE NIT IS- D LVED SO G/L (M N) AS | RITE ORGI
IS- DI
LVED SOL
G/L (M
N) AS | S- I
VED SC
G/L ()
C) AS | DIS- I
DLVED SO
UG/L (I
B B) AS | RON, NE DIS- I DLVED SC UG/L (S FE) AS | DIS- DI
DLVED SOI
UG/L (µ
S MN) AS | NC,
IS-
LVED
G/L
ZN)
090) | | | OCT 2001
11
NOV | 1. | . 3 | .98 <. | 040 1 | .6 <2 | 200 | 30 < | :10 | 10 | | | 29
DEC | 2. | . 0 1 | .57 <. | 040 | <2 | 200 | | < | 10 | | | 12 | 1. | .5 1 | .12 <. | 040 | 2 | 200 | | < | 10 | | #### 395048075434704 -- CH 5216 ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER
(00028 | COL-
LECTI
SAMPL
(COD | RED
NG UCTI
E POTE
E TIA
R) (MV | ON WATE
O- WHOL
ON FIEL
ON- (STAN | E CIF D CON D- DUC ANC S) (µS/ | TIC
I- TEMP!
T- ATU!
E WAT!
CCM) (DEG | RE SOLVED
ER (MG/L | DIS-
SOLVED
(MG/L
AS N) | |-----------------------|-----------------|---|--------------------------------|---|--|----------------------------------|---|---|----------------------------------| | OCT 2001
11
NOV | 1050 | 9813 | 1028 | | 6.5 | 74 | 1 | - 99.0 | <.020 | | 27
29
DEC | 0900
1125 | 1028
9813 | 1028
1028 | | | - | | 94.5 | <.020 | | 12 | 0855 | 9813 | 1028 | 223 | 6.9 | - | 8. | 5 101 | <.020 | | | Date | |
GEN
DIS-
SOLVED
(MG/L | SOLVED | GEN, NITRITE DIS- SOLVED (MG/L AS N) | DIS-
SOLVED
(µG/L
AS B) | DIS-
SOLVED
(µG/L
AS ZN) | WATER
FLTRD
0.45 μ
PER MIL | | | | OCT 20
11 | | 1.5 | 1.23 | | <200 | <10 | | | | | 27
29
DEC | | 2.5 | 2.16 | <.040 | | | 14.50 | | | | 12 | | 3.2 | 2.60 | <.040 | 200 | 10 | | | #### 395048075434705 -- CH 5217 | Date | Time | NUMBER) | AGENCY
COL-
LECTING
SAMPLE
(CODE
NUMBER)
(00027) | TIAL
(MV) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | SOLVED
(MG/L | |-----------|------|------------------|--|---|---|--|---|--|-----------------| | OCT 2001 | 1100 | 9813 | 1028 | | 6.3 | 514 | | 88.5 | <.020 | | NOV | 1100 | 9813 | 1028 | | 0.3 | 514 | | 88.5 | <.020 | | 29
DEC | 1135 | 9813 | 1028 | 275 | 6.3 | | 14.6 | 80.9 | <.020 | | 12 | 0905 | 9813 | 1028 | 205 | 6.4 | | 9.9 | 91.6 | <.020 | | | | Date | NITRO-
GEN
DIS-
SOLVED
(MG/L
AS N)
(00602) | NITRATE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NITRITH
DIS-
SOLVEI
(MG/L
AS N) | E | | | | | | | OCT 2001
11 | 2.2 | 1.93 | <.040 | | | | | | | | NOV
29
DEC | 2.0 | 1.70 | <.040 | | | | | | | 1 | 12 | 1.9 | 1.49 | <.040 | | | | | #### 395048075434706 -- CH 5218 ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER
(00028 | COL-
LECTIN
SAMPLE
(CODE | RED
IG UCTI
POTE
TIA
R) (MV | N WATE - WHOL ON FIEL N- (STAN L ARD ') UNIT | E CIFI D CON- D- DUCT ANCE S) (µS/0 | CC TEMPER- CHATURE WATER CM) (DEG C) | SOLVED
(MG/L
AS CL) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | |-----------------------|-------------------------------|---|-----------------------------------|--|--|---|--------------------------------------|---------------------------|--| | OCT 2001
11
NOV | 1150 | 9813 | 1028 | | | | | 63.1 | <.020 | | 29
DEC | 1150 | 9813 | 1028 | 280 | 6.0 | | 14.3 | 59.4 | <.020 | | 12 | 0915 | 9813 | 1028 | 238 | 6.0 | 327 | 7 10.8 | 58.4 | <.020 | | | Date OCT 20 11 NOV 29 DEC 12 | 001 | DIS-
SOLVED
(MG/L | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618)
1.93
1.93 | DIS-
SOLVED
(MG/L
AS N) | BORON,
DIS-
SOLVED
(µG/L
AS B)
(01020) | | | | | | 12 | • | ۷. ۶ | 1.91 | \.U 1 U | | | | | #### 395052075434503 -- СН 5219 | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | | POTEN-
TIAL
(MV) | WHOLE
N FIELD
- (STAND-
ARD
UNITS) | ANCE (µS/CM) | WATER
(DEG C) | SOLVED
(MG/L
AS CL) | (MG/L | |----------------------------|------|---|----------------|--|---|--------------------------|---|---------------------------|--| | OCT 2001
11 | 1230 | 9813 | 1028 | | 6.1 | 304 | | . 5 | <.020 | | NOV | | | | | | | | | | | 29
DEC | 1230 | 9813 | 1028 | 245 | 6.4 | 288 | 12.7 | <.5 | <.020 | | 12 | 0950 | 9813 | 1028 | 242 | 6.1 | 271 | 10.9 | <.5 | <.020 | | Date | | DIS-
SOLVED | DIS-
SOLVED | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | SOLVED
(µG/L
AS B) | IRON,
DIS-
SOLVED
(µG/L
AS FE)
(01046) | AS MN) | ZINC,
DIS-
SOLVED
(µG/L
AS ZN
(01090) | | OCT 200
11
NOV
29 | | .19 | <.04 | <.040 | 1.1 | <200
<200 | <20 | 10 | <10
20 | | DEC
12 | | .16 | <.04 | <.040 | 1.0 | 200 | <20 | <10 | <10 | #### 395052075434504 -- CH 5564 ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | AGENCY
COL-
LECTING
SAMPLE
(CODE
NUMBER)
(00027) | OXID-
ATION
RED-
UCTION
POTEN-
TIAL
(MV)
(00090) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SOLVED
(MG/L | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | |-----------------------|--|--|--|---|--|--|---|---|---| | OCT 2001
11
NOV | 1245 | 9813 | 1028 | | 5.8 | 233 | | 10.2 | <.020 | | 27
29
DEC | 0840
1245 | 1028
9813 | 1028
1028 | 263 | 6.0 | 231 | 13.4 | 11.7 | <.020 | | 12 | 1000 | 9813 | 1028 | 264 | 5.7 | 228 | 11.3 | 12.2 | <.020 | | Date | NITRO-
GEN
DIS-
SOLVED
(MG/L
AS N)
(00602) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | BORON,
DIS-
SOLVED
(µG/L
AS B)
(01020) | IRON,
DIS-
SOLVED
(µG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(µG/L
AS MN)
(01056) | ZINC,
DIS-
SOLVED
(µG/L
AS ZN)
(01090) | N15/N14
N03
FRAC
WATER
FLITRD
0.45 µ
PER MIL
(82690) | | OCT 2001
11
NOV | 5.9 | 4.17 | <.040 | <1.0 | <200 | <20 | <10 | <10 | | | 27
29 | 3.4 | 3.05 | <.040 |
<1.0 |
<200 |
<20 |
<10 |
<10 | 8.40 | | DEC 12 | 3.7 | 2.96 | <.040 | <1.0 | 200 | <20 | <10 | <10 | | #### 395052075434505 -- СН 5565 | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | AGENCY
COL-
LECTING
SAMPLE
(CODE
NUMBER)
(00027) | OXID-
ATION
RED-
UCTION
POTEN-
TIAL
(MV)
(00090) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | |-----------------------|------|---|--|---|---|---|---|--|--| | OCT 2001
11
NOV | 1300 | 9813 | 1028 | | | | | 24.2 | <.020 | | 29
DEC | 1255 | 9813 | 1028 | 247 | 6.4 | | 14.2 | 27.9 | <.020 | | 12 | 1010 | 9813 | 1028 | 264 | 6.1 | 340 | 12.1 | 31.5 | <.020 | | Date | NITRO-
GEN
DIS-
SOLVED
(MG/L
AS N)
(00602) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | BORON,
DIS-
SOLVED
(µG/L
AS B)
(01020) | ZINC,
DIS-
SOLVED
(µG/L
AS ZN)
(01090) | |----------------|--|--|--|---|---| | OCT 2001
11 | 3.6 | 3.28 | <.040 | <200 | <10 | | 29 | 4.0 | 3.24 | <.040 | | | | DEC
12 | 4.1 | 3.28 | <.040 | 200 | <10 | #### 395052075434506 -- CH 5566 ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | AGENCY
ANA-
LYZING
SAMPLH
(CODE
NUMBER
(00028 | COL- LECTIN SAMPLE (CODE R) NUMBER | RED NG UCTI POTE TIA R) (MV | N WATE - WHOL ON FIEL N- (STAN L ARD) UNIT | E CIFI D CON- D- DUCT ANCE S) (µS/0 | TEMPER TEMPER ATURE - WATER - WATER - (DEG C) | SOLVED
(MG/L
AS CL) | SOLVED
(MG/L | |----------------|--------------|---|------------------------------------|-----------------------------|---|-------------------------------------|---|---------------------------|-----------------| | OCT 2001
11 | 1310 | 9813 | 1028 | | 6.1 | 318 | 3 | 25.6 | <.020 | | NOV
29 | 1300 | 9813 | 1028 | 266
| 5.7 | 323 | 14.7 | 28.0 | <.020 | | DEC 12 | 1020 | 9813 | 1028 | 274 | 5.9 | 314 | 12.6 | 30.4 | <.020 | | | Date | | | SOLVED | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | | DIS-
SOLVED
(µG/L | | | | | OCT 20
11 | | 3.6 | 3.20 | <.040 | <200 | <10 | | | | | 29
DEC | | 3.7 | 3.25 | <.040 | <200 | <10 | | | | | 12 | | 4.1 | 3.25 | <.040 | 200 | <10 | | | #### 395100075434604 -- CH 5568 | Date | Time | | LECTING
SAMPLE
(CODE
NUMBER) | POTEN-
TIAL | FIELD
(STAND-
ARD
UNITS) | CON-
DUCT-
ANCE | WATER
(DEG C) | SOLVED
(MG/L | |----------------|----------------|-------|---|--------------------------------------|-----------------------------------|-----------------------------------|------------------|-----------------| | OCT 2001
11 | 1330 | 9813 | 1028 | | | | | .8 | | NOV
29 | 1330 | 1028 | 1028 | 240 | 6.8 | | 14.2 | | | DEC
12 | 1040 | 1028 | 1028 | 231 | 6.8 | 274 | 11.5 | | | | Date | (MG/L | NITRATE
DIS-
SOLVED
(MG/L
AS N) | GEN, NITRITE DIS- SOLVED (MG/L AS N) | SOLVED
(µG/L
AS B) | DIS-
SOLVED
(µG/L
AS ZN) | | | | | OCT 2001
11 | 3.6 | 3.20 | <.040 | <200 | <10 | | | | | NOV
29 | 3.7 | 3.25 | <.040 | <200 | <10 | | | | | DEC
12 | 4.1 | 3.25 | <.040 | 200 | <10 | | | #### 395100075434606 -- СН 5570 | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | AGENCY
COL-
LECTING
SAMPLE
(CODE
NUMBER)
(00027) | OXID-
ATION
RED-
UCTION
POTEN-
TIAL
(MV)
(00090) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |-----------------------|------|---|--|---|--|--|---| | OCT 2001
11
DEC | 1340 | 1028 | 1028 | | 6.5 | | | | 12 | 1100 | 1028 | 1028 | 233 | 6.4 | 230 | 11.5 | Water-quality and benthic macroinvertebrate samples were collected from selected streams in Chester County in October and November 2001 as part of the Stream Conditions of Chester County Biological Monitoring Network. The biological monitoring program was initiated in 1969 with the goals of evaluating stream quality and long-term changes in stream quality of selected streams in Chester County. Benthic macroinvertebrates are macroscopic animals that inhabit the bottoms of aquatic habitats. Freshwater forms include aquatic insects, clams, crustaceans, snails, and worms. Samples are collected annually from similar habitats of the selected streams. Benthic macroinvertebrate sampling was conducted following a single habitat approach. A cobble riffle habitat was used because macroinvertebrate diversity and abundance is usually highest there. Samples were collected using a Hess sampler with a mesh size of 500 mm. Four samples were collected from areas of various velocities from within the riffle. Samples were composited and the entire sample was sorted and identified. Identification were made to the lowest practical level (family or genus) by a U.S. Geological Survey biologist. TABLE 5.--Stream conditions of Chester County biological monitoring network station list. | STATION
NUMBER | STATION NAME | LATITUDE | LONGITUDE | DRAINAGE
AREA
(mi ²) | |-------------------|--|-----------|------------|--| | 01472080 | PIGEON CREEK NEAR SLONAKER, PA | 40°12'03" | 75°37'10" | 12.0 | | a 01472157 | FRENCH CREEK NEAR PHOENIXVILLE, PA | 40°09'05" | 75°36'06" | 59.1 | | 01472190 | PICKERING CREEK NEAR PHOENIXVILLE, PA | 40°06'33" | 75°31'42" | 31.4 | | a 01473169 | VALLEY CREEK AT PA TURNPIKE BRIDGE NEAR VALLEY FORGE, PA | 40°04'45" | 75°27'40" | 20.8 | | a 01475850 | CRUM CREEK NEAR NEWTOWN SQUARE, PA | 39°58'35" | 75°26'13" | 15.8 | | 01476450 | RIDLEY CREEK AT PA ROUTE 3 NEAR WILLISTOWN, PA | 39°58'01" | 75°28'58" | 13.9 | | 01476835 | EAST BRANCH CHESTER CREEK AT WESTTOWN, PA | 39°56'26" | 75°32'30" | 10.4 | | 01478120 | EAST BRANCH WHITE CLAY CREEK AT AVONDALE, PA | 39°49'42" | 75°46'52" | 11.3 | | 01478230 | MIDDLE BRANCH WHITE CLAY CREEK NEAR
AVONDALE, PA | 39°45'02" | 75°46'19" | 25.5 | | 01479700 | WEST BRANCH RED CLAY CR NR KENNETT SQUARE, PA | 39°48'39" | 75°42'18" | 16.9 | | 01479800 | EAST BRANCH RED CLAY CREEK NEAR FIVE POINTS, PA | 39°49'10" | 75°41'29" | 10.2 | | a 01480300 | WEST BRANCH BRANDYWINE CR NR HONEY BROOK, PA | 40°04'22" | 75°55'40" | 18.7 | | a 01480617 | WEST BRANCH BRANDYWINE CREEK AT MODENA, PA | 39°57'42" | 75°48'06" | 55.0 | | 01480629 | BUCK RUN AT DOE RUN, PA | 39°55'46" | 75°49'24" | 22.6 | | 01480636 | BROAD RUN AT ROMANSVILLE, PA | 39°57'06" | 75°43'33" | 2.86 | | 0148063750 | BROAD RUN AT MARSHALLTON, PA | 39°56'48" | 75°42'11" | 5.45 | | 01480638 | BROAD RUN AT NORTHBROOK, PA | 39°55'49" | 75°41'06'' | 6.39 | | 01480653 | EAST BRANCH BRANDYWINE CR AT GLENMOORE, PA | 40°05'48" | 75°46'44" | 16.5 | | 01480743 | BEAVER CREEK AT REECEVILLE, PA | 40°01'59" | 75°47'22" | 2.63 | | 01480745 | BEAVER CREEK AT GUTHRIESVILLE, PA | 40°01'45" | 75°46'49" | 3.19 | | 01480750 | BEAVER CREEK AT BONDSVILLE, PA | 40°01'14" | 75°46'03" | 4.70 | | a 01480870 | EAST BRANCH BRANDYWINE CR BL DOWNINGTOWN, PA | 39°58'07" | 75°40'25" | 89.9 | | 01494953 | BIG ELK CREEK AT MAPLE GROVE, PA | 39°45'44" | 75°55'16" | 26.6 | ^a Other data for this station can be found in the continuous station records section of this report. Figure 11.--Biological sampling locations and major drainage basin divides in Chester County. ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MISCELLANEOUS STATION ANALYSES | Date | Time | AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028) | AGENCY
COL-
LECTING
SAMPLE
(CODE
NUMBER)
(00027) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC WATER UNFLTRD IT FIELD (MG/L AS CACO3) (00419) | |----------------|------|---|--|---|--|---|--|---|---|---|--|---|--| | | | 014 | 72080 Pig | geon Creel | k near Slo | onaker, PA | (LAT 40 | 12 03N L | ONG 075 3 | 7 10W) | | | | | OCT 2001
12 | 1100 | 80020 | 1028 | 3.0 | 10.0 | 7.3 | 169 | 13.1 | 15.5 | 5.01 | 1.94 | 8.47 | 49 | | | | 014721 | 90 Picker | ring Creel | k near Pho | penixville | e, PA (LA | T 40 06 3 | 3N LONG 0 | 75 31 42W |) | | | | OCT 2001
19 | 0845 | 80020 | 1028 | 11 | 8.7 | 7.6 | 272 | 7.9 | 26.5 | 8.06 | 2.62 | 11.5 | 69 | | | | 01476450 | Ridley (| Creek at 1 | Rt 3 near | Willistow | m, PA (L | AT 39 58 | 01N LONG | 075 28 58 | W) | | | | OCT 2001
11 | 1115 | 80020 | 1028 | 4.7 | 10.8 | 7.6 | 325 | 12.2 | 22.8 | 12.0 | 2.91 | 20.8 | 55 | | | | 01476835 | East Bra | anch Ches | ter Creek | at Westto | wn, PA (| LAT 39 56 | 26N LONG | 075 32 3 | OW) | | | | OCT 2001
11 | 0845 | 80020 | 1028 | 2.3 | 8.7 | 7.2 | 426 | 10.5 | 32.4 | 14.4 | 3.69 | 22.9 | 68 | | | (| 1478120 | East Brand | ch White | Clay Cree | k at Avond | lale, PA | (LAT 39 4 | 9 42N LON | G 075 46 | 52W) | | | | OCT 2001
05 | 0915 | 80020 | 1028 | 5.4 | 9.6 | 7.9 | 394 | 14.0 | 41.3 | 17.6 | 2.75 | 8.88 | 113 | | | 014 | 178230 Mi | ddle Brand | ch White | Clay Cree | k near Avo | ondale, PA | (LAT 39 | 45 02N L | ONG 075 4 | 6 19W) | | | | OCT 2001
05 | 1230 | 80020 | 1028 | 12 | 10.9 | 7.6 | 225 | 15.5 | 19.1 | 7.70 | 3.34 | 10.1 | 42 | | | 0147 | 79700 Wes | t Branch I | Red Clay | Creek near | r Kennett | Square, P | PA (LAT 3 | 9 48 39N 1 | LONG 075 | 42 18W) | | | | OCT 2001
23 | 1215 | 80020 | 1028 | 7.9 | 9.3 | 7.8 | 467 | 14.5 | 40.5 | 16.9 | 8.75 | 20.4 | 118 | | | 01 | L479800 E | ast Branch | h Red Cla | y Creek ne | ear Five P | oints, PA | (LAT 39 | 49 10N L | ONG 075 4 | 1 29W) | | | | OCT 2001
23 | 0930 | 80020 | 1028 | 3.4 | 8.8 | 7.5 | 394 | 13.0 | 38.5 | 14.7 | 4.32 | 13.0 | 95 | | | | | 01480629 | Buck Rui | n at Doe F | Run, PA (| LAT 39 55 | 46N LONG | 075 49 2 | 4W) | | | | | OCT 2001
04 | 0915 | 80020 | 1028 | 8.5 | 9.8 | 7.3 | 249 | 15.0 | 24.3 | 8.43 | 2.35 | 9.35 | 42 | | | | 01 | 480636 Bı | road Run a | at Romans | ville, PA | (LAT 39 | 57 06N LO | NG 075 43 | 33W) | | | | | OCT 2001
29 | 1230 | 80020 | 1028 | .55 | 10.5 | 7.4 | 193 | 10.0 | 15.1 | 7.93 | 1.40 | 8.05 | 34 | | | | 0148 | 063750 Bi | road Run 1 | near Marsh | nallton, F | PA (LAT 3 | 9 56 48N | LONG 075 | 42 11W) | | | | | OCT 2001
29 | 1100 | 80020 | 1028 | 1.4 | 12.0 | 7.3 |
229 | 7.0 | 18.7 | 8.45 | 1.79 | 9.89 | 50 | | | | 0 | 1480638 E | Broad Run | at North | orook, PA | (LAT 39 | 55 49N LO | NG 075 41 | 06W) | | | | | OCT 2001
29 | 0845 | 80020 | 1028 | 1.7 | 10.5 | 7.2 | 213 | 5.5 | 17.2 | 7.82 | 1.96 | 9.33 | 42 | | | (| 1480653 | East Brand | ch Brandy | wine Cree | k at Glenm | noore, PA | (LAT 40 | 05 48N LO | NG 075 46 | 44W) | | | | OCT 2001
03 | 0845 | 80020 | 1028 | 5.4 | 9.8 | 7.6 | 217 | 12.5 | 21.7 | 6.73 | 2.19 | 9.01 | 55 | ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MISCELLANEOUS STATION ANALYSES | Date | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | ALUM-
INUM,
DIS-
SOLVED
(µG/L
AS AL)
(01106) | ARSENIC
DIS-
SOLVED
(µG/L
AS AS)
(01000) | BORON,
DIS-
SOLVED
(µG/L
AS B)
(01020) | CADMIUM
DIS-
SOLVED
(µG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(µG/L
AS CR)
(01030) | COPPER,
DIS-
SOLVED
(µG/I
AS CU)
(01040) | |----------------|--|--|--|--|--|--|--|--|---|---|---|--|---| | | | 014 | 72080 Pig | geon Creel | k near Slo | onaker, PA | (LAT 40 |) 12 03N I | ONG 075 3 | 7 10W) | | | | | OCT 2001
12 | 10.4 | 17.9 | 16.2 | <.04 | 1.81 | <.008 | .02 | | | 20 | | | | | | | 014721 | 90 Picker | ring Creel | k near Pho | oenixville | e, PA (LA | AT 40 06 3 | 3N LONG 0 | 75 31 42W |) | | | | OCT 2001
19 | 27.9 | 18.1 | 19.0 | <.04 | .89 | <.008 | <.02 | | | 20 | | | | | | | 01476450 | Ridley | Creek at 1 | Rt 3 near | Willistow | m, PA (L | AT 39 58 | 01N LONG | 075 28 58 | W) | | | | OCT 2001
11 | 38.4 | 14.9 | 21.0 | <.04 | 3.75 | E.007 | .23 | | | 60 | | | | | | | 01476835 | East Bra | anch Ches | ter Creek | at Westto | own, PA (| LAT 39 56 | 26N LONG | 075 32 3 | OW) | | | | OCT 2001
11 | 58.9 | 15.3 | 27.2 | <.04 | 4.09 | .010 | .37 | | | 60 | | | | | | C | 1478120 | East Bran | ch White | Clay Cree | k at Avond | lale, PA | (LAT 39 4 | 9 42N LON | 3 075 46 | 52W) | | | | OCT 2001
05 | 22.9 | 14.0 | 26.8 | E.02 | 4.77 | .016 | <.02 | | | 20 | | | | | | 014 | 78230 Mi | ddle Bran | ch White | Clay Cree | k near Avo | ondale, PA | A (LAT 39 | 45 02N L | ONG 075 4 | 6 19W) | | | | OCT 2001
05 | 18.6 | 12.3 | 16.9 | <.04 | 4.21 | E.004 | .06 | == | | 30 | | | == | | | 0147 | 9700 Wes | t Branch l | Red Clay | Creek near | r Kennett | Square, F | PA (LAT 3 | 9 48 39N 1 | LONG 075 | 42 18W) | | | | OCT 2001
23 | 41.6 | 12.3 | 42.7 | <.04 | 4.65 | .046 | .80 | 20 | <2 | 50 | <.1 | E.6 | E1.3 | | | 01 | .479800 E | ast Brancl | h Red Cla | y Creek ne | ear Five P | Points, PA | A (LAT 39 | 49 10N L | ONG 075 4 | 1 29W) | | | | OCT 2001
23 | 35.8 | 14.3 | 36.1 | <.04 | 2.75 | .013 | E.01 | М | <2 | 20 | <.1 | <.8 | 1.7 | | | | | 01480629 | Buck Rui | n at Doe R | Run, PA (| LAT 39 55 | 46N LONG | 075 49 2 | 4W) | | | | | OCT 2001
04 | 20.4 | 9.2 | 15.9 | E.03 | 4.50 | .011 | <.02 | == | | 20 | == | | == | | | | 01 | 480636 Bi | road Run a | at Romansv | ville, PA | (LAT 39 | 57 06N LC | NG 075 43 | 33W) | | | | | OCT 2001
29 | 18.9 | 9.3 | 13.8 | <.04 | 2.73 | E.005 | <.02 | | | 30 | | | | | | | 0148 | 063750 Bi | road Run 1 | near Marsh | nallton, F | PA (LAT 3 | 89 56 48N | LONG 075 | 42 11W) | | | | | OCT 2001
29 | 22.6 | 11.8 | 17.2 | <.04 | 2.50 | <.008 | <.02 | | | 30 | | | | | | | 0 | 1480638 I | Broad Run | at Northb | orook, PA | (LAT 39 | 55 49N LC | NG 075 41 | 06W) | | | | | OCT 2001
29 | 20.5 | 11.4 | 18.6 | <.04 | 2.08 | E.005 | <.02 | | | 30 | | | | | | 0 | 1480653 | East Bran | ch Brandy | wine Cree | k at Glenm | noore, PA | (LAT 40 | 05 48N LO | NG 075 46 | 44W) | | | | OCT 2001
03 | 14.8 | 20.3 | 16.0 | <.04 | 3.33 | E.004 | E.01 | | | 20 | | | | # WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MISCELLANEOUS STATION ANALYSES | | Date | IRON,
DIS-
SOLVED
(µG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(µG/L
AS PB)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(µG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(µG/L
AS HG)
(71890) | MOLYB-
DENUM,
DIS-
SOLVED
(µG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(µG/L
AS NI)
(01065) | ZINC,
DIS-
SOLVED
(µG/L
AS ZN)
(01090) | |-------------|----------------|---|---|---|---|--|---|---| | 01472080 | Pigeon Creek | near Slo | naker, PA | (LAT 40 1 | 12 03N LONG | 3 075 37 1 | .OW) | | | | OCT 2001
12 | 24 | | | | | | | | 01472190 F | ickering Cre | eek near P | hoenixvil | le, PA (I | AT 40 06 3 | 3N LONG 0 | 75 31 42W) | | | | OCT 2001
19 | 24 | | | | | | | | 01476450 R | idley Creek | at Rt 3 ne | ar Willis | town, PA | (LAT 39 58 | 01N LONG | 075 28 58 | W) | | | OCT 2001
11 | 28 | | | | | | | | 01476835 E | ast Branch C | hester Cr | eek at Wes | ttown, PA | (LAT 39 5 | 6 26N LON | IG 075 32 3 | OW) | | | OCT 2001
11 | 26 | | | | | | | | 01478120 E | ast Branch Wh | nite Clay | Creek at A | Avondale, | PA (LAT 3 | 9 49 42N I | LONG 075 46 | 5 52W) | | | OCT 2001
05 | 34 | | == | | == | | | | 01478230 Mi | ddle Branch | White Cla | y Creek ne | ar Avonda | le, PA (L | AT 39 45 0 | 2N LONG 07 | 5 46 19W) | | | OCT 2001
05 | 16 | | | | | | | | 01479700 We | st Branch Re | d Clay Cre | ek near K | ennett Squ | uare, PA (| LAT 39 48 | 39N LONG |)75 42 18W) | | | OCT 2001
23 | 30 | <1 | 13.9 | <.01 | 2.2 | <2.0 | <24 | | 01479800 Ea | ast Branch Re | ed Clay Cr | eek near F | ive Point | s, PA (LA | г 39 49 10 | N LONG 075 | 41 29W) | | | OCT 2001
23 | 20 | <1 | 11.9 | <.01 | 1.9 | <2.0 | <24 | | 0148062 | 29 Buck Run | at Doe Rur | n, PA (LA | г 39 55 46 | N LONG 075 | 49 24W) | | | | | OCT 2001
04 | 73 | | | | == | | | | 01480636 | Broad Run at | Romansvi | lle, PA (| LAT 39 57 | 06N LONG | 075 43 331 | W) | | | | OCT 2001
29 | 15 | | | | | | | | 0148063750 | Broad Run | near Marsh | nallton, E | PA (LAT 3 | 9 56 48N LC | ONG 075 42 | 2 11W) | | | | OCT 2001
29 | 23 | == | | | | | | | 01480638 | Broad Run a | t Northbr | ook, PA (| LAT 39 55 | 49N LONG (|)75 41 06W | 1) | | | | OCT 2001
29 | 27 | | | | | | | | 01480653 Ea | ast Branch Br | andywine | Creek at 0 | Glenmoore | , PA (LAT | 40 05 48N | LONG 075 | 16 44W) | | | OCT 2001
03 | 40 | == | | | == | | | ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MISCELLANEOUS STATION ANALYSES | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | AGENCY
COL-
LECTING
SAMPLE
(CODE
NUMBER)
(00027) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | ANC
WATER
UNFLTRD
IT
FIELD
(MG/L AS
CACO3)
(00419) | |----------------|------|---|--|---|--|---|--|---|---|---|--|---|---| | | | 014 | 80743 Bea | aver Creek | at Reece | eville, PA | (LAT 40 | 01 58N L | ONG 075 4 | 7 22W) | | | | | NOV 2001
01 | 1245 | 80020 | 1028 | . 49 | 10.2 | 7.1 | 272 | 11.0 | 23.6 | 8.90 | 3.65 | 10.2 | 34 | | | | 0148 | 0745 Bear | ver Creek | at Guthri | iesville, | PA (LAT | 40 01 44N | LONG 075 | 46 48W) | | | | | NOV 2001
01 | 1115 | 80020 | 1028 | .81 | 11.6 | 7.5 | 257 | 11.0 | 22.8 | 8.75 | 3.96 | 9.81 | 48 | | | | 014 | 80750 Bea | aver Creek | at
Bonds | sville, PA | (LAT 40 | 01 14N L | ONG 075 4 | 6 03W) | | | | | NOV 2001
01 | 0915 | 80020 | 1028 | .92 | 10.0 | 7.1 | 243 | 7.5 | 21.4 | 8.28 | 3.80 | 9.50 | 40 | | | | 0149 | 4953 Big | Elk Creek | k at Maple | e Grove, P | A (LAT 3 | 89 45 44N | LONG 075 | 55 16W) | | | | | OCT 2001
24 | 1230 | 80020 | 1028 | 9.4 | 10.1 | 7.3 | 195 | 16.0 | 13.5 | 6.85 | 3.19 | 9.62 | 27 | ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MISCELLANEOUS STATION ANALYSES | Date | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | (MG/L
AS
SIO2) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | PHATE,
DIS-
SOLVED
(MG/L
AS P) | DIS-
SOLVED
(µG/L
AS B) | DIS-
SOLVED
(µG/L
AS FE) | |----------------|--|----------------------|---|-----------|---|---|--|----------------------------------|-----------------------------------| | 01480743 | Beaver | Creek at | Reecevill | e, PA (LA | AT 40 01 5 | 8N LONG 07 | 75 47 22W) | | | | NOV 2001
01 | 20.1 | 17.9 | 25.6 | <.04 | 9.03 | .017 | <.02 | 20 | E10 | | 01480745 | Beaver 0 | reek at G | uthriesvi | lle, PA (| LAT 40 01 | 44N LONG | 075 46 48 | W) | | | NOV 2001
01 | 20.2 | 10.6 | 26.4 | <.04 | 4.16 | .067 | <.02 | 20 | 75 | | 01480750 | Beaver | Creek at | Bondsvill | e, PA (LA | AT 40 01 1 | 4N LONG 07 | 75 46 03W) | | | | NOV 2001
01 | 19.1 | 12.3 | 25.4 | <.04 | 4.14 | E.007 | <.02 | 20 | 22 | | 01494953 | Big Elk | Creek at | Maple Gro | ve, PA (L | AT 39 45 4 | 44N LONG 0 | 75 55 16W |) | | | OCT 2001
24 | 20.1 | 8.1 | 8.9 | <.04 | 4.91 | .012 | .02 | 20 | 20 | ### BIOLOGICAL DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 BENTHIC MACROINVERTEBRATES $\textbf{REMARKS}.\text{--Samples were collected using a Hess sampler with a mesh size of 500 } \mu\text{m}. \ \ \text{Each sample covered a total area of 3.2 } \text{m}^2. \ \ \text{A dash (--) indicates there were no observations of the organism in the sample.}$ | Station Number | 01472080 | 01472190 | 01476450 | 01476835 | 01478120 | 01478230 | |----------------------------------|----------|----------|----------|----------|----------|----------| | | | | | | | | | Date | 10/12/01 | 10/19/01 | 10/11/01 | 10/11/01 | 10/05/01 | 10/05/01 | | Benthic Macroinvertebrate | Count | Count | Count | Count | Count | Count | | Platyhelminthes | | | | | | | | Turbellaria (FLATWORMS) | | | | | | | | Tricladida | | | | | | | | Planariidae | | 29 | 13 | 16 | 76 | 6 | | Nematoda (NEMATODES) | 60 | 26 | 134 | 33 | 20 | 39 | | Nemertea (PROBOSAS WORMS) | | | | | | | | Enopla | | | | | | | | Hoplonemertea | | | | | | | | Tetrastemmatidae | | | | | | | | <u>Prostoma</u> sp | 9 | 14 | 3 | 3 | 7 | 11 | | Mollusca | | | | | | | | Gastropoda (SNAILS) | | | | | | | | Basommatophora | | | | | | | | Ancylidae | | | | | | | | <u>Ferrissia</u> sp | | 2 | 28 | 1 | | 1 | | Lymnaeidae | | | | | | | | <u>Fossaria</u> sp | | | 3 | | | | | Planorbidae | | | | | | | | <u>Gyraulus</u> sp | | | | | | | | Bivalvia (CLAMS) | | | | | | | | Veneroida | | | | | | | | Sphaeriidae | | 1 | | 4 | | 1 | | Annelida | | | | | | | | Oligochaeta (AQUATIC EARTHWORMS) | | 8 | 3 | 1 | 1 | 1 | | Tubificida | | | | | | | | Naididae | | | | | | 2 | | Tubificidae | | | | | | | | Hirudinea (LEECHES) | | | | | | | | Arhynchobdellida | | | | | | | | Erpobdellidae | | | | | | | | Arthropoda | | | | | | | | Acariformes | | | | | | | | Hydrachnidia (WATER MITES) | 135 | 153 | 67 | 4 | 32 | 122 | | Crustacea | | | | | | | | Amphipoda (SCUDS) | | | | | | | | Crangonyctidae | | | | | | | | <u>Crangonyx</u> sp | | | 2 | 4 | | | | <u>Stygonectes</u> sp | | | | | | 1 | | Gammaridae | | _ | | | | | | <u>Gammarus</u> sp | | 2 | | | | | | Isopoda (AQUATIC SOWBUGS) | | | | | | | | Asellidae | | | | | | | | <u>Caecidotea</u> sp | | | | | | | | Decapoda | - | | | | | _ | | Cambaridae (CRAYFISH) | 2 | | 2 | | | 1 | #### BIOLOGICAL DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 BENTHIC MACROINVERTEBRATES--Continued | 01479700 | 01479800 | 01480629 | 01480636 | 0148063750 | Station Number | |----------|----------|----------|----------|------------|-------------------------------------| | 10/23/01 | 10/23/01 | 10/04/01 | 10/29/01 | 10/29/01 | Date | | Count | Count | Count | Count | Count | Benthic Macroinvertebrate | | | | | | | Platyhelminthes | | | | | | | Turbellaria (FLATWORMS) | | | | | | | Tricladida | | 34 | 1 | 40 | | 26 | Planariidae | | 28 | 8 | 50 | 1 | 61 | Nematoda (NEMATODES) | | | | | | | Nemertea (PROBOSAS WORMS) | | | | | | | Enopla | | | | | | | Hoplonemertea | | | | | | | Tetrastemmatidae | | | 9 | | 1 | 10 | <u>Prostoma</u> sp | | | | | | | Mollusca | | | | | | | Gastropoda (SNAILS) | | | | | | | Basommatophora | | | | | | | Ancylidae | | 1 | 5 | 18 | | | <u>Ferrissia</u> sp | | | | | | | Lymnaeidae | | | | | | | <u>Fossaria</u> sp | | | | | | | Planorbidae | | 1 | | 1 | | | <u>Gyraulus</u> sp | | | | | | | Bivalvia (CLAMS) | | | | | | | Veneroida | | | 8 | 19 | | | Sphaeriidae | | | | | | | Annelida | | 4 | 5 | 7 | 9 | 9 | Oligochaeta (AQUATIC EARTHWORMS) | | | | | | | Tubificida | | 42 | | | | | Naididae | | 35 | | | | | Tubificidae | | | | | | | Hirudinea (LEECHES) | | | | | | | Arhynchobdellida | | 2 | | | | | Erpobdellidae | | | | | | | Arthropoda | | 111 | 22 | 17 | 20 | 104 | Acariformes | | 111 | 22 | 17 | 30 | 104 | Hydrachnidia (WATER MITES) | | | | | | | Crustacea | | | | | | | Amphipoda (SCUDS)
Crangonyctidae | | | | | | | <u>Crangonyx</u> sp | | | 5 | | | | | | == | J | == | == | | <u>Stygonectes</u> sp
Gammaridae | | | 7 | | | | <u>Gammarus</u> sp | | | , | | | - | Isopoda (AQUATIC SOWBUGS) | | | | | | | Asellidae | | 89 | | | | 1 | <u>Caecidotea</u> sp | | 3,7 | | | | ± | Decapoda | | | | | | | Cambaridae (CRAYFISH) | | | | | | | Cambal Lade (Claiff Lon) | # BIOLOGICAL DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 BENTHIC MACROINVERTEBRATES--Continued | Station Number | 01472080 | 01472190 | 01476450 | 01476835 | 01478120 | 0147823 | |---|----------|----------|----------|----------|----------|---------| | Date | 10/12/01 | 10/19/01 | 10/11/01 | 10/11/01 | 10/05/01 | 10/05/0 | | Benthic Macroinvertebrate | Count | Count | Count | Count | Count | Count | | Insecta | | | | | | | | Ephemeroptera (MAYFLIES) | | | | | | | | Baetidae | | | | | | | | Baetis sp | 16 | 6 | 36 | 46 | 17 | 20 | | Pseudocloeon sp | 10 | 32 | | 3 | 5 | 25 | | Caenidae | | - | | _ | _ | | | <u>Caenis</u> sp | | | 10 | | | 1 | | Ephemerellidae | | | | | | | | Eurylophella sp | | | 6 | | | | | Serratella sp | 171 | 207 | 86 | | 210 | 34 | | Heptageniidae | | | | | | | | Epeorus sp | 19 | 5 | | | | | | Stenonema sp | 338 | 148 | 128 | 39 | 57 | 64 | | Isonychiidae | | | | | | | | <u>Isonychia</u> sp | 128 | 28 | 23 | | | 73 | | Leptohyphidae | | | | | | | | Tricorythodes sp | | | 19 | | 2 | 2 | | Leptophlebiidae | | | | | | | | Paraleptophlebia sp | 4 | | | | | | | Odonata (DRAGONFLIES AND DAMSELFLIES) | | | | | | | | Coenagrionidae | | | | | | | | Argia sp | | | 25 | 1 | | | | Gomphidae | | | | | | | | Stylogomphus sp | 2 | | | | | | | Plecoptera (STONEFLIES) | | | | | | | | Chloroperlidae | | | | | | | | Leuctridae | | 5 | 12 | | | | | Perlidae | | | | | | | | Acroneuria sp | 15 | 31 | 3 | | | 2 | | <u>Agnetina</u> sp | 6 | 7 | | | | | | <u>Beloneuria</u> sp | | | | | | | | <u>Paragnetina</u> sp | 18 | 10 | | | | | | Taeniopterygidae | | | | | | | | Strophopteryx sp | | | | | | | | Taeniopteryx sp | | 120 | 1 | 2 | 1 | 4 | | Hemiptera (TRUE BUGS) | | | | | | | | Velidae | | | | | | | | <u>Rhagovelia</u> sp | | | | | 3 | 2 | | Megaloptera | | | | | | | | Corydalidae (FISHFLIES AND DOBSONFLIES) | | | | | | | | <u>Corydalus</u> sp | | 1 | | | | 4 | | <u>Nigronia</u> sp | | | | | | | | Sialidae (ALDERFLIES) | | | | | | | | <u>Sialis</u> sp | 5 | | | | | | #### BIOLOGICAL DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 BENTHIC MACROINVERTEBRATES--Continued | 01479700 | 01479800 | 01480629 | 01480636 | 0148063750 | Station Number | |----------|----------|----------|----------|------------|---| | 10/23/01 | 10/23/01 | 10/04/01 | 10/29/01 | 10/29/01 | Date | | Count | Count | Count | Count | Count | Benthic Macroinvertebrate | | | | | | | Insecta | | | | | | | Ephemeroptera (MAYFLIES) | | | | | | | Baetidae | | 7 | 2 | 9 | 77 | 12 | Baetis sp | | | | | | | Pseudocloeon sp | | | | | | | Caenidae | | | | 1 | | | <u>Caenis</u> sp | | | | | | | Ephemerellidae | | 3 | 2 | | 41 | 13 | Eurylophella sp | | | 9 | 183 | 665 | 137 | <u>Serratella</u> sp | | | | | | | Heptageniidae | | | | 5 | | 2 | Epeorus sp | | 1 | 163 | 84 | 168 | 85 | <u>Stenonema</u> sp | | | | | | | Isonychiidae | | | 2 | 59 | | 16 | <u>Isonychia</u> sp | | | | | | | Leptohyphidae | | | | | | 5 | Tricorythodes sp | | | | | | | Leptophlebiidae | | | | | 9 | | Paraleptophlebia sp | | | | | | | Odonata (DRAGONFLIES AND DAMSELFLIES) | | | | | | | Coenagrionidae | | | | 7 | | | Argia sp | | | | 1 | | | Gomphidae | | | | | 11 | | Stylogomphus sp | | | | | | | Plecoptera (STONEFLIES) | | | | | 20 | 5 | Chloroperlidae | | | 4 | | | | Leuctridae | | | | | | | Perlidae | | | | 1 | | 5 | Acroneuria sp | | | | | 99 | 30 | Agnetina sp | | | 1 | | | | <u>Beloneuria</u> sp | | | | | | | <u>Paragnetina</u> sp | | | | | | | Taeniopterygidae | | | | | 21 | | Strophopteryx sp | | | | | 23 | 9 | <u>Taeniopteryx</u> sp | | | | | | | Hemiptera (TRUE BUGS) | | | | | | | Velidae | | | | | 1 | | Rhagovelia sp | | | | | | | Megaloptera | | | | | | | Corydalidae (FISHFLIES AND DOBSONFLIES) | | | 2 | 14 | | 1 | <u>Corydalus</u> sp | | 1 | 2 | | 5 | 6 | Nigronia sp | | | | | | | Sialidae
(ALDERFLIES) | | | | | 5 | | <u>Sialis</u> sp | | | | | | | | # BIOLOGICAL DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 BENTHIC MACROINVERTEBRATES--Continued | Station Number | 01472080 | 01472190 | 01476450 | 01476835 | 01478120 | 01478230 | |-----------------------------|----------|----------|----------|----------|----------|----------| | Date | 10/12/01 | 10/19/01 | 10/11/01 | 10/11/01 | 10/05/01 | 10/05/01 | | Benthic Macroinvertebrate | Count | Count | Count | Count | Count | Count | | Trichoptera (CADDISFLIES) | | | | | | | | Apataniidae | | | | | | | | <u>Apatania</u> sp | 18 | 12 | | | | | | Brachycentridae | | | | | | | | <u>Micrasema</u> sp | | 80 | 28 | | | 5 | | Glossosomatidae | | | | | | | | Glossosoma sp | | 15 | | | | 3 | | Goeridae | | | | | | | | <u>Goera</u> sp | | | | | | | | Hydropsychidae | | | | | | | | <u>Cheumatopsyche</u> sp | 828 | 882 | 303 | 89 | 85 | 371 | | <u>Hydropsyche</u> sp | 460 | 1673 | 307 | 335 | 323 | 685 | | Hydroptilidae | | | | | | | | <u>Hydroptila</u> sp | 5 | | 78 | 2 | 1 | | | <u>Leucotrichia</u> sp | 5 | 103 | 96 | | 6 | 16 | | Lepidostomatidae | | | | | | | | <u>Lepidostoma</u> sp | | | | | | | | Leptoceridae | | | | | | | | <u>Oecetis</u> sp | | | 24 | | | | | Philopotamidae | | | | | | | | <u>Chimarra</u> sp | 493 | 173 | 76 | 296 | 251 | 66 | | <u>Dolophilodes</u> sp | 42 | | | | | | | Polycentropodidae | | | | | | | | Polycentropus sp | 5 | | 12 | | | | | Psychomyiidae | | | | | | | | <u>Psychomyia</u> sp | 7 | | 34 | 1 | | 8 | | Rhyacophilidae | | | | | | | | Rhyacophila sp | 63 | | | | | | | Coleoptera (BEETLES) | | | | | | | | Elmidae (RIFFLE BEETLES) | | | | | | | | <u>Dubiraphia</u> sp | | | | 5 | | | | <u>Macronychus</u> sp | | | | | | | | <u>Optioservus</u> sp | 387 | 318 | 126 | 233 | 126 | 81 | | <u>Oulimnius</u> sp | 119 | 64 | 48 | 24 | 48 | 48 | | <u>Promoresia</u> sp | 26 | 1 | | | | | | <u>Stenelmis</u> sp | 304 | 20 | 233 | 693 | 595 | 16 | | Hydrophilidae | | | | | | | | <u>Berosus</u> sp | | | 3 | 2 | | | | <u>Helophorus</u> sp | | | | | | | | Psephenidae (WATER PENNIES) | | | | | | | | <u>Ectopria</u> sp | 3 | | | | | | | <u>Psephenus</u> sp | 50 | 37 | 40 | 59 | 51 | 1 | | Ptilodactylidae | | | | | | | | <u>Anchytarsus</u> sp | | | | | | | | | | | | | | | #### BIOLOGICAL DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 BENTHIC MACROINVERTEBRATES--Continued | 01479700 | 01479800 | 01480629 | 01480636 | 0148063750 | Station Number | |----------|----------|----------|----------|------------|-----------------------------| | 10/23/01 | 10/23/01 | 10/04/01 | 10/29/01 | 10/29/01 | Date | | Count | Count | Count | Count | Count | Benthic Macroinvertebrate | | | | | | | Trichoptera (CADDISFLIES) | | | | | | | Apataniidae | | | | | | | <u>Apatania</u> sp | | | | | | | Brachycentridae | | | | | 42 | 31 | Micrasema sp | | | | | | | Glossosomatidae | | | 5 | | 69 | 35 | Glossosoma sp | | | | | | | Goeridae | | | | | 2 | | <u>Goera</u> sp | | | | | | | Hydropsychidae | | 975 | 570 | 23 | 631 | 192 | <u>Cheumatopsyche</u> sp | | 502 | 1100 | 213 | 537 | 551 | <u>Hydropsyche</u> sp | | | | | | | Hydroptilidae | | 6 | | 4 | | 87 | <u>Hydroptila</u> sp | | | 1 | 23 | | 10 | <u>Leucotrichia</u> sp | | | | | | | Lepidostomatidae | | | | | 5 | 7 | <u>Lepidostoma</u> sp | | | | | | | Leptoceridae | | | | 2 | | | <u>Oecetis</u> sp | | | | | | | Philopotamidae | | | 35 | 329 | 81 | 47 | <u>Chimarra</u> sp | | | 1 | | 92 | 3 | <u>Dolophilodes</u> sp | | | | | | | Polycentropodidae | | | 2 | 34 | 43 | | Polycentropus sp | | | | | | | Psychomyiidae | | | | | | 9 | <u>Psychomyia</u> sp | | | | | | | Rhyacophilidae | | | | | 23 | | Rhyacophila sp | | | | | | | Coleoptera (BEETLES) | | | | | | | Elmidae (RIFFLE BEETLES) | | | 1 | | 6 | | <u>Dubiraphia</u> sp | | 1 | | | 1 | | Macronychus sp | | 18 | 247 | 53 | 660 | 477 | <u>Optioservus</u> sp | | 3 | 25 | 27 | 133 | 59 | <u>Oulimnius</u> sp | | | | | 3 | 13 | <u>Promoresia</u> sp | | 9 | 217 | 104 | 30 | 62 | <u>Stenelmis</u> sp | | | | | | | Hydrophilidae | | 1 | | | | | <u>Berosus</u> sp | | | | | 1 | | <u>Helophorus</u> sp | | | | | | | Psephenidae (WATER PENNIES) | | | | | | | Ectopria sp | | 1 | 48 | 20 | 117 | 121 | Psephenus sp | | | | | | | Ptilodactylidae | | | 1 | | 23 | | <u>Anchytarsus</u> sp | | | | | | | | # BIOLOGICAL DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 BENTHIC MACROINVERTEBRATES--Continued | Station Number | 01472080 | 01472190 | 01476450 | 01476835 | 01478120 | 01478230 | |---------------------------|----------|----------|----------|----------|----------|----------| | Date | 10/12/01 | 10/19/01 | 10/11/01 | 10/11/01 | 10/05/01 | 10/05/01 | | Benthic Macroinvertebrate | Count | Count | Count | Count | Count | Count | | Diptera (TRUE FLIES) | | | | | | | | Athericidae | | | | | | | | Atherix sp | 5 | | | | | 1 | | Ceratopogonidae | | | | | | | | Chironomidae (MIDGES) | 406 | 522 | 692 | 82 | 137 | 120 | | Empididae (DANCE FLIES) | | | | | | | | <u>Hemerodromia</u> sp | 12 | 3 | 19 | 1 | 16 | 18 | | Simuliidae (BLACK FLIES) | | | | | | | | <u>Simulium</u> sp | 10 | 4 | 3 | 25 | 19 | 1 | | Tipulidae (CRANE FLIES) | | | | | | | | Antocha sp | 63 | 44 | 43 | 15 | 41 | 68 | | <u>Dicranota</u> sp | 7 | | | | | | | <u>Hexatoma</u> sp | | | | 1 | | | | <u>Tipula</u> sp | 1 | | | 1 | 1 | 1 | | | | | | | | | | Total organisms | 4257 | 4786 | 2769 | 2021 | 2131 | 1925 | | Total number of taxa | 39 | 36 | 38 | 30 | 26 | 38 | # BIOLOGICAL DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 BENTHIC MACROINVERTEBRATES--Continued | 01479700 | 01479800 | 01480629 | 01480636 | 0148063750 | Station Number | |----------|----------|----------|----------|------------|---------------------------| | 10/23/01 | 10/23/01 | 10/04/01 | 10/29/01 | 10/29/01 | Date | | Count | Count | Count | Count | Count | Benthic Macroinvertebrate | | | | | | | Diptera (TRUE FLIES) | | | | | | | Athericidae | | | 12 | | | | Atherix sp | | 1 | | | 1 | | Ceratopogonidae | | 995 | 265 | 55 | 240 | 329 | Chironomidae (MIDGES) | | | | | | | Empididae (DANCE FLIES) | | 31 | 6 | 2 | 1 | 1 | <u>Hemerodromia</u> sp | | | | | | | Simuliidae (BLACK FLIES) | | 9 | | 8 | 7 | 5 | <u>Simulium</u> sp | | | | | | | Tipulidae (CRANE FLIES) | | 9 | 32 | 6 | 39 | 71 | Antocha sp | | | | | 4 | 1 | <u>Dicranota</u> sp | | | | | | | <u>Hexatoma</u> sp | | 2 | 3 | | 3 | | <u>Tipula</u> sp | | | | | | | | | 2922 | 2828 | 1482 | 3970 | 2647 | Total organisms | | 29 | 36 | 32 | 43 | 39 | Total number of taxa | | | | | | | | # BIOLOGICAL DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 BENTHIC MACROINVERTEBRATES--Continued | Station Number | 01480638 | 01480653 | 01480743 | 01480745 | 01480750 | 01494953 | |----------------------------------|----------|----------|----------|----------|----------|----------| | Date | 10/29/01 | 10/03/01 | 11/01/01 | 11/01/01 | 11/01/01 | 10/24/01 | | Benthic Macroinvertebrate | Count | Count | Count | Count | Count | Count | | Platyhelminthes | | | | | | | | Turbellaria (FLATWORMS) | | | | | | | | Tricladida | | | | | | | | Planariidae | 12 | 22 | 3 | 7 | | 1 | | Nematoda (NEMATODES) | 46 | 6 | 2 | 257 | 12 | 60 | | Nemertea (PROBOSAS WORMS) | | | | | | | | Enopla | | | | | | | | Hoplonemertea | | | | | | | | Tetrastemmatidae | | | | | | | | <u>Prostoma</u> sp | 3 | 15 | | 9 | 27 | 47 | | Mollusca | | | | | | | | Gastropoda (SNAILS) | | | | | | | | Basommatophora | | | | | | | | Ancylidae | | | | | | | | <u>Ferrissia</u> sp | | 14 | | 2 | 56 | 13 | | Lymnaeidae | | | | | | 3 | | Physidae | | | | | | | | <u>Physa</u> sp | | | 2 | 11 | | | | Planorbidae | | | | | | | | <u>Gyraulus</u> sp | | | | 4 | | | | <u>Helisoma</u> sp | | | | | | 2 | | Bivalvia (CLAMS) | | | | | | | | Veneroida | | | | | | | | Sphaeriidae | 2 | | 3 | | 4 | | | Unionidae | | | | 1 | | | | Annelida | | | | | | | | Oligochaeta (AQUATIC EARTHWORMS) | 10 | 17 | 6 | | 2 | 2 | | Tubificida | | | | | | | | Tubificidae | | | | 153 | | | | Naididae | | | | | 5 | | | Hirudinea (LEECHES) | | | | | | | | Arhynchobdellida | | | | | | | | Erpobdellidae | | | 1 | 2 | | | | Arthropoda | | | | | | | | Acariformes | | | | | | | | Hydrachnidia (WATER MITES) | 58 | 177 | 15 | 19 | 10 | 18 | | Crustacea | | | | | | | | Amphipoda (SCUDS) | | | | | | | | Gammaridae | | | | | | | | <u>Hyallela</u> sp | | | | 8 | | | | Decapoda | | | | | | | | Cambaridae (CRAYFISH) | | | | | 1 | | | Podocopa (SEED SHRIMP) | | | 2 | | | | | - | | | | | | | # BIOLOGICAL DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 BENTHIC MACROINVERTEBRATES--Continued | 10/29/01
Count
5 | 10/03/01
Count | 11/01/01
Count | 11/01/01
Count | 11/01/01
Count | 10/24/01
Count | |------------------------|-------------------|-------------------|--|-------------------|-------------------| | Count
5 | | | | | | | 5 | Count | Courte | Counc | Count | Courre | 2 | 6 | 40 | | 6 | | | | 5 | | | | 1 | | | | | | | | | | 19 | | 19 | | | | | | | | | | | 29 | | | | | | | | 13 | 13 | | 42 | 1 | | 16 | 51 | 183 | 2 | 176 | | | | | | | | | | 1 | 4 | | | 19 | | | | | | | 2 | | | 3 | 247 | 111 | | 203 | 13 | | | | | | | | | | 210 | 6 | | 20 | 17 | | | | | | | | | | 8 | | | | | | | | | | | | | | 4 | 19 | 1 | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | 1 | | 1 | | 7 | | | 2 | | | 1 | | | 2 | | | | | | | | | | | | | | | 3 | | | 5 | | | 2 | | | | | | | | | | | | | | | | 13 | | | | | | | | | | | | 11 | 9 | | | 13 | | | 3 | | | | | | | | | 5 | | | | | | | 2 | | | | | 9 | | | | | | | | | | | | | | 5 | | | | 15 | | | | | | | | | | | J | 4 | | J | | | | | | | | |
| _ | _ | 4 | | | | | | 16 1 3 2 2 11 3 | 29 | 29 13 13 16 51 183 1 4 3 247 111 8 4 19 1 2 2 2 3 13 11 9 1 13 11 9 2 9 2 9 11 6 2 | 29 | 29 | # BIOLOGICAL DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 BENTHIC MACROINVERTEBRATES--Continued | Station Number | 01480638 | 01480653 | 01480743 | 01480745 | 01480750 | 01494953 | |---|----------|----------|----------|----------|----------|----------| | Date | 10/29/01 | 10/03/01 | 11/01/01 | 11/01/01 | 11/01/01 | 10/24/01 | | Benthic Macroinvertebrate | Count | Count | Count | Count | Count | Count | | Megaloptera | | | | | | | | Corydalidae (FISHFLIES AND DOBSONFLIES) | | | | | | | | <u>Corydalus</u> sp | | 2 | | | 2 | 2 | | <u>Nigronia</u> sp | 2 | 7 | 1 | | | 4 | | Sialidae (ALDERFLIES) | | | | | | | | <u>Sialis</u> sp | 2 | 5 | 2 | | 7 | | | Trichoptera (CADDISFLIES) | | | | | | | | Apataniidae | | | | | | | | <u>Apatania</u> sp | | 17 | 2 | | | | | Brachycentridae | | | | | | | | <u>Micrasema</u> sp | 108 | 22 | | | 2 | | | Glossosomatidae | | | | | | | | Glossosoma sp | 5 | | 21 | | 20 | | | Goeridae | | | | | | | | <u>Goera</u> sp | | 1 | | | | | | Hydropsychidae | | | | | | | | <u>Cheumatopsyche</u> sp | 248 | 140 | 176 | 639 | 103 | 98 | | <u>Hydropsyche</u> sp | 136 | 210 | 120 | 441 | 149 | 128 | | <u>Potamyia</u> sp | | | | | 4 | | | Hydroptilidae | | | | | | | | <u>Hydroptila</u> sp | | | 2 | 3 | 2 | 7 | | <u>Leucotrichia</u> sp | | 6 | | | | 47 | | Limnephilidae | | | | | | | | <u>Hydatophylax</u> sp | | | 2 | | | | | Lepidostomatidae | | | | | | | | <u>Lepidostoma</u> sp | 2 | | | | | | | Leptoceridae | | | | | | | | Mystacides sp | | 1 | | 2 | 2 | | | <u>Oecetis</u> sp | | 1 | | 3 | 1 | 1 | | Philopotamidae | | | | | | | | <u>Chimarra</u> sp | 56 | 51 | | | 3 | | | <u>Dolophilodes</u> sp | 4 | | 19 | | | | | Polycentropodidae | | | | | | | | Neureclipsis sp | | | | | | 1 | | Polycentropus sp | 5 | 6 | 10 | | 4 | | | Psychomyiidae | | | | | | | | <u>Psychomyia</u> sp | | 5 | | 1 | 60 | | | Rhyacophilidae | | | | | | | | Rhyacophila sp | | 1 | 3 | 1 | | | | Uenoidae | | | | | | | | Neophylax sp | | | 4 | | 1 | | | <u></u> | | | | | | | # BIOLOGICAL DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 BENTHIC MACROINVERTEBRATES--Continued | Station Number | 01480638 | 01480653 | 01480743 | 01480745 | 01480750 | 01494953 | |-----------------------------|----------|----------|----------|----------|----------|----------| | Date | 10/29/01 | 10/03/01 | 11/01/01 | 11/01/01 | 11/01/01 | 10/24/01 | | Benthic Macroinvertebrate | Count | Count | Count | Count | Count | Count | | Coleoptera (BEETLES) | | | | | | | | Dryopidae | | | | | | | | <u>Helichus</u> sp | 1 | | | | | | | Elmidae (RIFFLE BEETLES) | | | | | | | | Ancyronyx sp | | | | 7 | | 1 | | <u>Dubiraphia</u> sp | 1 | 1 | | 115 | 1 | | | Microcylloepus sp | | | | | 3 | | | <u>Optioservus</u> sp | 222 | 126 | 279 | 46 | 173 | 6 | | <u>Oulimnius</u> sp | 118 | 44 | 31 | 30 | 22 | 3 | | <u>Promoresia</u> sp | 62 | 30 | 9 | | 19 | | | Stenelmis sp | 127 | 70 | 41 | 1185 | 34 | 1 | | Hydrophilidae | | | | | | | | <u>Berosus</u> sp | | 2 | | | | | | Psephenidae (WATER PENNIES) | | | | | | | | <u>Ectopria</u> sp | | | 1 | | 1 | | | <u>Psephenus</u> sp | 15 | 6 | 26 | 4 | 173 | | | Ptilodactylidae | | | | | | | | <u>Anchytarsus</u> sp | | | 1 | | | | | Diptera (TRUE FLIES) | | | | | | | | Athericidae | | | | | | | | Atherix sp | | 1 | | | | | | Ceratopogonidae | | | 2 | 5 | | | | Chironomidae (MIDGES) | 320 | 124 | 135 | 1571 | 311 | 160 | | Empididae (DANCE FLIES) | | | | | | | | <u>Hemerodromia</u> sp | 2 | 25 | | 57 | 5 | 2 | | Simuliidae (BLACK FLIES) | | | | | | | | <u>Simulium</u> sp | 1 | | | 13 | 1 | | | Tabanidae | | | | 4 | | | | Tipulidae (CRANE FLIES) | | | | | | | | Antocha sp | 19 | 17 | 24 | 7 | 89 | 45 | | <u>Dicranota</u> sp | | | 86 | | | | | <u>Hexatoma</u> sp | | | 4 | | | | | <u>Pedicia</u> sp | | | 5 | | | | | <u>Tipula</u> sp | 1 | | | 4 | | 1 | | Total ovganisms | 1687 | 1761 | 1438 | 4637 | 1819 | 692 | | Total organisms | 41 | 48 | 44 | 36 | 46 | 29 | | Total number of taxa | 41 | 40 | 44 | 30 | 40 | 29 | # SPECIAL NOTES, REMARK CODES, AND SELECTED CONSTITUENT DEFINITIONS NOTES--Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter(μ G/L) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's to 100's of nanograms per liter (ng/L). Data above the μ G/L level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes; however, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey began using new trace-element protocols at some stations in water year 1994. Full implementation of the protocols took place during the 1995 water year. - --Sample handling procedures at all National Trends Network stations were changed substantially on January 11, 1994, in order to reduce contamination from the sample shipping container. The data for samples before and after that date are different and not directly comparable. A tabular summary of the differences based on a special intercomparison study, is available from the NADP/NTN Coordination Office, Colorado State University, Fort Collins, CO 80523 (Telephone: 303-491-5643). - --In March 1989 a bias was discovered in the turbidimetric method for sulfate analysis for those samples analyzed by the U.S. Geological Survey National Water-Quality Laboratory indicating that values below 75 mg/L have a median positive bias of 2 mg/L above the true value for the period between 1982 and 1989. - --Methylene blue active substance (MBAS) determinations made from January 1, 1970, through August 29, 1993, at the National Water Quality Laboratory in Denver (Analyzing Agency Code 80020) are positively biased. These data can be corrected on the basis of the following equation, if concentrations of dissolved nitrate plus nitrite, as nitrogen, and dissolved chloride, determined concurrently with the MBAS data are applied: MBASCOR = M - 0.0088N - 0.00019C where: MBASCOR = corrected MBAS concentration, in mg/L; M = reported MBAS concentration, in mg/L; N = dissolved nitrate plus nitrite, as nitrogen, in mg/L; and C = dissolved chloride concentration, in mg/L. The detection limit of the new method is 0.02 mg/L, whereas the detection limit for the old method was 0.01 mg/L. A detection limit of 0.02 mg/L should be used with corrected MBAS data from January 1, 1970, through August 29, 1993. **Remark Codes.**--The following remark codes may appear with the data tables in this report: #### PRINTED OUTPUT REMARK | E,e | Estimated value. | |-----|--| | > | Actual value is known to be greater than the value shown. | | < | Actual value is known to be less than the value shown. | | M | Presence of material verified, but not quantified. | | N | Presumptive evidence of presence of material. | | U | Material specifically analyzed for, but not detected. | | A | Value is an average. | | V | Analyte was detected in both the environmental sample and the associated blanks. | | S | Most probable value. | | | | # EXPLANATION OF CODES USED TO DEFINE SAMPLE COLLECTION PROCEDURES (partial listing) 10--Routine 110--Sewage sampler 15--NAWOA 20--NASOAN 3011--US D-77 30--Benchmark 3035--DH-76 Trace metal sampler with teflon gasket and nozzle (84164) SAMPLER TYPE: (partial list) #### (82398) SAMPLE METHOD CODES: 3039--D-77 Trace metal 10--Equal width increment 20--Equal discharge increment 30--Single vertical 40--Multiple verticals 50--Point sample 3040--D-77 Trace metal modified teflon bag sampler 3045--DH-81 with Teflon cap and nozzle 70--Grab sample 120--Velocity integrated 8010--Other 8010--Other (other than a defined sampler type) (71999) SAMPLE PURPOSE CODES: # SPECIAL NOTES, REMARK CODES AND SELECTED CONSTITUENT DEFINITIONS--Continued # Explanation of selected abbreviations used in constituent definitions in water-quality tables: AC-FT acre-feet bottom material (Unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.) **BOT MAT** COLS/100 ML colonies per 100 milliliters DIS dissolved FET fixed end-point titration FLD field (Measurement determined at field site.) F/S feet per second G/M gallons per minute G/SQM; MG/M2 grams or milligrams per square meter incremental titration KF AGAR nutrient medium for growth of fecal streptococcal bacteria μG/L micrograms per liter uS/CM microsiemens per centimeter MG/L milligrams per liter MG/M2 milligrams per square meter MM OF HG millimeters of mercury **NONCARB** noncarbonate NTU nephelometric turbidity unit PCI/L picocuries per liter REC recoverable TOT total T/DAY tons per day WH IT whole water, incremental titration (Alkalinity, bicarbonate, and carbonate as determined by incremental titration of unfiltered water at the field site.) 2 SIGMA Counting statistic that represents error in the reported radon, uranium, or tritium value caused by variations in sample counting, background radiation, volume of sample, and decay since sample was collected. 0.7u GF 0.7 micron glass-fiber filter (Water filtered through a glass-fiber membrane filter with openings that are 0.7 microns in size.) ****************************** # (00027) AGENCY COLLECTING SAMPLE CODES: (partial listing) 1028 -- U.S. Geological Survey # (00028) AGENCY ANALYZING SAMPLE CODES: (partial listing) 1028 --U.S. Geological Survey 80020 --U.S. Geological Survey, National Water-Quality Laboratory, Denver, Colorado 9813 --Pennsylvania Department of Environmental Protection 83613 --District Water-Quality Laboratory, Troy, New York # **MEDIUM CODES: (partial listing)**
9-- Surface water. R-- Quality-control sample. Surface water. Q-- Quality-control sample. Artificial. # GROUND-WATER-LEVEL STATION RECORDS #### BERKS COUNTY #### 402615075530501. Local number, BE 623. $\textbf{LOCATION}. - \text{Lat } 40^{\circ}26'15'', long \ 75^{\circ}53'05'', \\ \text{Hydrologic Unit } 02040203, \text{ at Wesner Road, Blandon}.$ Owner: Maiden Creek Township Water Authority. AQUIFER.--Dolomite of Leithsville Formation of Early and Middle Cambrian age. WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 8 in., depth 385 ft, casing information not available. INSTRUMENTATION.--Data collection platform with 30-minute recording interval. Satellite telemetry at station. DATUM.--Elevation of land-surface datum is 430 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of plywood shelf, 1.71 ft above land-surface datum. Prior to Apr. 30, 1981, top of casing, 1.30 ft above land-surface datum. REMARKS.-In addition to the daily maximum water level table shown below, daily minimum and mean water levels, since October 1994, are also available from the District Office. **PERIOD OF RECORD.**--January 1975 to current year. EXTREMES FOR PERIOD OF RECORD.--Prior to October 2000, the extremes shown were based on extremes of the daily maximum depth below landsurface datum. Since that date, the extremes are based on the instantaneous depth below land-surface datum. Highest water level, 109.44 ft below land-surface datum, Apr. 19, 1994; lowest, 142.23 ft below land-surface datum, Mar. 16, 2002. EXTREMES FOR CURRENT YEAR.--Highest water level, 137.74 ft below land-surface datum, Oct. 1; lowest, 142.23 ft below land-surface datum, | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|--|--|--|--|--|--|--|--|--|--| | 1
2
3
4
5 | 137.84
137.94
137.96
138.01
138.04 | 139.24
139.26
139.35
139.35
139.41 | 140.33
140.35
140.36
140.38
140.41 | 140.97
140.98
140.93
141.01
141.00 | 141.58
141.62
141.53
141.66
141.66 | 142.00
141.98
141.96
142.03
142.02 | 141.88
141.87
141.90
141.90 | 140.87
140.74
140.68
140.63
140.44 | 138.08
138.26
138.29
138.33
138.32 | 139.17
139.20
139.27
139.34
139.45 | 140.93
141.03
141.06
141.06 | 141.58
141.56
141.57
141.62
141.65 | | 6 | 138.15 | 139.43 | 140.41 | 140.97 | 141.61 | 141.97 | 141.86 | 140.34 | 138.42 | 139.49 | 141.17 | 141.65 | | 7 | 138.23 | 139.50 | 140.50 | 141.07 | 141.57 | 142.02 | 141.87 | 140.21 | 138.42 | 139.55 | 141.17 | 141.67 | | 8 | 138.30 | 139.50 | 140.51 | 141.09 | 141.67 | 142.04 | 141.84 | 140.27 | 138.23 | 139.57 | 141.22 | 141.67 | | 9 | 138.30 | 139.60 | 140.59 | 141.05 | 141.71 | 142.01 | 141.84 | 140.21 | 138.11 | 139.61 | 141.24 | 141.65 | | 10 | 138.28 | 139.56 | 140.55 | 141.10 | 141.66 | 142.09 | 141.92 | 140.19 | 138.12 | 139.74 | 141.25 | 141.64 | | 11 | 138.32 | 139.69 | 140.58 | 141.14 | 141.72 | 142.09 | 141.89 | 140.20 | 138.12 | 139.78 | 141.26 | 141.77 | | 12 | 138.38 | 139.70 | 140.59 | 141.13 | 141.68 | 142.04 | 141.85 | 140.07 | 138.19 | 139.82 | 141.30 | 141.78 | | 13 | 138.44 | 139.71 | 140.57 | 141.20 | 141.77 | 142.03 | 141.81 | 139.96 | 138.26 | 139.90 | 141.33 | 141.78 | | 14 | 138.43 | 139.70 | 140.63 | 141.19 | 141.75 | 142.11 | 141.82 | 139.88 | 138.26 | 139.96 | 141.37 | 141.79 | | 15 | 138.57 | 139.74 | 140.75 | 141.21 | 141.69 | 142.08 | 141.80 | 139.67 | 138.29 | 140.01 | 141.41 | 141.78 | | 16
17
18
19
20 | 138.56
138.67
138.69
138.66
138.76 | 139.86
139.91
139.86
139.85
139.97 | 140.70
140.61
140.71
140.73 | 141.24
141.24
141.29
141.29
141.36 | 141.69
141.82
141.85
141.79
141.76 | 142.23
142.22
142.15
142.19
142.15 | 141.74
141.62
141.58
141.50
141.48 | 139.49
139.27
139.18
139.00
138.67 | 138.36
138.45
138.55
138.61
138.66 | 140.10
140.11
140.17
140.25
140.32 | 141.40
141.41
141.44
141.46
141.52 | 141.82
141.84
141.85
141.86
141.87 | | 21 | 138.77 | 139.98 | 140.81 | 141.36 | 141.81 | 142.12 | 141.47 | 138.49 | 138.68 | 140.36 | 141.54 | 141.92 | | 22 | 138.80 | 140.03 | 140.82 | 141.44 | 141.86 | 142.13 | 141.43 | 138.38 | 138.77 | 140.39 | 141.51 | 141.93 | | 23 | 138.80 | 140.07 | 140.74 | 141.34 | 141.87 | 142.07 | 141.43 | 138.24 | 138.81 | 140.48 | 141.52 | 141.98 | | 24 | 138.86 | 140.09 | 140.79 | 141.40 | 141.89 | 142.07 | 141.40 | 138.13 | 138.91 | 140.54 | 141.54 | 141.99 | | 25 | 138.96 | 140.13 | 140.83 | 141.49 | 141.87 | 142.10 | 141.34 | 138.19 | 138.98 | 140.58 | 141.57 | 142.00 | | 26
27
28
29
30
31 | 139.01
139.12
139.17
139.15
139.21
139.21 | 140.13
140.16
140.22
140.22
140.23 | 140.78
140.82
140.87
140.91
140.93 | 141.43
141.43
141.43
141.47
141.55
141.54 | 141.90
141.92
142.00 | 142.03
141.98
141.96
141.91
141.90
141.88 | 141.36
141.36
141.24
141.12
141.04 | 138.10
138.08
138.05
138.04
138.02
138.03 | 139.01
139.10
139.12
139.14
139.15 | 140.61
140.65
140.69
140.74
140.82 | 141.57
141.60
141.61
141.58
141.61
141.62 | 141.96
141.94
142.06
142.03
141.99 | | MEAN | 138.57 | 139.78 | 140.65 | 141.24 | 141.75 | 142.05 | 141.63 | 139.35 | 138.53 | 140.05 | 141.37 | 141.81 | | MAX | 139.21 | 140.23 | 140.93 | 141.55 | 142.00 | 142.23 | 141.92 | 140.87 | 139.15 | 140.88 | 141.62 | 142.06 | | MIN | 137.84 | 139.24 | 140.33 | 140.93 | 141.53 | 141.88 | 141.04 | 138.02 | 138.08 | 139.17 | 140.93 | 141.56 | # **BUCKS COUNTY** #### 402643075150501. Local number, BK 929. LOCATION.--Lat 40°26'43", long 75°15'05", Hydrologic Unit 02040105, at Nockamixon State Park. Owner: U.S. Geological Survey. AQUIFER.--Shale of Brunswick Formation of Late Triassic age. WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in., depth 116 ft, cased to 27 ft, open hole. INSTRUMENTATION.--Data collection platform with 60-minute recording interval. Satellite telemetry at station. **DATUM.**—Elevation of land-surface datum is 490 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of plywood shelf, 3.0 ft above land-surface datum. Prior to Mar. 17, 1980, top of casing, 1.05 ft above land-surface datum. Prior to June 1970, land surface datum was approximately 16 feet lower. **REMARKS.**—In addition to the daily maximum water level table shown below, daily minimum and mean water levels, since October 1994, are also available from the District Office. **PERIOD OF RECORD.**--November 1967 to current year. EXTREMES FOR PERIOD OF RECORD.--Prior to October 2000, the extremes shown were based on extremes of the daily maximum depth below land-surface datum. Since that date, the extremes are based on the instantaneous depth below land-surface datum. Highest water level, 39.29 ft below land-surface datum, Mar. 28, 1991; lowest, 59.75 ft below land-surface datum, Nov. 26, 1968. **EXTREMES FOR CURRENT YEAR.**—Highest water level, 42.16 ft below land-surface datum, May 31; lowest, 47.94 ft below land-surface datum, Dec. 15. | DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | |--| | MAXIMUM VALUES | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|---|--|--|---|--|---|--|---|--|--|---| | 1 | 45.49 | 46.67 | 47.53 | 47.69 | 47.10 | 46.90 | 44.48 | 43.93 | 42.37 | 43.91 | 45.60 | 47.29 | | 2 | 45.56 | 46.63 | 47.62 | 47.72 | 47.29 | 46.90 | 44.56 | 43.83 | 42.64 | 43.85 | 45.80 | 47.04 | | 3 | 45.61 | 46.71 | 47.63 | 47.55 | 47.21 | 46.27 | 44.51 | 43.93 | 42.87 | 43.81 | 46.12 | 46.99 | | 4 | 45.63 | 46.71 | 47.62 | 47.57 | 46.94 | 46.54 | 44.59 | 44.04 | 42.97 | 43.87 | 46.04 | 46.99 | | 5 | 45.61 | 46.65 | 47.66 | 47.59 | 47.11 | 46.65 | 44.54 | 43.84 | 42.93 | 44.09 | 45.91 | 47.10 | | 6 | 45.61 | 46.68 | 47.52 | 47.51 | 46.99 | 46.53 | 44.49 | 43.77 | 42.91 | 44.13 | 46.02 | 47.21 | | 7 | 45.89 | 46.84 | 47.60 | 47.45 | 46.82 | 46.47 | 44.57 | 43.49 | 43.26 | 44.24 | 46.06 | 47.29 | | 8 | 46.12 | 46.88 | 47.67 | 47.63 | 46.88 | 46.53 | 44.48 | 43.51 | 43.37 | 44.31 | 46.16 | 47.28 | | 9 | 46.18 | 46.95 | 47.82 | 47.52 | 47.14 | 46.46 | 44.30 | 43.46 | 43.24 | 44.16 | 46.26 | 47.21 | | 10 | 46.02 | 46.89 | 47.83 | 47.55 | 47.11 | 46.22 | 44.53 | 43.48 | 43.23 | 44.30 | 46.24 | 47.07 | | 11
12
13
14
15 | 45.91
45.90
46.07 | 47.13
47.24
47.27
47.12
47.01 |
47.79
47.84
47.62
47.48
47.94 | 47.61
47.64
47.63
47.74
47.56 | 46.82
46.80
46.89
46.90
46.76 | 46.34
46.16
45.97
45.90
45.88 | 44.64
44.57
44.29
44.14
44.08 | 43.65
43.50
43.14
42.80
42.99 | 43.18
43.05
43.18
43.18
43.09 | 44.40
44.43
44.42
44.47
44.45 | 46.20
46.22
46.30
46.37
46.50 | 47.12
47.32
47.36
47.42
47.37 | | 16 | 46.07 | 47.16 | 47.91 | 47.72 | 46.39 | 46.09 | 44.19 | 42.99 | 43.20 | 44.63 | 46.51 | 47.31 | | 17 | 46.12 | 47.36 | 47.70 | 47.56 | 46.57 | 46.22 | 44.14 | 42.67 | 43.38 | 44.68 | 46.49 | 47.39 | | 18 | 46.25 | 47.34 | 47.44 | 47.64 | 46.80 | 46.07 | 44.19 | 42.69 | 43.63 | 44.62 | 46.42 | 47.46 | | 19 | 46.22 | 47.16 | 47.55 | 47.65 | 46.73 | 45.94 | 44.09 | 42.76 | 43.75 | 44.69 | 46.54 | 47.49 | | 20 | 46.22 | 47.16 | 47.48 | 47.52 | 46.58 | 45.86 | 44.11 | 42.77 | 43.83 | 44.94 | 46.79 | 47.47 | | 21 | 46.26 | 47.21 | 47.80 | 47.48 | 46.35 | 45.45 | 44.21 | 42.74 | 43.84 | 45.06 | 46.95 | 47.49 | | 22 | 46.17 | 47.27 | 47.89 | 47.67 | 46.54 | 45.42 | 44.16 | 42.81 | 43.71 | 45.07 | 46.87 | 47.50 | | 23 | 46.17 | 47.38 | 47.70 | 47.57 | 46.60 | 45.39 | 44.40 | 42.63 | 43.65 | 45.13 | 46.75 | 47.69 | | 24 | 46.01 | 47.42 | 47.43 | 47.23 | 46.67 | 45.26 | 44.51 | 42.34 | 43.54 | 45.30 | 46.74 | 47.77 | | 25 | 46.11 | 47.35 | 47.55 | 47.48 | 46.65 | 45.32 | 44.40 | 42.57 | 43.64 | 45.57 | 46.84 | 47.82 | | 26
27
28
29
30
31 | 46.26
46.59
46.84
46.85
46.83
46.84 | 47.33
47.36
47.49
47.48
47.36 | 47.48
47.32
47.33
47.45
47.55
47.56 | 47.45
47.36
47.25
47.13
47.36
47.37 | 46.40
46.28
46.71
 | 45.28
44.86
44.90
44.78
44.60
44.60 | 44.48
44.61
44.37
44.02
44.06 | 42.54
42.59
42.57
42.59
42.49
42.40 | 43.71
43.54
43.71
43.89
43.94 | 45.54
45.36
45.33
45.30
45.44
45.52 | 46.92
47.10
47.18
47.13
47.21
47.32 | 47.74
47.53
47.70
47.78
47.74 | | MEAN | 46.12 | 47.11 | 47.62 | 47.53 | 46.79 | 45.86 | 44.36 | 43.08 | 43.35 | 44.68 | 46.50 | 47.40 | | MAX | 46.85 | 47.49 | 47.94 | 47.74 | 47.29 | 46.90 | 44.64 | 44.04 | 43.94 | 45.57 | 47.32 | 47.82 | | MIN | 45.49 | 46.63 | 47.32 | 47.13 | 46.28 | 44.60 | 44.02 | 42.34 | 42.37 | 43.81 | 45.60 | 46.99 | # **BUCKS COUNTY** #### 401157075032001. Local number, BK 1020 LOCATION.--Lat 40°11'57", long 75°03'20", Hydrologic Unit 02040201, at Naval Air Development Center in Warminster Township. Owner: United States Navy. AQUIFER.--Sandstone and shale of Stockton Formation of Late Triassic age. WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in., depth 400 ft, cased to 57 ft, open hole. INSTRUMENTATION.--Data collection platform with 30-minute recording interval. Satellite telemetry at station. DATUM.--Elevation of land-surface datum is 370 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of metal shelf, 1.93 ft above land-surface datum. REMARKS.—Operated by Bucks County Planning Commission September 1975 to March 1988. In addition to the daily maximum water level table shown below, daily minimum and mean water levels, since October 1994, are also available from the District Office. PERIOD OF RECORD.--September 1975 to current year. EXTREMES FOR PERIOD OF RECORD.--Prior to October 2000, the extremes shown were based on extremes of the daily maximum depth below landsurface datum. Since that date, the extremes are based on the instantaneous depth below land-surface datum. Highest water level, 23.05 ft below land-surface datum, Dec. 18, 1996; lowest, 42.60 ft below land-surface datum, Jan. 22, 23, 2002. **EXTREMES FOR CURRENT YEAR**.--Highest water level, 31.21 ft below land-surface datum, June 15-17; lowest, 42.60 ft below land-surface datum, Jan. 22, 23. | | DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002
MAXIMUM VALUES | | | | | | | | | | | | | |----------|--|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1 2 | 37.73 | 39.75 | 41.44 | 42.37 | 42.21 | 41.78 | 37.31 | 34.18 | 31.56 | 31.59 | 34.24 | 36.85 | | | | 37.82
37.87 | 39.81
39.86 | 41.49
41.53 | 42.41
42.43 | 42.10
42.03 | 41.78
41.77 | 37.10
36.89 | 34.15
34.07 | 31.54
31.57 | 31.65
31.71 | 34.35
34.35 | 36.81
36.80 | | | 3
4 | 37.97 | 39.92 | 41.58 | 42.47 | 41.97 | 41.47 | 36.75 | 34.07 | 31.60 | 31.77 | 34.43 | 36.90 | | | 5 | 38.04 | 39.97 | 41.61 | 42.50 | 41.95 | 41.36 | 36.57 | 34.06 | 31.60 | 31.85 | 34.50 | 36.99 | | | 6 | 38.11 | 40.02 | 41.66 | 42.52 | 41.93 | 41.30 | 36.38 | 34.04 | 31.59 | 31.93 | 34.61 | 37.09 | | | 7 | 38.20
38.27 | 40.10
40.15 | 41.69
41.73 | 42.52
42.42 | 41.91
41.89 | 41.26
41.23 | 36.23
36.08 | 33.99
33.98 | 31.55
31.36 | 32.02
32.09 | 34.71
34.81 | 37.18
37.27 | | | 8
9 | 38.27 | 40.15 | 41.73 | 42.42 | 41.89 | 41.23 | 35.08 | 33.98 | 31.36 | 32.09 | 34.81 | 37.27 | | | 10 | 38.41 | 40.29 | 41.73 | 42.41 | 41.88 | 41.14 | 35.75 | 33.89 | 31.35 | 32.14 | 35.00 | 37.41 | | | 11 | 38.47 | 40.36 | 41.77 | 42.41 | 41.84 | 41.13 | 35.65 | 33.91 | 31.35 | 32.23 | 35.09 | 37.51 | | | 12 | 38.53 | 40.43 | 41.80 | 42.39 | 41.82 | 41.11 | 35.52 | 33.89 | 31.33 | 32.32 | 35.18 | 37.62 | | | 13
14 | 38.61
38.65 | 40.48
40.55 | 41.84
41.87 | 42.32
42.34 | 41.78
41.78 | 41.07
41.03 | 35.38
35.25 | 33.83
33.69 | 31.34
31.33 | 32.40
32.49 | 35.27
35.36 | 37.71
37.81 | | | 15 | 38.73 | 40.63 | 41.89 | 42.34 | 41.77 | 40.97 | 35.25 | 33.60 | 31.33 | 32.49 | 35.45 | 37.88 | | | 16 | 38.78 | 40.69 | 41.93 | 42.39 | 41.74 | 40.92 | 35.05 | | | 32.66 | 35.53 | 37.94 | | | 17 | 38.78 | 40.69 | 41.93 | 42.39 | 41.74 | 40.92 | 34.96 | 33.58
33.52 | 31.21
31.22 | 32.00 | 35.53 | 37.94 | | | 18 | 38.92 | 40.78 | 41.96 | 42.46 | 41.73 | 40.88 | 34.88 | 33.47 | 31.26 | 32.85 | 35.70 | 38.11 | | | 19 | 38.98 | 40.83 | 41.96 | 42.49 | 41.73 | 40.63 | 34.80 | 32.98 | 31.29 | 32.94 | 35.79 | 38.21 | | | 20 | 39.04 | 40.90 | 42.01 | 42.55 | 41.73 | 40.35 | 34.73 | 32.71 | 31.31 | 33.04 | 35.91 | 38.29 | | | 21 | 39.09 | 40.94 | 42.05 | 42.58 | 41.72 | 39.82 | 34.69 | 32.53 | 31.32 | 33.15 | 35.98 | 38.38 | | | 22
23 | 39.16
39.21 | 40.99
41.06 | 42.09
42.12 | 42.60
42.60 | 41.73
41.73 | 39.13
38.90 | 34.64
34.59 | 32.41
32.28 | 31.33
31.34 | 33.23
33.33 | 36.06
36.14 | 38.44
38.54 | | | 24 | 39.21 | 41.11 | 42.14 | 42.59 | 41.74 | 38.73 | 34.58 | 32.14 | 31.34 | 33.45 | 36.21 | 38.62 | | | 25 | 39.32 | 41.15 | 42.12 | 42.47 | 41.74 | 38.61 | 34.56 | 32.01 | 31.39 | 33.53 | 36.30 | 38.70 | | | 26 | 39.39 | 41.17 | 42.15 | 42.33 | 41.74 | 38.52 | 34.51 | 31.93 | 31.39 | 33.63 | 36.39 | 38.75 | | | 27 | 39.46 | 41.21 | 42.18 | 42.30 | 41.74 | 38.37 | 34.50 | 31.85 | 31.44 | 33.73 | 36.50 | 38.75 | | | 28
29 | 39.52
39.58 | 41.26
41.32 | 42.22
42.26 | 42.30
42.29 | 41.76 | 38.11
37.91 | 34.48
34.24 | 31.78
31.73 | 31.43
31.49 | 33.83
33.93 | 36.59
36.63 | 38.43
38.39 | | | 30 | 39.65 | 41.37 | 42.30 | 42.29 | | 37.68 | 34.22 | 31.67 | 31.55 | 34.03 | 36.72 | 38.44 | | | 31 | 39.69 | | 42.33 | 42.30 | | 37.50 | | 31.61 | | 34.15 | 36.82 | | | | MEAN | 38.76 | 40.60 | 41.91 | 42.43 | 41.83 | 40.21 | 35.38 | 33.15 | 31.40 | 32.75 | 35.52 | 37.84 | | | MAX | 39.69
37.73 | 41.37
39.75 | 42.33 | 42.60 | 42.21
41.72 | 41.78 | 37.31 | 34.18 | 31.60 | 34.15 | 36.82 | 38.75 | | | MIN | 31.13 | 39.75 | 41.44 | 42.29 | 41./2 | 37.50 | 34.22 | 31.61 | 31.21 | 31.59 | 34.24 | 36.80 | | # **CARBON COUNTY** #### 410123075425401. Local number, CB 104. LOCATION.--Lat 41°01'23", long 75°42'54", Hydrologic Unit 02040106, at Hickory Run State Park. Owner: U.S. Geological Survey. AQUIFER .-- Shale of Lower Member of Mauch Chunk Formation of Late Mississippian age. WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in., depth 125 ft, cased to 20 ft, open hole. INSTRUMENTATION.--Data collection platform with 30-minute recording interval. Satellite telemetry at station. DATUM.--Elevation of land-surface datum is 1,305 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of plywood shelf, 3.1 ft above land-surface datum. Prior to May 28, 1980, top of casing 3.00 ft above land-surface datum. REMARKS.--In addition to the daily maximum water level table shown below, daily minimum and mean water levels, since October 1994, are also available from the District Office. PERIOD OF RECORD.--September 1969 to current year. EXTREMES FOR PERIOD OF RECORD.--Prior to October 2000, the extremes shown were based on extremes of the daily maximum depth below landsurface datum. Since that date, the extremes are based on the instantaneous depth below land-surface datum. Highest water level, 18.44 ft below land-surface datum, Apr. 17, 1983; lowest, 90.58 ft below land-surface datum, Jan. 31, 1981. **EXTREMES FOR CURRENT YEAR**.--Highest water level, 29.84 ft below land-surface datum, May 21; lowest, 79.68 ft below land-surface datum, DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 Sept. 28. | | | DEI II | II BEEG W E | n v Bora n | CE (WITTER | | JM VALUES | | OBER 2001 | TO BEI TEM | DER 2002 | | |--------|-------|--------|-------------|------------|------------|-------|-----------|-------|-----------|------------|----------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 |
43.33 | 61.29 | 67.35 | 46.74 | 54.16 | 51.85 | 35.14 | 37.14 | 35.16 | 49.33 | 66.99 | 75.85 | | 2 | 43.22 | 61.74 | 65.28 | 47.20 | 52.92 | 52.08 | 35.38 | 36.21 | 36.13 | 50.01 | 67.43 | 76.04 | | 3
4 | 43.45 | 62.22 | 62.28 | 47.72 | 51.67 | 52.10 | 36.09 | 35.34 | 37.13 | 50.71 | 67.80 | 76.22 | | 4 | 43.84 | 62.62 | 59.46 | 48.38 | 50.20 | 51.91 | 36.67 | 34.39 | 38.13 | 51.45 | 68.17 | 76.42 | | 5 | 44.15 | 63.07 | 57.06 | 48.99 | 49.38 | 50.70 | 37.23 | 33.81 | 39.13 | 52.21 | 68.52 | 76.61 | | 6 | 44.86 | 63.49 | 55.10 | 49.34 | 48.57 | 49.30 | 38.08 | 33.99 | 40.15 | 52.92 | 68.92 | 76.79 | | 7 | 45.58 | 63.98 | 53.52 | 50.23 | 48.10 | 48.18 | 38.75 | 34.57 | 40.17 | 53.67 | 69.28 | 76.96 | | 8 | 46.32 | 64.29 | 52.53 | | 47.91 | 47.53 | 39.44 | 35.33 | 38.37 | 54.30 | 69.63 | 77.12 | | 9 | 46.88 | 64.76 | 51.55 | | | 47.13 | 40.21 | 36.09 | 36.53 | 54.98 | 69.95 | 77.30 | | 10 | 47.45 | 65.13 | 51.27 | 52.18 | 48.09 | 46.68 | 41.13 | 37.17 | 36.13 | 55.73 | 70.28 | 77.45 | | 11 | 48.08 | 65.61 | 50.39 | 52.89 | 48.21 | 46.56 | 41.87 | 37.96 | 36.60 | 56.40 | 70.58 | 77.64 | | 12 | 48.76 | 66.00 | 49.53 | 53.30 | 48.18 | 45.73 | 42.47 | 38.58 | 37.42 | 57.04 | 70.89 | 77.81 | | 13 | 49.50 | 66.32 | 48.56 | 54.17 | 47.75 | 44.88 | 43.09 | 38.79 | 38.34 | 57.67 | 71.19 | 77.97 | | 14 | 50.08 | 66.67 | 47.86 | | | | 43.38 | 38.79 | 39.19 | 58.28 | 71.48 | 78.12 | | 15 | 51.03 | 67.00 | 47.53 | 55.31 | 47.14 | 43.95 | 43.37 | 36.54 | 39.81 | 58.86 | 71.76 | 78.26 | | 16 | 51.52 | 67.41 | 47.40 | 55.80 | 46.73 | 44.21 | 40.28 | 34.76 | 40.15 | 59.47 | 72.05 | 78.41 | | 17 | 52.43 | 67.75 | 47.03 | 56.30 | 46.81 | 44.38 | 36.98 | 33.96 | 40.41 | 59.99 | 72.31 | 78.50 | | 18 | 53.12 | 68.03 | 46.41 | 56.83 | 47.01 | 44.66 | 35.43 | 33.90 | 40.82 | 60.53 | 72.60 | 78.59 | | 19 | 53.70 | 68.29 | 46.22 | 50.55 | | 45.02 | 34.86 | 32.49 | 41.36 | 61.06 | 72.86 | 78.71 | | 20 | 54.43 | 68.68 | 45.03 | 57.46 | 47.29 | 45.05 | 35.05 | 30.36 | 41.94 | 61.62 | 73.15 | 78.81 | | 21 | 55.01 | 68.98 | 44.08 | 57.76 | 47.74 | 45.04 | 35.51 | 30.12 | 42.53 | 62.13 | 73.39 | 78.94 | | 22 | 55.65 | 69.31 | 43.62 | 58.12 | 48.23 | 43.69 | 36.27 | 30.58 | 43.19 | 62.60 | 73.63 | 79.06 | | 23 | 56.19 | 69.65 | 43.23 | 58.24 | 48.75 | 42.08 | 37.18 | 31.11 | 43.82 | 63.11 | 73.87 | 79.18 | | 24 | 56.75 | 69.92 | 43.15 | 50.50 | | 10.00 | 38.03 | 52.57 | 44.55 | 63.57 | 74.12 | 79.31 | | 25 | 57.40 | 70.20 | 43.42 | 58.80 | 49.58 | 40.42 | 38.89 | 32.90 | 45.25 | 64.02 | 74.35 | 79.43 | | 26 | 57.99 | 70.27 | 43.57 | 58.79 | 49.97 | 40.33 | 39.91 | 33.96 | 45.87 | 64.43 | 74.58 | 79.54 | | 27 | 58.72 | 70.11 | 43.99 | 58.61 | 50.47 | 40.11 | 40.66 | 35.11 | 46.55 | 64.89 | 74.82 | 79.65 | | 28 | 59.34 | 69.57 | 44.42 | 58.05 | 51.23 | 38.25 | 40.84 | 36.26 | 47.33 | 65.31 | 75.01 | 79.68 | | 29 | 59.81 | 68.84 | 44.97 | 57.35 | | | 40.66 | 36.27 | 48.02 | 65.73 | 75.24 | 79.35 | | 30 | 60.38 | 68.11 | 45.53 | 56.49 | | 34.88 | 38.86 | 35.41 | 48.67 | 66.17 | 75.47 | 78.93 | | 31 | 60.81 | | 46.09 | 55.59 | | 34.75 | | 34.65 | | 66.58 | 75.66 | | | MEAN | 51.61 | 66.64 | 49.59 | 54.29 | 48.86 | 44.60 | 38.72 | 34.79 | 40.96 | 58.86 | 71.81 | 78.09 | | MAX | 60.81 | 70.27 | 67.35 | 58.80 | 54.16 | 52.10 | 43.38 | 38.79 | 48.67 | 66.58 | 75.66 | 79.68 | | MIN | 43.22 | 61.29 | 43.15 | 46.74 | 46.73 | 34.75 | 34.86 | 30.12 | 35.16 | 49.33 | 66.99 | 75.85 | #### 395450075485401. Local number, CH 10. LOCATION.--Lat 39°54'50", long 75°48'54", Hydrologic Unit 02040205, near intersection of SR 82 and 841, at Doe Run. Owner: Privately owned. AQUIFER.--Cockeysville Marble of Paleozoic age. WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 6 in., depth 34 ft, casing information not available. INSTRUMENTATION.--Data collection platform with 60-minute recording interval. Satellite telemetry at station. DATUM.--Elevation of land-surface datum is 300 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of plywood shelf, 5.23 ft above land-surface datum. Prior to June 24, 1981, top of casing 1.00 ft above land-surface datum. **REMARKS.**—In addition to the daily maximum water level table shown below, daily minimum and mean water levels, since October 1994, are also available from the District Office. PERIOD OF RECORD.—August 1951 to April 1965, instantaneous water levels obtained several times per month. February 1966 to current year. EXTREMES FOR PERIOD OF RECORD.—Prior to October 2000, the extremes shown were based on extremes of the daily maximum depth below landsurface datum. Since that date, the extremes are based on the instantaneous depth below land-surface datum. Highest water level, 7.77 ft below land-surface datum, Mar. 25, 1993; lowest, 16.54 ft below land-surface datum, Sept. 26, 2002. EXTREMES FOR CURRENT YEAR.--Highest water level, 14.51 ft below land-surface datum, Mar. 29, 30; lowest, 16.54 ft below land-surface datum, Sept. 26. DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | DEI 1. | II BELOW L | AND SURFA | CE (WATEK | | JM VALUES | | OBER 2001 | TO SEI TEM | DER 2002 | | |----------------------------------|---|---|--|--|---|--|---|--|---|---|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 15.17
15.19
15.21
15.23
15.24 | 15.48
15.49
15.50
15.50 | 15.67
15.67
15.68
15.68
15.69 | 15.74
15.75
15.75
15.76
15.77 | 15.24
15.19
15.16
15.14
15.16 | 15.62
15.63
15.61
15.47
15.38 | 14.54
14.55
14.59
14.62
14.65 | 14.77
14.75
14.71
14.70
14.70 | 14.91
14.95
14.99
15.03
15.05 | 15.50
15.52
15.55
15.57
15.59 | 16.04
16.06
16.07
16.09
16.10 | 16.36
16.34
16.34
16.36
16.38 | | 6
7
8
9
10 | 15.25
15.27
15.28
15.29
15.30 | 15.52
15.52
15.53
15.54
15.55 | 15.70
15.70
15.71
15.70
15.70 | 15.77
15.75
15.68
15.63
15.61 | 15.19
15.21
15.25
15.28
15.29 | 15.33
15.30
15.30
15.31
15.32 | 14.69
14.73
14.75
14.79
14.83 | 14.72
14.74
14.78
14.81
14.85 | 15.08
15.07
15.08
15.10
15.12 | 15.62
15.64
15.66
15.67
15.70 | 16.12
16.14
16.15
16.17
16.18 | 16.39
16.40
16.41
16.41
16.42 | | 11
12
13
14
15 | 15.31
15.32
15.33
15.33 | 15.56
15.57
15.57
15.58
15.59 | 15.70
15.70
15.70
15.70
15.69 | 15.59
15.44
15.34
15.32
15.34 | 15.33
15.35
15.38
15.40
15.41 | 15.34
15.35
15.35
15.36
15.36 | 14.86
14.89
14.91
14.92
14.92 | 14.89
14.90
14.90
14.89
14.89 | 15.14
15.17
15.20
15.20
15.21 | 15.71
15.74
15.75
15.77
15.78 | 16.20
16.21
16.23
16.24
16.26 | 16.43
16.44
16.45
16.46
16.46 | | 16
17
18
19
20 | 15.35
15.36
15.36
15.37
15.38 | 15.60
15.60
15.61
15.61
15.62 | 15.69
15.69
15.68
15.65
15.66 | 15.37
15.39
15.43
15.45
15.48 | 15.43
15.45
15.47
15.49
15.50 | 15.38
15.39
15.39
15.35
15.31 | 14.91
14.92
14.94
14.96
14.95 | 14.90
14.92
14.92
14.79
14.65 | 15.23
15.25
15.27
15.30
15.32 | 15.80
15.81
15.83
15.85
15.86 | 16.27
16.29
16.30
16.31
16.33 | 16.47
16.47
16.48
16.49
16.50 | | 21
22
23
24
25 | 15.38
15.39
15.40
15.40 | 15.63
15.65
15.65
15.65
15.66 | 15.68
15.69
15.70
15.70
15.69 | 15.50
15.53
15.53
15.53
15.39 | 15.52
15.53
15.55
15.56
15.57 | 15.14
14.88
14.76
14.71
14.72 | 14.96
14.96
14.98
14.99
15.01 | 14.59
14.59
14.60
14.63
14.68 | 15.34
15.36
15.38
15.39
15.40 | 15.88
15.89
15.91
15.93
15.94 | 16.34
16.35
16.36
16.37
16.37 | 16.50
16.51
16.51
16.53
16.53 | | 26
27
28
29
30
31 | 15.42
15.44
15.45
15.46
15.46 | 15.65
15.65
15.66
15.66 | 15.69
15.70
15.71
15.72
15.73
15.73 | 15.27
15.22
15.21
15.23
15.26
15.27 | 15.58
15.59
15.61
 | 14.73
14.72
14.63
14.56
14.52
14.53 | 15.03
15.05
15.04
14.91
14.82 | 14.72
14.75
14.78
14.81
14.84
14.87 | 15.41
15.43
15.44
15.46
15.48 | 15.95
15.96
15.97
15.99
16.00 | 16.38
16.39
16.39
16.39
16.35 | 16.54
16.53
16.45
16.41
16.43 | | MEAN
MAX
MIN | 15.34
15.47
15.17 | 15.59
15.66
15.48 | 15.69
15.73
15.65 | 15.49
15.77
15.21 | 15.39
15.61
15.14 | 15.15
15.63
14.52 | 14.86
15.05
14.54 | 14.78
14.92
14.59 | 15.23
15.48
14.91 | 15.79
16.02
15.50 | 16.25
16.39
16.04 | 16.45
16.54
16.34 | #### 400650075514001. Local number, CH 2. LOCATION.--Lat 40°06'55", long 75°51'20", Hydrologic Unit 02040205, at Morgantown Road, near Strubel Lake, Honeybrook Township. Owner: Privately owned. AQUIFER.--Felsic and intermediate gneiss, granulite facies. WELL CHARACTERISTICS.--Dug unused observation well, diameter 36 in., depth 15 ft. INSTRUMENTATION.--Monthly measurement with chalked tape by U.S. Geological Survey personnel. DATUM.--Elevation of land-surface datum is 640 ft above
National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of hole in concrete porch, 0.5 ft above land-surface datum. **PERIOD OF RECORD.**--September 1951 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 3.50 ft below land-surface datum, Mar. 11, 1952; lowest, 14.47 ft below land-surface datum, Sept. 18, 2002 EXTREMES FOR CURRENT YEAR.--Highest water level, 10.93 ft below land-surface datum, May 22; lowest, 14.47 ft below land-surface datum, Sept. 18. #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 18 | 12.55 | DEC 19 | 13.17 | FEB 14 | 12.53 | APR 18 | 11.87 | JUN 21 | 11.13 | AUG 14 | 13.43 | | NOV 09 | 12.90 | JAN 18 | 13.06 | MAR 21 | 11.61 | MAY 22 | 10.93 | JUL 18 | 12.35 | SEP 18 | 14.47 | #### 395717075392301. Local number, CH 12. LOCATION.--Lat 39°57'17", long 75°39'23", Hydrologic Unit 02040205, at Deborah's Rock Farm at State Highway 162, at Copesville. Owner: Privately owned. AQUIFER.--Felic and intermediate gneiss, amphibolite facies. WELL CHARACTERISTICS.--Dug unused observation well, diameter 29 in., depth 38.5 ft. INSTRUMENTATION.--Monthly measurement with chalked tape by U.S. Geological Survey personnel. DATUM.--Elevation of land-surface datum is 248 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of wooden cover, 2.0 ft above land surface datum. **REMARKS.**—Well dry entire year. Well is dry at 38.50 ft. In past, well was at least 39.2 ft deep, but has since filled with silt to 38.5 ft. Measuring point changed Dec. 26, 1990. PERIOD OF RECORD.--July 1951 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 28.98 ft below land-surface datum, Apr. 20, 1993; lowest, 39.13 ft below land-surface datum, Oct. 18, 1951. #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 18 | 38.50 | DEC 19 | 38.50 | FEB 15 | 38.50 | APR 18 | 38.50 | JUN 21 | 38.50 | AUG 14 | 38.50 | | NOV 09 | 38.50 | JAN 18 | 38.50 | MAR 21 | 38.50 | MAY 22 | 38.50 | JUL 19 | 38.50 | SEP 18 | 38.50 | # 395222075423201. Local number, CH 28. LOCATION.--Lat 39°52'22", long 75°42'32", Hydrologic Unit 02040205, at State Highway 926 and 82, at Willowdale. Owner: Privately owned. AQUIFER.--Cockeysville marble. WELL CHARACTERISTICS.--Dug unused observation well, diameter 54 in., depth 24.8 ft. INSTRUMENTATION.--Monthly measurement with chalked tape by U.S. Geological Survey personnel. DATUM.--Elevation of land-surface datum is 366 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 0.7 ft above land surface datum. **REMARKS**.--Well is dry at 24.80 ft. PERIOD OF RECORD.--January 1974 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 8.73 ft below land-surface datum, Dec 19, 1996; lowest, 24.80 ft below land-surface datum, July 13, 1995, Aug. 22, 1995, Sept. 14, 1995, Oct. 17, 1995, Nov. 21, 1995, and Jan. 17, 2002. EXTREMES FOR CURRENT YEAR.--Highest water level, 18.93 ft below land-surface datum, Oct. 18; lowest, 24.80 ft below land-surface datum, Jan. 17. | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|---------|----------------| | OCT 18 | 18 93 | NOV 08 | 19 05 | DEC 18 | 19 05 | .TAN 17 | 24 80 | # 394846075444901. Local number, CH 38. LOCATION.--Lat 39°48'46", long 75°44'49", Hydrologic Unit 02040205, at New Garden Road and State Highway 41 at New Garden. Owner: Privately owned. AQUIFER.--Wissahickon Formation. WELL CHARACTERISTICS.--Dug observation well, diameter 46 in., depth 18.5 ft. INSTRUMENTATION.--Monthly measurement with chalked tape by U.S. Geological Survey personnel. DATUM.--Elevation of land-surface datum is 440 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of concrete cover, 0.5 ft above land surface datum. PERIOD OF RECORD.--September 1974 to current year. EXTREMES FOR PERIOD OF RECORD. -Highest water level, 2.00 ft below land-surface datum, July 21, 1989; lowest, 16.52 ft below land-surface datum, Sept. 18, 2002 EXTREMÉS FOR CURRENT YEAR.--Highest water level, 12.54 ft below land-surface datum, May 21; lowest, 16.52 ft below land-surface datum, Sept. 18. #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 18 | 13.38 | DEC 18 | 15.56 | FEB 14 | 15.83 | APR 17 | 13.23 | JUN 20 | 12.96 | AUG 13 | 15.46 | | NOV 08 | 14.29 | JAN 17 | 15.58 | MAR 20 | 15.16 | MAY 21 | 12.54 | JUL 18 | 13.90 | SEP 18 | 16.52 | #### 400400075314401. Local number, CH 89. LOCATION.--Lat 40°04′00", long 75°31′44", Hydrologic Unit 02040203, at quarry on Yellow Springs Road, near Devault. Owner: U.S. Geological Survey/Warner Co. AQUIFER.--Elbrook limestone. WELL CHARACTERISTICS.--Drilled unused observation well, diameter 6 in., depth 265 ft, cased to 112 ft. INSTRUMENTATION.--Monthly measurement with electric tape by U.S. Geological Survey personnel. DATUM.--Elevation of land-surface datum is 365 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.62 ft above land-surface datum. **PERIOD OF RECORD.**—May 1988 to current year. EXTREMES FOR PERIOD OF RECORD.—Highest water level, 150.49 ft below land-surface datum, Dec. 18, 1996; lowest, 183.77 ft below landsurface datum, Feb. 21, 1989. EXTREMES FOR CURRENT YEAR.--Highest water level, 161.63 ft below land-surface datum, Oct. 17; lowest, 168.10 ft below land-surface datum, Sept. 19. #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | DATE | WATER
LEVEL | |------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|----------------|--------|----------------| | OCT 17
NOV 08 | 161.63
163.15 | JAN 17
FEB 14 | 165.76
166.35 | MAR 20
APR 17 | 167.14
167.09 | MAY 21
JUN 20 | 165.14
166.10 | JUL 18
AUG 13 | | SEP 19 | 168.10 | # 400453075255601. Local number, CH 210. LOCATION.--Lat 40°04'53", long 75°25'56", Hydrologic Unit 02040203, at Red Coat Lane, near Valley Forge Park. Owner: Privately owned. AQUIFER.--Elbrook limestone. WELL CHARACTERISTICS.--Drilled unused observation well, diameter 12 in., depth 600 ft, cased to 26 ft. INSTRUMENTATION.--Monthly measurement with chalked tape by U.S. Geological Survey personnel. DATUM.--Elevation of land-surface datum is 150 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.4 ft above land-surface datum. **PERIOD OF RECORD.**--June 1978 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 14.00 ft below land-surface datum, Feb. 26, 1979; lowest, 28.20 ft below land-surface datum, Sept. 19, 2002 EXTREMES FOR CURRENT YEAR.--Highest water level, 22.25 ft below land-surface datum, May 21; lowest, 28.20 ft below land-surface datum, Sept. 19. | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 17 | 26.29 | DEC 18 | 27.65 | FEB 14 | 27.57 | APR 17 | 25.54 | JUN 20 | 23.41 | AUG 13 | 26.53 | | NOV 08 | 26.99 | JAN 17 | 27.66 | MAR 20 | 27.25 | MAY 21 | 22.25 | JUL 18 | 24.83 | SEP 19 | 28.20 | # 400103075390101. Local number, CH 249. LOCATION.--Lat 40°01'03", long 75°39'16", Hydrologic Unit 02040205, at Creamery Way at Oaklands Corporate Center, near Exton. Owner: Oaklands Business Parks, Inc. AQUIFER .-- Ledger dolomite. WELL CHARACTERISTICS.--Drilled unused observation well, diameter 8 in., depth 600 ft. INSTRUMENTATION.--Monthly measurement with chalked tape by U.S. Geological Survey personnel. DATUM.--Elevation of land-surface datum is 317 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.2 ft above land-surface datum. **PERIOD OF RECORD.**--November 1987 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 11.26 ft below land-surface datum, May 20, 1988; lowest, 26.61 ft below land-surface datum, Sept. 18, 2002 EXTREMES FOR CURRENT YEAR.--Highest water level, 21.47 ft below land-surface datum, May 22; lowest, 26.61 ft below land-surface datum, Sept. 18. #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | DATE | WATER
LEVEL | | |------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|--------|----------------|--| | OCT 17
NOV 09 | 25.38
26.21 | DEC 19
JAN 18 | 26.34
25.63 | MAR 21
APR 18 | 24.93
24.07 | MAY 22
JUN 21 | 21.47
22.04 | JUL 19
AUG 14 | 24.33
25.88 | SEP 18 | 26.61 | | #### 394457075581601. Local number, CH 254. LOCATION.--Lat 39°44'57", long 75°58'16", Hydrologic Unit 02060002, at Mt. Pleasant Road, near Oxford. Owner: Privately owned. AQUIFER.--Wissahickon Formation. WELL CHARACTERISTICS.--Drilled unused domestic well, diameter 6 in., depth 250 ft, cased to 102 ft. INSTRUMENTATION.--Monthly
measurement with chalked tape by U.S. Geological Survey personnel. DATUM.--Elevation of land-surface datum is 517 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.35 ft above land-surface datum. PERIOD OF RECORD.--January 1987 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 16.16 ft below land-surface datum, April 21, 1997; lowest, 30.94 ft below land-surface datum, Sept. 18, 2002 EXTREMES FOR CURRENT YEAR.--Highest water level, 26.98 ft below land-surface datum, Oct. 18; lowest, 30.94 ft below land-surface datum, Sept. 18. #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 18 | 26.98 | DEC 18 | 28.32 | FEB 14 | 29.13 | APR 17 | 29.82 | JUN 20 | 29.86 | AUG 13 | 30.33 | | NOV 08 | 27.51 | JAN 17 | 28.80 | MAR 20 | 29.53 | MAY 21 | 29.69 | JUL 18 | 30.06 | SEP 18 | 30.94 | # 395701075561601. Local number, CH 1201. LOCATION.--Lat 39°57'01", long 75°56'46", Hydrologic Unit 02050306, at State Highway 372, near Atglen. Owner: A Duie Pyle Inc. AQUIFER.--Conestoga limestone. WELL CHARACTERISTICS.--Drilled withdrawal commercial well, diameter 6 in., depth 83 ft, cased to 33 ft. INSTRUMENTATION.--Monthly measurement with chalked tape by U.S. Geological Survey personnel. DATUM.--Elevation of land-surface datum is 502 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.5 ft above land-surface datum. PERIOD OF RECORD.--October 1973 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 2.80 ft below land-surface datum, Dec. 19, 1996; lowest, 8.49 ft below land-surface datum, Sept. 18, 1985 EXTREMES FOR CURRENT YEAR.-Highest water level, 5.54 ft below land-surface datum, May 21; lowest, 7.83 ft below land-surface datum, Sept. 18. | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 18 | 6.65 | DEC 19 | 6.88 | FEB 14 | 6.31 | APR 17 | 5.84 | JUN 20 | 5.96 | AUG 13 | 7.48 | | NOV 09 | 6.91 | JAN 17 | 7.07 | MAR 20 | 5.86 | MAY 21 | 5.54 | JUL 18 | 6.67 | SEP 18 | 7.83 | #### 400412075404301. Local number, CH 1229. LOCATION.--Lat 40°04'12", long 75°40'43", Hydrologic Unit 02040205, State Highway 100 and Pennsylvania Turnpike, near Eagle. Owner: Privately owned. AQUIFER.--Graphitic felsic gneiss, amphibolite facies. WELL CHARACTERISTICS.--Drilled unused observation well, diameter 6 in., depth 165 ft, cased to 31 ft. INSTRUMENTATION.--Monthly measurement with chalked tape by U.S. Geological Survey personnel. DATUM.--Elevation of land-surface datum is 540 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 0.5 ft above land-surface datum. **PERIOD OF RECORD.**--April 1974 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 29.15 ft below land-surface datum, April 21, 1952; lowest, 44.09 ft below land-surface datum, Aug. 20, 1985 EXTREMES FOR CURRENT YEAR.--Highest water level, 39.79 ft below land-surface datum, June 21; lowest, 42.93 ft below land-surface datum, Mar. 21. #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | DATE | WATER
LEVEL | | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--| | OCT 17 | 40.79 | DEC 19 | 42.52 | FEB 15 | 42.70 | APR 18 | 41.93 | JUN 21 | 39.79 | AUG 14 | 41.57 | | | NOV 09 | 41.63 | JAN 18 | 42.85 | MAR 21 | 42.93 | MAY 22 | 40.06 | JUL 19 | 40.56 | SEP 19 | 42.66 | | #### 400645075411501. Local number, CH 1247. LOCATION.--Lat 40°06'45", long 75°41'15", Hydrologic Unit 020402053, at State Highway 401 and 100, at Ludwigs Corner. Owner: Privately owned. AQUIFER.--Felsic and intermediate gneiss, granulite facies. WELL CHARACTERISTICS.--Dug unused observation well, diameter 4 ft., depth 75 ft. INSTRUMENTATION.--Monthly measurement with chalked tape by U.S. Geological Survey personnel. DATUM.--Elevation of land-surface datum is 610 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.0 ft above land-surface datum. PERIOD OF RECORD.--December 1973 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 25.61 ft below land-surface datum, April 21, 1983; lowest, 36.14 ft below land-surface datum, Jan. 22, 1996. EXTREMES FOR CURRENT YEAR.--Highest water level, 32.33 ft below land-surface datum, Oct. 17; lowest, 34.70 ft below land-surface datum, Jan. 18, Feb. 15, Mar. 21, Apr. 18, May 22, Sept. 19. #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 17 | 32.33 | DEC 19 | 34.38 | FEB 15 | 34.70 | APR 18 | 34.70 | JUN 21 | 33.90 | AUG 14 | 34.37 | | NOV 09 | 33.14 | JAN 18 | 34.70 | MAR 21 | 34.70 | MAY 22 | 34.70 | JUL 19 | 33.49 | SEP 19 | 34.70 | # 395540075332601. Local number, CH 1387. LOCATION.--Lat 39°55'40", long 75°33'26", Hydrologic Unit 02040202, at State Highway 926 and Northgate Road, near Westtown. Owner: Privately owned. AQUIFER.--Felsic and intermediate gneiss, amphibolite facies. WELL CHARACTERISTICS.--Drilled unused observation well, diameter 5 in., depth 159 ft, cased to 41 ft. INSTRUMENTATION.--Monthly measurement with chalked tape by U.S. Geological Survey personnel. DATUM.--Elevation of land-surface datum is 329 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.0 ft above land-surface datum. **PERIOD OF RECORD.**--September 1974 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 28.28 ft below land-surface datum, Dec. 19, 1996; lowest, 39.45 ft below land-surface datum, Oct. 21, 1977 EXTREMES FOR CURRENT YEAR.--Highest water level, 35.99 ft below land-surface datum, Oct. 18; lowest, 38.43 ft below land-surface datum, Sept. 18. | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 18 | 35.99 | DEC 18 | 37.36 | FEB 14 | 37.02
36.94 | APR 17 | 36.66 | JUN 20 | 36.72 | AUG 13 | 37.63 | # 400956075391501. Local number, CH 1571. LOCATION.--Lat 40°09'56", long 75°39'15", Hydrologic Unit 02040203, at Pughtown Road and Bertolet School Road, near Pughtown, East Vincent Owner: Privately owned. AQUIFER.--Stockton Formation. WELL CHARACTERISTICS.--Dug unused observation well, diameter unknown, depth 16 ft. **INSTRUMENTATION.**--Monthly measurement with chalked tape by U.S. Geological Survey personnel. DATUM.--Elevation of land-surface datum is 282 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 0.2 ft above land-surface datum. **PERIOD OF RECORD**.--June 1974 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 4.86 ft below land-surface datum, May 20, 1988; lowest, 11.74 ft below land-surface datum, Dec. 23, 1998 EXTREMES FOR CURRENT YEAR.--Highest water level, 6.27 ft below land-surface datum, May 22; lowest, 11.20 ft below land-surface datum, Dec. 19. #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 17 | 10.44 | DEC 19 | 11.20 | FEB 15 | 8.82 | APR 18 | 7.32 | JUN 21 | 7.27 | AUG 14 | 10.60 | | NOV 09 | 10.76 | JAN 18 | 10.32 | MAR 21 | | MAY 22 | 6.27 | JUL 19 | 9.69 | SEP 19 | 11.17 | ### 394757075432101. Local number, CH 1921. LOCATION.--Lat 39°47'57", long 75°43'21", Hydrologic Unit 02040205, at Ewart Road, at Kaolin. Owner: Privately owned. AOUIFER.--Wissahickon Formation. WELL CHARACTERISTICS.--Drilled unused observation well, diameter 6 in., depth 65 ft, cased to 24 ft. INSTRUMENTATION.--Monthly measurement with chalked tape by U.S. Geological Survey personnel. DATUM.--Elevation of land-surface datum is 405 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.3 ft above land-surface datum. **PERIOD OF RECORD**.—September 1974 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 34.93 ft below land-surface datum, April 21, 1997; lowest, 60.96 ft below land-surface datum, Jan. 21, 1986 EXTREMES FOR CURRENT YEAR.--Highest water level, 45.31 ft below land-surface datum, Oct. 18; lowest, 50.50 ft below land-surface datum, Sept.18. #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 18 | 45.31 | DEC 18 | 47.22 | FEB 14 | 48.51 | APR 17 | 49.06 | JUN 20 | 49.15 | AUG 13 | 49.82 | | NOV 08 | 46.08 | JAN 17 | 47.97 | MAR 20 | 49.03 | MAY 21 | 48.93 | JUL 18 | 49.41 | SEP 18 | 50.50 | # 400242075484301. Local number, CH 2273. LOCATION.--Lat 40°02'42", long 75°48'43", Hydrologic Unit 02040205, at Culbertson Run Road and State Highway 82, West Brandywine Township. Owner: U. S. Geological Survey. AQUIFER .-- Felsic gneiss, amphibolite facies. WELL CHARACTERISTICS.--Drilled unused artesian observation well, diameter 6 in., depth 298 ft, cased to 45 ft.
INSTRUMENTATION.--Monthly measurement with chalked tape by U.S. Geological Survey personnel. DATUM.--Elevation of land-surface datum is 590 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of recorder platform, 4.55 ft above land-surface datum. **PERIOD OF RECORD.**-October 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 4.49 ft above land-surface datum, Dec. 19, 1996; lowest, 4.91 ft below land-surface datum, Sept. 18, 2002 EXTREMES FOR CURRENT YEAR.—Highest water level, 2.36 ft below land-surface datum, June 21; lowest, 4.91 ft below land-surface datum, Sept. 18. | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 17 | 2.56 | DEC 19 | 4.31 | FEB 14 | 3.98 | APR 18 | 3.57 | JUN 21 | 2.36 | AUG 14 | 2.98 | | NOV 09 | 3.56 | JAN 18 | 4.65 | MAR 21 | 4.00 | MAY 22 | 2.48 | JUL 18 | | SEP 18 | 4.91 | #### 400325075332501. Local number, CH 2313. LOCATION.--Lat 40°03'25", long 75°33'25", Hydrologic Unit 02040203, at Moores Road and Sidley Road, East Whiteland Township. Owner: Philadelphia Suburban Water Co. AQUIFER.--Elbrook limestone. WELL CHARACTERISTICS.--Drilled unused artesian observation well, diameter 8 to 20 in., depth 507 ft, cased to 22 ft with 20 in. diameter casing. INSTRUMENTATION.--Monthly measurement with chalked tape by U.S. Geological Survey personnel. DATUM.--Elevation of land-surface datum is 330 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of inner casing, 2.4 ft above land-surface datum. PERIOD OF RECORD.--April 1978 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 1.50 ft above land-surface datum, April 21, 1983; lowest, 21.65 ft below land-surface datum, Sept. 18, 2002 EXTREMES FOR CURRENT YEAR.--Highest water level, 14.24 ft below land-surface datum, Oct. 17; lowest, 21.65 ft below land-surface datum, Sept. 18. #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 17 | 14.24 | DEC 18 | 17.18 | FEB 14 | 18.62 | APR 17 | 19.18 | JUN 20 | 17.42 | AUG 13 | 20.21 | | NOV 08 | 15.58 | JAN 17 | 18.07 | MAR 20 | 19.15 | MAY 21 | 17.21 | JUL 18 | 19.13 | SEP 18 | 21.65 | # 400847075414701. Local number, CH 2328. **LOCATION.**--Lat 40°08'47", long 75°41'47", Hydrologic Unit 02040203, at Prizer Road, near Coventryville. Owner: U.S. Geological Survey. AQUIFER.--Graphitic felsic gneiss, granulite facies. WELL CHARACTERISTICS.--Drilled unused artesian observation well, diameter 6 in., depth 323 ft, cased to 98 ft. INSTRUMENTATION.--Monthly measurement with chalked tape by U.S. Geological Survey personnel. DATUM.--Elevation of land-surface datum is 452 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.5 ft above land-surface datum. PERIOD OF RECORD.--May 1975 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, .30 ft above land-surface datum, Dec. 18, 1996; lowest, 7.38 ft below land-surface datum, Sept. 19, 2002. EXTREMES FOR CURRENT YEAR.--Highest water level, 3.87 ft below land-surface datum, May 22; lowest, 7.38 ft below land-surface datum, Sept. 19. #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 17 | 4.66 | DEC 19 | 5.65 | FEB 15 | 5.37 | APR 18 | 4.83 | JUN 21 | 4.34 | AUG 14 | 6.51 | | NOV 09 | 5.15 | JAN 18 | 5.60 | MAR 21 | 4.77 | MAY 22 | 3.87 | JUL 19 | 5.31 | SEP 19 | 7.38 | # 400133075450001. Local number, CH 2456. LOCATION.--Lat 40°01'33", long 75°45'00", Hydrologic Unit 02040205, at State Highway 322, at Guthriesville. Owner: East Brandywine Baptist Church. AQUIFER.--Felsic gneiss, amphibolite facies. WELL CHARACTERISTICS.--Drilled unused observation well, diameter 6 in., depth 225 ft, cased to 33 ft. INSTRUMENTATION.--Monthly measurement with chalked tape by U.S. Geological Survey personnel. DATUM.--Elevation of land-surface datum is 560 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.9 ft above land-surface datum. **PERIOD OF RECORD.**--February 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 18.00 ft below land-surface datum, Jan. 22, 1996; lowest, 22.00 ft below land-surface datum, Jan. 21, 1986. EXTREMES FOR CURRENT YEAR.--Highest water level, 19.14 ft below land-surface datum, May 22; lowest, 20.62 ft below land-surface datum, Sept. 18. | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 17 | 20.01 | DEC 19 | 20.03 | FEB 14 | 19.65 | APR 18 | 19.50 | JUN 21 | 19.47 | AUG 14 | 20.13 | | NOV 09 | 20.41 | JAN 18 | 19.78 | MAR 21 | 19.41 | MAY 22 | 19.14 | JUL 18 | 19.73 | SEP 18 | 20.62 | #### 400039075335201. Local number, CH 2457. LOCATION.--Lat 40°00'39", long 75°33'52", Hydrologic Unit 02040202, at Upton Circle and Green Hill Road, at Hersheys Mill. Owner: Philadelphia Suburban Water Co. AQUIFER.--Wissahickon Formation. WELL CHARACTERISTICS.--Drilled unused observation well, diameter 6 in., depth 285 ft. INSTRUMENTATION.--Monthly measurement with chalked tape by U.S. Geological Survey personnel. DATUM.--Elevation of land-surface datum is 470 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.5 ft above land-surface datum. **PERIOD OF RECORD.**--February 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 10.35 ft below land-surface datum, Dec. 18, 1996; lowest, 26.08 ft below land-surface datum, Oct. 20, 1986. EXTREMES FOR CURRENT YEAR.--Highest water level, 20.87 ft below land-surface datum, May 21; lowest, 23.81 ft below land-surface datum, Sept. 18. #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 17 | 23.16 | DEC 18 | 23.53 | FEB 14 | 22.90 | APR 17 | 22.20 | JUN 20 | 21.11 | AUG 13 | 23.19 | | NOV 08 | 23.56 | JAN 17 | 23.32 | MAR 20 | 22.72 | MAY 21 | 20.87 | JUL 18 | 22.18 | SEP 18 | 23.81 | #### 400456075320301. Local number, CH 2561. LOCATION.--Lat 40°04'27", long 75°32'03", Hydrologic Unit 02040203, at Yellow Springs Road and State Highway 29, at Devault. Owner: Privately owned. AQUIFER.--Elbrook limestone. WELL CHARACTERISTICS.--Drilled unused observation well, diameter 6 in., depth 240 ft, cased to 229 ft. WELL CHARACTERISTICS.--Drilled unused observation well, diameter 6 in., depth 240 ft, cased to 229 ft. More and the state of s INSTRUMENTATION.--Monthly measurement with chalked tape by U.S. Geological Survey personnel. Monthly measurements for July to Sept. made with electric tape. DATUM.--Elevation of land-surface datum is 338 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 0.90 ft above land-surface datum. **PERIOD OF RECORD**.--January 1984 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 122.66 ft below land-surface datum, June 21, 1984; lowest, 178.32 ft below land-surface datum, Sept. 21, 1992 EXTREMES FOR CURRENT YEAR.--Highest water level, 152.62 ft below land-surface datum, June 20; lowest, 162.79 ft below land-surface datum, Mar. 20. #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 17 | 157.82 | DEC 18 | 158.52 | FEB 14 | 160.92 | APR 17 | 159.28 | JUN 20 | 152.62 | AUG 13 | 154.23 | | NOV 08 | 158.74 | JAN 17 | 160.49 | MAR 20 | 162.79 | MAY 21 | 153.36 | JUL 18 | 154.89 | SEP 19 | 155.28 | ### 395225075422001. Local number, CH 2584. LOCATION.--Lat 39°52'25", long 75°42'20", Hydrologic Unit 02040205, at Walnut Road near intersection of Rt. 926 near Willowdale. Owner: Privately owned. AQUIFER.--Cockeysville marble. WELL CHARACTERISTICS.--Drilled unused observation well, diameter 6 in. INSTRUMENTATION.--Monthly measurement with electric tape by U.S. Geological Survey personnel. DATUM.--Elevation of land-surface datum is 365 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 0.90 ft above land-surface datum. **PERIOD OF RECORD.**--April 2002 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level, 20.20 ft below land-surface datum, May 21, 2002; lowest, 24.66 ft below land-surface datum, Sept. 18, 2002 EXTREMÉS FOR CURRENT YEAR.--Highest water level, 20.20 ft below land-surface datum, May 21; lowest, 24.66 ft below land-surface datum, Sept. 18. #### ${\tt DEPTH\ BELOW\ LAND\ SURFACE\ (WATER\ LEVEL)\ (FEET),\ WATER\ YEAR\ OCTOBER\ 2001\ TO\ SEPTEMBER\ 2002\ SE$ INSTANTANEOUS VALUES | DATE | WATER
LEVEL | | |--------|----------------|--------|----------------|----------|----------------|-----------|----------------|--------|----------------|--------|----------------|--| | ADR 18 | 21 46 | MAY 21 | 20 20 | .TIIN 20 | 21 68 | .ттт. 1.8 | 22 14 | AUG 13 | 23 55 | SED 18 | 24 66 | | # 394624075444001. Local number, CH 2663. LOCATION.--Lat 39°46'24", long 75°44'40", Hydrologic
Unit 02040205, at Broad Run Road and Newark Road, New Garden Township. Owner: Privately owned. AQUIFER.--Cockeysville marble. WELL CHARACTERISTICS.--Drilled unused observation well, diameter 6 in., depth 150 ft. INSTRUMENTATION.--Monthly measurement with chalked tape by U.S. Geological Survey personnel. DATUM.--Elevation of land-surface datum is 220 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.20 ft above land-surface datum. Prior to May 21, 2001 measuring point was 1.30 ft above land-surface datum. PERIOD OF RECORD.--January 1984 to current year. EXTREMES FOR PERIOD OF RECORD.-Highest water level, 7.94 ft below land-surface datum, July 21, 1989; lowest, 11.67 ft below land-surface datum, July 18, 1985 EXTREMES FOR CURRENT YEAR.--Highest water level, 10.31 ft below land-surface datum, Mar. 20; lowest, 11.25 ft below land-surface datum, Sept. 18. #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 18 | 10.84 | DEC 18 | 10.92 | FEB 14 | 10.94 | APR 17 | 10.71 | JUN 20 | 10.62 | | NOV 08 | 10.89 | JAN 17 | 10.92 | MAR 20 | 10.31 | MAY 21 | 10.55 | SEP 18 | 11.25 | #### 400358075311301. Local number, CH 3289. LOCATION.--Lat 40°03'58", long 75°31'13", Hydrologic Unit 02040203, at Church Road, near Cedar Hollow. Owner: Warner Co. AQUIFER.--Elbrook limestone. WELL CHARACTERISTICS.--Drilled unused observation well, diameter 8 in., depth 202 ft, cased to 40 ft. INSTRUMENTATION.--Monthly measurement with chalked tape by U.S. Geological Survey personnel. DATUM.--Elevation of land-surface datum is 240 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.5 ft above land-surface datum. PERIOD OF RECORD.--May 1988 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 10.44 ft below land-surface datum, Dec. 18, 1996; lowest, 33.18 ft below land-surface datum, Sept. 19, 2002 EXTREMES FOR CURRENT YEAR.--Highest water level, 20.42 ft below land-surface datum, May 21; lowest, 33.18 ft below land-surface datum, Sept. 19. #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 17 | 30.06 | DEC 18 | 30.01 | FEB 14 | 27.45 | APR 17 | 22.77 | JUN 20 | 22.60 | AUG 13 | 29.43 | | NOV 08 | 30.22 | JAN 17 | 29.46 | MAR 20 | 25.82 | MAY 21 | 20.42 | JUL 18 | 26.39 | SEP 19 | 33.18 | # 395141075525401. Local number, CH 5422. LOCATION.--Lat 39°51'41", long 75°52'54", Hydrologic Unit 02060002, on Rt. 796 near intersection of Colton Drive at Daleville. Owner: Privately owned. AQUIFER.--Wissahickon schist. WELL CHARACTERISTICS.--Drilled unused irrigation well, diameter 6 in., depth 49.4 ft. INSTRUMENTATION.--Monthly measurement with electric tape by U.S. Geological Survey personnel. DATUM.--Elevation of land-surface datum is 619 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.4 ft above land-surface datum. **PERIOD OF RECORD.**--July 2000 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 17.37 ft below land-surface datum, Apr. 19, 2000; lowest, 26.38 ft below land-surface datum, Sept. 18, 2002 EXTREMES FOR CURRENT YEAR.--Highest water level, 23.35 ft below land-surface datum, Oct. 18; lowest, 26.38 ft below land-surface datum, Sept. 18. | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------| | OCT 18 | 23.35 | AUG 13 | 24.77 | SEP 18 | 26.38 | # 401405075400301. Local number, CH 6513. LOCATION.--Lat 40°14'05", long 75°40'03", Hydrologic Unit 02040203, at Laurelwood Road near Rt. 724 at Pottstown Landing. Owner: Privately owned. AQUIFER.--Brunswick Formation. WELL CHARACTERISTICS.--Drilled unused observation well, diameter 6 in. INSTRUMENTATION.--Monthly measurement with electric tape by U.S. Geological Survey personnel. DATUM.--Elevation of land-surface datum is 210 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.40 ft above land-surface datum. PERIOD OF RECORD.--January 2002 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 11.38 ft below land-surface datum, Jan. 18, 2002; lowest, 19.39 ft below land-surface datum, Feb. 15, 2002 EXTREMES FOR CURRENT YEAR.--Highest water level, 11.38 ft below land-surface datum, Jan. 18; lowest, 19.39 ft below land-surface datum, Feb. 15. #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | DATE | WATER
LEVEL | |------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|--------|----------------| | JAN 18
FEB 15 | 11.38
19.39 | MAR 21
APR 18 | 17.23
17.19 | MAY 22
JUN 21 | 14.64
15.66 | JUL 19
AUG 14 | 16.90
18.20 | SEP 19 | 19.22 | #### 395201075363001. Local number, CH 6516. LOCATION.--Lat 39°52'01", long 75°36'30", Hydrologic Unit 02040205, at Hillendale Road near Virginia Place near Chaddsford Junction. Owner: Privately owned. Owner: Privately owned. AQUIFER. --Felsic Gneiss, Hornblende-bearing. WELL CHARACTERISTICS.--Drilled unused observation well, diameter 6 in., depth 100 ft. INSTRUMENTATION.--Monthly measurement with electric tape by U.S. Geological Survey personnel. DATUM.--Elevation of land-surface datum is 295 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 0.20 ft above land-surface datum. PERIOD OF RECORD.--November 2001 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 3.32 ft below land-surface datum, Nov. 8, 2001; lowest, 7.75 ft below land-surface datum, Sept. 18, 2002 EXTREMES FOR CURRENT YEAR.--Highest water level, 3.32 ft below land-surface datum, Nov. 8; lowest, 7.75 ft below land-surface datum, Sept. 18. #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | DATE | WATER
LEVEL | |------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|--------|----------------| | NOV 08
DEC 18 | 3.32
4.52 | JAN 17
FEB 14 | 5.24
5.74 | MAR 20
APR 17 | 6.10
5.59 | MAY 21
JUN 20 | 6.06
5.98 | JUL 18
AUG 13 | 6.65
6.66 | SEP 18 | 7.75 | # 400247075532401. Local number, CH 6517. LOCATION.--Lat 40°02'47", long 75°53'24", Hydrologic Unit 02040205, at Telegraph Road near Sandy Hill Road west of Martins Corner. Owner: Privately owned. AQUIFER.--Chickies Quartzite. WELL CHARACTERISTICS.--Drilled unused irrigation well, diameter 6 in. INSTRUMENTATION.--Monthly measurement with electric tape by U.S. Geological Survey personnel. DATUM.--Elevation of land-surface datum is 940 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.20 ft above land-surface datum. **PERIOD OF RECORD.**--November 2001 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 68.15 ft below land-surface datum, Nov. 9, 2001; lowest, 74.82 ft below land-surface datum, Sept. 18, 200 EXTREMES FOR CURRENT YEAR.--Highest water level, 68.15 ft below land-surface datum, Nov. 9; lowest, 74.82 ft below land-surface datum, Sept. 18. | DATE | WATER
LEVEL | |------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|--------|----------------| | NOV 09
DEC 19 | 68.15
69.83 | JAN 18
FEB 14 | 71.02
72.05 | MAR 21
APR 18 | 73.05
73.49 | MAY 22
JUN 21 | 73.32
73.23 | JUL 18
AUG 14 | 73.32
73.87 | SEP 18 | 74.82 | #### 394903075581901. Local number, CH 6518. LOCATION.--Lat 39°49'03", long 75°58'19", Hydrologic Unit 02050306, at Wyncote Golf Club on Rt. 10 near Hayesville. Owner: Wyncote Golf Club. AQUIFER.--Peters Creek Schist. WELL CHARACTERISTICS.--Drilled unused observation well, diameter 4 in., depth 37 ft. INSTRUMENTATION.--Monthly measurement with electric tape by U.S. Geological Survey personnel. DATUM.--Elevation of land-surface datum is 545 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.0 ft above land-surface datum. **PERIOD OF RECORD.**--November 2001 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 24.27 ft below land-surface datum, May 21, 2002; lowest, 27.25 ft below land-surface datum, Sept. 18, 2002 EXTREMES FOR CURRENT YEAR.--Highest water level, 24.27 ft below land-surface datum, May 21; lowest, 27.25 ft below land-surface datum, Sept. 18. #### ${\tt DEPTH\ BELOW\ LAND\ SURFACE\ (WATER\ LEVEL)\ (FEET),\ WATER\ YEAR\ OCTOBER\ 2001\ TO\ SEPTEMBER\ 2002\ SE$ INSTANTANEOUS VALUES | DATE | WATER
LEVEL | |------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|--------|----------------| | NOV 08
DEC 18 | 25.52
25.91 | JAN 17
FEB 14 | 25.74
25.07 | MAR 20
APR 17 | 24.88
24.34 | MAY 21
JUN 20 | 24.27
24.90 | JUL 18
AUG 13 | 26.05
26.71 | SEP 18 | 27.25 | #### 395634075442601. Local number, CH 6519. LOCATION.--Lat 39°56'34", long 75°44'26", Hydrologic Unit 02040205, at Youngs Road near Stargazer Road east of Laurel. Owner: Privately owned. AQUIFER.--Peters Creek Schist. WELL
CHARACTERISTICS.--Drilled unused observation well, diameter 5 in., depth 400 ft. INSTRUMENTATION.--Monthly measurement with electric tape by U.S. Geological Survey personnel. DATUM.--Elevation of land-surface datum is 475 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 0.10 ft above land-surface datum. PERIOD OF RECORD.--January 2002 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 63.05 ft below land-surface datum, Aug. 14, 2002; lowest, 66.84 ft below land-surface datum, Feb. 15, 2002 EXTREMÉS FOR CURRENT YEAR.--Highest water level, 63.05 ft below land-surface datum, Aug. 14; lowest, 66.84 ft below land-surface datum, Feb. 15. | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | JAN 18 | 65.91
66.84 | MAR 21 | 66.05
64.02 | MAY 22 | 64.94 | JUL 19 | 63.14 | SEP 19 | 66.10 | # 395045075434701. Local number, CH 5172. (New Garden Township, Chester County, Spray Irrigation Project) LOCATION.--Lat 39°50'45", long 75°43'47", Hydrologic Unit 02040205, at Spray Irrigation Site in New Garden Township. Owner: New Garden Township Municipal Authority. AQUIFER.--Felsic Gneiss of Precambrian age. # WATER-LEVEL RECORDS WELL CHARACTERISTICS.--Drilled observation well, diameter 4 in., depth 125 ft, cased to 123 ft, closed end, screened from 96.5-121.5 ft. INSTRUMENTATION.--Electronic data logger with 60-minute recording interval. DATUM.--Elevation of land surface is 401.0 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of plywood shelf, 2.5 ft above landsurface datum. REMARKS.--In addition to the daily mean water levels shown below, daily maximum and minimum water levels, since May 1998, are also available from the District Office. Other data for this project are presented in tables on pages 318-328 and 426-435. **PERIOD OF RECORD.**—May 29, 1998 to current year. (discontinued) **EXTREMES FOR PERIOD OF RECORD.**—The extremes shown are extremes of the instantaneous depth below land surface for the period of record Highest water level, 31.05 ft below land-surface datum, May 21, 2000; lowest, 46.04 ft below land-surface datum, Jan. 13-15, 17, 18, 1999. EXTREMES FOR CURRENT YEAR.-Highest water level, 35.13 ft below land-surface datum, Oct. 9; lowest, 41.58 ft below land-surface datum, #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | |-------|----------------|-------|----------------|-------|----------------|--------|----------------| | OCT 9 | 35.13 | NOV 6 | 38.31 | DEC 3 | 40.29 | JAN 10 | 41.58 | # WATER-QUALITY RECORDS **REMARKS.**-- Samples collected with submersible pump from recovery water after well was pumped more than three casing volumes. **PERIOD OF RECORD.**--May 1998 to December 2001. (discontinued) | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | AGENCY
COL-
LECTING
SAMPLE
(CODE
NUMBER)
(00027) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | |-----------------------------|--|---|--|--|--|--|--|---|---| | OCT 2001
09 | 1000 | 9813 | 1028 | 2.5 | 7.9 | 219 | 12.3 | 25.7 | 5.05 | | 06 | 1000 | 9813 | 1028 | 2.8 | 8.0 | 218 | 12.2 | | | | 03 | 1200 | 9813 | 1028 | 3.6 | 7.9 | 168 | 12.6 | 26.2 | 5.20 | | Date | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | ANC WATER UNFLTRD IT FIELD (MG/L AS CACO3) (00419) | BROMIDE
DIS-
SOLVED
(MG/L
AS BR)
(71870) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLVED
(MG/L
AS SO4) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | | OCT 2001
09
NOV
06 | 4.03 | 7.35 | 55
48 | <.2 | 6.6 | <.20 | 19.4 | 37.7 | 146 | | DEC
03 | 4.19 | 6.66 | 48 | <.2 | 7.3 | <.20 | 18.8 | 38.3 | 178 | | Date | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | AMMONIA | NITRO-
GEN
DIS-
SOLVED
(MG/L
AS N)
(00602) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-PHOS-PHATE, DIS-SOLVED (MG/LAS P) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | | | OCT 2001
09
NOV | <.020 | | .70 | .57 | <.040 | <.010 | <.010 | <1.0 | | | 06
DEC | <.020 | <.020 | .59 | .52 | <.040 | .020 | <.010 | | | | 03 | <.020 | | .71 | .53 | <.040 | <.010 | <.010 | <1.0 | | # **395045075434701. Local number, CH 5172**--Continued | Date | ANTI-
MONY,
DIS-
SOLVED
(µG/L
AS SB)
(01095) | ARSENIC
DIS-
SOLVED
(µG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(µG/L
AS BA)
(01005) | BORON,
DIS-
SOLVED
(µG/L
AS B)
(01020) | CADMIUM
DIS-
SOLVED
(µG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(µG/L
AS CR)
(01030) | COPPER,
DIS-
SOLVED
(µG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(µG/L
AS FE)
(01046) | |------------------------------------|--|---|---|---|---|--|---|---| | OCT 2001
09
NOV
06
DEC | <2
 | <4.0 | 6.9 | <200 | <10 | <4 | <4 | <20 | | 03 | <2 | <4.0 | 7.7 | <200 | <10 | <4 | <4 | 40 | | Date | LEAD,
DIS-
SOLVED
(µG/L
AS PB)
(01049) | LITHIUM
DIS-
SOLVED
(µG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(μG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(μG/L
AS HG)
(71890) | NICKEL,
DIS-
SOLVED
(µG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(µG/L
AS SE)
(01145) | STRON-
TIUM,
DIS-
SOLVED
(µG/L
AS SR)
(01080) | ZINC,
DIS-
SOLVED
(µG/L
AS ZN)
(01090) | | OCT 2001
09
NOV | <1.0 | <20 | <10 | .21 | М | <7 | 130 | <10 | | 06
DEC | | | | | | | | | | 03 | | <20 | <10 | < .20 | <4.0 | <7 | 140 | <10 | # 395045075434702. Local number, CH 5173. (New Garden Township, Chester County, Spray Irrigation Project) LOCATION.--Lat 39°50'45", long 75°43'47", Hydrologic Unit 02040205, at Spray Irrigation Site in New Garden Township. Owner: New Garden Township Municipal Authority. AQUIFER.--Felsic Gneiss of Precambrian age. #### WATER-LEVEL RECORDS WELL CHARACTERISTICS.--Drilled observation well, diameter 2 in., depth 62 ft, cased to 62 ft, closed end, screened from 42-62 ft. INSTRUMENTATION.--Electronic data logger with 60-minute recording interval. DATUM.--Elevation of land surface is 401.6 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of plywood shelf, 1.9 ft above landsurface datum. REMARKS.--In addition to the daily mean water levels shown below, daily maximum and minimum water levels, since July 1998, are also available from the District Office. Other data for this project are presented in tables on pages 318-328 and 426-435. PERIOD OF RECORD.--July 31, 1998 to current year. (discontinued) **EXTREMES FOR PERIOD OF RECORD.**—The extremes shown are extremes of the instantaneous depth below land surface for the period of record Highest water level, 23.83 ft below land-surface datum, May 22, 2000; lowest, 36.81 ft below land-surface datum, Feb. 9, 1999. **EXTREMES FOR CURRENT YEAR.**—Highest water level, 28.74 ft below land-surface datum, Oct. 9; lowest, 33.58 ft below land-surface datum, #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | |-------|----------------|-------|----------------|-------|----------------|--------|----------------| | OCT 9 | 28.74 | NOV 6 | 31.01 | DEC 3 | 32.63 | JAN 10 | 33.58 | # WATER-QUALITY RECORDS **REMARKS.**-- Samples collected with disposable bailers from recovery water after well was bailed more than three times the casing volume. **PERIOD OF RECORD.**--May 1998 to December 2001. (discontinued) #### WATER-QUALITY DATA, OCTOBER 2001 TO DECEMBER 2001 PH | Date | Ti | | A- COI
ING LECT
PLE SAME | J- WHO
FING FIE
PLE (STA
DDE AF
BER) UNI | OLE (CLD (CLD (CLD (CLD (CLD (CLD (CLD (CLD | | ATU
WAT
(DEG | ER- DIS
RE SOI
ER (MG
C) AS | CIUM S
S- D
LVED SC
G/L (M |
MG) | |-----------------------------|--|-----------------------------------|--|--|---|-------------------------------|-------------------------------|--------------------------------------|--|--------------------------| | OCT 2001
09
NOV | | 00 981 | .3 102 | 28 6. | 0 | 109 | 13. | 2 12 | .3 3 | .34 | | 06
DEC | 11 | 00 981 | .3 102 | 28 6. | 1 | 141 | 12. | 3 - | | | | 03 | 11 | 00 981 | .3 102 | 28 6. | 1 | 107 | 13. | 0 15 | . 0 3 | .97 | | Date | DIS- | DIS-
SOLVED
(MG/L
AS NA) | ANC WATER UNFLTRD IT FIELD (MG/L AS CACO3) (00419) | DIS-
SOLVED
(MG/L
AS BR) | DIS-
SOLVE
(MG/I
AS CI | R1
ID S(
1 (N
1) AS | DIS-
DLVED
MG/L
S F) | (MG/L
AS
SIO2) | SULFATE
DIS-
SOLVED | DIS-
SOLVED
(MG/L) | | OCT 2001
09
NOV
06 | 3.61 | 7.23 | 34
14 | <.2 | 7.8 | • | <.20 | 19.9 | 27.5 | 108 | | 03 | 3.84 | 6.78 | 25 | <.2 | 7.6 | • | <.20 | 20.6 | 29.5 | 132 | | Date | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | AS N) | SOLVED | NITRATE
DIS-
SOLVED | GEN,
NITRIT
DIS-
SOLVE
(MG/I
AS N) | PH
TE PHO
ID SO
I (N | DIS-
DLVED
MG/L
S P) | PHATE,
DIS-
SOLVED | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | OCT 2001
09
NOV | <.020 | | 1.2 | .95 | <.040 |) . | .012 | .010 | <1.0 | | | 06
DEC | <.020 | <.020 | 1.1 | .89 | <.040 | | .019 | <.010 | | | | 03 | <.020 | | 1.2 | .91 | < .040 | | .015 | <.010 | <1.0 | | | | | | | | | | | | | | # **395045075434702.** Local number, CH 5173--Continued | Date | ANTI-
MONY,
DIS-
SOLVED
(µG/L
AS SB)
(01095) | ARSENIC
DIS-
SOLVED
(µG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(µG/L
AS BA)
(01005) | BORON,
DIS-
SOLVED
(µG/L
AS B)
(01020) | CADMIUM
DIS-
SOLVED
(µG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(µG/L
AS CR)
(01030) | COPPER,
DIS-
SOLVED
(µG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(µG/L
AS FE)
(01046) | |--|--|---|---|---|---|--|---|---| | OCT 2001
09
NOV
06
DEC
03 | <2

<2 | <4.0

<4.0 | 77.0

83.3 | <200

<200 | <10

<10 | <4

<4 | <4

<4 | <20

<20 | | Date | LEAD,
DIS-
SOLVED
(µG/L
AS PB)
(01049) | LITHIUM DIS- SOLVED (µG/L AS LI) (01130) | MANGA-
NESE,
DIS-
SOLVED
(μG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(µG/L
AS HG)
(71890) | NICKEL,
DIS-
SOLVED
(µG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(µG/L
AS SE)
(01145) | STRON-
TIUM,
DIS-
SOLVED
(µG/L
AS SR)
(01080) | ZINC,
DIS-
SOLVED
(µG/L
AS ZN)
(01090) | | OCT 2001
09
NOV
06
DEC | <1.0 | <20
 | 10 | <.20 | <4.0 | <7
 | 90 | 20 | | 03 | <1.0 | <20 | 20 | <.20 | <4.0 | <7 | 100 | 20 | # 395048075434701. Local number, CH 5174. (New Garden Township, Chester County, Spray Irrigation Project) LOCATION.--Lat 39°50'48", long 75°43'47", Hydrologic Unit 02040205, at Spray Irrigation Site in New Garden Township. Owner: New Garden Township Municipal Authority. AQUIFER.--Felsic Gneiss of Precambrian age. # WATER-LEVEL RECORDS WELL CHARACTERISTICS.--Drilled observation well, diameter 4 in., depth 99.4 ft, cased to 99 ft, closed end, screened from 79-99 ft. INSTRUMENTATION.--Electronic data logger with 60-minute recording interval. DATUM.--Elevation of land surface is 367.3 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of plywood shelf, 1.7 ft above landsurface datum. REMARKS.--In addition to the daily mean water levels shown below, daily maximum and minimum water levels, since July 1998, are also available from the District Office. Other data for this project are presented in tables on pages 318-328 and 426-435. PERIOD OF RECORD.--July 31, 1998 to current year. (discontinued) **EXTREMES FOR PERIOD OF RECORD.**—The extremes shown are extremes of the instantaneous depth below land surface for the period of record Highest water level, 20.83 ft below land-surface datum, May 19, 2000; lowest, 33.70 ft below land-surface datum, Jan. 1, 1999. EXTREMES FOR CURRENT YEAR.--Highest water level, 23.36 ft below land-surface datum, Oct. 11; lowest, 26.61 ft below land-surface datum, #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | |--------|----------------|-------|----------------|-------|----------------|--------|----------------| | OCT 11 | 23.36 | NOV 5 | 24.66 | DEC 3 | 25.84 | JAN 10 | 26.61 | # WATER-QUALITY RECORDS REMARKS.--Samples collected with submersible pump from recovery water after well was pumped dry. **PERIOD OF RECORD.**--May 1998 to December 2001. (discontinued) | Date | Time | LYZING
SAMPLE
(CODE
NUMBER) | SAMPLE
(CODE | SOLVED (MG/L) | (STAND-
ARD
UNITS) | DUCT-
ANCE
(µS/CM) | WATER
(DEG C) | SOLVED
(MG/L
AS CA) | (MG/L
AS MG) | |-----------------------|---|--|--|--------------------------------------|---|---|--|--|------------------------------------| | OCT 2001
11 | 1000 | 9813 | 1028 | 7 | 8.2 | 219 | 12.3 | 35.1 | 3.45 | | NOV | | | | | | | | | | | 05
DEC | 1200 | 9813 | 1028 | . 9 | 8.2 | 220 | 12.0 | | | | | 1500 | 9813 | 1028 | .3 | 8.2 | 167 | 12.1 | 33.0 | 3.48 | | Date | SIUM,
DIS-
SOLVED
(MG/L
AS K) | DIS-
SOLVED
(MG/L
AS NA) | ANC WATER UNFLTRD IT FIELD (MG/L AS CACO3) (00419) | DIS-
SOLVED
(MG/L
AS BR) | DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLVED
(MG/L
AS
SIO2) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | DEG. C
DIS-
SOLVED
(MG/L) | | OCT 2001
11
NOV | 2.62 | 4.32 | 60 | <.2 | 3.6 | <.20 | 14.7 | 29.0 | 150 | | 05 | | | 63 | | | | | | | | DEC
03 | 2.71 | 4.47 | 65 | <.2 | 3.6 | <.20 | 14.3 | 28.7 | 154 | | Date | AMMONIA DIS- SOLVED (MG/L AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | SOLVED
(MG/L | GEN, NITRATE DIS- SOLVED (MG/L AS N) | NITRITE
DIS-
SOLVED
(MG/L
AS N) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHATE,
DIS-
SOLVED
(MG/L
AS P) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | OCT 2001
11 | <.020 | | .11 | <.04 | <.040 | .013 | <.010 | <1.0 | | | NOV
05 | <.020 | <.020 | <.06 | <.04 | <.040 | .013 | <.010 | | | | DEC
03 | <.020 | | <.06 | <.04 | <.040 | <.010 | <.010 | <1.0 | | | | | | | | | | | | | # **395048075434701. Local number, CH 5174**--Continued | Date | ANTI-
MONY,
DIS-
SOLVED
(µG/L
AS SB)
(01095) | ARSENIC
DIS-
SOLVED
(µG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(µG/L
AS BA)
(01005) | BORON,
DIS-
SOLVED
(µG/L
AS B)
(01020) | CADMIUM
DIS-
SOLVED
(µG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(µG/L
AS CR)
(01030) | COPPER,
DIS-
SOLVED
(µG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(µG/L
AS FE)
(01046) | |--|--|---|---|---|---|--|---|---| | OCT 2001
11
NOV
05
DEC
03 | <2

<2 | <4.0

<4.0 | 16.7

17.2 | <200

<200 | <10

<10 | <4

<4 | <4

<4 | 40

60 | | Date | LEAD,
DIS-
SOLVED
(µG/L
AS PB)
(01049) | LITHIUM
DIS-
SOLVED
(µG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(µG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(µG/L
AS HG)
(71890) | NICKEL,
DIS-
SOLVED
(µG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(µG/L
AS SE)
(01145) | STRON-
TIUM,
DIS-
SOLVED
(µG/L
AS SR)
(01080) | ZINC,
DIS-
SOLVED
(µG/L
AS ZN)
(01090) | | OCT 2001
11
NOV
05
DEC
03 | <1.0

<1.0 | <20

<20 | 20

20 | <.20

<.20 | <4.0

<4.0 | <7

<7 | 60

60 | <10

<10 | | 03 | \1.U | \ 20 | 20 | <.20 | \I.U | < <i>1</i> | 00 | \10 | # 395048075434702. Local number, CH 5175 (New Garden Township, Chester County, Spray Irrigation Project) LOCATION.--Lat 39°50'48", long 75°43'47", Hydrologic Unit 02040205, at Spray Irrigation Site in New Garden Township. Owner: New Garden Township Municipal Authority.
AQUIFER.--Felsic Gneiss of Precambrian age. #### WATER-LEVEL RECORDS WELL CHARACTERISTICS.--Drilled observation well, diameter 2 in., depth 56.5 ft, cased to 56.5 ft, closed end, screened from 36.5-56.5 ft. INSTRUMENTATION.--Electronic data logger with 60-minute recording interval. DATUM.--Elevation of land surface is 367.7 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of plywood shelf, 1.5 ft above landsurface datum. REMARKS.--In addition to the daily mean water levels shown below, daily maximum and minimum water levels, since Sept. 1998, are also available from the District Office. Other data for this project are presented in tables on pages 318-328 and 426-435. **PERIOD OF RECORD**.—September 11, 1998 to current year. (discontinued) **EXTREMES FOR PERIOD OF RECORD.**—The extremes shown are extremes of the instantaneous depth below land surface for the period of record Highest water level, 8.65 ft below land-surface datum, May 19-21, 2000; lowest, 24.44 ft below land-surface datum, Jan. 13, 14, 1999. EXTREMES FOR CURRENT YEAR.--Highest water level, 13.42 ft below land-surface datum, Oct. 11; lowest, 18.79 ft below land-surface datum, #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | |--------|----------------|-------|----------------|-------|----------------|--------|----------------| | OCT 11 | 13.42 | NOV 5 | 15.50 | DEC 3 | 17.29 | JAN 10 | 18.79 | # WATER-QUALITY RECORDS REMARKS.-- Samples collected with disposable bailer from recovery water after well was bailed more than three casing volumes. Some values for "dissolved" parameters exceed values for the corresponding "total" parameter. These results are within the limits of analytical precision and methods. **PERIOD OF RECORD.**--May 1998 to December 2001. (discontinued) ΡН | Date | Ti | | A- COL
ING LECT
PLE SAME | L- WHO
FING FIE
PLE (STA
DDE AR
BER) UNI | OLE CI
CLD CO
AND- DU
CD AN
CTS) (µS | ICT- I
ICE I | | SOL
(MG
AS | CIUM SI
S- DI
LVED SOI
G/L (MG
CA) AS | MG) | |------------------------------------|----------------------------------|---|--|--|---|--|--|-------------------------|---|------------------------------------| | OCT 2001
11 | | .00 981 | 102 | 28 6. | 4 1 | 21 | 14.0 | 13. | 4 2. | 72 | | NOV
05 | 11 | .00 981 | 102 | 28 6. | 3 1 | 20 | 11.7 | - | | - | | DEC
03 | 16 | 00 981 | 102 | 28 6. | 4 1 | 20 | 12.3 | 12. | 6 2. | 52 | | Date | DIS-
SOLVED
(MG/L
AS K) | DIS-
SOLVED
(MG/L
AS NA) | ANC WATER UNFLTRD IT FIELD (MG/L AS CACO3) (00419) | DIS-
SOLVED
(MG/L
AS BR) | DIS-
SOLVED
(MG/L
AS CL) | DIS
SOLV
(MG/
AS F | , DIS
- SOI
ED (MC
L AS
) SIO | LVED
G/L
S
D2) | SOLVED | DEG. C
DIS-
SOLVED
(MG/L) | | OCT 2001
11
NOV
05
DEC | 1.56 | 5.37 | 29
23 | <.2 | 2.3 | <.2 | | .1 | 21.0 | 106 | | 03 | 1.47 | 4.92 | 27 | <.2 | 2.4 | <.2 | 19. | . 7 | 20.2 | 112 | | Date | SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | GEN
DIS-
SOLVED | NITRATE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | PHOS
PHORUS
DIS
SOLV
(MG/2
AS P | PHOS PHOS PHARE PH | G/L
P) | ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | OCT 2001
11 | <.020 | | 1.1 | .85 | <.040 | .03 | 7 .(| 035 | <1.0 | | | NOV
05
DEC | <.020 | <.020 | 2.3 | .86 | <.040 | .04 | 2 .0 | 035 | | | | 03 | <.020 | | 1.2 | .86 | <.040 | .03 | 7 .0 | 38 | <1.0 | | # **395048075434702.** Local number, CH 5175--Continued | Date | ANTI-
MONY,
DIS-
SOLVED
(µG/L
AS SB)
(01095) | ARSENIC
DIS-
SOLVED
(µG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(µG/L
AS BA)
(01005) | BORON,
DIS-
SOLVED
(µG/L
AS B)
(01020) | CADMIUM
DIS-
SOLVED
(µG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(µG/L
AS CR)
(01030) | COPPER,
DIS-
SOLVED
(µG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(µG/L
AS FE)
(01046) | |------------------------------------|--|---|---|---|---|--|---|---| | OCT 2001
11
NOV
05
DEC | <2
 | <4.0 | 36.4 | <200 | <10 | <4 | <4 | <20 | | 03 | <2 | <4.0 | 38.8 | <200 | <10 | <4 | <4 | <20 | | Date | LEAD,
DIS-
SOLVED
(µG/L
AS PB)
(01049) | LITHIUM
DIS-
SOLVED
(µG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(µG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(µG/L
AS HG)
(71890) | NICKEL,
DIS-
SOLVED
(µG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(µG/L
AS SE)
(01145) | STRON-
TIUM,
DIS-
SOLVED
(µG/L
AS SR)
(01080) | ZINC,
DIS-
SOLVED
(µG/L
AS ZN)
(01090) | | OCT 2001
11
NOV | <1.0 | 40 | <10 | <.20 | <4.0 | <7 | 60 | <10 | | 05
DEC | | | | | | | | | | 03 | <1.0 | <20 | <10 | <.20 | <4.0 | <7 | 50 | <10 | # 395052075434501. Local number, CH 5176 (New Garden Township, Chester County, Spray Irrigation Project) LOCATION.--Lat 39°50'52", long 75°43'45", Hydrologic Unit 02040205, at Spray Irrigation Site in New Garden Township. Owner: New Garden Township Municipal Authority. AQUIFER.--Felsic Gneiss of Precambrian age. #### WATER-LEVEL RECORDS WELL CHARACTERISTICS.--Drilled observation well, diameter 4 in., depth 89 ft, cased to 89 ft, closed end, screened from 69-89 ft. INSTRUMENTATION.--Electronic data logger with 60-minute recording interval. DATUM.--Elevation of land surface is 338.6 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of plywood shelf, 3.2 ft above landsurface datum. REMARKS.--In addition to the daily mean water levels shown below, daily maximum and minimum water levels, since July 1998, are also available from the District Office. Other data for this project are presented in tables on pages 318-328 and 426-435. PERIOD OF RECORD.--July 14, 1998 to current year. (discontinued) **EXTREMES FOR PERIOD OF RECORD.**—The extremes shown are extremes of the instantaneous depth below land surface for the period of record Highest water level, 7.83 ft below land-surface datum, Apr. 22, 2000; lowest, 13.47 ft below land-surface datum, Jan. 1-3, 1999. EXTREMES FOR CURRENT YEAR.-Highest water level, 9.69 ft below land-surface datum, Oct. 18; lowest, 10.59 ft below land-surface datum, #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | |--------|----------------|-------|----------------|-------|----------------|--------|----------------| | OCT 18 | 9.69 | NOV 7 | 10.15 | DEC 5 | 10.36 | JAN 10 | 10.59 | # WATER-QUALITY RECORDS **REMARKS.**-- Samples collected with submersible pump from recovery water after well was pumped more than three casing volumes. **PERIOD OF RECORD.**--June 1998 to December 2001. (discontinued) | Date | Time |
AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | SAMPLE
(CODE | SOLVED (MG/L) | (STAND-
ARD
UNITS) | ANCE (µS/CM) | ATURE | (MG/L
AS CA) | | |-----------------------|---|---|--|--------------------------------------|---|---|--|--|--------------------------| | OCT 2001
18 | 1000 | 9813 | 1028 | 1.7 | 6.8 | 525 | 12.3 | 65.2 | 9.86 | | NOV
07
DEC | 1300 | 9813 | 1028 | 2.4 | 6.7 | 516 | 12.4 | | | | | 1130 | 9813 | 1028 | | 6.7 | 500 | 12.5 | 67.7 | 10.1 | | Date | SIUM,
DIS-
SOLVED
(MG/L
AS K) | DIS-
SOLVED
(MG/L
AS NA) | ANC WATER UNFLTRD IT FIELD (MG/L AS CACO3) (00419) | DIS-
SOLVED
(MG/L
AS BR) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | (MG/L
AS
SIO2) | SULFATE
DIS-
SOLVED | DIS-
SOLVED
(MG/L) | | OCT 2001
18
NOV | 4.89 | 11.0 | 97 | <.2 | | | | 26.4 | 470 | | 07
DEC | | | 140 | | | | | | | | 05 | <1.00 | 10.8 | 102 | <.2 | 42.3 | <.20 | 27.8 | 27.3 | 492 | | Date | AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN
DIS-
SOLVED
(MG/L | GEN, NITRATE DIS- SOLVED (MG/L AS N) | NITRITE
DIS-
SOLVED
(MG/L
AS N) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHATE,
DIS-
SOLVED
(MG/L
AS P) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | | <.020 | | 17 | 16.2 | .310 | .018 | .010 | <1.0 | | | NOV
07
DEC | <.020 | <.020 | 16 | 14.7 | .300 | .016 | <.010 | | | | | <.020 | | 17 | 14.4 | .270 | .016 | .013 | <1.0 | | | | | | | | | | | | | # **395052075434501. Local number, CH 5176**--Continued | ANTI- MONY, DIS- SOLVED (µG/L AS SB) (01095) | ARSENIC
DIS-
SOLVED
(µG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(µG/L
AS BA)
(01005) | BORON,
DIS-
SOLVED
(µG/L
AS B)
(01020) | CADMIUM
DIS-
SOLVED
(µG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(µG/L
AS CR)
(01030) | COPPER,
DIS-
SOLVED
(µG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(µG/L
AS FE)
(01046) | |---|---|--|---|--|--|---|---| | <2

<2 | <4.0

<4.0 | 285

299 | <200

<200 | <10

<10 | < 4

< 4 | <4

<4 | 40

<20 | | LEAD,
DIS-
SOLVED
(µG/L
AS PB)
(01049) | LITHIUM DIS- SOLVED (µG/L AS LI) (01130) | MANGA-
NESE,
DIS-
SOLVED
(μG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(μG/L
AS HG)
(71890) | NICKEL,
DIS-
SOLVED
(µG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(µG/L
AS SE)
(01145) | STRON-
TIUM,
DIS-
SOLVED
(µG/L
AS SR)
(01080) | ZINC,
DIS-
SOLVED
(µG/L
AS ZN)
(01090) | | <1.0

<1.0 | <20

<20 | <10

<10 | .51 | <4.0

<4.0 | <7

<7 | 240

260 | 10

<10 | | | MONY, DIS- SOLVED (µG/L AS SB) (01095) <2 <2 LEAD, DIS- SOLVED (µG/L AS SB) (01049) <1.0 | MONY, DIS- SOLVED (μG/L AS SB) AS AS) (01095) (01000) <2 <4.0 <2 <4.0 LEAD, LITHIUM DIS- SOLVED (μG/L AS SB) AS AS) (01095) (01000) <1.0 <20 <1.0 <20 | MONY, DIS- DIS- SOLVED SOLVED (μG/L AS SB) AS AS) AS BA) (01095) (01000) (01005) <2 <4.0 285 <2 <4.0 299 LEAD, LITHIUM DIS- SOLVED SOLVED (μG/L AS PB) AS AS DA) LEAD, LITHIUM NESE, DIS- SOLVED SOLVED (μG/L AS PB) AS LI) AS MN) (01049) (01130) (01056) <1.0 <20 <10 | MONY, DIS- DIS- DIS- DIS- SOLVED SOLVED (μG/L (μG/L (μG/L AS SB) AS AS AS AS BA) AS B) (01095) (01000) (01005) (01020) | MONY, DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS- | MONY | MONY | # 395052075434502. Local number, CH 5177 (New Garden Township, Chester County, Spray Irrigation Project) LOCATION.--Lat 39°50'52", long 75°43'45", Hydrologic Unit 02040205, at Spray Irrigation Site in New Garden Township. Owner: New Garden Township Municipal Authority. AQUIFER.--Felsic Gneiss of Precambrian age. # WATER-LEVEL RECORDS WELL CHARACTERISTICS.--Drilled observation well, diameter 2 in., depth 35 ft, cased to 33 ft, closed end, screened from 23-33 ft. INSTRUMENTATION.--Electronic data logger with 60-minute recording interval. DATUM.--Elevation of land surface is 338.7 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of plywood shelf, 1.3 ft above landsurface datum. REMARKS.--In addition to the daily mean water levels shown below, daily maximum and minimum water levels, since August 1998, are also available from the District Office. Other data for this project are presented in tables on pages 318-328 and 426-435. **PERIOD OF RECORD.**—August 1, 1998 to current year. (discontinued) **EXTREMES FOR PERIOD OF RECORD.**—The extremes shown are extremes of the instantaneous depth below land surface for the period of record Highest water level, 2.58 ft below land-surface datum, Apr. 22, 2000; lowest, 10.71 ft below land-surface datum, Jan. 1-3, 1999. EXTREMES FOR CURRENT YEAR.--Highest water level, 4.64 ft below land-surface datum, Oct. 18; lowest, 6.16 ft below land-surface datum, Jan. 10. #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | |--------|----------------|-------|----------------|-------|----------------|--------|----------------| | OCT 18 | 4.64 | NOV 7 | 5.35 | DEC 5 | 5.68 | JAN 10 | 6.16 | #### WATER-QUALITY RECORDS **REMARKS.**-- Samples collected with submersible pump from recovery water after well was pumped more than three casing volumes. **PERIOD OF RECORD.**--June 1998 to December 2001. (discontinued) | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | AGENCY
COL-
LECTING
SAMPLE
(CODE
NUMBER)
(00027) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | |-----------------------|--|---|--|--|--|---|--|---|---| | OCT 2001
18
NOV | 1100 | 9813 | 1028 | 2.7 | 6.0 | 386 | 12.6 | 44.8 | 9.38 | | 07 | 1400 | 9813 | 1028 | 2.5 | 5.9 | 518 | 13.0 | | | | DEC
05 | 1030 | 9813 | 1028 | | 5.9 | 385 | 13.0 | 46.7 | 9.64 | | Date | (MG/L
AS K) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | IT
FIELD
(MG/L AS | DIS-
SOLVED
(MG/L
AS BR) | SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | | (MG/L) | | OCT 2001
18 | 2.07 | 11.2 | 56 | <.2 | 27.4 | <.20 | 23.1 | 62.5 | 350 | | NOV
07
DEC | | | 56 | | | | | | | | 05 | 2.15 | 11.1 | 62 | <.2 | 29.1 | <.20 | 23.3 | 62.3 | 292 | | Date | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | GEN, NITRITE DIS- SOLVED (MG/L AS N) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | OCT 2001
18
NOV | <.020 | | 7.6 | 6.75 | <.040 | .021 | .020 | 1.4 | | | 07 | <.020 | <.020 | 7.3 | 6.34 | <.040 | .023 | .015 | | | | DEC
05 | <.020 | | 7.0 | 6.16 | <.040 | .026 | .023 | 1.4 | | # **395052075434502. Local number, CH 5177**--Continued | Date | ANTI- MONY, DIS- SOLVED (µG/L AS SB) (01095) | ARSENIC
DIS-
SOLVED
(µG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(µG/L
AS BA)
(01005) | BORON,
DIS-
SOLVED
(µG/L
AS B)
(01020) | CADMIUM
DIS-
SOLVED
(µG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(µG/L
AS CR)
(01030) | COPPER,
DIS-
SOLVED
(µG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(µG/L
AS FE)
(01046) | |------------------------------------|---|---
---|---|---|--|--|---| | OCT 2001
18
NOV
07
DEC | <2 | <4.0 | 41.9 | <200 | <10 | <4 | <4 | <20 | | 05
Date | LEAD,
DIS-
SOLVED
(µG/L
AS PB)
(01049) | <4.0 LITHIUM DIS- SOLVED (µG/L AS LI) (01130) | MANGA-
NESE,
DIS-
SOLVED
(µG/L
AS MN)
(01056) | <200 MERCURY DIS- SOLVED (µG/L AS HG) (71890) | <10 NICKEL, DIS- SOLVED (µG/L AS NI) (01065) | SELE-
NIUM,
DIS-
SOLVED
(µG/L
AS SE)
(01145) | <pre><4 STRON- TIUM, DIS- SOLVED (µG/L AS SR) (01080)</pre> | <20 ZINC, DIS- SOLVED (µG/L AS ZN) (01090) | | OCT 2001
18
NOV
07
DEC | <1.0 | <20 | <10 | <.20 | <4.0 | <7 | 110 | <10
 | | 05 | <1.0 | <20 | <10 | < .20 | <4.0 | <7 | 110 | <10 | # 395049075434301. Local number, CH 5178 (New Garden Township, Chester County, Spray Irrigation Project) LOCATION.--Lat 39°50'49", long 75°43'43", Hydrologic Unit 02040205, at Spray Irrigation Site in New Garden Township. Owner: New Garden Township Municipal Authority. AQUIFER.--Felsic Gneiss of Precambrian age. #### WATER-LEVEL RECORDS WELL CHARACTERISTICS.--Drilled observation well, diameter 4 in., depth 89.9 ft, cased to 89 ft, closed end, screened from 69-89 ft. INSTRUMENTATION.--Electronic data logger with 60-minute recording interval. DATUM.--Elevation of land surface is 357.0 ft. above National Geodetic Vertical Datum of 1929. Measuring point: Top of plywood shelf, 1.5 ft above land-surface datum. REMARKS.--In addition to the daily mean water levels shown below, daily maximum and minimum water levels, since May 1998, are also available from the District Office. Other data for this project are presented in tables on pages 318-328 and 426-435. **PERIOD OF RECORD.**—May 23, 1998 to current year. (discontinued) **EXTREMES FOR PERIOD OF RECORD.**—The extremes shown are extremes of the instantaneous depth below land surface for the period of record Highest water level, 9.26 ft below land-surface datum, May 18, 2000; lowest, 23.01 ft below land-surface datum, Jan. 1, 2, 1999. EXTREMES FOR CURRENT YEAR.-Highest water level, 12.10 ft below land-surface datum, Oct. 9; lowest, 15.89 ft below land-surface datum, #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | | WATER | | WATER | | WATER | | WATER | |-------|-------|-------|-------|-------|-------|--------|-------| | DATE | LEVEL | DATE | LEVEL | DATE | LEVEL | DATE | LEVEL | | OCT 9 | 12.10 | NOV 5 | 13.68 | DEC 4 | 14.96 | JAN 10 | 15.89 | # WATER-QUALITY RECORDS **REMARKS.**-- Samples collected with submersible pump from recovery water after well was pumped more than three casing volumes. **PERIOD OF RECORD.**--May 1998 to December 2001. (discontinued) | | Date | Time | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | SAMPLE
(CODE | | (STAND-
ARD
UNITS) | ANCE (µS/CM) | (DEG C) | SOLVED
(MG/L | (MG/L
AS MG) | |--|-----------------------|---|---|--|--------------------------------------|--|---|----------------------------------|--|------------------------------------| | | OCT 2001
09 | 1530 | 9813 | 1028 | . 4 | 8.5 | 242 | 12.3 | 30.5 | 3.93 | | | NOV
05
DEC | 1400 | 9813 | 1028 | .7 | 8.3 | 239 | 12.2 | | | | | | 1330 | 9813 | 1028 | | 8.4 | 240 | 12.3 | 28.7 | 4.32 | | | Date | SIUM,
DIS-
SOLVED
(MG/L
AS K) | DIS-
SOLVED
(MG/L
AS NA) | ANC WATER UNFLTRD IT FIELD (MG/L AS CACO3) (00419) | DIS-
SOLVED
(MG/L
AS BR) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | AS
SIO2) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | DEG. C
DIS-
SOLVED
(MG/L) | | | OCT 2001
09
NOV | 6.22 | 8.26 | 66 | <.2 | 3.6 | <.20 | 13.6 | 47.6 | 158 | | | 05
DEC | | | 67 | | | | | | | | | 04 | 6.72 | 8.17 | 61 | <.2 | 3.6 | <.20 | 13.8 | 47.1 | 160 | | | Date | DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN
DIS-
SOLVED
(MG/L
AS N)
(00602) | GEN, NITRATE DIS- SOLVED (MG/L AS N) | DIS-
SOLVED
(MG/L
AS N) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P) | DIS-
SOLVED
(MG/L
AS P) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | | OCT 2001
09 | .040 | | <.06 | <.04 | <.040 | .015 | .011 | <1.0 | | | | NOV
05 | .030 | .030 | <.06 | < .04 | <.040 | .014 | <.010 | | | | | DEC
04 | <.020 | | .14 | <.04 | <.040 | <.010 | <.010 | <1.0 | | | | | | | | | | | | | | # **395049075434301. Local number, CH 5178**--Continued | Date | ANTI-
MONY,
DIS-
SOLVED
(µG/L
AS SB)
(01095) | ARSENIC
DIS-
SOLVED
(µG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(µG/L
AS BA)
(01005) | BORON,
DIS-
SOLVED
(µG/L
AS B)
(01020) | CADMIUM
DIS-
SOLVED
(µG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(µG/L
AS CR)
(01030) | COPPER,
DIS-
SOLVED
(µG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(µG/L
AS FE)
(01046) | |--|--|---|---|---|---|--|---|---| | OCT 2001
09
NOV
05
DEC
04 | <2

<2 | <4.0

<4.0 | 35.2

34.7 | <200

<200 | <10

<10 | <4

<4 | <4

<4 | 100

30 | | Date | LEAD,
DIS-
SOLVED
(µG/L
AS PB)
(01049) | LITHIUM DIS- SOLVED (µG/L AS LI) (01130) | MANGA-
NESE,
DIS-
SOLVED
(μG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(μG/L
AS HG)
(71890) | NICKEL,
DIS-
SOLVED
(µG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(µG/L
AS SE)
(01145) | STRON-
TIUM,
DIS-
SOLVED
(µG/L
AS SR)
(01080) | ZINC,
DIS-
SOLVED
(µG/L
AS ZN)
(01090) | | OCT 2001
09
NOV
05
DEC | <1.0 | <20 | 30 | <.20 | <4.0 | <7
 | 80 | <10 | | 04 | <1.0 | <20 | 20 | < .20 | <4.0 | <7 | 80 | <10 | #### 395049075434302. Local number, CH 5179 (New Garden Township, Chester County, Spray Irrigation Project) LOCATION.--Lat 39°50'49", long 75°43'43", Hydrologic Unit 02040205, at Spray Irrigation Site in New Garden Township. Owner: New Garden Township Municipal Authority. AQUIFER.--Felsic Gneiss of Precambrian age. #### WATER-LEVEL RECORDS WELL CHARACTERISTICS.--Drilled observation well, diameter 2 in., depth 39 ft, cased to 39 ft, closed end, screened from 24-39 ft. INSTRUMENTATION.--Electronic data logger with 60-minute recording interval. DATUM.--Elevation of land surface is 357.6 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of plywood shelf, 1.2 ft above landsurface datum. REMARKS.--In addition to the daily mean water levels shown below, daily maximum and minimum water levels, since August 1998, are also available from the District Office. Other data for this project are presented in tables on pages 318-328 and 426-435. PERIOD OF RECORD.--August 1, 1998 to current year. (discontinued) **EXTREMES FOR PERIOD OF RECORD.**—The extremes shown are extremes of the instantaneous depth below land surface for the period of record Highest water level, 4.56 ft below land-surface datum, July 6, 2000; lowest, 20.19 ft below land-surface datum, Jan. 5, 6, 1999. EXTREMES FOR CURRENT YEAR.--Highest water level, 8.08 ft below land-surface datum, Oct. 9; lowest, 13.30 ft below land-surface datum, #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | | WATER | | WATER | | WATER | | WATER | |-------|-------|-------|-------|-------|-------|--------|-------| | DATE | LEVEL | DATE | LEVEL | DATE | LEVEL | DATE | LEVEL | | ОСТ 9 | 8 08 | NOV 5 | 10 54 | DEC 4 | 12 17 | TAN 10 | 13 30 | #### WATER-QUALITY RECORDS **REMARKS.**-- Samples collected with submersible pump from recovery water after well was pumped more than three casing volumes. **PERIOD OF RECORD.**--May 1998 to December 2001. (discontinued) | Date | Time | ANA-
LYZING
SAMPLE
(CODE
NUMBER) | LECTING
SAMPLE
(CODE | SOLVED (MG/L) | (STAND-
ARD
UNITS) | ANCE (µS/CM) | WATER | DIS-
SOLVED
(MG/L
AS CA) | (MG/L
AS MG) | |-----------------------|---|--|--|---|--|---|----------------------------------|--|------------------------------------| | OCT 2001
09 | 1430 | 9813 | 1028 | 3.0 | 6.0 | 346 | 12.6 | 35.5 | 13.6 | | NOV
05
DEC | 1500 | 9813 | 1028 | 5.3 | 6.1 | 359 | 12.7 | | | | 04 | 1430 | 9813 | 1028 | | 6.0 | 316 | 13.1 | 34.0 | 13.3 | | Date | SIUM,
DIS-
SOLVED
(MG/L
AS K) | DIS-
SOLVED
(MG/L
AS NA) |
ANC WATER UNFLTRD IT FIELD (MG/L AS CACO3) (00419) | BROMIDE
DIS-
SOLVED
(MG/L
AS BR) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLVED
(MG/L
AS
SIO2) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | DEG. C
DIS-
SOLVED
(MG/L) | | OCT 2001
09
NOV | 3.04 | 6.31 | 57 | <.2 | 57.0 | <.20 | 14.3 | 21.8 | 262 | | 05
DEC | | | 40 | | | | | | | | 04 | 3.06 | 6.37 | 53 | <.2 | 60.7 | <.20 | 14.6 | 21.7 | 256 | | Date | DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN
DIS-
SOLVED
(MG/L
AS N)
(00602) | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | DIS-
SOLVED
(MG/L
AS N) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P) | DIS-
SOLVED
(MG/L
AS P) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | OCT 2001 | <.020 | | 1.9 | 1.67 | <.040 | .020 | .017 | <1.0 | | | NOV
05
DEC | <.020 | <.020 | 1.9 | 1.58 | <.040 | .022 | .015 | | | | | <.020 | | 1.8 | 1.54 | <.040 | .020 | .019 | <1.0 | | # 395049075434302. Local number, CH 5179--Continued | Date | ANTI- MONY, DIS- SOLVED (µG/L AS SB) (01095) | ARSENIC
DIS-
SOLVED
(µG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(µG/L
AS BA)
(01005) | BORON,
DIS-
SOLVED
(µG/L
AS B)
(01020) | CADMIUM
DIS-
SOLVED
(µG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(µG/L
AS CR)
(01030) | COPPER,
DIS-
SOLVED
(µG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(µG/L
AS FE)
(01046) | |--|---|---|---|---|---|--|---|---| | OCT 2001
09
NOV
05
DEC
04 | <2

<2 | <4.0

<4.0 | 149

161 | <200

<200 | <10

<10 | < 4

< 4 | <4

<4 | <20

<20 | | Date | LEAD,
DIS-
SOLVED
(µG/L
AS PB)
(01049) | LITHIUM
DIS-
SOLVED
(µG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(μG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(µG/L
AS HG)
(71890) | NICKEL,
DIS-
SOLVED
(µG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(µG/L
AS SE)
(01145) | STRON-
TIUM,
DIS-
SOLVED
(µG/L
AS SR)
(01080) | ZINC,
DIS-
SOLVED
(µG/L
AS ZN)
(01090) | | OCT 2001
09
NOV
05
DEC | <1.0 | <20 | <10 | <.20 | <4.0 | <7
 | 170
 | 10 | | 04 | <1.0 | <20 | <10 | <.20 | <4.0 | <7 | 180 | <10 | #### 395046075434401. Local number, CH 5180 (New Garden Township, Chester County, Spray Irrigation Project) LOCATION.--Lat 39°50'46", long 75°43'44", Hydrologic Unit 02040205, at Spray Irrigation Site in New Garden Township. Owner: New Garden Township Municipal Authority. AQUIFER.--Felsic Gneiss of Precambrian age. #### WATER-LEVEL RECORDS WELL CHARACTERISTICS.--Drilled observation well, diameter 4 in., depth 32 ft, cased to 30 ft, closed end, screened from 20-30 ft. INSTRUMENTATION.--Electronic data logger with 60-minute recording interval. DATUM.--Elevation of land surface is 400.9 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of plywood shelf, 1.3 ft above land-surface datum. REMARKS.--In addition to the daily mean water levels shown below, daily maximum and minimum water levels, since August 1999, are also available from the District Office. Other data for this project are presented in tables on pages 318-328 and 426-435. **PERIOD OF RECORD**.--August 9, 1999 to current year. (discontinued) **EXTREMES FOR PERIOD OF RECORD.**—The extremes shown are extremes of the instantaneous depth below land surface for the period of record Highest water level, 16.85 ft below land-surface datum, Sept. 21, 1999; lowest, 30.00 ft below land-surface datum, Mar. 26, 2001. EXTREMES FOR CURRENT YEAR.--Highest water level, 22.38 ft below land-surface datum, Oct. 9; lowest, 28.95 ft below land-surface datum, #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | |-------|----------------|-------|----------------|-------|----------------|--------|----------------| | OCT 9 | 22.38 | NOV 6 | 25.44 | DEC 5 | 27.72 | JAN 10 | 28.95 | ### WATER-QUALITY RECORDS REMARKS.--Samples collected with disposable bailer or a submersible pump from recovery water after well was bailed more than three casing volumes. Some values for "dissolved" parameters exceed values for the corresponding "total" parameter. These results are within the limits of analytical precision and methods. **PERIOD OF RECORD.**—June 1999 to December 2001. (discontinued) | Date | Time | NUMBER) | SAMPLE
(CODE
NUMBER) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | (STAND-
ARD
UNITS) | DUCT-
ANCE
(µS/CM) | TEMPER-
ATURE
WATER
(DEG C) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | (MG/L | |----------------|---|--|---|--|--------------------------------------|---|--------------------------------------|---|------------------------------------| | OCT 2001
11 | 1500 | 9813 | 1028 | 2.2 | 5.7 | 389 | 12.8 | 34.8 | 20.7 | | 06
DEC | 1400 | 9813 | 1028 | 3.4 | 5.8 | 400 | 13.0 | | | | 05 | 1330 | 9813 | 1028 | | 5.7 | 417 | 14.2 | 34.1 | 19.0 | | Date | (MG/L
AS K) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | IT
FIELD
(MG/L AS
CACO3) | AS BR) | DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLVED
(MG/L
AS
SIO2) | | DEG. C
DIS-
SOLVED
(MG/L) | | OCT 2001 | 2 54 | C 43 | 2.0 | . 0 | 70 O | . 20 | 0.06 | 26.0 | 200 | | 11
NOV | | 6.41 | 30 | | | | 8.26 | 26.0 | 328 | | 06
DEC | | | 32 | | | | | | | | 05 | 3.25 | 6.41 | 28 | <.2 | 74.1 | <.20 | 9.16 | 25.8 | 282 | | Date | AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | GEN, NITRITE DIS- SOLVED (MG/L AS N) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P) | DIS-
SOLVED
(MG/L
AS P) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | OCT 2001
11 | .200 | | 3.2 | 2.86 | <.040 | .031 | .027 | 1.5 | | | 06 | .520 | .390 | 4.7 | 3.68 | <.040 | .056 | .044 | | | | DEC
05 | 1.08 | | 5.0 | 2.76 | <.040 | .137 | .248 | 3.2 | | # **395046075434401. Local number, CH 5180**--Continued | Date | ANTI-
MONY,
DIS-
SOLVED
(µG/L
AS SB)
(01095) | ARSENIC
DIS-
SOLVED
(µG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(µG/L
AS BA)
(01005) | BORON,
DIS-
SOLVED
(µG/L
AS B)
(01020) | CADMIUM
DIS-
SOLVED
(µG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(µG/L
AS CR)
(01030) | COPPER,
DIS-
SOLVED
(µG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(µG/L
AS FE)
(01046) | |--|--|---|---|---|---|--|---|---| | OCT 2001
11
NOV
06
DEC
05 | <2

<2 | <4.0

<4.0 | 124

138 | <200

<200 | <10

<10 | <4

<4 | <4

<4 | 70

110 | | Date | LEAD,
DIS-
SOLVED
(µG/L
AS PB)
(01049) | LITHIUM
DIS-
SOLVED
(µG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(μG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(μG/L
AS HG)
(71890) | NICKEL,
DIS-
SOLVED
(µG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(µG/L
AS SE)
(01145) | STRON-
TIUM,
DIS-
SOLVED
(µG/L
AS SR)
(01080) | ZINC,
DIS-
SOLVED
(µG/L
AS ZN)
(01090) | | OCT 2001
11
NOV
06 | <1.0 | 30 | <10 | <.20 | <4.0 | <7
 | 200 | 60 | | DEC
05 | <1.0 | <20 | 10 | <.20 | M | <7 | 240 | 240 | #### 395052075434201. Local number, CH 5181 (New Garden Township, Chester County, Spray Irrigation Project) LOCATION.--Lat 39°50'52", long 75°43'42", Hydrologic Unit 02040205, at Spray Irrigation Site in New Garden Township. Owner: New Garden Township Municipal Authority. **AQUIFER**.--Felsic Gneiss of Precambrian age. #### WATER-LEVEL RECORDS WELL CHARACTERISTICS.--Drilled observation well, diameter 4 in., depth 40 ft, cased to 40 ft, closed end, screened from 30-40 ft. INSTRUMENTATION.--Electronic data logger with 60-minute recording interval. DATUM.--Elevation of land surface is 336.5 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of plywood shelf, 2.25 ft above land-surface datum. REMARKS.—In addition to the daily mean water levels shown below, daily maximum and minimum water levels, since July 1998, are also available from the
District Office. Other data for this project are presented in tables on pages 318-328 and 426-435. PERIOD OF RECORD.—July 14, 1998 to current year. (discontinued) EXTREMES FOR PERIOD OF RECORD .- The extremes shown are extremes of the instantaneous depth below land surface for the period of record Highest water level, 3.11 ft below land-surface datum, Mar. 28, 2000; lowest, 11.54 ft below land-surface datum, Jan. 1-3, 1999. EXTREMES FOR CURRENT YEAR.--Highest water level, 6.64 ft below land-surface datum, Oct. 11; lowest, 7.66 ft below land-surface datum, Jan. 10. #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | DATE | WATER | DATE | WATER | DATE | WATER | DATE | WATER | |--------|-------|-------|-------|-------|-------|--------|-------| | | | 21112 | | | | 21112 | LEVEL | | OCT 11 | 6.64 | NOV 6 | 7.16 | DEC 4 | 7.52 | JAN 10 | 7.66 | #### WATER-QUALITY RECORDS **REMARKS.**-- Samples collected with submersible pump from recovery water after well was pumped dry. **PERIOD OF RECORD.**--June 1998 to December 2001. (discontinued) | Date | Time | NUMBER) | | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | ARD
UNITS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM) | | SOLVED
(MG/L
AS CA) | (MG/L | |-----------------------------|----------------------------------|--|---|--|--------------------------------------|---|--|--|------------------------------------| | OCT 2001
11 | 1300 | 9813 | 1028 | .7 | 6.6 | 241 | 12.8 | 27.3 | 6.19 | | NOV
06 | 1300 | 9813 | 1028 | 1.1 | 6.7 | 240 | 12.5 | | | | DEC
04 | 1230 | 9813 | 1028 | | 6.7 | 238 | 12.8 | 25.6 | 6.39 | | Date | DIS-
SOLVED
(MG/L
AS K) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | IT
FIELD
(MG/L AS
CACO3) | DIS-
SOLVED
(MG/L
AS BR) | DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | DEG. C
DIS-
SOLVED
(MG/L) | | OCT 2001
11
NOV
06 | 5.38 | 8.73 | 55
59 | <.2 | 6.7 | <.20 | 16.8 | 34.1 | 162 | | DEC 04 | 5.09 | 7.59 | 62 | <.2 | 7.0 | <.20 | 15.7 | 31.9 | 174 | | Date | SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA | GEN
DIS-
SOLVED
(MG/L
AS N) | NITRATE
DIS-
SOLVED
(MG/L
AS N) | GEN, NITRITE DIS- SOLVED (MG/L AS N) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHATE,
DIS-
SOLVED
(MG/L
AS P) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | OCT 2001
11
NOV | .020 | | 3.3 | 3.11 | <.040 | <.010 | <.010 | <1.0 | | | 06 | .030 | .020 | 3.5 | 2.91 | <.040 | <.010 | <.010 | | | | DEC
04 | .020 | | 3.0 | 2.67 | <.040 | <.010 | <.010 | <1.0 | | # **395052075434201. Local number, CH 5181**--Continued | Date | ANTI-
MONY,
DIS-
SOLVED
(µG/L
AS SB)
(01095) | ARSENIC
DIS-
SOLVED
(µG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(µG/L
AS BA)
(01005) | BORON,
DIS-
SOLVED
(µG/L
AS B)
(01020) | CADMIUM
DIS-
SOLVED
(µG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(µG/L
AS CR)
(01030) | COPPER,
DIS-
SOLVED
(µG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(µG/L
AS FE)
(01046) | |--|--|---|---|---|---|--|---|---| | OCT 2001
11
NOV
06
DEC
04 | <2

<2 | <4.0

<4.0 | 65.5

67.2 | <200

<200 | <10

<10 | <4

<4 | 30

110 | 60

80 | | Date | LEAD,
DIS-
SOLVED
(µG/L
AS PB)
(01049) | LITHIUM
DIS-
SOLVED
(µG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(µG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(µG/L
AS HG)
(71890) | NICKEL,
DIS-
SOLVED
(µG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(µG/L
AS SE)
(01145) | STRON-
TIUM,
DIS-
SOLVED
(µG/L
AS SR)
(01080) | ZINC,
DIS-
SOLVED
(µG/L
AS ZN)
(01090) | | OCT 2001
11
NOV
06 | М | 30 | 40 | <.20 | <4.0 | <7 | 100 | 260 | | DEC
04 | М | <20 | 50 | <.20 | <4.0 | <7 | 110 | 950 | #### 395043075440701. Local number, CH 5182 (New Garden Township, Chester County, Spray Irrigation Project) LOCATION.--Lat 39°50'43", long 75°44'07", Hydrologic Unit 02040205, at Spray Irrigation Site in New Garden Township. Owner: New Garden Township Municipal Authority. AQUIFER.--Felsic Gneiss of Precambrian age. #### WATER-LEVEL RECORDS WELL CHARACTERISTICS.--Drilled observation well, diameter 4 in., depth 195 ft, cased to 195 ft, closed end, screened from 165-195 ft. INSTRUMENTATION.--Electronic data logger with 60-minute recording interval. DATUM.--Elevation of land surface is 381.9 ft.above National Geodetic Vertical Datum of 1929. Measuring point: Top of plywood shelf, 1.1 ft above land-surface datum. REMARKS.--In addition to the daily mean water levels shown below, daily maximum and minimum water levels, since June 1998, are also available from the District Office. Other data for this project are presented in tables on pages 318-328 and 426-435. **PERIOD OF RECORD**.--June 24, 1998 to current year. (discontinued) EXTREMES FOR PERIOD OF RECORD.--The extremes shown are extremes of the daily maximum depth below land surface for the period of record Highest water level, 16.36 ft below land-surface datum, Aug. 30, 2000; lowest, 25.77 ft below land-surface datum, Mar. 19, 20, 22, 29-31, 1999. EXTREMES FOR CURRENT YEAR.--Highest water level, 21.13 ft below land-surface datum, Oct. 10; lowest, 24.22 ft below land-surface datum, #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | | WATER | | WATER | | WATER | | WATER | |--------|-------|-------|-------|-------|-------|--------|-------| | DATE | LEVEL | DATE | LEVEL | DATE | LEVEL | DATE | LEVEL | | OCT 10 | 21.13 | NOV 5 | 21.58 | DEC 4 | 22.08 | JAN 10 | 24.22 | #### WATER-QUALITY RECORDS **REMARKS.**-- Samples collected with submersible pump from recovery water after well was pumped more than three casing volumes. **PERIOD OF RECORD.**--June 1998 to December 2001. (discontinued) | Date | Time | LYZING
SAMPLE
(CODE
NUMBER) | SAMPLE
(CODE | SOLVED (MG/L) | (STAND-
ARD
UNITS) | ANCE (µS/CM) | WATER
(DEG C) | SOLVED
(MG/L
AS CA) | (MG/L
AS MG) | |-----------------------|---|--|---|--------------------------------------|---|---|-----------------------------------|--|------------------------------------| | OCT 2001
10 | 1100 | 9813 | 1028 | . 6 | 8.3 | 190 | 13.3 | 29.3 | 3.51 | | NOV | | | | | | | | | | | 07
DEC | 1130 | 9813 | 1028 | . 6 | 8.4 | 190 | 12.1 | | | | 04 | 1100 | 9813 | 1028 | | 8.3 | 215 | 12.3 | 28.8 | .02 | | Date | SIUM,
DIS-
SOLVED
(MG/L
AS K) | DIS-
SOLVED
(MG/L
AS NA) | ANC
WATER
UNFLTRD
IT
FIELD
(MG/L AS
CACO3)
(00419) | DIS-
SOLVED
(MG/L
AS BR) | DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLVED
(MG/L
AS
SIO2) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | DEG. C
DIS-
SOLVED
(MG/L) | | OCT 2001
10
NOV | 2.60 | 4.38 | 73 | <.2 | 3.3 | <.20 | 16.8 | 14.0 | 140 | | 07 | | | 77 | | | | | | | | DEC
04 | 2.57 | 4.22 | 93 | <.2 | 3.6 | <.20 | 16.3 | 14.4 | 124 | | Date | AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | SOLVED
(MG/L | GEN, NITRATE DIS- SOLVED (MG/L AS N) | NITRITE
DIS-
SOLVED
(MG/L
AS N) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHATE,
DIS-
SOLVED
(MG/L | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | OCT 2001
10 | <.020 | | .27 | <.04 | <.040 | <.010 | <.010 | <1.0 | | | NOV
07 | <.020 | <.020 | <.06 | <.04 | <.040 | .010 | <.010 | | | | DEC
04 | <.020 | | .12 | <.04 | <.040 | <.010 | <.010 | <1.0 | | | | | | | | | | | | | # **395043075440701. Local number, CH 5182**--Continued | Date | ANTI-
MONY,
DIS-
SOLVED
(µG/L
AS SB)
(01095) | ARSENIC
DIS-
SOLVED
(µG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(µG/L
AS BA)
(01005) | BORON,
DIS-
SOLVED
(µG/L
AS B)
(01020) | CADMIUM
DIS-
SOLVED
(µG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(µG/L
AS CR)
(01030) | COPPER,
DIS-
SOLVED
(µG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(µG/L
AS FE)
(01046) | |-----------------------------|--|---|---|---|---|--
---|---| | OCT 2001
10
NOV
07 | <2
 | <4.0 | 11.7 | <200 | <10 | <4 | <4
 | 50
 | | 04 | <2 | <4.0 | 11.8 | <200 | <10 | <4 | <4 | 60 | | Date | LEAD,
DIS-
SOLVED
(µG/L
AS PB)
(01049) | LITHIUM
DIS-
SOLVED
(µG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(μG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(µG/L
AS HG)
(71890) | NICKEL,
DIS-
SOLVED
(µG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(µG/L
AS SE)
(01145) | STRON-
TIUM,
DIS-
SOLVED
(µG/L
AS SR)
(01080) | ZINC,
DIS-
SOLVED
(µG/L
AS ZN)
(01090) | | OCT 2001
10
NOV | <1.0 | <20 | 20 | <.20 | <4.0 | <7 | 60 | <10 | | 07
DEC | | | | | | | | | | 04 | <1.0 | <20 | 20 | <.20 | <4.0 | <7 | 60 | <10 | #### 395043075440702. Local number, CH 5183 (New Garden Township, Chester County, Spray Irrigation Project) LOCATION.--Lat 39°50'43", long 75°44'07", Hydrologic Unit 02040205, at Spray Irrigation Site in New Garden Township. Owner: New Garden Township Municipal Authority. AQUIFER.--Felsic Gneiss of Precambrian age. #### WATER-LEVEL RECORDS WELL CHARACTERISTICS.--Drilled observation well, diameter 4 in., depth 90 ft, cased to 90 ft, closed end, screened from 70-90 ft. INSTRUMENTATION.--Electronic data logger with 60-minute recording interval. DATUM.--Elevation of land surface is 381.5 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of plywood shelf, 1.95 ft above land-surface datum. REMARKS.--In addition to the daily mean water levels shown below, daily maximum and minimum water levels, since May 1998, are also available from the District Office. Other data for this project are presented in tables on pages 318-328 and 426-435. **PERIOD OF RECORD.**—May 30, 1998 to current year. (discontinued) **EXTREMES FOR PERIOD OF RECORD.**—The extremes shown are extremes of the instantaneous depth below land-surface for the period of record Highest water level, 17.29 ft below land-surface datum, Sept. 2-4, 2000; lowest, 26.72 ft below land-surface datum, Mar. 30, 31, Apr. 2, 3, 5, 6, 1999. **EXTREMES FOR CURRENT YEAR**.--Highest water level, 21.63 ft below land-surface datum, Jan. 10; lowest, 22.98 ft below land-surface datum, #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | |--------|----------------|-------|----------------|-------|----------------|--------|----------------| | OCT 10 | 22.05 | NOV 5 | 22.48 | DEC 4 | 22.98 | JAN 10 | 21.63 | #### WATER-QUALITY RECORDS **REMARKS.**-- Samples collected with submersible pump from recovery water after well was pumped more than three casing volumes. **PERIOD OF RECORD.**--May 1998 to December 2001. (discontinued) | Date | Time | LYZING
SAMPLE
(CODE
NUMBER) | SAMPLE
(CODE | SOLVED (MG/L) | (STAND-
ARD
UNITS) | ANCE (µS/CM) | | | (MG/L
AS MG) | |-----------------------|---|--|--|--------------------------------------|---|---|--|--|--------------------------| | OCT 2001
10 | 1030 | 9813 | 1028 | 2.3 | 7.0 | 213 | 12.8 | 32.4 | 3.95 | | NOV
07 | 1030 | 9813 | 1028 | 3.3 | 7.0 | 212 | 12.3 | | | | DEC 04 | 1030 | 9813 | 1028 | 6.8 | 7.1 | 215 | 12.1 | 31.5 | 4.15 | | Date | SIUM,
DIS-
SOLVED
(MG/L
AS K) | DIS-
SOLVED
(MG/L
AS NA) | ANC WATER UNFLTRD IT FIELD (MG/L AS CACO3) (00419) | DIS-
SOLVED
(MG/L
AS BR) | DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLVED
(MG/L
AS
SIO2) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | DIS-
SOLVED
(MG/L) | | OCT 2001
10
NOV | 2.10 | 4.72 | 73 | <.2 | 7.3 | <.20 | 21.8 | 3.5 | 138 | | 07
DEC | | | 90 | | | | | | | | 04 | 2.08 | 4.66 | 84 | <.2 | 7.5 | <.20 | 21.8 | 3.2 | 136 | | Date | DIS-
SOLVED | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN
DIS-
SOLVED
(MG/L | GEN, NITRATE DIS- SOLVED (MG/L AS N) | NITRITE
DIS-
SOLVED
(MG/L
AS N) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHATE,
DIS-
SOLVED
(MG/L
AS P) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | OCT 2001
10 | <.020 | | 3.8 | 3.47 | <.040 | .019 | .014 | <1.0 | | | NOV
07 | <.020 | <.020 | 4.0 | 3.50 | <.040 | .016 | <.010 | | | | DEC
04 | <.020 | | 3.8 | 3.43 | <.040 | .017 | .012 | <1.0 | | | | | | | | | | | | | # **395043075440702.** Local number, CH 5183--Continued | Date | ANTI-
MONY,
DIS-
SOLVED
(µG/L
AS SB)
(01095) | ARSENIC
DIS-
SOLVED
(µG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(µG/L
AS BA)
(01005) | BORON,
DIS-
SOLVED
(µG/L
AS B)
(01020) | CADMIUM
DIS-
SOLVED
(µG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(µG/L
AS CR)
(01030) | COPPER,
DIS-
SOLVED
(µG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(µG/L
AS FE)
(01046) | |--|--|---|---|---|---|--|---|---| | OCT 2001
10
NOV
07
DEC
04 | <2

<2 | <4.0

<4.0 | 56.0

58.1 | <200

<200 | <10

<10 | <4

<4 | <4

<4 | <20

<20 | | Date | LEAD,
DIS-
SOLVED
(µG/L
AS PB)
(01049) | LITHIUM DIS- SOLVED (µG/L AS LI) (01130) | MANGA-
NESE,
DIS-
SOLVED
(µG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(μG/L
AS HG)
(71890) | NICKEL,
DIS-
SOLVED
(µG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(µG/L
AS SE)
(01145) | STRON-
TIUM,
DIS-
SOLVED
(µG/L
AS SR)
(01080) | ZINC,
DIS-
SOLVED
(µG/L
AS ZN)
(01090) | | OCT 2001
10
NOV
07 | <1.0 | <20 | <10 | <.20 | <4.0 | <7
 | 90 | <10 | | 04 | <1.0 | <20 | <10 | <.20 | <4.0 | <7 | 90 | <10 | #### 395100075434601. Local number, CH 5721 (New Garden Township, Chester County, Spray Irrigation Project) LOCATION.--Lat 39°51'00", long 75°43'46", Hydrologic Unit 02040205, at Spray Irrigation Site in New Garden Township. Owner: New Garden Township Municipal Authority. AQUIFER.--Felsic Gneiss of Precambrian age. WELL CHARACTERISTICS.--Drilled observation well, diameter 2 in., depth 101 ft, cased to 101 ft, closed end, screened from 91-101 ft. INSTRUMENTATION.--Electronic data logger with 60-minute recording interval. DATUM.--Elevation of land surface is 314.5 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of steel casing, 2.2 ft above landsurface datum. REMARKS.--In addition to the daily mean water levels shown below, daily maximum and minimum water levels, since August 1999, are also available from the District Office. Other data for this project are presented in tables on pages 318-328 and 426-435. **PERIOD OF RECORD.**--August 6, 1999 to current year. (discontinued) EXTREMES FOR PERIOD OF RECORD.--The extremes shown are extremes of the instantaneous depth below land-surface for the period of record indicated above. Highest water level, 20.95 ft below land-surface datum, April 4, 2000; lowest, 24.90 ft below land-surface datum, January 10, 2002. EXTREMES FOR CURRENT YEAR.--Highest water level, 24.20 ft below land-surface datum, Oct. 10; lowest, 24.90 ft below land-surface datum, Jan. 10. #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | |--------|----------------|-------|----------------|-------|----------------|--------|----------------| | OCT 10 | 24 20 | NOV 6 | 24 55 | DEC 6 | 24 82 | TAN 10 | 24 90 | #### 395100075434602. Local number, CH 5722 (New Garden Township, Chester County, Spray Irrigation Project) LOCATION.--Lat 39°51'00", long 75°43'46", Hydrologic Unit 02040205, at Spray Irrigation Site in New Garden Township. Owner: New Garden Township Municipal Authority. AOUIFER.--Felsic Gneiss of Precambrian age. **WELL CHARACTERISTICS.**—Drilled observation well, diameter 2 in., depth 42 ft, cased to 42 ft, screened from 25-42 ft. INSTRUMENTATION.--Electronic data logger with 60-minute recording interval. DATUM.--Elevation of land surface is 314.2 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of steel casing, 1.8 ft above landsurface datum. REMARKS.--In addition to the daily mean water levels shown below, daily maximum and minimum water levels, since November 1999, are also available from the District Office. Other data for this project are presented in tables on pages 318-328 and 426-435. **PERIOD OF RECORD.**—November 9, 1999 to current year. (discontinued) EXTREMES FOR PERIOD OF RECORD. -- The extremes shown are extremes of the instantaneous depth below land-surface for the period of record indicated above. Highest water level, 21.10 ft below land-surface datum, July 26, 27, 2000; lowest, 24.04 ft below land-surface datum, January 10, 2002. EXTREMES FOR CURRENT YEAR.--Highest water level, 23.32 ft below
land-surface datum, Oct. 18; lowest, 24.04 ft below land-surface datum, #### DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INSTANTANEOUS VALUES | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | |--------|----------------|-------|----------------|-------|----------------|--------|----------------| | OCT 18 | 23.32 | NOV 5 | 23.54 | DEC 6 | 23.88 | JAN 10 | 24.04 | #### DELAWARE COUNTY #### 395512075293701, Local number, DE 723. LOCATION.--Lat 39°55'12", long 75°29'37", Hydrologic Unit 02040203, at Glen Mills School, in Thornbury Township. Owner: Glen Mills School. AQUIFER .-- Felsic Hornblende bearing Gneiss of Precambian Age. WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 6 in., depth 300 ft, casing information not available. INSTRUMENTATION.--Data collection platform with 60-minute recording interval. Satellite telemetry at station. DATUM.--Elevation of land-surface datum is 280 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of plywood shelf, 2.66 ft above land-surface datum. Prior to May 11, 1984, top of plywood shelf 1.20 ft above land-surface datum. REMARKS.—In addition to the daily maximum water level table shown below, daily minimum and mean water levels, since October 1994, are also available from the District Office. **PERIOD OF RECORD.**--April 1983 to current year. EXTREMES FOR PERIOD OF RECORD. -- Prior to October 2000, the extremes shown were based on extremes of the daily maximum depth below landsurface datum. Since that date, the extremes are based on the instantaneous depth below land-surface datum. Highest water level, 1.50 ft below land-surface datum, Dec. 15, 1996; lowest, 10.25 ft below land-surface datum, Sept. 26, 2002. **EXTREMES FOR CURRENT YEAR.**—Highest water level, 7.08 ft below land-surface datum, Nov. 25, 26; lowest, 10.25 ft below land-surface datum, Sept. 26. | DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MAXIMUM VALUES | | | | | | | | | | | | | |---|--|--------------------------------------|--|--------------------------------------|--------------------------|--|--------------------------------------|--|--------------------------------------|--|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 7.21 | 7.22 | 7.67 | 8.32 | 8.04 | 8.45 | 7.63 | 8.07 | 8.13 | 8.56 | 9.45 | 10.08 | | 2 | 7.22 | 7.21 | 7.72 | 8.33 | 7.98 | 8.45 | 7.64 | 8.06 | 8.17 | 8.59 | 9.49 | 10.03 | | 3 | 7.22 | 7.20 | 7.77 | 8.33 | 7.96 | 8.41 | 7.69 | 8.06 | 8.19 | 8.62 | 9.52 | 9.98 | | 4 | 7.22 | 7.20 | 7.82 | 8.35 | 8.01 | 7.65 | 7.70 | 8.06 | 8.22 | 8.64 | 9.56 | 9.96 | | 5 | 7.22 | 7.20 | 7.87 | 8.35 | 8.05 | 7.73 | 7.73 | 8.07 | 8.23 | 8.68 | 9.57 | 9.94 | | 6 | 7.23 | 7.21 | 7.91 | 8.35 | 8.07 | 7.81 | 7.78 | 8.07 | 8.26 | 8.71 | 9.61 | 9.95 | | 7 | 7.24 | 7.20 | 7.95 | 8.25 | 8.09 | 7.93 | 7.81 | 8.07 | 8.09 | 8.74 | 9.65 | 9.95 | | 8 | 7.27 | 7.20 | 7.97 | 8.20 | 8.14 | 7.98 | 7.83 | 8.09 | 8.15 | 8.76 | 9.68 | 9.95 | | 9 | 7.27 | 7.20 | 8.05 | 8.21 | 8.17 | 7.99 | 7.86 | 8.09 | 8.17 | 8.78 | 9.72 | 9.96 | | 10 | 7.26 | 7.20 | 8.07 | 8.22 | 8.17 | 8.09 | 7.92 | 8.11 | 8.25 | 8.83 | 9.75 | 9.98 | | 11 | 7.25 | 7.19 | 8.10 | 8.22 | 8.21 | 8.10 | 7.93 | 8.12 | 8.27 | 8.84 | 9.78 | 10.02 | | 12 | 7.25 | 7.19 | 8.11 | 7.91 | 8.21 | 8.11 | 7.93 | 8.12 | 8.30 | 8.87 | 9.81 | 10.03 | | 13 | 7.25 | 7.18 | 8.13 | 8.01 | 8.25 | 8.12 | 7.95 | 8.12 | 8.32 | 8.89 | 9.82 | 10.04 | | 14 | 7.25 | 7.15 | 8.14 | 8.04 | 8.25 | 8.14 | 7.96 | 8.13 | 8.31 | 8.90 | 9.83 | 10.05 | | 15 | 7.25 | 7.15 | 8.16 | 8.09 | 8.26 | 8.14 | 7.98 | 8.16 | 8.28 | 8.92 | 9.90 | 10.05 | | 16 | 7.26 | 7.17 | 8.16 | 8.12 | 8.26 | 8.16 | 8.00 | 8.16 | 8.29 | 8.97 | 9.94 | 10.06 | | 17 | 7.25 | 7.17 | 8.16 | 8.14 | 8.30 | 8.17 | 8.02 | 8.17 | 8.32 | 8.99 | 9.97 | 10.08 | | 18 | 7.26 | 7.16 | 8.15 | 8.18 | 8.30 | 8.15 | 8.03 | 8.17 | 8.34 | 9.03 | 10.00 | 10.09 | | 19 | 7.26 | 7.14 | 8.16 | 8.18 | 8.30 | 7.88 | 8.04 | 7.62 | 8.35 | 9.06 | 10.04 | 10.12 | | 20 | 7.25 | 7.15 | 8.18 | 8.23 | 8.30 | 7.82 | 8.08 | 7.72 | 8.36 | 9.08 | 10.05 | 10.13 | | 21 | 7.25 | 7.15 | 8.21 | 8.25 | 8.34 | 7.26 | 8.09 | 7.80 | 8.38 | 9.11 | 10.05 | 10.16 | | 22 | 7.25 | 7.14 | 8.22 | 8.28 | 8.36 | 7.38 | 8.11 | 7.85 | 8.39 | 9.13 | 10.06 | 10.17 | | 23 | 7.24 | 7.14 | 8.22 | 8.28 | 8.37 | 7.47 | 8.13 | 7.88 | 8.40 | 9.17 | 10.06 | 10.20 | | 24 | 7.23 | 7.14 | 8.22 | 8.28 | 8.38 | 7.57 | 8.13 | 7.93 | 8.42 | 9.18 | 10.06 | 10.22 | | 25 | 7.24 | 7.12 | 8.19 | 7.92 | 8.38 | 7.67 | 8.14 | 7.97 | 8.44 | 9.20 | 10.07 | 10.24 | | 26
27
28
29
30
31 | 7.24
7.24
7.24
7.24
7.23
7.23 | 7.11
7.21
7.41
7.51
7.58 | 8.21
8.25
8.27
8.29
8.30
8.31 | 7.91
7.94
7.99
8.05
8.09 | 8.39
8.42
8.43
 | 7.68
7.68
7.46
7.49
7.59
7.63 | 8.16
8.16
8.15
8.01
8.05 | 7.99
8.01
8.04
8.06
8.08
8.11 | 8.46
8.47
8.48
8.51
8.54 | 9.23
9.25
9.28
9.32
9.35
9.40 | 10.13
10.14
10.15
10.14
10.10 | 10.25
10.24
10.21
10.19
10.14 | | MEAN | 7.24 | 7.21 | 8.09 | 8.16 | 8.23 | 7.88 | 7.95 | 8.03 | 8.32 | 8.97 | 9.88 | 10.08 | | MAX | 7.27 | 7.58 | 8.31 | 8.35 | 8.43 | 8.45 | 8.16 | 8.17 | 8.54 | 9.40 | 10.15 | 10.25 | | MIN | 7.21 | 7.11 | 7.67 | 7.91 | 7.96 | 7.26 | 7.63 | 7.62 | 8.09 | 8.56 | 9.45 | 9.94 | #### LEBANON COUNTY #### 402207076180801. Local number, LB 372. **LOCATION**.--Lat 40°22'07", long 76°18'08", Hydrologic Unit 02040203, at Myerstown. Owner: Kohl Brothers, Inc. AQUIFER.--Dolomite of Ontelaunee Formation of Middle Ordovician age. WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 6 in., depth 80 ft, casing information not available, open hole. INSTRUMENTATION.--Data collection platform with 30-minute recording interval. Satellite telemetry at station. DATUM.--Elevation of land-surface datum is 444 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of plywood shelf, 2.7 ft above land-surface datum. Prior to Apr. 22, 1981, measuring point was 3.50 ft above land-surface datum. **REMARKS.**—In addition to the daily maximum water level table shown below, daily minimum and mean water levels, since October 1994, are also available from the District Office. PERIOD OF RECORD.—July 1973 to current year. EXTREMES FOR PERIOD OF RECORD.—Prior to October 2000, the extremes shown were based on extremes of the daily maximum depth below landsurface datum. Since that date, the extremes are based on the instantaneous depth below land-surface datum. Highest water level, 4.02 ft below land-surface datum, Jan. 27, 1976; lowest, 11.55 ft below land-surface datum, Jan. 8, 2002. EXTREMES FOR CURRENT YEAR.--Highest water level, 8.41 ft below land-surface datum, May 18; lowest, 11.55 ft below land-surface datum, Jan. 8. #### ${\tt DEPTH\ BELOW\ LAND\ SURFACE\ (WATER\ LEVEL)\ (FEET),\ WATER\ YEAR\ OCTOBER\ 2001\ TO\ SEPTEMBER\ 2002}$ MAXIMUM VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|---|---|---|---|--|---|--|---|--|--|---| | 1
2
3
4
5 | 10.86
10.81
10.75
10.80
10.86 | 11.13
11.13
11.15
11.16
11.17 | 11.30
11.32
11.33
11.35
11.36 | 11.46
11.50
11.52
11.54
11.51 | 11.29
11.28
11.29
11.32
11.35 | 11.46
11.46
11.14
11.21
11.26 | 10.40
10.46
10.46
10.51 | 9.71
9.72
9.42
9.52
9.60 | 9.77
9.82
9.90
9.94
9.97 | 10.05
10.13
10.22
10.26
10.31 | 10.80
10.79
10.80
10.81
10.81 | 10.92
10.86
10.91
11.00
11.05 | | 6
7
8
9
10 | 10.82
10.77
10.84
10.92
10.96 | 11.16
11.18
11.19
11.21
11.22 | 11.38
11.37
11.37
11.25
11.31 | 11.52
11.54
11.55
11.53
11.52 | 11.33
11.34
11.35
11.37
11.37 | 11.29
11.31
11.33
11.33 | 10.57
10.61
10.64
10.65
10.63 | 9.66
9.73
9.80
9.80
9.77 | 10.00
9.76
9.87
9.94
10.00 | 10.33
10.35
10.38
10.42
10.45 | 10.84
10.89
10.86
10.85
10.86 | 11.08
11.10
11.12
11.13
11.13 | | 11
12
13
14
15 | 11.00
11.02
11.04
11.05
11.02 | 11.23
11.24
11.23
11.24
11.25 | 11.34
11.36
11.36
11.37
11.28 | 11.48
11.33
11.39
11.42
11.43 | 11.36
11.37
11.39
11.40
11.41 | 11.28
11.30
11.30
11.27
11.28 | 10.68
10.72
10.74
10.69
10.19 | 9.88
9.89
9.62
9.34
9.48 | 10.06
10.11
10.14
10.14
10.03 | 10.46
10.49
10.52
10.55 | 10.87
10.88
10.89
10.90 | 11.15
11.16
11.16
11.12
11.08 | | 16
17
18
19
20 | 11.05
11.02
11.04
11.04
11.02 | 11.26
11.29
11.30
11.31
11.31 | 11.31
11.32
11.15
11.21
11.26 |
11.48
11.48
11.50
11.48
11.48 | 11.40
11.41
11.44
11.43
11.43 | 11.30
11.31
11.24
10.91
10.91 | 9.86
9.97
10.04
10.07 | 9.57
9.63
9.63
8.64
8.75 | 10.13
10.18
10.21
10.24
10.26 | 10.57
10.58
10.60
10.63
10.65 | 10.90
10.93
10.93
10.94
10.94 | 11.05
11.07
11.09
11.09 | | 21
22
23
24
25 | 11.03
11.05
11.06
11.08
11.09 | 11.38
11.32
11.33
11.33 | 11.29
11.32
11.35
11.35 | 11.49
11.48
11.47
11.42
11.14 | 11.42
11.43
11.43
11.43
11.44 | 10.23
10.37
10.48
10.55
10.62 | 10.21
10.21
10.23
10.30
10.32 | 8.86
8.97
9.07
9.20
9.28 | 10.28
10.31
10.33
10.36
10.38 | 10.66
10.68
10.70
10.70 | 10.94
10.95
10.91
10.92
10.91 | 11.10
11.10
11.10
11.09
11.10 | | 26
27
28
29
30
31 | 11.09
11.10
11.11
11.12
11.13
11.13 | 11.19
11.25
11.29
11.32
11.31 | 11.41
11.43
11.44
11.44
11.44 | 11.18
11.23
11.28
11.30
11.32 | 11.44
11.45
11.46
 | 10.65
10.14
10.23
10.28
10.36
10.40 | 10.37
10.41
10.41
9.62
9.67 | 9.36
9.45
9.54
9.62
9.68
9.73 | 10.42
10.45
9.74
9.89
9.98 | 10.71
10.72
10.72
10.76
10.80
10.79 | 10.94
10.96
10.97
10.87
10.85
10.91 | 11.10
10.47
10.54
10.70
10.78 | | MEAN
MAX
MIN | 10.99
11.13
10.75 | 11.25
11.38
11.13 | 11.34
11.46
11.15 | 11.43
11.55
11.14 | 11.39
11.46
11.28 | 10.95
11.46
10.14 | 10.34
10.74
9.62 | 9.48
9.89
8.64 | 10.09
10.45
9.74 | 10.53
10.80
10.05 | 10.89
10.97
10.79 | 11.01
11.16
10.47 | # LEHIGH COUNTY #### 403429075392401. Local number, LE 644. LOCATION.--Lat 40°34'29", long 75°39'24", Hydrologic Unit 02040106, at Haafsville. Owner: Privately owned. AQUIFER.--Beekmantown Group of Middle Ordovician age. WELL CHARACTERISTICS.-Drilled observation artesian well, diameter 10 in., depth 184 ft, cased to 63 ft, open hole. INSTRUMENTATION.--Data collection platform with 30-minute recording interval. Satellite telemetry at station. DATUM.--Elevation of land-surface datum is 470 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of plywood shelf, 2.65 ft above land-surface datum. Prior to Mar. 18, 1981, top of casing, 1.45 ft above land-surface datum. REMARKS.--In addition to the daily maximum water level table shown below, daily minimum and mean water levels, since October 1994, and water- quality records for 1973-75 are also available from the District Office. **PERIOD OF RECORD.**--January 1971 to current year. EXTREMES FOR PERIOD OF RECORD. -- Prior to October 2000, the extremes shown were based on extremes of the daily maximum depth below landsurface datum. Since that date, the extremes are based on the instantaneous depth below land-surface datum. Highest water level, 33.72 ft below land-surface datum, Apr. 3, 1994; lowest, 93.42 ft below land-surface datum, Feb. 6, 1971. **EXTREMES FOR CURRENT YEAR.**—Highest water level, 72.59 ft below land-surface datum, Oct. 1; lowest, 86.65 ft below land-surface datum, Mar. 17, 18. | DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MAXIMUM VALUES | | | | | | | | | | | | | |---|--|---|--|---|---|--|---|--|---|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 72.86
73.10
73.38
73.65
73.81 | 78.35
78.52
78.67
78.67
78.85 | 80.96
80.97
81.15
81.29
81.38 | 82.89
82.90
83.02
83.18
83.25 | 84.48
84.24
83.96
84.22
84.43 | 86.40
86.40
86.15
85.80 | 83.83
83.80
83.92
83.94
84.00 | 81.11
80.77
79.87
79.31
78.81 | 75.82
76.09
76.37
76.56
76.75 | 73.79
73.92
74.14
74.29
74.56 | 79.42
79.45
79.30
79.39
79.34 | 82.54
81.88
81.58
81.73
81.95 | | 6
7
8
9
10 | 73.93
74.03
74.41
74.54
74.69 | 79.00
79.13
79.21
79.41
79.39 | 81.48
81.57
81.59
81.43
81.24 | 83.26
83.55
83.68
83.72
83.86 | 84.52
84.60
84.76
84.86
84.86 | 85.82
85.95
86.07
86.05
86.15 | 84.11
84.14
84.22
84.32
84.32 | 78.59
78.52
78.66
78.65
78.54 | 76.81
76.63
76.27
76.12
76.18 | 74.67
74.97
75.18
75.41
75.69 | 79.55
79.78
80.02
80.24
80.37 | 82.10
82.23
82.37
82.64
82.81 | | 11
12
13
14
15 | 74.88
75.11
75.25
75.29
75.57 | 79.57
79.77
79.90
79.98
80.13 | 81.37
81.58
81.64
81.65
81.65 | 83.85
83.60
83.43
83.43 | 84.95
84.98
85.08
85.18
85.20 | 86.23
86.32
86.32
86.46
86.49 | 84.36
84.38
84.37
84.37 | 78.56
78.56
78.35
77.96
77.22 | 76.20
76.18
75.93
75.45
74.94 | 75.94
76.14
76.26
76.45
76.66 | 80.41
80.70
80.95
81.23
81.47 | 83.12
83.37
83.58
83.63
83.63 | | 16
17
18
19
20 | 75.61
75.80
75.97
76.03
76.18 | 80.32
80.37
80.38
80.43
80.63 | 81.63
81.68
81.67
81.51
81.56 | 83.75
83.93
84.07
84.10
84.14 | 85.22
85.30
85.43
85.49
85.55 | 86.63
86.65
86.65
86.24
86.01 | 83.64
83.27
83.15
83.18
83.11 | 76.86
76.56
76.43
75.72
75.03 | 74.56
74.60
74.82
74.82
74.71 | 76.90
77.13
77.33
77.59
77.61 | 81.61
81.72
81.78
82.05
82.22 | 83.66
83.82
84.07
84.18
84.26 | | 21
22
23
24
25 | 76.24
76.54
76.67
76.90
77.04 | 80.71
80.75
80.76
80.67
80.45 | 81.78
81.80
81.81
81.82
81.88 | 84.31
84.39
84.34
84.34 | 85.71
85.86
85.92
85.97
86.08 | 85.47
84.87
84.68
84.58
84.72 | 83.10
83.12
83.19
83.28
83.27 | 74.65
74.41
74.47
74.59
74.68 | 74.76
74.73
74.78
75.06
75.31 | 77.40
77.66
77.88
77.99
78.19 | 82.29
82.41
82.55
82.55
82.33 | 84.35
84.27
84.38
84.51
84.72 | | 26
27
28
29
30
31 | 77.22
77.41
77.59
77.78
78.05
78.20 | 80.34
80.53
80.77
80.91
80.97 | 82.02
82.25
82.43
82.50
82.51
82.83 | 84.10
84.03
84.18
84.32
84.43 | 86.15
86.21
86.33
 | 84.70
84.58
84.22
84.05
83.88
83.89 | 83.32
83.32
83.24
82.38
81.67 | 74.75
74.89
75.08
75.32
75.50
75.66 | 75.47
75.57
75.16
74.45
73.96 | 78.32
78.42
78.55
78.80
79.09
79.34 | 82.31
82.55
82.78
82.80
82.67
82.68 | 84.74
84.71
83.24
82.76
82.65 | | MEAN
MAX
MIN | 75.60
78.20
72.86 | 79.92
80.97
78.35 | 81.70
82.83
80.96 | 83.82
84.47
82.89 | 85.20
86.33
83.96 | 85.62
86.65
83.88 | 83.62
84.38
81.67 | 77.03
81.11
74.41 | 75.50
76.81
73.96 | 76.65
79.34
73.79 | 81.26
82.80
79.30 | 83.32
84.74
81.58 | #### MONROE COUNTY #### 411223075234901. Local number, MO 190. LOCATION.--Lat 41°12'23", long 75°23'49", Hydrologic Unit 02040106, at Tobyhanna State Park. Owner: U.S. Geological Survey. AQUIFER.--Sandstone of Catskill Formation of Late Devonian age. WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in., depth 98 ft, cased to 59 ft, open hole. INSTRUMENTATION.--Data collection platform with 30-minute recording interval. Satellite telemetry at station. DATUM.--Elevation of land-surface datum is 1,990 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of plywood shelf, 3.0 ft above land-surface datum. Prior to Mar. 28, 1980, top of plywood shelf, 2.6 ft above land-surface datum. REMARKS.—In addition to the daily maximum water level table shown below, daily minimum and mean water levels, since October 1994, are also available from the District Office. **PERIOD OF RECORD.**--October 1967 to current year. EXTREMES FOR PERIOD OF RECORD.--Prior to October 2000, the extremes shown were based on extremes of the daily maximum depth below landsurface datum. Since that date, the extremes are based on the instantaneous depth below land-surface datum. Highest water level, 6.62 ft below land-surface datum, Apr. 13,14, 1994; lowest, 16.87 ft below land-surface datum, Oct. 24, 25, 1980. EXTREMES FOR CURRENT YEAR.--Highest water level, 7.59 ft below land-surface datum, June 8; lowest, 15.40 ft below land-surface datum, DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 Sept. 15. | | | DEI II | II BEEG W E | in vib bold / i | CE (WITTEN | MAXIMU | M VALUES | LILINGE | OBER 2001 | TO BEI TEM | DER 2002 | | |----------|----------------|----------------|----------------|-----------------|----------------|----------------|--------------|--------------|--------------|----------------|----------------|----------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 2 | 14.17
14.19 | 14.64
14.66 | 14.44
14.26 | 12.61
12.61 |
12.60
12.32 | 11.82
11.82 | 8.98
9.01 | 8.48 | 8.06
8.14 | 9.93
10.11 | 13.02
13.17 | 14.76
14.76 | | 3 | 14.20 | 14.69 | 14.16 | 12.61 | 12.20 | 11.65 | 9.05 | 8.35 | 8.41 | 10.26 | 13.23 | 14.77 | | 3
4 | 14.24 | 14.69 | 14.07 | 12.61 | 12.05 | 11.24 | 9.05 | 8.42 | 8.58 | 10.40 | 13.27 | 14.85 | | 5 | 14.24 | 14.71 | 13.98 | 12.62 | 12.02 | 11.17 | 9.05 | 8.55 | 8.75 | 10.59 | 13.32 | 14.92 | | 6 | 14.24 | 14.72 | 13.94 | 12.62 | 11.99 | 11.08 | 9.24 | 8.62 | 8.85 | 10.69 | 13.40 | 14.97 | | 7 | 14.30 | 14.76 | 13.86 | 12.63 | 11.95 | 11.01 | 9.29 | 8.79 | 8.56 | 10.86 | 13.46 | 15.01 | | 8
9 | 14.35
14.38 | 14.79
14.80 | 13.83
13.73 | 12.70
12.70 | 11.93
11.95 | 11.00
11.00 | 9.40 | 8.96
8.98 | 7.66
7.92 | 10.95
11.04 | 13.54
13.65 | 15.05
15.10 | | 10 | 14.38 | 14.80 | 13.73 | 12.74 | 11.95 | 10.80 | 9.57 | 8.96 | 8.24 | 11.20 | 13.68 | 15.15 | | 11 | 14.40 | 14.86 | 13.67 | 12.75 | 11.72 | 10.66 | 9.61 | 9.02 | 8.43 | 11.30 | 13.80 | 15.23 | | 12 | 14.45 | 14.89 | 13.65 | 12.75 | 11.66 | 10.59 | 9.60 | 9.01 | 8.69 | 11.41 | 13.84 | 15.27 | | 13 | 14.48 | 14.91 | 13.56 | 12.79 | | 10.51 | 9.61 | 8.46 | 8.77 | 11.52 | 13.93 | 15.32 | | 14 | 14.49 | 14.93 | 13.47 | 12.82 | 11.59 | 10.52 | 9.57 | 7.71 | 8.79 | 11.65 | 13.98 | 15.38 | | 15 | 14.48 | 14.94 | 13.37 | 12.83 | 11.56 | 10.52 | 9.33 | 7.91 | 8.59 | 11.71 | 14.06 | 15.40 | | 16 | 14.48 | 14.98 | 13.37 | 13.11 | 11.49 | 10.60 | 8.88 | 7.96 | 8.41 | 12.16 | 14.13 | 15.30 | | 17 | 14.46 | 14.99 | 13.32 | 13.13 | 11.53 | 10.61 | 8.75 | 8.20 | 8.55 | 11.98 | 14.19 | 15.14 | | 18 | 14.46 | 15.00 | 13.15 | 12.99 | | 10.57 | 8.83 | 8.20 | 8.84 | 12.05 | 14.26 | 15.11 | | 19
20 | 14.48
14.47 | 15.00
15.00 | 13.06
12.95 | 12.96
12.98 | 11.58
11.56 | 10.61
10.59 | 8.89
8.98 | 7.69
7.87 | 9.05
9.22 | 12.13
12.25 | 14.34
14.40 | 15.13
15.16 | | | | | | | | | | | | | | | | 21 | 14.48 | 15.01 | 12.90 | 12.99 | 11.50 | 10.49 | 9.08 | 8.10 | 9.33 | 12.32 | 14.46 | 15.20 | | 22
23 | 14.55
14.53 | 15.04
15.07 | 12.90
12.81 | 13.08
13.08 | 11.54
11.58 | 10.39
10.31 | 9.19
9.30 | 8.27
8.39 | 9.54
9.70 | 12.39
12.43 | 14.51
14.58 | 15.28
15.29 | | 23 | 14.53 | 15.07 | 12.61 | 13.08 | 11.58 | 10.31 | 9.30 | 8.39 | 9.70 | 12.43 | 14.58 | 15.29 | | 25 | 14.51 | 15.08 | 12.65 | 12.92 | 11.60 | 10.23 | 9.38 | 8.84 | 10.05 | 12.49 | 14.69 | 15.35 | | | | | | | | | | | | | | | | 26 | 14.53 | 14.87 | 12.65 | 12.91 | 11.58 | 10.20 | 9.40 | 9.00 | 10.12 | 12.59 | 14.68 | 15.36 | | 27
28 | 14.56
14.58 | 14.76
14.70 | 12.58
12.58 | 12.90
12.88 | 11.59
11.73 | 9.89
9.35 | 9.46
9.40 | 9.16
9.23 | 9.95
9.68 | 12.64
12.72 | 14.75
14.80 | 15.36
15.18 | | 28
29 | 14.58 | 14.70 | 12.58 | | 11./3 | 9.35
9.10 | 8.59 | 9.23
8.78 | 9.85 | 12.72 | 14.80 | 15.18 | | 30 | 14.62 | 14.66 | 12.59 | | | 9.02 | 8.41 | 8.15 | 9.80 | 12.88 | 14.71 | 15.05 | | 31 | 14.62 | | 12.59 | 12.62 | | 9.02 | | 8.27 | | 12.94 | 14.72 | | | MEAN | 14.43 | 14.86 | 13.33 | 12.82 | 11.77 | 10.54 | 9.19 | 8.50 | 8.95 | 11.70 | 14.06 | 15.14 | | MAX | 14.62 | 15.08 | 14.44 | 13.13 | 12.60 | 11.82 | 9.61 | 9.23 | 10.12 | 12.94 | 14.80 | 15.40 | | MIN | 14.17 | 14.64 | 12.58 | 12.61 | 11.49 | 9.02 | 8.41 | 7.69 | 7.66 | 9.93 | 13.02 | 14.76 | #### 401415075175101. Local number, MG 68. (North Penn Project) LOCATION.--Lat 40°14'15", long 75°17'49", Hydrologic Unit 02040203, on Towamencin Street southwest from Whites Road, Upper Gwynedd Owner: North Penn Water Authority. AQUIFER.--Shale of Brunswick Group of Triassic Age. WELL CHARACTERISTICS.--Drilled unused public supply well, diameter 14 in., depth 500 ft, cased to 9 ft, open hole. **INSTRUMENTATION.**—Electronic data logger with 15-minute recording interval. DATUM.--Elevation of land-surface datum is 321.7 ft above National Geodetic Vertical Datum of 1929, from survey. Measuring point: Top of plywood shelf, about 0.5 ft above land-surface datum. Horizontal datum is NAD83 REMARKS.--In addition to the daily mean water-level table shown below, daily maximum and minimum water levels are also available from the District Office. PERIOD OF RECORD.--August 1996 to January 2000; December 2000 to current year. EXTREMES FOR PERIOD OF RECORD .-- The extremes shown are extremes of the instantaneous depth below land surface for the period of record indicated above. Highest water level, 33.01 ft below land-surface datum, Apr. 17, 2001; lowest, 54.76 ft below below land-surface datum, Dec. 27, 1998. **EXTREMES FOR CURRENT YEAR**.--Highest water level, 36.65 ft below land-surface datum, June 17; lowest, 44.06 ft below land-surface datum, Dec. 8. | DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MEAN VALUES | | | | | | | | | | | | | |--|--|---|--|--|---|--|---|---|---|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 39.77
39.91
40.12
40.23
40.39 | 42.37
42.38
42.43
42.33
42.29 | 43.51
43.58
43.54
43.55
43.65 | 42.17
42.21
42.15
42.32
42.42 | 40.22
40.49
40.21
39.90
40.24 | 40.93
40.80
40.79 | 38.54
38.72
38.70
38.95
38.94 | 38.66
38.37
38.50
38.68
38.53 | 37.68
37.73
37.87
37.91
37.82 | 36.93
36.96
36.98
36.99
37.23 | 39.19
39.34
39.31
38.93
38.60 | 39.28
38.74
38.69
38.71
38.77 | | 6 | 40.44 | 42.36 | 43.63 | 42.33 | 40.27 | 40.63 | 38.94 | 38.34 | 37.63 | 37.46 | 38.61 | 39.02 | | 7 | 40.65 | 42.46 | 43.78 | 42.07 | 40.14 | 40.58 | 39.04 | 38.22 | 37.63 | 37.59 | 38.76 | 39.30 | | 8 | 40.75 | 42.63 | 43.99 | 42.06 | 40.28 | 40.64 | 38.84 | 38.42 | 37.59 | 37.53 | 38.77 | 39.44 | | 9 | 40.83 | 42.85 | 43.56 | 41.74 | 40.57 | 40.54 | 38.84 | 38.39 | 37.34 | 37.54 | 38.99 | 39.27 | | 10 | 40.85 | 42.84 | 43.39 | 41.68 | 40.30 | 40.40 | 39.08 | 38.35 | 37.16 | 37.76 | 39.15 | 39.36 | | 11 | 40.94 | 43.07 | 43.21 | 41.53 | 40.06 | 40.40 | 39.22 | 38.53 | 37.16 | 37.85 | 39.21 | 39.49 | | 12 | 41.06 | 43.12 | 43.21 | 41.40 | 40.15 | 40.28 | 39.17 | 38.23 | 37.04 | 38.02 | 39.18 | 39.77 | | 13 | 41.26 | 43.16 | 43.01 | 41.15 | 40.40 | 40.18 | 39.02 | 37.70 | 37.01 | 38.27 | 39.35 | 40.04 | | 14 | 41.27 | 43.17 | 42.91 | 41.21 | 40.62 | 40.19 | 38.91 | 37.63 | 36.91 | 38.32 | 39.52 | 40.37 | | 15 | 41.14 | 43.25 | 42.98 | 41.07 | 40.55 | 40.05 | 38.77 | 37.86 | 36.74 | 38.14 | 39.59 | 40.46 | | 16 | 41.02 | 43.40 | 42.88 | 41.29 | 40.51 | 40.07 | 38.98 | 37.73 | 36.71 | 38.30 | 39.74 | 40.11 | | 17 | 41.08 | 43.56 | 42.37 | 41.14 | 40.59 | 40.29 | 39.07 | 37.66 | 36.69 | 38.49 | 39.87 | 40.09 | | 18 | 41.35 | 43.55 | 42.10 | 41.30 | 40.78 | 39.77 | 39.21 | 37.54 | 36.92 | 38.49 | 39.90 | 40.25 | | 19 | 41.38 | 43.47 | 42.23 | 41.33 | 40.79 | 39.63 | 39.29 | 37.49 | 36.99 | 38.66 | 39.90 | 40.29 | | 20 | 41.46 | 43.49 | 42.10 | 41.37 | 40.75 | 39.25 | 39.33 | 37.31 | 36.90 | 38.98 | 39.98 | 40.47 | | 21 | 41.59 | 43.52 | 42.20 | 41.18 | 40.71 | 38.93 | 39.39 | 37.37 | 36.95 | 39.09 | 39.98 | 40.67 | | 22 | 41.51 | 43.55 | 42.34 | 41.40 | 40.84 | 39.07 | 39.13 | 37.49 | 36.95 | 38.95 | 39.82 | 40.80 | | 23 | 41.54 | 43.65 | 42.26 | 41.28 | 41.01 | 39.06 | 39.33 | 37.46 | 36.88 | 39.04 | 39.73 | 40.91 | | 24 | 41.60 | 43.76 | 42.04 | 40.89 | 41.08 | 39.08 | 39.46 | 37.37 | 36.72 | 38.94 | 39.72 | 41.13 | | 25 | 41.73 | 43.73 | 41.95 | 40.87 | 40.93 | 39.08 | 39.28 | 37.67 | 36.95 | 38.69 | 39.63 | 41.27 | | 26
27
28
29
30
31 | 41.96
42.19
42.40
42.28
42.30
42.40 | 43.45
43.35
43.42
43.46
43.44 | 41.58
41.51
41.60
41.75
41.96
42.09 | 40.78
40.66
40.41
40.40
40.52
40.56 | 40.80
40.95
41.34
 | 39.05
38.87
38.87
38.85
38.79
38.82 | 39.41
39.52
38.86
38.66
38.76 | 37.63
37.49
37.63
37.67
37.53 | 37.03
37.03
37.00
37.12
37.09 | 38.75
38.85
38.90
38.87
39.02
39.20 | 39.56
39.68
39.84
39.59
39.49
39.51 | 41.14
40.59
40.46
40.37
40.09 | | MEAN | 41.21 | 43.12 | 42.72 | 41.38 | 40.55 | 39.79 | 39.05 | 37.90 | 37.17 | 38.22 | 39.43 | 39.98 | | MAX | 42.40 | 43.76 | 43.99 | 42.42 | 41.34 | 40.93 | 39.52 | 38.68 | 37.91 | 39.20 | 39.98 | 41.27 | | MIN | 39.77 | 42.29 | 41.51 | 40.40 | 39.90 | 38.79 | 38.54 | 37.31 | 36.69 | 36.93 | 38.60 | 38.69 | #### 401338075162801. Local number, MG 72. (North Penn Project) LOCATION.--Lat 40°13'38", long 75°16'27", Hydrologic Unit 02040203, on Hancock Street near Wissahickon Creek, Upper Gwynedd Township. Owner: North Penn Water Authority. AQUIFER.--Shale of Brunswick Group of Triassic Age. WELL CHARACTERISTICS.--Drilled unused public supply well, diameter 10 in., depth 298 ft, cased to 41.5 ft, open hole. INSTRUMENTATION.--Electronic data logger with 15-minute recording interval. DATUM.--Elevation of land-surface datum is 355.1 ft above National Geodetic Vertical Datum of 1929, from survey. Measuring point: Top of concrete pad, about 0.85 ft above well-house floor and 1.47 ft above land-surface datum. Horizontal datum is NAD83. REMARKS.--In addition to the daily mean water-level table shown below, daily maximum and minimum water levels are also
available from the District PERIOD OF RECORD.--December 2000 to current year. EXTREMES FOR PERIOD OF RECORD .-- The extremes shown are extremes of the instantaneous depth below land surface for the period of record indicated above. Highest water level, 16.22 ft below land-surface datum, Apr. 28, 2002; lowest, 58.03 ft below land-surface datum, Dec. 4, 2001. **EXTREMES FOR CURRENT YEAR.**--Highest water level, 16.22 ft below land-surface datum, Apr. 28; lowest, 58.03 ft below land-surface datum, Dec. 4. | DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MEAN VALUES | | | | | | | | | | | | | |--|--|---|--|--|---|--|---|--|---|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 38.89
38.84
39.14
39.72
40.41 | 49.86
50.17
50.48
50.73
51.00 | 56.59
57.04
57.43
57.79
57.20 | 49.12
49.55
49.92
50.35
50.79 | 39.91
38.57
37.67
37.61 | 43.70
44.12
43.81
42.54
42.03 | 31.60
31.27
30.90
30.81
30.62 | 19.86
19.37
19.25
19.33
19.25 | 17.52
17.61
17.92
18.15
18.32 | 18.01
18.13
18.36
18.70
19.08 | 25.08
26.16
25.43
24.46
24.20 | 38.32
36.99
34.31
35.92
37.29 | | 6
7
8
9
10 | 41.06
41.58
42.19
42.71
43.16 | 51.31
51.61
51.93
52.25
52.50 | 54.45
54.13
54.18
53.85
52.88 | 51.15
51.23
50.74
49.96
49.26 | 37.83
38.13
38.45
38.98
39.26 | 45.13
45.86
46.43
46.89
47.17 | 30.66
30.26
29.03
28.33
27.82 | 19.22
19.08
19.22
19.11
18.81 | 18.54
18.09
17.76
17.57 | 19.43
19.75
20.05
20.24
20.39 | 24.07
24.29
24.79
25.35
25.84 | 38.73
39.09
41.10
42.42
43.40 | | 11
12
13
14
15 | 43.60
44.04
44.51
44.91
45.08 | 52.87
53.19
53.46
53.73
54.00 | 52.14
51.89
51.74
51.64
51.13 | 48.43
47.47
46.31
45.46
44.99 | 39.37
39.43
39.81
40.23
40.42 | 47.16
47.31
47.05
46.41
45.58 | 27.22
26.89
26.21
25.60
25.19 | 18.89
18.64
18.12
17.54
17.56 | 17.51
17.41
17.47
17.32
16.98 | 20.67
20.99
21.31
21.62
21.85 | 26.28
26.70
27.13
27.79
29.73 | 44.30
45.32
46.20
47.03
47.78 | | 16
17
18
19
20 | 44.45
44.32
44.61
44.97
45.39 | 54.31
54.67
54.94
55.19
55.46 | 50.40
50.03
49.71
49.09
48.42 | 45.09
45.23
45.61
46.03
46.47 | 40.58
40.97
41.55
42.03
42.85 | 45.52
45.95
45.64
44.28
41.92 | 24.93
24.87
25.03
25.18
24.81 | 17.61
17.58
16.93
16.09
16.21 | 16.95
17.09
17.29
17.42
17.46 | 22.17
22.52
22.81
23.13
23.54 | 31.29
32.52
33.57
34.59
35.31 | | | 21
22
23
24
25 | 45.76
46.12
46.48
46.82
47.18 | 55.74
56.03
56.32
56.59
56.84 | 48.31
48.50
48.56
48.51
48.02 | 46.76
47.02
46.75
46.55
45.62 | 42.35
41.87
38.41
36.50
38.22 | 38.38
37.02
36.01
35.46
35.11 | 24.57
22.85
22.51
21.28
20.97 | 16.44
16.70
16.77
16.80
17.12 | 17.48
17.50
17.59
17.69
17.95 | 23.94
24.18
24.44
23.94
23.63 | 35.55
36.20
36.86
37.38
37.13 | | | 26
27
28
29
30
31 | 47.65
48.16
48.62
48.95
49.27
49.59 | 56.69
52.38
51.09
55.48
56.12 | 47.51
47.38
47.56
47.89
48.29
48.69 | 44.41
43.25
42.46
42.23
42.36
42.16 | 41.59
42.39
43.09
 | 34.72
34.13
33.33
32.77
32.35
32.08 | 19.93
19.70
17.40
19.64
19.97 | 17.23
17.31
17.37
17.43
17.49
17.46 | 18.26
18.44
18.17
18.03
17.99 | 23.83
24.12
24.48
24.82
25.21
25.62 | 37.28
38.16
39.25
39.41
37.86
37.83 |

 | | MEAN
MAX
MIN | 44.46
49.59
38.84 | 53.56
56.84
49.86 | 51.32
57.79
47.38 | 46.86
51.23
42.16 | 39.93
43.09
36.50 | 41.48
47.31
32.08 | 25.54
31.60
17.40 | 17.93
19.86
16.09 | 17.70
18.54
16.95 | 21.97
25.62
18.01 | 31.21
39.41
24.07 | 41.21
47.78
34.31 | #### 400808075210401. Local number, MG 225. LOCATION .-- Lat 40°08'08", long 75°21'04", Hydrologic Unit 02040203, at Willow and Locust Streets, Norristown. Owner: Norristown State Hospital. AQUIFER.--Sandstone of Stockton Formation of Late Triassic age. WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 12 in., depth 486 ft (previously reported as 300 ft), cased to 78 ft, open hole. **INSTRUMENTATION**.--Electronic data logger with 60-minute recording interval. DATUM.--Elevation of land-surface datum is 165 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of plywood shelf, 2.35 ft above land-surface datum. Prior to Mar. 17, 1981, top of casing 0.8 ft above land-surface datum. REMARKS.—In addition to the daily maximum water level table shown below, daily minimum and mean water levels, since October 1994, are also available from the District Office. PERIOD OF RECORD.--September 1956 to current year. EXTREMES FOR PERIOD OF RECORD. -- Prior to October 2000, the extremes shown were based on extremes of the daily maximum depth below landsurface datum. Since that date, the extremes are based on the instantaneous depth below land-surface datum. Highest water level, 8.28 ft below land-surface datum, Dec. 15, 1996; lowest, 60.25 ft below land-surface datum, Nov. 5, 6, 1963. EXTREMES FOR CURRENT YEAR.--Highest water level, 12.03 ft below land-surface datum, May 21; lowest, 18.91 ft below land-surface datum, Dec. 8. | | | DEPT | H BELOW L | AND SURFA | CE (WATER | | EET), WATEI
JM VALUES | | TOBER 2001 | ТО ЅЕРТЕМ | BER 2002 | | |----------------------------------|---|---|--|---|---|--|---|--|---|--|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 16.86
16.94
16.95
16.91
16.92 | 17.69
17.70
17.73
17.74
17.76 | 18.73
18.78
18.80
18.81
18.83 | 18.43
18.45
18.43
18.43 | 16.40
16.32
16.28
16.20
16.24 | 16.81
16.82
16.67
16.30
16.29 | 14.41
14.43
14.44
14.48
14.48 | 14.68
14.62
14.53
14.53 | 12.77
12.93
13.08
13.19
13.24 | 13.95
13.99
14.04
14.13
14.26 | 15.79
15.83
15.87
15.89
15.92 | 17.32
17.06
17.07
17.11
17.18 | | 6
7
8
9
10 | 16.97
17.09
17.18
17.23
17.21 | 17.77
17.79
17.84
17.89
17.89 | 18.82
18.86
18.91
18.72
18.74 | 18.46
18.23
18.08
18.00
17.91 | 16.25
16.21
16.27
16.37
16.36 | 16.26
16.31
16.34
16.33
16.35 | 14.56
14.60
14.61
14.63
14.73 | 14.50
14.48
14.56
14.56
14.46 | 13.31
13.21
13.08
13.08
13.11 | 14.34
14.44
14.53
14.55
14.49 | 15.97
16.04
16.10
16.16
16.20 | 17.24
17.19
17.11
17.00
16.97 | | 11
12
13
14
15 | 17.23
17.25
17.29
17.30 | 18.03
18.10
18.13
18.13
18.14 | 18.76
18.74
18.70
18.66
18.60 | 17.87
17.61
17.42
17.42 | 16.34
16.34
16.40
16.40
16.39 | 16.37
16.36
16.35
16.32
16.32 | 14.77
14.77
14.74
14.77
14.79 | 14.50
14.46
14.36
14.02
13.40 | 13.17
13.16
13.30
13.33
13.28 | 14.59
14.66
14.71
14.77
14.80 | 16.24
16.31
16.38
16.45
16.52 | 17.12
17.20
17.25
17.32
17.38 | | 16
17
18
19
20 | 17.30
17.32
17.33
17.32
17.32 | 18.20
18.27
18.27
18.27
18.30 | 18.60
18.59
18.41
18.35
18.33 | 17.42
17.42
17.46
17.47 | 16.32
16.40
16.47
16.49
16.46 | 16.41
16.45
16.39
16.13
16.04 | 14.86
14.91
14.97
15.00
15.01 | 13.31
13.28
13.23
12.38
12.09 | 13.35
13.45
13.56
13.62
13.64 | 14.87
14.94
14.98
15.04
15.14 | 16.65
16.73
16.80
16.90
17.08 | 17.26
17.36
17.43
17.47
17.51 | | 21
22
23
24
25 | 17.35
17.34
17.36
17.35
17.40 | 18.33
18.39
18.45
18.50
18.50 | 18.41
18.43
18.41
18.32
18.24 | 17.44
17.49
17.43
17.33
16.86 | 16.44
16.54
16.61
16.67
16.66 | 15.41
14.91
14.81
14.77
14.83 | 15.10
15.08
15.16
15.20
15.20 | 12.11
12.16
12.18
12.22
12.35 | 13.67
13.71
13.76
13.80
13.82 | 15.23
15.28
15.34
15.41
15.47 | 17.21
17.25
17.29
17.30
17.26 |
17.58
17.62
17.71
17.76
17.78 | | 26
27
28
29
30
31 | 17.46
17.55
17.63
17.64
17.69 | 18.47
18.53
18.61
18.63
18.64 | 18.22
18.24
18.25
18.30
18.37
18.39 | 16.69
16.64
16.62
16.58
16.61 | 16.65
16.69
16.77
 | 14.81
14.70
14.60
14.53
14.46
14.47 | 15.23
15.30
15.22
14.84
14.74 | 12.42
12.51
12.59
12.61
12.60
12.66 | 13.85
13.82
13.75
13.82
13.89 | 15.52
15.54
15.58
15.63
15.69
15.75 | 17.33
17.40
17.45
17.43
17.21 | 17.79
17.62
17.04
16.95
17.00 | | MEAN
MAX
MIN | 17.28
17.69
16.86 | 18.16
18.64
17.69 | 18.56
18.91
18.22 | 17.55
18.47
16.58 | 16.43
16.77
16.20 | 15.80
16.82
14.46 | 14.83
15.30
14.41 | 13.45
14.68
12.09 | 13.43
13.89
12.77 | 14.89
15.75
13.95 | 16.65
17.45
15.79 | 17.31
17.79
16.95 | #### 401733075171401. Local number, MG 917. LOCATION.--Lat 40°17'33", long 75°17'14", Hydrologic Unit 02040201, at North Penn Water Authority at Lansdale. Owner: North Penn Water Authority. AQUIFER.--Shale of Brunswick Formation of Late Triassic Age. WELL CHARACTERISTICS.--Drilled observation well, diameter 8 in, depth 500 ft, cased to 40 ft, open hole. INSTRUMENTATION.--Data collection platform with 60-minute recording interval. Satellite telemetry at station. DATUM.--Elevation of land-surface datum is 350 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of plywood shelf, 3.39 ft above land-surface datum. **REMARKS.**—In addition to the daily mean water level table shown below, daily maximum and minimum water levels, are also available from the District PERIOD OF RECORD.--August 1997 to current year. EXTREMES FOR PERIOD OF RECORD .-- The extremes shown are extremes of the instantaneous depth below land surface for the period of record indicated above. Highest water level, 7.00 ft below land-surface datum, March 28, 2000; lowest, 12.66 ft below land-surface datum, Aug. 16, 1999. EXTREMES FOR CURRENT YEAR.--Highest water level, 7.83 ft below land-surface datum, May 18; lowest, 12.64 ft below land-surface datum, Dec. 10. | | | DEPT | H BELOW L | AND SURFA | CE (WATER | LEVEL) (FE
MEAN | ET), WATER
VALUES | YEAR OCT | TOBER 2001 | ТО ЅЕРТЕМ | BER 2002 | | |----------------------------------|---|---|---|---|---|--|--------------------------------------|--|--|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 10.27
10.30
10.38
10.37
10.34 | 11.59
11.55
11.57
11.59
11.58 | 12.31
12.49
12.52
12.51
12.48 | 11.54
11.64
11.42
11.45
11.53 | 10.24
10.56
10.33
9.95
10.27 | 10.88
10.89
10.20
10.43
10.64 | 8.42
8.63
8.52
8.87
8.89 | 9.26
8.95
8.96
9.09
8.92 | 8.63
8.74
9.21
9.44
9.42 | 10.02
9.92
9.84
9.87
10.0 | 11.18
11.28
11.42
11.41
11.22 | 11.58
11.30
11.16
11.05
11.10 | | 6
7
8
9
10 | 10.23
10.53
10.84
10.97
10.83 | 11.65
11.69
11.77
11.84
11.73 | 12.31
12.28
12.37
12.39
12.57 | 11.29
11.15
11.49
11.31
11.30 | 10.26
10.02
10.09
10.48
10.28 | 10.48
10.40
10.49
10.31
10.09 | 8.88
9.09
9.05
8.93
9.18 | 8.83
8.55
8.66
8.66
8.71 | 9.40
9.67
9.86
9.70
9.63 | 10.15
10.25
10.32
10.20
10.25 | 11.17
11.27
11.30
11.35
11.33 | 11.19
11.25
11.23
11.07
10.86 | | 11
12
13
14
15 | 10.71
10.62
10.65
10.61
10.68 | 11.91
12.19
12.24
12.10
12.01 | 12.46
12.49
12.13
 | 11.27
11.30
10.98
11.28
11.07 | 9.98
10.08
10.23
10.49
10.28 | 10.37
10.19
9.94
9.97
9.94 | 9.44
9.39
9.20
9.11
9.07 | 9.02
8.80
8.39
8.15
8.28 | 9.55
9.41
9.53
9.47
9.41 | 10.45
10.48
10.51
10.56
10.55 | 11.27
11.24
11.29
11.33
11.41 | 10.71
11.12
11.25
11.33
11.33 | | 16
17
18
19
20 | 10.74
10.67
10.99
10.93
10.88 | 12.02
12.29
12.30
12.10
12.04 | 11.42
11.70
11.60 | 11.27
11.06
11.11
11.07
11.02 | 9.97
9.97
10.43
10.49
10.28 | 9.93
10.34
10.13
9.97
9.45 | 9.23
9.27
9.33
9.29
9.28 | 8.26
8.07
7.99
8.19
8.18 | 9.44
9.58
9.82
10.03
10.12 | 10.60
10.72
10.70
10.73
10.89 | 11.44
11.41
11.35
11.41
11.55 | 11.24
11.27
11.30
11.29
11.24 | | 21
22
23
24
25 | 10.99
10.92
10.86
10.76 | 12.22
12.28
12.40
12.46
12.38 | 11.76
11.96
11.69
11.38
11.53 | 10.90
11.16
11.04
10.67
10.84 | 10.11
10.27
10.45
10.59
10.53 | 8.93
8.87
8.77
8.76
8.92 | 9.46
9.36
9.62
9.80
9.62 | 8.21
8.29
8.18
8.03
8.30 | 10.08
9.94
9.84
9.74
9.79 | 11.07
11.06
11.02
11.16
11.22 | 11.79
11.72
11.57
11.48
11.51 | 11.19
11.20
11.28
11.43
11.52 | | 26
27
28
29
30
31 | 10.97
11.19
11.59
11.65
11.63 | 12.38
12.38
12.44
12.44
12.27 | 11.33
11.21
11.19
11.24
11.42 | 10.88
10.75
10.57
10.45
10.51 | 10.17
10.12
10.49
 | 8.84
8.63
8.67
8.56
8.42
8.56 | 9.73
9.89
9.35
9.19
9.31 | 8.43
8.54
8.64
8.70
8.68
8.57 | 9.74
9.66
9.74
10.0
10.07 | 11.16
11.04
10.99
10.96
10.99 | 11.59
11.63
11.75
11.62
11.63
11.72 | 11.41
11.10
11.20
11.37
11.30 | | MEAN
MAX
MIN | 10.82
11.70
10.23 | 12.05
12.46
11.55 | 11.93
12.57
11.19 | 11.10
11.64
10.45 | 10.26
10.59
9.95 | 9.71
10.89
8.42 | 9.21
9.89
8.42 | 8.53
9.26
7.99 | 9.62
10.12
8.63 | 10.61
11.22
9.84 | 11.44
11.79
11.17 | 11.23
11.58
10.71 | # 401318075171101. Local number, MG 1146. (North Penn Project) LOCATION.--Lat 40°13'19", long 75°17'11", Hydrologic Unit 02040203, on Church Road southwest from Wissahickon Avenue, Upper Gwynedd Township Owner: Teleflex Corporation. AQUIFER.--Shale of Brunswick Group of Triassic Age. WELL CHARACTERISTICS.--Drilled monitor well, diameter 6 in., depth 84 ft, cased to 19.5 ft, open hole. **INSTRUMENTATION.**--Electronic data logger with 15-minute recording interval. **DATUM.**—Elevation of land-surface datum is 350 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of plywood shelf on top of well casing, about 1.74 ft above land-surface datum. Horizontal datum is NAD27. **REMARKS.**—In addition to the daily mean water-level table shown below, daily maximum and minimum water levels are also available from the District Office. PERIOD OF RECORD.--December 2000 to current year. EXTREMES FOR PERIOD OF RECORD.--The extremes shown are extremes of the instantaneous depth below land surface for the period of record indicated above. Highest water level, 20.98 ft below land-surface datum, Apr. 13, 2000; lowest, 44.95 ft below land-surface datum, Dec. 7, 2001. EXTREMES FOR CURRENT YEAR.--Highest water level, 21.57 ft below land-surface datum, June 16; lowest, 44.95 ft below land-surface datum, Dec. 7. # DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |------|-------|-------|-------|-------|-------|-------|-----|-------|-------|-------|-------|-------| | 1 | | | 42.97 | | | | | | 22.33 | 23.36 | 33.99 | 37.17 | | 2 | 36.29 | 39.99 | 43.24 | | 35.96 | 38.21 | | | 22.24 | 23.66 | 34.38 | 36.01 | | 3 | 36.51 | 40.11 | 43.54 | | 35.08 | 36.84 | | 23.66 | 22.87 | 23.86 | 33.56 | 35.73 | | 4 | 36.67 | 40.12 | 43.91 | 44.42 | 34.78 | 35.95 | | 23.57 | 23.25 | 24.00 | 32.32 | 36.17 | | 5 | 36.83 | 40.30 | 44.31 | | 35.11 | 35.63 | | 23.33 | 23.31 | 24.32 | 31.99 | 36.89 | | - | | | | | | | | | | | | | | 6 | 36.78 | 40.53 | 44.51 | | 35.12 | 35.26 | | | 23.44 | 24.69 | 32.38 | 37.46 | | 7 | 36.95 | 40.70 | | | 35.03 | 35.16 | | | 22.88 | 25.09 | 32.87 | 37.73 | | 8 | 37.39 | 40.84 | | | 35.19 | 35.45 | | | 22.49 | 25.71 | 33.30 | 37.97 | | 9 | 37.53 | 41.05 | | | 35.49 | 35.34 | | | 22.20 | 26.29 | 33.77 | 38.57 | | 10 | 37.43 | 41.06 | | | 35.22 | 35.25 | | 23.33 | 22.48 | 26.76 | 34.02 | 39.10 | | | | | | | | | | | | | | | | 11 | 37.36 | 41.27 | | | 35.20 | 35.62 | | 23.38 | 22.56 | 27.36 | 34.08 | 39.62 | | 12 | 37.49 | | | | 35.53 | 35.66 | | 22.93 | 22.35 | 27.85 | 34.52 | 40.31 | | 13 | 37.62 | | | | 35.86 | 35.55 | | 22.39 | 22.45 | 28.03 | 35.09 | 40.70 | | 14 | 37.74 | 42.02 | | | 36.20 | 35.15 | | 22.46 | 22.19 | 28.30 | 35.53 | 40.95 | | 15 | | 42.15 | | | 36.18 | 34.74 | | 22.81 | 21.68 | 28.91 | 35.93 | 41.04 | | | | | | | | | | | | | | | | 16 | | 42.28 | | | 36.10 | 34.48 | | 22.89 | 21.59 | 29.51 | 36.19 | 41.06 | | 17 | | 42.48 | | | 36.13 | 34.62 | | 22.83 | 22.08 | 30.06 | 36.34 | 40.59 | | 18 | | 42.50 | | | 36.67 | 34.16 | | 22.18 | 22.50 | 30.46 | 36.50 | 40.57 | | 19 | | 42.58 | | 41.04 | 37.01 | 32.97 | | 21.78 | 22.68 | 30.78 | 36.98 | 40.90 | | 20 | | 42.83 | | 41.22 | 37.08 | 31.90 | | 22.05 | 22.74 | 31.10 | 37.50 | 41.28 | | | | | | | | | | | | | | | | 21 | | 43.01 | | 41.33 | 37.12
 30.50 | | 22.31 | 22.80 | 31.36 | 37.91 | 41.45 | | 22 | | 43.06 | | 41.78 | 37.00 | 30.12 | | 22.53 | 22.62 | 31.80 | 38.01 | 41.63 | | 23 | | 43.18 | | 41.40 | 37.01 | 29.58 | | 22.46 | 22.49 | 32.30 | 38.24 | 42.13 | | 24 | | 43.27 | | 40.56 | 36.95 | 29.22 | | 22.19 | 22.89 | 31.91 | 38.30 | 42.72 | | 25 | | 43.40 | | | 37.02 | 29.36 | | 22.27 | 23.41 | 31.53 | 38.31 | 43.14 | | | | | | | | | | | | | | | | 26 | | 43.08 | | | 37.16 | 29.24 | | 22.13 | 23.73 | 31.79 | 38.57 | 43.41 | | 27 | | | | | | 28.40 | | 22.06 | 24.00 | 32.11 | 38.85 | 42.51 | | 28 | | | | | | 28.05 | | 22.34 | 23.49 | 32.47 | 39.30 | 41.17 | | 29 | | 42.39 | | | | 27.72 | | 22.59 | 23.34 | 32.85 | 38.86 | 40.32 | | 30 | | 42.64 | | | | | | 22.62 | 23.10 | 33.33 | 37.86 | 40.08 | | 31 | | | | | | | | 22.58 | | 33.69 | 37.46 | | | | | | | | | | | | | | | | | MEAN | 37.12 | 41.87 | 43.75 | 41.68 | 36.05 | 33.22 | | 22.63 | 22.74 | 28.88 | 35.90 | 39.95 | | MAX | 37.74 | 43.40 | 44.51 | 44.42 | 37.16 | 38.21 | | 23.66 | 24.00 | 33.69 | 39.30 | 43.41 | | MIN | 36.29 | 39.99 | 42.97 | 40.56 | 34.78 | 27.72 | | 21.78 | 21.59 | 23.36 | 31.99 | 35.73 | # NORTHAMPTON COUNTY #### 404745075184001. Local number, NP 820. LOCATION.--Lat 40°47'45", long 75°18'40", Hydrologic Unit 02040105, at 0.75 mi east of Bushkill Center on SR 1010, at Jacobsburg State Park. Owner: Jacobsburg State Park. AQUIFER.--Martinsburg Shale. WELL CHARACTERISTICS.--Drilled observation well, diameter 6 in, depth 218 ft, cased to 50 ft. INSTRUMENTATION.--Data collection platform with 60-minute recording interval. Satellite telemetry at station. DATUM.--Elevation of land-surface datum is 578 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of metal shelf, 3.25 ft above land-surface datum. REMARKS.-In addition to the daily mean water level table shown below, daily maximum and minimum water levels, are also available from the District PERIOD OF RECORD.--May 3, 2001 to current year. EXTREMES FOR PERIOD OF RECORD.--The extremes shown are extremes of the instantaneous depth below land surface for the period of record indicated above. Highest water level, 36.25 ft below land-surface datum, May 23, 2002; lowest, 49.79 ft below land-surface datum, Dec. 8, 2001. **EXTREMES FOR CURRENT YEAR**.--Highest water level, 36.25 ft below land-surface datum, May 23; lowest, 49.79 ft below land-surface datum, Dec. 8. | | | DEPT | H BELOW L | AND SURFA | CE (WATER | | ET), WATEI
VALUES | R YEAR OCT | OBER 2001 | ТО ЅЕРТЕМ | BER 2002 | | |----------------|----------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 46.95 | 48.81 | 49.60 | 49.25 | 48.36 | 49.21 | 45.22 | 40.98 | 39.46 | 42.42 | 46.19 | 47.78 | | 2 | 47.06 | 48.83 | 49.66 | 49.31 | 48.34 | 49.21 | 45.25 | 40.24 | 39.80 | 42.58 | 46.28 | 47.68 | | 3 | 47.19 | 48.87 | 49.66 | 49.28 | 48.19 | 48.96 | 45.22 | 39.52 | 40.23 | 42.74 | 46.41 | 47.65 | | 4 | 47.28 | 48.90 | 49.67 | 49.34 | 48.09 | 48.95 | 45.33 | 38.74 | 40.60 | 42.94 | 46.47 | 47.67 | | 5 | 47.38 | 48.94 | 49.68 | 49.41 | 48.19 | 48.91 | 45.37 | 38.06 | 40.87 | 43.15 | 46.50 | 47.75 | | 6 | 47.44 | 48.99 | 49.66 | 49.37 | 48.19 | 48.79 | 45.42 | 37.65 | 41.10 | 43.33 | 46.59 | 47.84 | | 7 | 47.62 | 49.02 | 49.70 | 49.38 | 48.13 | 48.77 | 45.53 | 37.41 | 40.99 | 43.50 | 46.70 | 47.92 | | 8 | 47.78 | 49.06 | 49.75 | 49.54 | 48.20 | 48.79 | 45.58 | 37.46 | 40.46 | 43.65 | 46.77 | 47.97 | | 9 | 47.86 | 49.12 | 49.70 | 49.52 | 48.35 | 48.73 | 45.62 | 37.60 | 39.79 | 43.76 | 46.85 | 47.99 | | 10 | 47.88 | 49.09 | 49.67 | 49.58 | 48.28 | 48.70 | 45.75 | 37.86 | 39.25 | 43.90 | 46.90 | 48.01 | | 11 | 47.93 | 49.19 | 49.60 | 49.61 | 48.26 | 48.79 | 45.87 | 38.28 | 38.84 | 44.05 | 46.95 | 48.06 | | 12 | 48.00 | 49.28 | 49.60 | 49.62 | 48.32 | 48.75 | 45.91 | 38.62 | 38.59 | 44.18 | 47.02 | 48.25 | | 13 | 48.08 | 49.28 | 49.50 | 49.56 | 48.41 | 48.71 | 45.92 | 38.89 | 38.55 | 44.30 | 47.11 | 48.30 | | 14 | 48.12 | 49.23 | 49.51 | 49.66 | 48.49 | 48.76 | 45.96 | 38.99 | 38.58 | 44.43 | 47.17 | 48.36 | | 15 | 48.12 | 49.25 | 49.59 | 49.59 | 48.44 | 48.77 | 45.73 | 38.89 | 38.66 | 44.53 | 47.24 | 48.36 | | 16 | 48.13 | 49.30 | 49.56 | 49.66 | 48.40 | 48.82 | 45.05 | 38.65 | 38.85 | 44.65 | 47.30 | 48.24 | | 17 | 48.12 | 49.40 | 49.38 | 49.58 | 48.48 | 48.95 | 44.35 | 38.40 | 39.15 | 44.77 | 47.35 | 48.16 | | 18 | 48.25 | 49.40 | 49.25 | 49.62 | 48.65 | 48.85 | 43.86 | 38.14 | 39.50 | 44.86 | 47.39 | 48.15 | | 19 | 48.25 | 49.35 | 49.25 | 49.60 | 48.68 | 48.74 | 43.52 | 37.68 | 39.84 | 44.96 | 47.46 | 48.15 | | 20 | 48.28 | 49.39 | 49.13 | 49.61 | 48.65 | 48.46 | 43.33 | 37.08 | 40.18 | 45.09 | 47.53 | 48.19 | | 21 | 48.36 | 49.48 | 49.12 | 49.59 | 48.68 | 47.84 | 43.27 | 36.64 | 40.48 | 45.23 | 47.64 | 48.25 | | 22
23
24 | 48.37
48.39 | 49.52
49.58
49.60 | 49.14
49.03
48.97 | 49.70
49.66
49.58 | 48.78
48.87
48.93 | 47.16
46.59
46.24 | 43.19
43.27
43.35 | 36.40
36.31
36.36 | 40.75
41.00
41.26 | 45.31
45.40
45.52 | 47.64
47.66
47.68 | 48.33
48.43
48.53 | | 25
26 | | 49.57
49.55 | 49.04
48.99 | 49.56
49.40 | 48.94
48.89 | 46.05
45.88 | 43.37 | 36.66
37.01 | 41.51
41.71 | 45.62
45.69 | 47.71
47.76 | 48.60
48.60 | | 27 | | 49.54 | 49.00 | 49.22 | 48.94 | 45.72 | 43.60 | 37.46 | 41.87 | 45.74 | 47.80 | 48.43 | | 28 | | 49.59 | 49.03 | 49.06 | 49.10 | 45.61 | 43.44 | 37.91 | 41.95 | 45.80 | 47.88 | 48.27 | | 29
30
31 | 48.81
48.82 | 49.60
49.56 | 49.09
49.17
49.21 | 48.95
48.86
48.64 | | 45.47
45.35
45.32 | 42.80
41.80 | 38.32
38.73
39.09 | 42.10
42.26 | 45.88
45.98
46.10 | 47.83
47.79
47.82 | 48.14
48.02 | | MEAN | 47.94 | 49.28 | 49.38 | 49.43 | 48.51 | 47.87 | 44.51 | 38.07 | 40.27 | 44.52 | 47.21 | 48.14 | | MAX | 48.82 | 49.60 | 49.75 | 49.70 | 49.10 | 49.21 | 45.96 | 40.98 | 42.26 | 46.10 | 47.88 | 48.60 | | MIN | 46.95 | 48.81 | 48.97 | 48.64 | 48.09 | 45.32 | 41.80 | 36.31 | 38.55 | 42.42 | 46.19 | 47.65 | #### PHILADELPHIA COUNTY #### 395342075102101. Local number, PH 12. LOCATION.--Lat 39°53'42", long 75°10'21", Hydrologic Unit 02040202, at Barracks and East Fourth Streets, Philadelphia. Owner: U.S. Naval Base. AQUIFER .-- Middle Sand Unit of Potomac-Raritan-Magothy aquifer system of Late Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 8 in., depth 101 ft, cased to 93 ft, screened from 93-101 ft. INSTRUMENTATION.--Data collection platform with 30-minute recording interval. Satellite telemetry at station. DATUM.--Elevation of land-surface datum is 8.6 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.3 ft above landsurface datum. Prior to May 27, 1998, top of casing, 1.8 ft above land-surface datum. REMARKS.—In addition to the daily maximum water level table shown below, daily minimum and mean water levels, since October 1994, are also available from the District Office. Mean daily fluctuation caused by tidal loading, 0.20 ft. PERIOD OF RECORD.--January 1952 to current year. EXTREMES FOR PERIOD OF RECORD. -- Prior to October 2000, the extremes shown were based on extremes of the daily maximum depth below landsurface datum. Since that date, the extremes are based on the instantaneous depth below land-surface datum. Highest water level, 10.65 ft below land-surface datum, Dec. 17, 18, 1996; lowest, 39.60 ft below land-surface datum, July 20, 1955. **EXTREMES FOR CURRENT YEAR.**--Highest water level, 12.12 ft below land-surface datum, Oct. 15; lowest, 18.84 ft below land-surface datum, DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 Aug. 31. | | | DEI I. | II BELOW L | AND SUKIA | CE (WATER | | JM VALUES | | OBER 2001 | TO SEI TEM | DER 2002 | | |----------------------------------|--|---|--|--|---|--|---|--|---|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 12.49 | 12.70 | 12.84 | 13.69 | 16.24 | 17.21 | 16.92 | 16.10 | 17.17 | 18.04 | 18.13 | 18.70 | | 2 | 12.52 | 12.61 | 13.04 | 13.80 | 16.68 | 17.20 | 16.92 | 16.11 | 17.44 | 17.97 | 18.19 | 18.30 | | 3 | 12.60 | 12.56 | 13.07 | 13.62 | 16.71 | 16.57 | 17.04 | 16.54 | 17.63 | 17.92 | 18.26 | 18.27 | | 4 | 12.59 | 12.59 | 13.08 | 13.55 | 16.37 | 16.88 | 17.17 | 16.71 | 17.69 | 17.96 | 18.30 | 18.20 | | 5 | 12.52 | 12.55 | 13.13 | 13.53 | 16.69 | 17.03 | 17.20 | 16.72 | 17.55 | 18.15 | 18.23 | 18.34 | | 6 | 12.60 | 12.61 | 13.03 | 13.47 | 16.64 | 17.04 | 17.07 | 16.78 | 17.46 | 18.23 | 18.40 | 18.42 | | 7 | 12.91 | 12.66 | 13.05 | 13.23 | 16.44 | 17.20 | 17.20 | 16.54 | 17.76 | 18.30 | 18.42 | 18.44 | | 8 | 13.02 | 12.73 | 13.17 | 13.54 | 16.28 | 17.31 | 16.97 | 16.80 | 17.71 | 18.32 | 18.44 | 18.43 | | 9 | 13.09 | 12.91 | 13.20 | 13.39 | 16.69 | 17.34 | 16.75 | 16.75 | 17.51 | 18.12 | 18.50 | 18.34 | | 10 | 12.93 | 12.85 | 13.23 | 13.43 | 16.64 | 17.46 | 17.01 | 16.92 | 17.51 | 18.18 | 18.47 | 18.18 | | 11 | 12.79 | 12.91 | 13.07 | 13.43 | 16.59 | 17.75 | 17.10 | 17.18 | 17.50 | 18.27 | 18.40 | 18.24 | | 12
| 12.66 | 12.99 | 13.19 | 13.56 | 16.58 | 17.60 | 16.94 | 17.08 | 17.43 | 18.20 | 18.34 | 18.47 | | 13 | 12.59 | 13.03 | 12.94 | 13.54 | 16.79 | 17.35 | 16.61 | 16.70 | 17.52 | 18.15 | 18.38 | 18.48 | | 14 | 12.53 | 13.09 | 12.82 | 13.78 | 16.90 | 17.33 | 16.43 | 16.72 | 17.50 | 18.16 | 18.42 | 18.46 | | 15 | 12.56 | 13.25 | 13.44 | 14.21 | 16.73 | 17.31 | 16.36 | 17.09 | 17.38 | 18.14 | 18.49 | 18.41 | | 16
17
18
19
20 | 12.57
12.67
12.93
12.88
12.67 | 13.21
13.34
13.19
12.91
12.80 | 13.50
13.22
13.01
13.14
13.19 | 14.87
15.14
15.62
15.66
15.77 | 16.39
16.61
16.93
16.87
16.57 | 17.64
17.80
17.59
17.50 | 16.39
16.36
16.32
16.26
16.20 | 17.10
16.88
17.03
17.08
17.06 | 17.46
17.62
17.83
17.95 | 18.13
18.21
18.09
18.10
18.24 | 18.51
18.51
18.44
18.48
18.63 | 18.29
18.38
18.41
18.40
18.32 | | 21 | 12.73 | 12.85 | 13.64 | 15.80 | 16.30 | 17.09 | 16.32 | 17.07 | 17.92 | 18.30 | 18.71 | 18.27 | | 22 | 12.55 | 12.71 | 13.73 | 16.28 | 16.50 | 17.46 | 16.20 | 17.19 | 17.83 | 18.23 | 18.63 | 18.29 | | 23 | 12.53 | 12.74 | 13.52 | 16.34 | 16.64 | 17.52 | 16.40 | 17.09 | 17.79 | 18.22 | 18.46 | 18.42 | | 24 | 12.29 | 12.73 | 13.04 | 16.06 | 16.77 | 17.43 | 16.58 | 16.87 | 17.79 | 18.34 | 18.44 | 18.56 | | 25 | 12.29 | 12.61 | 13.22 | 16.36 | 16.74 | 17.42 | 16.47 | 17.18 | 17.83 | 18.32 | 18.42 | 18.65 | | 26
27
28
29
30
31 | 12.52
12.85
13.14
13.10
12.96
12.96 | 12.49
12.53
12.57
12.63
12.53 | 13.12
12.93
13.02
13.24
13.49
13.61 | 16.41
16.44
16.35
16.23
16.44
16.51 | 16.43
16.42
16.98 | 17.34
17.00
17.15
17.04
16.92
16.95 | 16.47
16.65
16.46
16.31
16.31 | 17.15
17.23
17.28
17.30
17.27
17.19 | 17.80
17.71
17.96
18.12
18.12 | 18.20
18.04
17.96
17.93
17.99
18.09 | 18.46
18.65
18.78
18.66
18.74
18.84 | 18.57
18.31
18.60
18.74
18.68 | | MEAN | 12.71 | 12.80 | 13.19 | 14.84 | 16.61 | 17.29 | 16.65 | 16.93 | 17.68 | 18.15 | 18.48 | 18.42 | | MAX | 13.14 | 13.34 | 13.73 | 16.51 | 16.98 | 17.80 | 17.20 | 17.30 | 18.12 | 18.34 | 18.84 | 18.74 | | MIN | 12.29 | 12.49 | 12.82 | 13.23 | 16.24 | 16.57 | 16.20 | 16.10 | 17.17 | 17.92 | 18.13 | 18.18 | #### PIKE COUNTY #### 410940074583401. Local number, PI 200. LOCATION.--Lat 41°09'40", long 74°58'34", Hydrologic Unit 02040104, at Pocono Mountain Lake Estates. Owner: Pocono Mountain Lake Estates. AQUIFER.--Sandstone and siltstone of Towamensing Member of Catskill Formation of Late Devonian age. WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 8 in., depth 799 ft, cased to 86 ft, open hole. INSTRUMENTATION.--Data collection platform with 30-minute recording interval. Satellite telemetry at station. **DATUM.**—Elevation of land-surface datum is 1,180 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of plywood shelf, 3.3 ft above land-surface datum. Prior to October 1983, published as 1.4 ft above land-surface datum. **REMARKS.**—In addition to the daily maximum water level table shown below, daily minimum and mean water levels, since October 1994, are also available from the District Office. **PERIOD OF RECORD.**--July 1981 to current year. **EXTREMES FOR PERIOD OF RECORD.**--Prior to October 2000, the extremes shown were based on extremes of the daily maximum depth below land-surface datum. Since that date, the extremes are based on the instantaneous depth below land-surface datum. Highest water level, 24.30 ft below land-surface datum, June 1, 1984; lowest recorded, 98.67 ft below land-surface datum, Sept. 10, 26-29, **EXTREMES FOR CURRENT YEAR.**--Highest water level, 31.98 ft below land-surface datum, May 31; lowest, 64.30 ft below land-surface datum, Nov. 27. # | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|---|--|--|-----------------------------|--|---|--|---|---|--|---| | 1 | 57.27 | 60.51 | 63.19 | 51.67 | 43.97 | 46.79 | 44.21 | 35.30 | 35.89 | 43.64 | 52.19 | 60.67 | | 2 | 56.96 | 60.48 | 63.15 | 52.02 | 43.76 | 46.35 | 44.39 | 33.31 | 37.21 | 43.43 | 55.01 | 60.97 | | 3 | 56.92 | 60.88 | 63.13 | 52.30 | 44.06 | 47.22 | 45.46 | 33.57 | 37.32 | 43.84 | 57.08 | 61.29 | | 4 | 56.70 | 61.26 | 62.28 | 52.35 | 43.87 | 47.35 | 45.64 | 34.40 | 37.11 | 45.35 | 57.20 | 61.41 | | 5 | 56.48 | 61.59 | 61.57 | 52.40 | 43.66 | 45.86 | 43.19 | 37.14 | 37.90 | 46.68 | 56.45 | 60.03 | | 6 | 56.91 | 61.21 | 60.88 | 52.43 | 43.37 | 43.97 | 46.49 | 38.70 | 38.22 | 48.04 | 55.57 | 59.81 | | 7 | 57.54 | 61.38 | 60.41 | 49.41 | 43.16 | 42.20 | 49.21 | 38.94 | 38.18 | 49.52 | 54.70 | 60.36 | | 8 | 57.71 | 61.10 | 60.47 | 46.81 | 42.87 | 42.01 | 49.89 | 40.98 | 36.06 | 50.53 | 56.74 | 63.38 | | 9 | 57.65 | 60.89 | 60.51 | 45.17 | 44.65 | 42.25 | 47.51 | 44.22 | 35.88 | 50.10 | 58.17 | 63.56 | | 10 | 57.37 | 56.76 | 60.66 | 44.03 | 44.86 | 42.23 | 44.19 | 45.50 | 35.77 | 48.70 | 60.42 | 61.95 | | 11 | 56.55 | 60.00 | 60.24 | 45.96 | 45.13 | 42.33 | 47.94 | 43.86 | 35.37 | 47.15 | 61.44 | 61.27 | | 12 | 56.11 | 61.46 | 59.32 | 49.03 | 45.43 | 41.21 | 50.24 | 42.01 | 34.07 | 48.74 | 61.57 | 60.27 | | 13 | 57.64 | 61.70 | 58.77 | 51.13 | 45.89 | 41.43 | 50.63 | 41.73 | 34.69 | 50.56 | 60.25 | 60.20 | | 14 | 58.72 | 61.76 | 58.09 | 52.11 | 45.95 | 41.98 | 52.81 | 38.66 | 35.45 | 51.43 | 60.27 | 60.22 | | 15 | 59.15 | 61.67 | 57.47 | 52.72 | 43.81 | 42.11 | 53.31 | 35.47 | 36.40 | 52.11 | 60.03 | 61.02 | | 16 | 59.40 | 61.68 | 56.79 | 52.87 | 43.96 | 41.93 | 53.14 | 34.62 | 36.69 | 52.38 | 59.82 | 61.69 | | 17 | 59.32 | 62.35 | 56.10 | 52.00 | 45.27 | 42.50 | 52.34 | 34.64 | 36.94 | 51.07 | 58.12 | 61.95 | | 18 | 59.36 | 62.82 | 54.90 | 52.12 | 46.27 | 42.62 | 47.11 | 34.63 | 37.04 | 51.13 | 60.93 | 61.56 | | 19 | 59.60 | 63.72 | 53.88 | 51.87 | 46.44 | 42.75 | 41.67 | 33.53 | 37.58 | 51.22 | 61.34 | 61.11 | | 20 | 59.33 | 63.70 | 52.69 | 51.21 | 46.22 | 42.89 | 41.34 | 33.15 | 38.47 | 51.50 | 59.56 | 60.35 | | 21 | 58.87 | 64.10 | 51.57 | 51.58 | 46.17 | 41.63 | 46.03 | 32.71 | 38.82 | 51.84 | 58.97 | 59.47 | | 22 | 59.30 | 63.87 | 51.03 | 51.46 | 45.94 | 40.10 | 46.90 | 32.88 | 40.37 | 51.90 | 59.20 | 60.17 | | 23 | 59.57 | 63.88 | 50.74 | 51.35 | 46.11 | 39.51 | 46.80 | 33.00 | 41.82 | 51.29 | 59.25 | 60.85 | | 24 | 59.63 | 64.05 | 50.64 | 51.05 | 46.97 | 37.48 | 44.86 | 33.89 | 42.79 | 50.35 | 59.57 | 60.34 | | 25 | 59.60 | 64.25 | 50.69 | 50.81 | 47.32 | 37.79 | 45.65 | 36.55 | 42.29 | 50.31 | 58.75 | 60.57 | | 26
27
28
29
30
31 | 59.60
60.03
61.05
61.29
61.02
60.83 | 64.19
64.30
64.05
64.02
63.69 | 50.59
50.48
50.48
50.54
50.85
51.08 | 49.05
47.37
47.13
46.31
45.61
44.76 | 47.14
46.76
46.58
 | 38.09
38.10
40.10
42.28
44.08
44.39 | 43.83
45.33
41.96
39.26
38.53 | 38.55
38.91
39.62
39.03
36.58
34.71 | 41.76
41.48
41.59
42.76
43.43 | 49.68
48.95
50.38
50.90
50.57 | 59.66
59.27
59.14
59.63
59.49
59.89 | 61.05
59.31
59.50
59.85
60.01 | | MEAN | 58.63 | 62.24 | 56.23 | 49.87 | 45.20 | 42.31 | 46.33 | 37.12 | 38.31 | 49.52 | 58.70 | 60.81 | | MAX | 61.29 | 64.30 | 63.19 | 52.87 | 47.32 | 47.35 | 53.31 | 45.50 | 43.43 | 52.38 | 61.57 | 63.56 | | MIN | 56.11 | 56.76 | 50.48 | 44.03 | 42.87 | 37.48 | 38.53 | 32.71 | 34.07 | 43.43 | 52.19 | 59.31 | #### PIKE COUNTY #### 411833075133601. Local number PI 522. **LOCATION**.--Lat 41°18' 33", long 75°13' 36", Hydrologic Unit 02040103, at Promised Land State Park. Owner: U.S. Geological Survey. **AQUIFER.**-- Catskill Formation. WELL CHARACTERISTICS.--Drilled unused public supply well, diameter 6 in., depth 150 ft, cased to 28 ft, open hole. INSTRUMENTATION.--Data collection platform with 60-minute recording interval. Satellite telemetry at station. DATUM.--Elevation of land-surface datum is 1,730 ft above National Geodetic Vertical Datum of 1929, from survey. Measuring point: Top of casing, 3.64 ft above land-surface datum. REMARKS.--In addition to the daily mean water-level table shown below, daily maximum and minimum water levels are also available from the District PERIOD OF RECORD.--October 2001 to current year. EXTREMES FOR CURRENT YEAR.--Highest water level, 28.55 ft below land-surface datum, May 20, 21; lowest, 40.96 ft below land-surface datum, Sept. 15. | | | DEPT | H BELOW L | AND SURFA | CE (WATER | | EET), WATEI
VALUES | R YEAR OCT | OBER 2001 | ТО ЅЕРТЕМ | BER 2002 | | |----------------------------------|--|---|--|--|---|--|---|--|---|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 37.81 | 39.54 | 37.14 | 36.56 | 36.11 | 37.33 | 30.31 | 31.65 | 30.43 | 36.57
| 38.86 | 40.15 | | 2 | 37.87 | 39.55 | 36.08 | 36.73 | 35.61 | 37.37 | 30.32 | 30.94 | 30.36 | 36.69 | 38.91 | 40.16 | | 3 | 37.94 | 39.57 | 35.50 | 36.87 | 35.26 | 36.87 | 30.41 | 30.63 | 30.66 | 36.79 | 38.98 | 40.20 | | 4 | 38.02 | 39.60 | 35.22 | 37.02 | 35.03 | 36.38 | 30.74 | 30.50 | 31.32 | 36.96 | 39.05 | 40.27 | | 5 | 38.10 | 39.65 | 35.08 | 37.15 | 34.96 | 35.71 | 31.25 | 30.49 | 32.36 | 37.09 | 39.10 | 40.34 | | 6
7
8
9
10 | 38.18
38.33
38.47
38.55
38.63 | 39.68
39.69
39.75
39.79
39.79 | 35.08
35.17
35.34
35.66
36.01 | 37.24
37.35
37.48
37.52
37.64 | 34.95
34.99
35.11
35.30
35.38 | 35.33
35.14
35.07
35.05
34.82 | 31.89
32.63
33.43
33.77
34.10 | 30.68
31.14

33.54 | 33.34
32.88
32.03
31.23
30.84 | 37.18
37.29
37.38
37.46
37.58 | 39.18
39.26
39.33
39.40
39.48 | 40.40
40.47
40.52
40.55
40.60 | | 11 | 38.71 | 39.85 | 36.22 | 37.68 | 35.37 | 34.68 | 34.36 | 33.98 | 30.79 | 37.69 | 39.54 | 40.66 | | 12 | 38.81 | 39.89 | 36.39 | 37.80 | 35.43 | 34.46 | 34.59 | 34.14 | 31.15 | 37.76 | 39.63 | 40.70 | | 13 | 38.90 | 39.90 | 36.41 | 37.94 | 35.46 | 34.29 | 34.77 | 33.69 | 31.90 | 37.94 | 39.69 | 40.75 | | 14 | 38.96 | 39.90 | 36.42 | 38.06 | 35.43 | 34.27 | 34.98 | 32.55 | 32.55 | 38.02 | 39.82 | 40.91 | | 15 | 39.01 | 39.93 | 36.40 | 38.09 | 35.42 | 34.33 | 34.99 | 31.43 | 33.10 | 38.08 | 39.90 | 40.81 | | 16 | 39.08 | 39.96 | 36.10 | 38.18 | 35.43 | 34.46 | 34.93 | 30.50 | 33.65 | 38.17 | 39.95 | 40.18 | | 17 | 39.12 | 40.01 | 35.61 | 38.20 | 35.52 | 34.63 | 34.74 | 29.98 | 34.17 | 38.24 | 40.01 | 40.15 | | 18 | 39.19 | 40.01 | 35.20 | 38.28 | 35.70 | 34.74 | 34.58 | 29.25 | 34.47 | 38.31 | 40.08 | 40.17 | | 19 | 39.19 | 40.01 | 34.97 | 38.33 | 35.92 | 34.96 | 34.40 | 28.79 | 34.66 | 38.34 | 40.16 | 40.19 | | 20 | 39.24 | 40.01 | 34.71 | 38.38 | 36.14 | 35.06 | 34.15 | 28.59 | 34.76 | 38.39 | 40.21 | 40.20 | | 21 | 39.24 | 40.03 | 34.58 | 38.39 | 36.37 | 35.11 | 34.06 | 28.57 | 34.91 | 38.50 | 40.25 | 40.22 | | 22 | 39.25 | 40.08 | 34.55 | 38.49 | 36.56 | 35.10 | 33.90 | 28.71 | 34.97 | 38.54 | 40.30 | 40.23 | | 23 | 39.26 | 40.11 | 34.57 | 38.49 | 36.70 | 35.07 | 33.84 | 28.97 | 35.05 | 38.53 | 40.32 | 40.24 | | 24 | 39.31 | 40.15 | 34.67 | 38.37 | 36.86 | 34.98 | 33.90 | 29.40 | 35.13 | 38.46 | 40.33 | 40.26 | | 25 | 39.35 | 39.86 | 34.84 | 38.18 | 36.94 | 34.89 | 33.97 | 30.13 | 35.40 | 38.53 | 40.28 | 40.30 | | 26
27
28
29
30
31 | 39.39
39.46
39.52
39.52
39.53
39.54 | 39.44
39.23
38.97
38.77
38.33 | 35.01
35.18
35.39
35.70
36.05
36.33 | 38.15
38.06
37.93
37.74
37.53
37.02 | 37.01
37.09
37.22
 | 34.74
33.63
32.62
31.76
31.02
30.62 | 34.10
34.23
33.98
33.33
32.39 | 31.25
32.56
33.36
32.66
31.63
30.79 | 35.57
35.75
35.98
36.26
36.43 | 38.55
38.58
38.63
38.66
38.72
38.80 | 40.32
40.39
40.47
40.20
40.03
40.12 | 40.30
39.94
39.29
38.93
38.68 | | MEAN | 38.89 | 39.70 | 35.53 | 37.77 | 35.83 | 34.66 | 33.43 | 31.05 | 33.40 | 37.95 | 39.79 | 40.23 | | MAX | 39.54 | 40.15 | 37.14 | 38.49 | 37.22 | 37.37 | 34.99 | 34.14 | 36.43 | 38.80 | 40.47 | 40.91 | | MIN | 37.81 | 38.33 | 34.55 | 36.56 | 34.95 | 30.62 | 30.31 | 28.57 | 30.36 | 36.57 | 38.86 | 38.68 | #### SCHUYLKILL COUNTY #### 404708076070701. Local number, SC 296. LOCATION.--Lat 40°47'08", long 76°07'07", Hydrologic Unit 02040203, at Locust Lake State Park. Owner: U.S. Geological Survey. AQUIFER.--Mauch Chunk Formation of Early Pennsylvanian age. WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in., depth 242 ft, cased to 40 ft, open hole. INSTRUMENTATION.--Data collection platform with 30-minute recording interval. Satellite telemetry at station. DATUM.--Elevation of land-surface datum is 1,290 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of plywood shelf, 2.8 ft above land-surface datum. Prior to June 26, 1980, top of casing 2.3 ft above land-surface datum. **REMARKS.**—In addition to the daily maximum water level table shown below, daily minimum and mean water levels, since October 1994, are also available from the District Office. PERIOD OF RECORD.--July 1975 to current year. EXTREMES FOR PERIOD OF RECORD. -- Prior to October 2000, the extremes shown were based on extremes of the daily maximum depth below landsurface datum. Since that date, the extremes are based on the instantaneous depth below land-surface datum. Highest water level, 26.27 ft below land-surface datum, May 18, 1989; lowest, 57.46 ft below land-surface datum, Nov. 24, 2001. **EXTREMES FOR CURRENT YEAR**.--Highest water level, 43.24 ft below land-surface datum, May 18, 19; lowest, 57.46 ft below land-surface datum, Nov. 24. DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MAXIMUM VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 54.76 56.48 54.51 53.48 52.10 52.21 44.09 46.37 48.12 52.99 55.56 57.00 2 55.12 55.41 56.53 56.57 53.38 53.76 53.54 53.53 51.89 51.65 52.24 52.14 44.25 46.34 48.55 48.94 53.10 55.61 56.56 56.33 44.63 53.20 3 44.88 55.67 49.26 4 55.59 56.57 54.12 53 57 51.60 50.65 45.02 44.79 53.30 55.70 5 55.66 56.61 54.32 53.65 51.64 50.86 45.40 44.76 49.58 53.47 55.74 56.75 6 55.69 56.64 54.44 53.70 51.73 50.99 45.89 44.80 49.79 53.59 55.83 56.91 55.74 55.77 56.72 56.74 53.84 53.92 51.78 51.79 51.12 51.20 46.28 46.70 49.62 49.96 53.65 53.71 55.88 55.96 57.00 57.08 54.59 44.92 45.19 8 54.62 9 55.80 56 81 54.54 53.93 51.90 51.21 47.05 45 27 50.22 53.80 56.02 57.10 57.15 10 55.85 56.83 53.33 54.04 51.86 51.11 47.38 45.15 50.48 53.92 56.08 47.72 11 55.92 56.97 53.35 54.06 51.69 50.34 45.52 50.64 54.02 56.12 57.23 55.96 56.05 57.04 53.51 50.93 50.32 50.31 48.03 50.74 50.67 54.13 57.28 12 54.05 45.68 56.18 57.07 57.05 57.34 57.36 13 53.60 53.88 51.12 45.68 54.23 56.17 14 56.10 53 66 53 91 51 13 50 34 48 38 45 32 50.75 54 31 56 24 15 56.10 57.10 53.61 53.97 51.10 50.32 48.36 45.35 50.35 54.47 56.29 57.43 54.95 57 16 53.99 50 40 46.58 50.53 56.35 56.76 16 53.43 51.12 45.48 54.62 46.77 54.70 54.79 50.87 54.95 53.42 53.21 50.41 17 57.22 54.01 45.59 56.38 51.24 54.34 57.22 57.20 18 54.95 54.05 51.41 46.86 45.59 51.16 56.45 55.14 19 55 29 51 31 54 05 51 43 50 04 46 90 43 42 51 37 54 89 56 48 55 67 20 57.30 51.74 54.07 51.45 46.95 54.98 56.00 55.52 49.84 43.58 51.57 56.58 51.74 21 55.63 57.33 52.14 54.06 51.50 48.68 47.02 43.71 55.07 56.61 56.19 55.78 55.84 22 47.40 47.14 51.94 57.39 52.35 54.07 51.64 43.86 55.11 56.31 56.65 57.43 57.46 47.58 47.72 23 52.45 54.04 51.64 47.39 44.03 52.07 55.15 56.69 56.31 24 55.93 52.50 54.01 51.79 47.65 44.36 52.22 54.94 56.71 55.47 25 56.02 57.43 52.65 51.82 47.84 47.83 44.82 55.05 56.86 55.79 53.63 52.32 26 56.09 54.27 52.76 52.11 51.80 47.84 48.09 45.30 52.39 55.12 56.87 55.87 51.89 27 56.22 54.58 52.86 51.81 46.07 48.39 45.79 52.48 55.22 56.93 55.84 56.28 56.33 55.17 55.48 44.23 44.23 48.39 46.79 46.28 46.75 52.66 52.82 56.96 56.97 28 52.96 51.85 52.10 55.32 49.33 29 53.04 51.92 55.36 50.88 47.22 30 56.42 55.56 53.17 52.03 44.14 46.45 52.89 55.43 56.93 51.77 31 56 44 53 35 52 10 ___ 44 16 47.66 55 49 56.97 MEAN 55.75 56.66 53.31 53.51 51.60 49.24 46.89 45.27 50.89 54.42 56.34 55.89 MAX 56.44 54.76 57.46 54.27 54.62 51.31 54.07 52.10 52.24 44.14 48.39 47.66 52.89 48.12 55.49 52.99 56.97 57.43 49.33 50.93 43.42 MIN 51.81 44.09 55.56 #### WAYNE COUNTY #### 414333075153201. Local number, WN 64. LOCATION.--Lat 41°43'33", long 75°15'32", Hydrologic Unit 02040103, at State Game Land Number 159. Owner: U.S. Geological Survey. AQUIFER .-- Sand and gravel of Glacial Outwash of Quaternary age. WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in., depth 52 ft, cased to 52 ft, open hole. **INSTRUMENTATION.**--Data collection platform with 30-minute recording interval. Satellite telemetry at station. DATUM.--Elevation of land-surface datum is 1,350 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of plywood shelf, 3.9 ft above land-surface datum. Prior to May 7, 1987, top of plywood cover, measuring point above land-surface datum varied. REMARKS.--Daily maximum water-level data collected prior to May 7, 1987 were referenced to an uncertain datum elevation that cannot be related to any **REMARKS.**--Daily maximum water-level data collected prior to May 7, 1987 were referenced to an uncertain datum elevation that cannot be related to any datum after that date. In addition to the daily maximum water level table shown below, daily minimum and mean water levels, since October 1994, are also available from the District Office. PERIOD OF RECORD.--October 1967 to current year. EXTREMES FOR PERIOD OF RECORD.—Prior to October 2000, the extremes shown were based on extremes of the daily maximum depth below land-surface datum. Since that date, the extremes are based on the instantaneous depth below land-surface datum. Highest water level, 7.88 ft below land-surface datum, Nov. 17, 1972; lowest, 32.98 ft below land-surface datum, Nov. 9, 10, 11, 1991. EXTREMES FOR CURRENT YEAR.--Highest water level recorded, 23.40 ft below land-surface datum, May 20, 21; lowest, 29.97 ft below land-surface datum, Nov. 24-26. # DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MAXIMUM VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|---|--|--|---|--|---
--|---|--|--|---| | 1 | 29.67 | 29.75 | 29.85 | 29.41 | 28.96 | 27.45 | 26.00 | 24.74 | 25.31 | 26.59 | 28.82 | 29.42 | | 2 | 29.69 | 29.76 | 29.78 | 29.41 | 28.96 | 27.44 | 26.00 | 24.73 | 25.58 | 26.72 | 28.85 | 29.42 | | 3 | 29.70 | 29.77 | 29.78 | 29.41 | 28.68 | 27.34 | 25.97 | 24.64 | 25.79 | 26.89 | 28.87 | 29.43 | | 4 | 29.71 | 29.77 | 29.77 | 29.43 | 28.56 | 27.38 | 25.97 | 24.67 | 25.95 | 27.03 | 28.89 | 29.47 | | 5 | 29.71 | 29.76 | 29.77 | 29.43 | 28.56 | 27.38 | 25.94 | 24.59 | 26.03 | 27.15 | 28.93 | 29.47 | | 6 | 29.74 | 29.77 | 29.77 | 29.43 | 28.39 | 27.33 | 25.98 | 24.55 | 26.04 | 27.29 | 28.93 | 29.47 | | 7 | 29.75 | 29.79 | 29.77 | 29.43 | 28.32 | 27.37 | 26.02 | 24.59 | 25.98 | 27.39 | 28.94 | 29.50 | | 8 | 29.77 | 29.79 | 29.77 | 29.43 | 28.34 | 27.37 | 26.01 | 24.69 | 25.74 | 27.46 | 28.94 | 29.50 | | 9 | 29.76 | 29.82 | 29.77 | 29.41 | 28.34 | 27.36 | 26.06 | 24.71 | 25.38 | 27.54 | 28.98 | 29.51 | | 10 | 29.76 | 29.81 | 29.77 | 29.41 | 28.30 | 27.35 | 26.16 | 24.87 | 25.32 | 27.65 | 29.03 | 29.51 | | 11 | 29.76 | 29.84 | 29.78 | 29.41 | 28.09 | 27.35 | 26.22 | 24.92 | 25.27 | 27.71 | 29.08 | 29.59 | | 12 | 29.76 | 29.86 | 29.78 | 29.41 | 27.98 | 27.27 | 26.22 | 24.91 | 25.23 | 27.76 | 29.11 | 29.60 | | 13 | 29.76 | 29.86 | 29.78 | 29.43 | 27.78 | 27.26 | 26.21 | 24.72 | 25.30 | 27.82 | 29.17 | 29.61 | | 14 | 29.76 | 29.86 | 29.78 | 29.43 | 27.74 | 27.27 | 26.22 | 24.01 | 25.30 | 27.91 | 29.22 | 29.63 | | 15 | 29.77 | 29.87 | 29.72 | 29.43 | 27.53 | 27.23 | 26.14 | 23.93 | 25.25 | 28.00 | 29.26 | 29.64 | | 16 | 29.77 | 29.89 | 29.70 | 29.46 | 27.44 | 27.29 | 26.01 | 23.91 | 25.04 | 28.05 | 29.26 | 29.64 | | 17 | 29.75 | 29.89 | 29.64 | 29.46 | 27.64 | 27.29 | 25.85 | 23.85 | 24.76 | 28.09 | 29.26 | 29.63 | | 18 | 29.75 | 29.89 | 29.47 | 29.46 | 27.65 | 27.18 | 25.77 | 23.82 | 24.71 | 28.21 | 29.29 | 29.65 | | 19 | 29.75 | 29.89 | 29.45 | 29.46 | 27.56 | 27.14 | 25.70 | 23.68 | 24.71 | 28.26 | 29.34 | 29.65 | | 20 | 29.74 | 29.92 | 29.39 | 29.47 | 27.51 | 27.08 | 25.70 | 23.50 | 24.73 | 28.31 | 29.35 | 29.65 | | 21
22
23
24
25 | 29.74
29.75
29.75
29.75
29.72 | 29.91
29.93
29.95
29.97
29.97 | 29.39
29.39
29.37
29.33
29.36 | 29.47
29.47
29.46
29.43
29.43 | 27.49
27.47
27.46
27.41
27.37 | 26.99
26.93
26.84
26.76
26.74 | 25.75
25.75
25.83
25.85
25.85 | 23.83
24.05 | 24.76
24.94
25.03
25.21
25.44 | 28.35
28.38
28.43
28.46
28.49 | 29.37
29.37
29.38
29.38
29.37 | 29.68
29.68
29.68
29.68
29.68 | | 26
27
28
29
30
31 | 29.72
29.74
29.75
29.75
29.75
29.75 | 29.97
29.94
29.93
29.92
29.90 | 29.33
29.32
29.36
29.36
29.36
29.37 | 29.37
29.32
29.30
29.25
29.23
29.16 | 27.31
27.31
27.41
 | 26.67
26.28
26.17
25.92
25.88
25.92 | 25.86
25.86
25.76
25.05
25.02 | 24.37
24.65
24.84
24.98
25.05
25.16 | 25.62
25.82
26.07
26.29
26.43 | 28.51
28.56
28.61
28.64
28.73
28.78 | 29.38
29.41
29.42
29.42
29.42
29.42 | 29.68
29.68
29.51
29.46
29.43 | | MEAN | 29.74 | 29.86 | 29.59 | 29.40 | 27.91 | 27.01 | 25.89 | 24.46 | 25.43 | 27.93 | 29.19 | 29.57 | | MAX | 29.77 | 29.97 | 29.85 | 29.47 | 28.96 | 27.45 | 26.22 | 25.16 | 26.43 | 28.78 | 29.42 | 29.68 | | MIN | 29.67 | 29.75 | 29.32 | 29.16 | 27.31 | 25.88 | 25.02 | 23.50 | 24.71 | 26.59 | 28.82 | 29.42 | Ground-water samples were collected from selected wells in Chester County in July through August 2002 as part of the Chester County Ground-Water Quality Monitoring Program. The monitoring program began in 1980 with objectives that include providing data on ground-water quality (1) near suspected sources of contamination; (2) in areas of different land use or different underlying geology; (3) for specific contaminants or constituents countywide; and (4) in watersheds as part of regional assessment. Samples typically are collected each summer. In summer 2002, 6 wells were sampled in the county. Figure 12.--Locations of selected ground-water well sites in the Chester County water-quality monitoring project. WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | WA | IEK-QUAL | III DAIA, | WAIEKI | EAR OCTO | DEK 2001 I | OSEPTEMI | DEK 2002 | | | | |--|-------------------------------|--|---|--|--|--|--|--|--|---|---|--|--| | Local
ident-
i-
fier | _ | | Station | number | Latitud | le Lon | gitude | Date | AGENCY
COL-
LECTING
SAMPLE
(CODE
NUMBER)
(00027) | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | DEPTH
BELOW
LAND
SURFACE
(WATER
LEVEL)
(FEET)
(72019) | DEPTH
OF
WELL,
TOTAL
(FEET)
(72008) | ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD) (72000) | | CH 410
CH 5178
CH 6653
CH 6654
CH 6655 | | | 39524007
39504907
39523907
39545407
39523807 | 5434301
5434701
5350901 | 39 52 40
39 50 49
39 52 38
39 54 54
39 52 38 | N 075
N 075
N 075 | 39 08 W
43 43 W
43 47 W
35 08 W
39 15 W | 07-29-02
07-31-02
08-01-02
08-05-02
08-06-02 | 1028
1028
1028
1028
1028 | 80020
80020
80020
80020
80020 | 62.01
12.57
4.15
9.84
18.40 | 270
89.90
35.67
26.62
55.15 | 395
357.03
360
285
340 | | СН 6656 | | | 40002407 | 5334601 | 40 00 24 | N 075 | 33 46 W | 08-07-02 | 1028 | 80020 | 25.54 | 47.20 | 455 | | | Local
ident-
i-
fier | Date | FLOW
RATE
(G/M)
(00059) | SAM-
PLING
DEPTH
(FEET)
(00003) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | PH
WATER
WHOLE
LAB
(STAND-
ARD
UNITS)
(00403) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM)
(90095) | TEMPER-
ATURE
AIR
(DEG C)
(00020) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | | CH 410
CH 5178
CH 6653
CH 6654
CH 6655 | | 07-29-02
07-31-02
08-01-02
08-05-02
08-06-02 | 4.8
.90
1.1
.80
.90 | 240
38.0
34.5
25.0
48.0 | 750
755
755
754
749 | .5
8.9
6.3
8.0 | 6.5
5.8
5.5
6.3 | 6.5
6.3
6.1
5.6
6.4 | 449
361
188
539
523 | 433
349
187
529
517 | 33.0
28.0
30.0
29.5
21.5 | 13.5
15.2
13.2
13.5
14.0 | | | СН 6656 | | 08-07-02 | .50 | 45.0 | 751 | 7.9 | 4.9 | 5.0 | 366 | 353 | 22.0 | 14.7 | | | i | Local
ident-
i-
fier | Date | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | BROMIDE
DIS-
SOLVED
(MG/L
AS BR)
(71870) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | IODIDE,
DIS-
SOLVED
(MG/L
AS I)
(71865) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | | | CH 410
CH 5178
CH 6653
CH 6654
CH 6655 | | 07-29-02
07-31-02
08-01-02
08-05-02
08-06-02 | 44.7
37.7
18.4
42.4
40.6 | 15.4
12.9
6.85
18.6
14.8 | 5.68
3.22
1.95
6.06
5.09 | 13.1
5.90
6.65
28.5
44.9 | .10
.07
E.02
.07
.09 | 47.0
65.5
6.18
90.8
62.1 | <.1
<.1
E.1
E.1
<.1 | .007
.003
E.002
.003 | 26.3
15.7
23.6
15.5
21.7 | 66.1
20.1
25.2
61.7
56.7 | | | CH 6656 | | 08-07-02 | 14.8 | 15.9 | 2.10 | 19.0 | .06 | 87.5 | <.1 | .003 | 9.7 | .3 | | | | Local
ident-
i-
fier | Date | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | COLI-
FORM,
FECAL,
0.7
µM-MF
(COLS./
100 ML)
(31625) | ARSENIC
DIS-
SOLVED
(µG/L
AS AS)
(01000) | | | CH 410
CH 5178
CH 6653
CH 6654
CH 6655 | | 07-29-02
07-31-02
08-01-02
08-05-02
08-06-02 | 282
245
125
368
325 | <.04
<.04
<.04
<.04
<.04 |
E.06
<.10
<.10
E.10
E.06 | <.05
1.61
3.46
7.79
3.80 | E.007
<.008
<.008
<.008
.142 | <.004
.026
.034
.030
<.004 | <.02
.02
.04
.02
<.02 | .8
E.3
<.6
.8 | 0
0
0
0 | <.2
<.2
<.2
<.2
E.1 | | | СН 6656 | | 08-07-02 | 265 | <.04 | <.10 | 5.35 | <.008 | E.003 | <.02 | 1.1 | 0 | <.2 | | | i | Local
ident-
i-
fier | Date | BARIUM,
DIS-
SOLVED
(µG/L
AS BA)
(01005) | BORON,
DIS-
SOLVED
(µG/L
AS B)
(01020) | IRON,
DIS-
SOLVED
(µG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(µG/L
AS PB)
(01049) | LITHIUM
DIS-
SOLVED
(µG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(µG/L
AS MN)
(01056) | STRON-
TIUM,
DIS-
SOLVED
(µG/L
AS SR)
(01080) | 1,4-DI-
CHLORO-
BENZENE
DISSOLV
(µG/L)
(34572) | 1METHYL
NAPH-
THALENE
WATER,
FLTERD
REC
(µG/L)
(62054) | NAPH-
THALENE
WATER,
FLTERD
REC
(µG/L) | | | CH 410
CH 5178
CH 6653
CH 6654
CH 6655 | | 07-29-02
07-31-02
08-01-02
08-05-02
08-06-02 | 106
172
148
68.1
86.1 | 30
20
20
250
90 | 2680
<10
<10
24
19 | E.08
.49
.55
.81
.29 | 5
<4
<4
7
E3 | 288
<2.0
<2.0
4.6
205 | 160
170
183
520
178 | <.5
<.5
<.5
<.5 | <.5
<.5
<.5
<.5 | <.5
<.5
<.5
<.5 | | | СН 6656 | | 08-07-02 | 250 | 20 | E9 | 2.82 | E3 | 27.0 | 175 | <.5 | <.5 | <.5 | | WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | Local
ident-
i-
fier | Date | 2METHYL
NAPH-
THALENE
WATER,
FLTERD
REC
(µG/L)
(62056) | 3-BETA-
COPRO-
STANOL,
WATER,
FLTERD
REC
(µG/L)
(62057) | 3METHYL
1(H)-
INDOLE,
WATER,
FLTERD
REC
(µG/L)
(62058) | 3-TERT-
BHA,
WATER,
FLTERD
REC
(µG/L)
(62059) | 4-CUMYL
PHENOL,
WATER,
FLTERD
REC
(µG/L)
(62060) | 4-OCTYL
PHENOL,
WATER,
FLTERD
REC
(µG/L)
(62061) | 4-TERT-
OCTYL-
PHENOL,
WATER,
FLTERD
REC
(µG/L)
(62062) | 5METHYL
1HBENZO
TRIAZLE
WATER,
FLTERD
REC
(µG/L)
(62063) | ACETO-PHENONE WATER, FLTERD REC (µG/L) (62064) | AHT NAPH- THALENE WATER, FLTERD REC (µG/L) (62065) | |----------------------------------|-------------------------------------|---|---|---|--|---|--|--|---|---|---|---|--| | CH
CH
CH
CH | 410
5178
6653
6654
6655 | | 07-29-02
07-31-02
08-01-02
08-05-02
08-06-02 | <.5
<.5
<.5
<.5 | <2
<2
<2
<2
<2
<2 | <1
<1
<1
<1
<1 | <5
<5
<5
<5 | <1
<1
<1
<1
<1 | <1
<1
<1
<1
<1 | <1
<1
<1
<1
<1 | <2
<2
<2
<2
<2
<2 | E.1
<.5
<.5
<.5 | <.5
<.5
<.5
E.1
<.5 | | CH | 6656 | | 08-07-02 | <.5 | <2 | <1 | <5 | <1 | <1 | <1 | <2 | <.5 | <.5 | | | | Local
ident-
i-
fier | Date | ANTHRA-
CENE
DISSOLV
(µG/L)
(34221) | ANTHRA-
QUINONE
WATER,
FLTERD
REC
(µG/L)
(62066) | BENZO-
A-
PYRENE
DISSOLV
(µG/L)
(34248) | BENZO-
PHENONE
WATER,
FLTERD
REC
(µG/L)
(62067) | BETA-
SITOS-
TEROL,
WATER,
FLTERD
REC
(µG/L)
(62068) | BISPHE-
NOL A,
WATER,
FLTERD
REC
(µG/L)
(62069) | SURRGTE
S2033/
8033
WAT FLT
PERCENT | BRO-
MACIL,
WATER,
DISS,
REC
(µG/L)
(04029) | BROMO-
FORM
DISSOLV
(µG/L)
(34288) | CAF-
FEINE,
WATER
FLTRD
REC
(µG/L)
(50305) | | CH
CH
CH
CH | 410
5178
6653
6654
6655 | | 07-29-02
07-31-02
08-01-02
08-05-02
08-06-02 | <.5
<.5
<.5
<.5 | <.5
<.5
<.5
<.5 | <.5
<.5
<.5
<.5 | M
<.5
<.5
<.5 | <2
<2
<2
<2
<2 | <1
<1
<1
<1
<1 | 72.7
63.7
41.2
70.3
70.8 | <.5
<.5
<.5
<.5 | <.5
<.5
<.5
<.5 | <.5
<.5
<.5
<.5 | | СН | 6656 | | 08-07-02 | <.5 | <.5 | <.5 | <.5 | <2 | <1 | 60.7 | <.5 | E.1 | <.5 | | | | Local
ident-
i-
fier | Date | CAFFE-
INE-C13
SURRGTE
S2033/
8033
WAT FLT
PERCENT
(99584) | CAMPHOR
WATER,
FLTERD
REC
(µG/L)
(62070) | CAR-
BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µG/L)
(82680) | CARBA-
ZOLE,
WATER,
FLTERD
REC
(µG/L)
(62071) | CHLOR-
PYRIFOS
DIS-
SOLVED
(µG/L)
(38933) | CHOLES-
TEROL,
WATER,
FLTERD
REC
(µG/L)
(62072) | COT-
ININE,
WATER,
FLTERD
REC
(µG/L)
(62005) | 8033
WAT FLT
PERCENT | DI-
AZINON,
DIS-
SOLVED
(µG/L)
(39572) | D-LIMO-
NENE,
WATER,
FLTERD
REC
(µG/L)
(62073) | | CH
CH
CH
CH | 410
5178
6653
6654
6655 | | 07-29-02
07-31-02
08-01-02
08-05-02
08-06-02 | 81.9
87.8
75.4
74.0
77.7 | <.5
<.5
<.5
<.5 | <1
<1
<1
<1 | <.5
<.5
<.5
<.5 | <.5
<.5
<.5 | <2
<2
<2
<2
<2 | <1
<1
<1
<1 | 75.6
51.0
38.5
49.0 | <.5
<.5
<.5 | <.5
<.5
<.5
<.5 | | CII | 0033 | | 00 00 02 | ,,., | | | <.5 | <.5 | < 2 | ×1 | 61.8 | <.5 | <.5 | | СН | 6656 | | 08-07-02 | 70.5 | <.5 | <1 | <.5 | <.5 | <2 | <1 | 49.0 | <.5
<.5 | <.5 | | | | Local
ident-
i-
fier | | | | <1 | | <.5 ISOBOR- NEOL, WATER, FLTERD REC (µG/L) | | <1
ISO-
PROPYL
BENZENE
WATER, | ISO-
QUIN-
OLINE,
WATER,
FLTERD
REC
(µG/L) | | | | CH
CH
CH
CH
CH | | ident- | 08-07-02 | 70.5 FLUOR- ANTHENE DISSOLV (µG/L) | <.5 FLUORO- ANTHENE D10 SUR S2033/ 8033 WAT FLT PERCENT | <1 HHHMCP- BENZO- PYRAN, WATER, FLTERD REC (µG/L) | <.5 INDOLE, WATER, FLTERD REC (µG/L) | <.5 ISOBOR- NEOL, WATER, FLTERD REC (µG/L) | ISO-
PHORONE
DISSOLV
(µG/L) | ISO-
PROPYL
BENZENE
WATER,
FLTERD
REC
(µG/L) | ISO-
QUIN-
OLINE,
WATER,
FLTERD
REC
(µG/L) | <.5
MENTHOL
WATER,
FLTERD
REC
(µG/L) | <.5
METAL-
AXYL
WATER
FLTRD
REC
(µG/L) | | CH
CH
CH
CH
CH | 410
5178
6653
6654 | ident- | Date 07-29-02 07-31-02 08-01-02 08-05-02 | FLUOR-
ANTHENE
DISSOLV
(µG/L)
(34377)
<.5
<.5
<.5
<.5 | FLUORO-
ANTHENE
D10 SUR
S2033/
8033
WAT FLT
PERCENT
(99586)
71.4
74.5
58.4
69.3 | <1 HHHMCP- BENZO- PYRAN, WATER, FLTERD REC (µG/L) (62075) <.5 <.5 <.5 <.5 <.5 | <.5 INDOLE, WATER, FLTERD REC (µG/L) (62076) <.5 <.5 <.5 <.5 | <.5 ISOBOR- NEOL, WATER, FLTERD REC (µG/L) (62077) <.5 <.5 <.5 <.5 | ISO-
PHORONE
DISSOLV
(µG/L)
(34409)
<.5
<.5
<.5 | ISO-PROPYL BENZENE WATER, FLTERD REC (µG/L) (62078) | ISO-
QUIN-
OLINE,
WATER,
FLTERD
REC
(µG/L)
(62079)
<.5
<.5
<.5 | MENTHOL WATER, FLTERD REC (µG/L) (62080) <.5 <.5 <.5 <.5 | <.5 METAL- AXYL WATER FLTRD REC (µG/L) (50359) <.5 <.5 <.5 <.5 | | CH
CH
CH
CH
CH | 410
5178
6653
6654
6655 | ident- | Date 07-29-02 07-31-02 08-01-02 08-05-02 08-06-02 | FLUOR-
ANTHENE
DISSOLV
(µG/L)
(34377)
<.5
<.5
<.5
<.5
<.5 | FLUORO-ANTHENE D10 SUR \$2033/8033 WAT FLT PERCENT (99586) 71.4 74.5 58.4 69.3 70.6 67.8 | HHHMCP-BENZO-PYRAN, WATER, FLTERD REC (µG/L) (62075) <.5 <.5 <.5 <.5 <.5 <.5 <.f | INDOLE,
WATER,
FLTERD
REC
(µG/L)
(62076)
<.5
<.5
<.5
<.5
<.5 | ISOBOR- NEOL, WATER, FLTERD REC (µG/L) (62077) <.5 <.5 <.5 <.5 <.5 NONYL- PHENOL, DIETHOX WATER, FLTERD REC (µG/L) | ISO-PHORONE DISSOLV (µG/L) (34409) <.5 <.5 <.5 <.5 <.5 CTHOXY-OCTYL-PHENOL WAT FLT REC (µG/L) | ISO-PROPYL BENZENE WATER, FLITERD REC (µG/L) (62078) <.5 <.5 <.5 <.5 <.5 CD MONO-ETHOXY-OCTYL-PHENOL WAT FLT REC (µG/L) | ISO-QUIN-OLINE, WATER, FLTERD REC (µG/L) (62079) <.5 <.5 <.5 <.5 <.5 <.f <.5 <.f <.5 <.f <.f >.5 <.f <.f <.f >.5 <.f <.f <.f <.f <.f <.f | MENTHOL WATER, FLITERD REC (µG/L) (62080) <.5 <.5 <.5 <.5 <.5 | <.5 METAL- AXYL WATER FLITRD REC (μG/L) (50359) <.5 <.5 <.5 <.5 M PENTA- CHLORO- PHENOL DISSOLV (μG/L) | | CH
CH
CH
CH
CH
CH | 410
5178
6653
6654
6655 | ident-
i-
fier
Local
ident-
i- | Date 07-29-02 07-31-02 08-01-02 08-05-02 08-06-02 08-07-02 | FLUOR-ANTHENE DISSOLV (µG/L) (34377) <.5 <.5 <.5 <.5 <.5 METHYL SALICY-LATE, WATER, FLTERD REC (µG/L) | FLUORO-ANTHENE D10 SUR \$2033/ 8033 WAT FLT PERCENT (99586) 71.4 74.5 58.4 69.3 70.6 67.8 | HHHMCP-BENZO-PYRAN, WATER, FLTERD REC (µG/L) (62075) <.5 <.5 <.5 <.5 <.5 <.5 <.f | INDOLE, WATER, FLITERD REC (µG/L) (62076) <.5 <.5 <.5 <.5 <.5 <.5 NAPHTH- ALENE DISSOLV (µG/L) | ISOBOR- NEOL, WATER, FLTERD REC (µG/L) (62077) <.5 <.5 <.5 <.5 <.5 NONYL- PHENOL, DIETHOX WATER, FLTERD REC (µG/L) | ISO-PHORONE DISSOLV (µG/L) (34409) <.5 <.5 <.5 <.5 <.5
CTHOXY-OCTYL-PHENOL WAT FLT REC (µG/L) | ISO-PROPYL BENZENE WATER, FLITERD REC (µG/L) (62078) <.5 <.5 <.5 <.5 <.5 CD MONO-ETHOXY-OCTYL-PHENOL WAT FLT REC (µG/L) | ISO-QUIN-OLINE, WATER, FLTERD REC (µG/L) (62079) <.5 <.5 <.5 <.5 <.5 <.f <.5 <.f <.5 <.f <.f >.5 <.f <.f <.f >.5 <.f <.f <.f <.f <.f <.f | MENTHOL WATER, FLTERD REC (µG/L) (62080) <.5 <.5 <.5 <.5 <.5 <.f | <.5 METAL- AXYL WATER FLITRD REC (μG/L) (50359) <.5 <.5 <.5 <.5 M PENTA- CHLORO- PHENOL DISSOLV (μG/L) | WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | Local
ident-
i-
fier | Date | PHENAN
- THREN
EDISSOI
V(µG/L)
(34462) | WATER FILTRD (µG/L) | PRO-
METON
WATER
DISS,
REC
(µG/L)
) (04037 | PYRENE
DISSOLV
(µG/L) | (µG/L) | , CHLORO-
, ETHY-
LENE
DISSOLV
(µG/L) | CEF,
WATER
FLTERD
REC
(µG/L) | FLTERD
REC
(µG/L) | TRIBUTL PHOS- PHATE, WATER, FLTERD REC (µG/L) (62089) | TRICLO-
SAN,
WATER,
FLTERD
REC
(µG/L)
(62090) | |----|------|-------------------------------|----------------------|--|-------------------------------|--|-----------------------------|--|--|---|---|---|---| | CH | 410 | | 07-29-02 | <.5 | .6 | <.5 | <.5 | <2 | <.5 | <.5 | <.5 | <.5 | <1 | | CH | 5178 | | 07-31-02 | <.5 | <.5 | <.5 | <.5 | <2 | <.5 | <.5 | <.5 | <.5 | <1 | | CH | 6653 | | 08-01-02 | <.5 | <.5 | <.5 | <.5 | <2 | <.5 | <.5 | <.5 | <.5 | <1 | | CH | 6654 | | 08-05-02 | <.5 | <.5 | <.5 | <.5 | <2 | <.5 | E.1 | E.2 | < . 5 | <1 | | CH | 6655 | | 08-06-02 | <.5 | <.5 | <.5 | <.5 | <2 | <.5 | M | M | <.5 | <1 | | CH | 6656 | | 08-07-02 | <.5 | <.5 | <.5 | <.5 | <2 | <.5 | <.5 | <.5 | <.5 | М | | | | | | | Local
ident-
i-
fier | Date | ETHYL
CITRATE
WATER, | TRIPHNL
PHOS-
PHATE,
WATER,
FLTERD
REC
(µG/L)
(62092) | TRIS(2-BUTOXE_PHOS-PHATE,WATER,FLTERD(µG/L)(62093) | DICHLOR
VOS,
WATER
FLTRD
REC
(µG/L)
(38775) | SAMPLE
WEIGHT,
WASTE-
WATER
METHOD,
WAT FLT
(ML)
(99587) | | | | | | | CH
CH
CH
CH | 410
5178
6653
6654
6655 | (
(| 07-29-02
07-31-02
08-01-02
08-05-02
08-06-02 | <.5
<.5
<.5
<.5 | E.1
<.5
<.5
<.5 | E.1
<.5
<.5
<.5
<.5 | <1.00
<1.00
<1.00
<1.00
<1.00 | 885
956
927
925
922 | | | 08-07-02 <.5 <.5 <.5 <1.00 945 CH 6656 # GROUND-WATER DATA COLLECTED AT SPECIAL-STUDY SITES STATEWIDE ASSESSMENT OF METHYL-TERT-BUTYL-ETHER (MTBE) IN GROUND WATER The following table contains water-quality data from wells sampled as part of a study of MTBE in ground water in Pennsylvania. The U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Protection, conducted the study. The wells were sampled for MTBE, a gasoline additive, BTEX compounds (benzene, toluene, ethyl benzene, and xylene), pH, specific conductance, and temperature. Samples were collected from 86 wells in four geologic settings, and in various land use settings, across the state. Other data for the project can be found in the annual Water Data Reports PA-02-2, and PA-02-3. For additional information, contact Steve McAuley at the U.S. Geological Survey, 1000 Church Hill Road, Pittsburgh, PA 15025; 412-490-3801 (email: smcauley@usgs.gov). Figure 13.--Location of wells sampled as part of the MTBE in ground water project in the upper Delaware River Basin. Figure 14.--Location of wells sampled as part of the MTBE in ground water project in the lower Delaware River Basin. # GROUND-WATER DATA COLLECTED AT SPECIAL-STUDY SITES STATEWIDE ASSESSMENT OF METHYL-TERT-BUTYL-ETHER (MTBE) IN GROUND WATER PROJECT--Continued REMARKS.--Explanation of column headings--SITE IDENTIFIER: 15-digit unique identifier based on site latitude (first six digits), longitude (digits seven through thirteen), and a 2-digit sequence number suffix; ELEVATION OF LAND SURFACE: land-surface at well site in feet above sea level; Sampling method code 4040 = submersible pump; Sampling condition code 8 = pumping; µS/CM: microsiemens per centimeter at 25 degrees Celsius; DEG C: degrees Celsius; µG/L: micrograms per liter; "<" = less than; "E" = estimated. Quality-control data for a replicate sample are shown for Local Well Number BE1426 on November 18, 2001 at 1306. # WATER-QUALITY DATA, WATER YEARS OCTOBER 2000 TO SEPTEMBER 2002 | SITE IDENTIFIER | LOCAL
WELL
NUMBER | DATE | TIME | AGENCY
COL-
LECTING
SAMPLE
(CODE
NUMBER)
(00027) | AGENCY
ANA-
LYZING
SAMPLE
(CODE
NUMBER)
(00028) | DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) (72019) | DEPTH
OF
WELL,
TOTAL
(FEET)
(72008) | ELEV.
OF LAND
SURFACE
DATUM
(FT.
ABOVE
NGVD)
(72000) | SAM-
PLING
METHOD,
CODES
(82398) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |---|---|--|--|--|---|--|--|---|---|---|--|--| | | | | | | BERKS C | OUNTY | | | | | | | | 401852075412201
401958076050201
401958076050201
402954075420701 | BE 1718
BE 1426
BE 1426
BE 619 | 12-18-01
11-08-01
11-08-01
08-03-01 | 1145
1305
1306
1137 | 1028
1028
1028
1028 | 80020
80020
80020
80020 | 43.83

 | 223
350
350
248 | 310
365
360
520 | 4040
4040
4040
4040 | 7.5
7.0

7.9 | 465
666

280 | 13.4
13.2

11.9 | | | | | | | BUCKS C | OUNTY | | | | | | | | 400547074570001
400902075010701
400920074561101
401740075133201
402257075131501 | BK 3000
BK 2787
BK 2997
BK 2998
BK 2999 | 12-04-01
10-23-01
09-24-01
11-15-01
12-04-01 | 1615
1105
1325
1210
1230 | 1028
1028
1028
1028
1028 | 80020
80020
80020
80020
80020 | 17.00
37.52
15.11
79.93 | 90
37
180
110 | 80
255
115
335
475 | 4040
4040
4040
4040
4040 | 6.0
5.5
5.8

7.5 | 225
342
556
581
1010 | 15.0
14.1
13.2
13.4
13.9 | | | | | | | | COUNTY | | | | | | | | 394800075425801
395157075401802
395730075294401
395744075293301
395817075341901
395821075352201
395821075352201
395940075362401
400007075472501
400133075285801
400152075291801
400202075450301
400202075450301
400330075303601
400436075451701
395516075270101
395516075270101
395920075230301
395925075225801 | CH 6509
CH 6508
CH 6508
CH 6507
CH 1134
CH 104
CH 6497
CH 6512
CH 5446
CH 6511
CH 2634
CH 5052
DE 855
DE 484
DE 862
DE 791 | 12-14-01
08-23-01
12-11-01
12-10-01
12-19-01
08-16-01
08-15-01
12-19-01
11-13-01
12-19-01
12-19-01
12-12-01
12-12-01
12-12-01
12-12-01
12-12-01
12-12-01
12-12-01
12-12-01 | 1155
1151
1710
1150
1255
1120
1230
1110
1215
1510
1540
1540
1425
1615
1300 | 1028
1028
1028
1028
1028
1028
1028
1028 | 80020
80020
80020
80020 | 22.82
20.70
15.50
57.43
17.07
12.85
 | 200
250
100
258
120
55
100
285
260
85
110
120 | 350
435
297
328
415
445
447
610
450
445
560
270
360
350
120
330
315 | 4040
4040
4040
4040
4040
4040
4040
404 | 6.3
6.6
9.5
6.1
6.0
5.6
5.5
5.8
7.2
5.2
7.1
6.2
8.3 | 311
336
140
223
391
966
289
352

192
193
558
184 | 12.4
13.6
13.3
12.4
12.9
14.7
15.5
12.3
12.1
12.0
16.4 | | 403654075321201
403902075301301 | LE 1422
LE 1423 | 08-02-01
08-14-01 | 1137
1125 | 1028
1028 | 80020
80020 | 37.65 | 152
150 | 430
365 | 4040
4040 | 7.2 | 705
492 | 12.8
11.3 | | 1037020/3301301 | TE 1473 | 20 T4-0T | 1120 | 1020 |
 COUNTY | 100 | 500 | 4040 | 7.0 | 774 | 11.3 | | 410740075210101 | MO 693 | 11 10 01 | 1120 | 1028 | 80020 | | 300 | 1700 | 4040 | 7.0 | 264 | 10.8 | | 410/400/3ZT010T | MO 693 | 11-19-01 | 1120 | 1020 | | 135.19
RY COUNTY | | 1/00 | 4040 | 7.0 | 204 | 10.0 | | 400645075102001
401206075111001
401211075075701
401425075201201
401448075314901
401622075183401 | MG 1908
MG 1674
MG 958
MG 1761
MG 1673
MG 1180 | 12-11-01
11-16-01
08-16-01
11-29-01
10-22-01
11-14-01 | 1440
1225
1505
1525
1310
1255 | 1028
1028
1028
1028
1028
1028 | 80020
80020
80020
80020
80020
80020 | 14.30

8.53
17.36 | 400
285
271
220
120
190 | 240
244
342
270
343
378 | 4040
4040
8010
4040
4040
4040 | 7.3
7.3
7.1
7.7
7.2
7.6 | 880
464
391
492
461
692 | 13.0
12.5
12.9
13.7
13.2
13.3 | | 40420407500001 | ND 001 | 10 12 01 | 1525 | 1000 | | TON COUNT | | 400 | 4040 | 7.4 | 641 | 11 0 | | 404324075202601 | NP 821 | 12-13-01 | 1535 | 1028 | 80020 | 59.05 | 110 | 400 | 4040 | 7.4 | 641 | 11.0 | | 400400075105001 | DII 1020 | 10 10 01 | 1015 | 1000 | | PHIA COUN | | 200 | 4040 | | 105 | 14.5 | | 400429075105801 | PH 1039 | 12-12-01 | 1015 | 1028 | 80020 | 23.60 | 26.6 | 380 | 4040 | 5.5 | 107 | 14.5 | # GROUND-WATER DATA COLLECTED AT SPECIAL-STUDY SITES STATEWIDE ASSESSMENT OF METHYL-TERT-BUTYL-ETHER (MTBE) IN GROUND WATER PROJECT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | DATE | XYLENE
WATER
UNFLTRD
REC
(µG/L)
(81551) | BENZENE
14BRFL-
SURROG
VOC
UNFLTRD
REC
PERCENT
(99834) | BENZENE
TOTAL
(µG/L)
(34030) | ETHANE
12DICL
SURROG
VOC
UNFLTRD
REC
PERCENT
(99832) | ETHYL-
BENZENE
TOTAL
(µG/L)
(34371) | METHYL
TERT-
BUTYL
ETHER
WAT UNF
REC
(µG/L)
(78032) | META/
PARA-
XYLENE
WATER
UNFLTRD
REC
(µG/L)
(85795) | O-
XYLENE
WATER
WHOLE
TOTAL
(µG/L)
(77135) | TOLUENE D8 SURROG VOC UNFLTRD REC PERCENT (99833) | TOLUENE
TOTAL
(µG/L)
(34010) | SAM-
PLING
CONDI-
TION
(72006) | SET
NUMBER
VOC AN-
ALYSIS
(NO.)
(99931) | |--|--|---|---|---|---|---|--|--|--|---|--|--| | | | | | | В | ERKS COUN | TY | | | | | | | 12-18-01
11-08-01
11-08-01
08-03-01 | <.2
<.2
<.2
<.2 | 79.2
85.2
86.3
83.0 | <.2
<.2
<.2
<.2 | 124
122
124
112 | <.2
<.2
<.2
<.2 | <.2
<.2
<.2
<.2 | <.2
<.2
<.2
<.2 | <.2
<.2
<.2
<.2 | 101
104
104
98.6 | <.2
<.2
<.2
<.2 | 8.00
8.00
8.00
8.00 | 6.01
6.01
6.01
7.01 | | | | | | | В | UCKS COUN | TY | | | | | | | 12-04-01
10-23-01
09-24-01
11-15-01
12-04-01 | <.2
<.2
<.2
<.2
<.2 | 85.4
94.7
93.6
97.9
85.1 | <.2
<.2
<.2
<.2
<.2 | 122
112
92.2
105
120 | <.2
<.2
<.2
<.2
<.2 | .6
5.6
.3
<.2
.4 | <.2
<.2
<.2
<.2
<.2 | <.2
<.2
<.2
<.2
<.2 | 103
103
96.2
99.1
103 | <.2
<.2
<.2
<.2
<.2 | 8.00
8.00
8.00
8.00
8.00 | 6.01
6.01
2.01
7.01
6.01 | | | | | | | СН | ESTER COU | NTY | | | | | | | 12-14-01
08-23-01
12-11-01
12-10-01
12-19-01
08-16-01
08-15-01
12-19-01
11-13-01
12-19-01 | <.2
<.2 | 75.3
103
74.6
85.0
83.6
103
106
82.9
84.8
88.6 | <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 | 131
103
130
123
124
97.0
98.6
122
125
126 | <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 | <.2 <.2 <.2 <.2 <.3 <.2 <.3 <.2 <.5 <.3 <.2 <.3 <.2 <.3 <.3 <.3 <.3 <.3 <.3 <.3 <.3 <.3 <.3 | <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 | <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 | 100
96.2
99.4
103
105
91.3
96.7
99.6
102
99.6 | <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 | 8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00 | 6.01
2.01
6.01
6.01
2.01
2.01
6.01
6.01
6.01 | | 12-19-01
12-12-01
12-18-01 | | 79.5
76.2
79.4 | <.2
<.2
<.2 | 121
127
120 | <.2
<.2
<.2 | .4
<.2
.6 | <.2
<.2
<.2 | <.2
<.2
<.2 | 100
101
96.6 | <.2
<.2
<.2 | 8.00
8.00
8.00 | 6.01
6.01
6.01 | | | | | | | DEL | AWARE COU | | | | | | | | 12-12-01
12-11-01
09-20-01
09-20-01 | <.2
<.2
<.2
<.2 | 77.4
74.9
76.5
78.5 | <.2
<.2
<.2
<.2 | 129
126
97.2
103 | <.2
<.2
<.2
<.2 | 1.0
<.2
<.2
<.2 | <.2
<.2
<.2
<.2 | <.2
<.2
<.2
<.2 | 100
99.1
91.2
92.4 | <.2
<.2
<.2
<.2 | 8.00
8.00
8.00
8.00 | 6.01
6.01
5.01
5.01 | | | | | | | LE | HIGH COUN | TY | | | | | | | 12-13-01
08-02-01
08-14-01 | <.2
<.2
<.2 | 73.7
80.9
107 | <.2
<.2
<.2 | 127
112
98.9 | <.2
<.2
<.2 | .7
<.2
<.2 | <.2
<.2
<.2 | <.2
<.2
<.2 | 99.8
98.3
94.3 | <.2
<.2
<.2 | 8.00
8.00
8.00 | 6.01
7.01
2.01 | | | | | | | MO | NROE COUN | TY | | | | | | | 11-19-01 | <.2 | 98.9 | <.2 | 102 | <.2 | E.1 | <.2 | <.2 | 98.3 | <.2 | 8.00 | 7.01 | | | | | | | MONT | GOMERY CO | UNTY | | | | | | | 12-11-01
11-16-01
08-16-01
11-29-01
10-22-01
11-14-01 | <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 | 72.8
99.4
106
85.9
93.1
86.2 | <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 | 124
103
101
119
114
125 | <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 | 13.4
<.2
E.1
<.2
<.2
<.2 | <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.1 | <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 | 97.7
97.5
100
102
103
107 | <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 | 8.00
8.00
8.00
8.00
8.00 | 6.01
7.01
2.01
6.01
6.01
6.01 | | | | | | | NORTH | AMPION CO | OINII | | | | | | | 12-13-01 | <.2 | 76.2 | <.2 | 129 | <.2 | <.2 | <.2 | <.2 | 101 | <.2 | 8.00 | 6.01 | | | | | | | PHILA | DELPHIA C | OUNTY | | | | | | | 12-12-01 | <.2 | 76.4 | <.2 | 128 | <.2 | .2 | <.2 | <.2 | 99.3 | <.2 | 8.00 | 6.01 | # GROUND-WATER DATA COLLECTED AT SPECIAL-STUDY SITES STATEWIDE ASSESSMENT OF METHYL-TERT-BUTYL-ETHER (MTBE) IN GROUND WATER PROJECT--Continued **REMARKS.**--The following are quality control samples (blanks) processed during the 2001 water year and are defined in the explanation of records section entitled, "Water Quality-Control Data"; "<" = less than. #### QUALITY-CONTROL DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2002 | SITE IDENTIFIER | LOCAL
WELL
NUMBER | DATE | TIME | AGENCY COL- LECTING SAMPLE (CODE NUMBER (00027) | SAMPLE
(CODE
NUMBER) | | VOC
UNFLTRE
REC
PERCENT | BENZENE
TOTAL
(µG/L) | REC
PERCENT | ETHYL-
BENZENE
TOTAL
(µG/L)
(34371) | METHYL
TERT-
BUTYL
ETHER
WAT UNF
REC
(µG/L)
(78032) | |------------------------------------|-------------------------|--|--|--|---------------------------------------|--|--|---|--|--|--| | 402954075420701
403902075301301 | BE 619
LE 1423 | 08-03-01
08-14-01 | | 1028
1028 | 80020
80020 | <.2
<.2 | 99.2
107 | <.2
<.2 | 117
101 | <.2
<.2 | <.2
<.2 | | | DATE 08-03-01 08-14-01 | META/
PARA-
XYLENE
WATER
UNFLTRD
REC
(µG/L)
(85795) | O-
XYLENE
WATER
WHOLE
TOTAL
(μG/L)
(77135)
<.2
<.2 | TOLUENE D8 SURROG VOC UNFLTRD REC PERCENT (99833) 102 99.5 | TOLUENE
TOTAL
(µG/L)
(34010) | BLANK,
SOURCE
OF
SOLU-
TION
(CODE)
(99101) | BLANK,
TYPE
OF
SAMPLE
(CODE)
(99102)
30.00
100.00 | BLANK,
TYPE
OF
SOLU-
TION
(CODE)
(99100)
50.00 | REF-
ERENCE
MA-
TERIAL
SPIKE
LOT
NUMBER
(99104) | SET
NUMBER
VOC AN-
ALYSIS
(NO.)
(99931)
5.01
2.01 | | **REMARKS.**—Concentrations of volatile organic (fuel) compounds in environmental sample and spiked replicate from site ID 400920074561101 (Local identifier BK 2997) and calculated recoveries, in percent; "<" = less than. Less-than values were set equal to zero for calculations; E = estimated value. #### QUALITY-CONTROL DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2002--Continued | | | Laboratory | results | а | | |-------------------|------------------|--|----------|--------------------------|---| |
Parameter
code | Constituent | Environmental sample
(not spiked)
(09/24/01 @ 1325)
A | (spiked) | Calculated concentration | Recovery
in percent
[(B-A)/C] x 100 | | 78032 | Methyl-t-butyl e | | | | | | | (MTBE) | 0.3180 b | 0.9571 | .746 | 86% | | 34030 | Benzene | <0.2 | 0.3850 | .465 | 83% | | 34010 | Toluene | <0.2 | 0.3522 | .469 | 75% | | 34371 | Ethyl benzene | <0.2 | 0.3503 | .469 | 75% | | 77135 | o-Xylene | <0.2 | 0.2414 | .280 | 86% | | 85795 | m & p-Xylene | <0.2 | 0.4533 | .559 | 81% | | 81551 | Xylenes (total) | <0.2 | 0.6947 | .839 | 83% | | | | | | | recovery 81% | | | | | | Standard de | | | | | | | Median 1 | recovery 83% | - **a** Calculated concentration of spike in sample equals the concentration of the spike solution, in micrograms per milliliter x amount of spike added, in milliters, divided by the spiked sample volume, in liters. - **b** Unrounded value was used in recovery calculations. # **INDEX** | | Page | | Page | |---|-------------|--|--------------------------| | Abbreviations, Explanation of parameter code | | Biochemical oxygen demand (BOD), Definition of | | | Access to USGS water data | | Biomass, Definition of | | | Accuracy of the records, Explanation of | | Biomass pigment ratio, Definition of | | | Acid neutralizing capacity (ANC), Definition of | | Birch Run near Wagontown | | | Acre-foot, Definition of | 24 | Birdsboro, Schuylkill River at | | | Adams Creek, | | Blakeslee, Tobyhanna Creek near | | | near Dingmans Ferry | | Blue-green algae, Definition of | | | near Edgemere | | Blue Marsh Lake | | | Addresses, office | | Bondsville, Beaver Creek at | 436-453 | | Adenosine triphosphate (ATP), Definition of | | Bottom material: See bed material. | 202 202 | | Aldenville, West Branch Lackawaxen River near | | Bradshaw Reservoir, Distributary From | | | Allealinites Definition of | | Brandywine Creek, at Chadds Ford | 3/9-389 | | Allachemy Crack at Cibralton | | East Branch, at Dorlan | 400 | | Allegheny Creek at Gibralter | 407 | at Glenmoore | | | Jordan Creek at | 142 142 | below Downingtown | | | Jordan Creek at | | near Downingtown | | | Lehigh River at | | West Branch, | 304-303 | | Little Lehigh Creek at Tenth Street Bridge | | at Coatesville | 312 316 | | Little Lehigh Creek near | | at Modena | | | Analomink, Brodhead Creek near | | at Wagontown | | | Annual runoff, Definition of | | near Honey Brook | | | Annual 7-day minimum, Definition of | | Broad Run | 332-330 | | Aquashicola Creek at Palmerton | | at Marshallton | <i>1</i> 36- <i>1</i> 53 | | Aroclor, Definition of | | at Northbrook | | | Artificial substrate, Definition of | | at Romansville | | | Ash mass, Definition of | | Brodhead Creek Basin, Gaging stations in | | | Aspect, Definition of | | Brodhead Creek, | | | Avondale, | | at Minisink Hills | 98-100 | | East Branch White Clay Creek at | 436-453 | near Analomink | | | Middle Branch White Clay Creek near | | near East Stroudsburg | | | middle Braien white early creek hear minimum | | Buck Run, | | | Bacteria, Definition of | 24 | at Doe Run | 436-453 | | Bankfull stage, Definition of | | near Doe Run | | | Barnesville, Pine Creek at | | Bucks County, Ground water-level records in | | | Barryville, NY, | | Ground-water-quality records in | | | Delaware River above Lackawaxen River near. | 56-59 | Bulk electrical conductivity, Definition of | | | Delaware River at | 78-79 | Bushkill, | | | Base discharge, Definition of | 24 | Little Bush Kill at | 403 | | Base flow, Definition of | | Sand Hill Creek at | 403 | | Bath, East Branch Monocacy Creek near | 405 | Bush Kill at Shoemakers | 89-91 | | Bear Creek at Jefferson | 406 | Bush Kill Basin, Gaging stations in | | | Beaver Creek, | | Byberry Creek at Chalfont Road, Philadelphia | 406 | | at Bondsville | 436-453 | | | | at Guthriesville | 436-453 | Callicoon, NY, Delaware River at | | | at Reeceville | 436-453 | Carbon County, Ground-water-level records in | | | Beaver Run tributary at Quakertown | 406 | Catasauqua Creek at Catasauqua | 405 | | Bedload, Definition of | 24 | Cells/volume, Definition of | 25 | | Bedload discharge (tons per day), Definition of | | Cfs-day: See Cubic foot per second day. | | | Bed material, Definition of | | Chadds Ford, Brandywine Creek at | 379-389 | | Beltzville Lake | | Chalfont, North Branch Neshaminy Creek at | 194-195 | | Belvidere, NJ, Delaware River at | | Chambers Lake Reservoir | 391 | | Benthic organisms, Definition of | 24 | Channel bars, Definition of | | | Berks County, | | Chemical oxygen demand (COD), Definition of | | | Ground-water-level records in | | Chester, Chester Creek near | | | Ground-water-quality records in | | Delaware River at | 308-314 | | Berne, Schuylkill River at | 224-226 | Chester County, | | | Bernville, | | Ground-water-level records in | | | Tulpehocken Creek at | | Ground-water-quality records in 426-435,4 | | | Tulpehocken Creek near | 227-231 | Chester Creek Basin, Gaging stations in | | | Bethlehem, | | Chester Creek, near Chester | | | Lehigh River at | | East Branch, at Westtown | | | Monocacy Creek at | | Choke Creek near Thornhurst | | | Big Elk Creek, at Maple Grove | | Christina River Basin, Gaging stations in | | | near Lewisville | 404,410-425 | Lakes And Reservoirs in | 391 | | | Page | | Page | |--|-------------|--|---------| | Classification of records | | Discharge, | | | Clostridium perfringens, Definition of | 25 | at low-flow partial-record sites | | | Coatesville, | 401 | at miscellaneous sites | | | Sucker Run near | | at partial-record stations | | | West Branch Brandywine Creek at | | Definition of | | | Codes, remark, Explanation of | | Instantaneous, Definition of | | | Coliphages, Definition of | 23 | Mean, Definition of | | | Perkiomen Creek at Arcola near | 410-425 | Discontinued surface-water discharge stations, List of Discontinued surface-water-quality stations, List of | | | Color unit, Definition of | | Dissolved, Definition of | | | Confined aquifer, Definition of | | Dissolved oxygen, Definition of | | | Constituents, Definition of | | Dissolved-solids concentration, Definition of | | | Contents, Definition of | * | Distributary from Bradshaw Reservoir | | | Continuous-record station, Definition of | 25 | Diversity index, Definition of | | | Control, Definition of | | Doe Run, Buck Run, | | | Control structure, Definition of | 25 | at | 436-453 | | Cooks Creek at Durham Furnace | 405,410-425 | near | 408 | | Cooperation | 1-2 | Dorlan, East Branch Brandywine Creek at | 409 | | Coventryville, French Creek at | 408,410-425 | Downingtown, | | | Crest-stage partial-record stations, | | East Branch Brandywine Creek below | 366-378 | | Annual maximum discharge at | | East Branch Brandywine Creek near | | | Crum Creek near Newtown Square | | Marsh Creek near | | | Crum Creek Basin, Gaging stations in | | Marsh Creek Reservoir near | | | Cubic foot per second (cfs), (ft ³ /s), Definition of | | Downstream-order system, Explanation of | | | Cubic foot per second day, Definition of | 25 | Drainage area, Definition of | | | Cubic foot per second per square mile (cfsm), | 25 | Drainage basin, Definition of | | | [(ft ³ /s)/mi ²], Definition of | 25 | Dublin, East Branch Perkiomen Creek near | | | Daily man suspended sediment concentration Defin | ition of 26 | Durham Furnace, Cooks Creek at Dry mass, Definition of | | | Daily mean suspended-sediment concentration, Defin Daily-record station, Definition | | Dry weight, Definition of | | | Data collection platform (DCP), Definition of | | Dyberry Creek, | 20 | | Data logger, Definition of | | above Reservoir near Honesdale | 400 | | Datum, Definition of | | at Tanners Falls near Dyberry | | | Definition of terms | | near Honesdale | | | Delaware County, | | Dyberry, Dyberry Creek at Tanners Falls near | | | Ground-water-level records in | 497 | , , , , , , , , , , , , , , , , , , , | | | Ground-water-quality records in | | Earlville, Manatawny Creek at | 407 | | Delaware River, | | East Berkley, Maiden Creek near | 407 | | above Lackawaxen River near Barryville, NY | 56-59 | East Branch, Brandywine Creek, | | | at Barryville, NY | 78-79 | at Dorlan | 409 | | at Belvidere, NJ | 103-105 | at Glenmoore | 436-453 | | at Benjamin Franklin Bridge at Philadelphia | | below Downingtown | | | at Callicoon, NY | 50-54 | near Downingtown | 364-365 | | at Chester | | Chester Creek at Westtown | | | at Lumberville | | Monocacy Creek near Bath | | | at Montague, NJ | | Perkiomen Creek, near Dublin | | | at Philadelphia, at Fort Mifflin | | near Harleyville | | | at Point Pleasant, below Tohickon Creek | | near Schwenksville | | | at Pond Eddy, NY | | Red Clay Creek near Five Points | | | at Port Jervis, NY | | White Clay Creek, at Avondale | | | at Portlandat Reedy Island Jetty, DE | | at Landenberg East Greenville, Perkiomen Creek at | | | at Riegelsville | | East Sterling, Wallenpaupack Creek at | | | at Trenton, NJ | | East Stroudsburg, Brodhead Creek near | | | below Tohickon Creek at Point Pleasant | | East of outstoring, Brouncad Creek fical | | | West Branch, | 102 100 | Edgemere, Adams Creek near | | | at Hale Eddy, NY | 410-425 | Egypt Mills, Toms Creek at | | | at Hancock | | Embeddedness, Definition of | | | Diatoms, Definition of | | Enterococcus bacteria, Definition of | | | Diel, Definition of | | EPT index, Definition of | | | Dingmans Creek near Dingmans Ferry | | Equinunk Creek near Equinunk | | | Dingmans Ferry, | | Eschrichia Coli, Definition of | | | Adams Creek near | 402,410-425 | Estimated concentration value, Definition of | | | Dingmans Creek near | | Estimated daily discharge, Identifying | 16 | | Hornbecks Creek near | 402 | Euglenoids, Definition
of | | | | Page | | Page | |---|---------|---|---------| | Evansburg, Skippack Creek at | 403 | Horizontal datum: See datum. | | | Explanation of: | | Hornbecks Creek near Dingmans Ferry | 402 | | Ground-water-level records | 21-22 | Hydrologic bench-mark network, Explanation of | 10 | | Ground-water-quality records | 22-23 | Hydrologic conditions, Summary of | | | Records | | Hydrologic index stations, Definition of | | | Stage and water-discharge records | 12-16 | Hydrologic unit, Definition of | 28 | | Surface-water-quality records | | | | | Water-quality-control data | 20-21 | Identifying estimated daily discharge | | | Extractable organic halides, Definition of | 27 | Inch (in), Definition of | | | | | Instantaneous discharge, Definition of | | | Fecal coliform bacteria, Definition of | | Introduction | | | Fecal streptococcal bacteria, Definition of | | Iron Works Creek near Richboro | | | Fire algae, Definition of | | Island, Definition of | 28 | | Five Points, East Branch Red Clay Creek near | | | | | Flow-duration percentiles, Definition of | | Jefferson, Bear Creek at | | | Footnotes (Also see remark codes) | | Jericho Creek at Washington Crossing | | | Fort Washington, Wissahickon Creek at | | Jordan Creek, at Allentown | | | Francis E. Walter Reservoir | | at mouth at Allentown | | | Frankford Creek at Castor Avenue, Philadelphia | | near Schnecksville | | | Frankford Creek Basin, Gaging stations in | 210-211 | near Stetlersville | 405 | | French Creek, | | | | | at Coventryville | | Kennett Square, | | | at St. Peters | | Red Clay Creek, near | | | near Phoenixville | | West Branch, near | * | | Furnace Creek at Robesonia | 232-233 | Runoff to Unnamed Tributary to, at | | | | | Unnamed Pond above Unnamed Tributary to | | | Gage datum, Definition of | | Unnamed Tributary to, at | | | Gage height (GH), Definition of | | Kresgeville, Pohopoco Creek at | | | Gage values, Definition of | | Wild Creek above Penn Forest Reservoir near | 410-425 | | Gaging station, Definition of | | | 10 | | Gaging stations, discontinued, List of | | Laboratory measurements, Explanation of | | | List of, in downstream order | | Laboratory reporting level (LRL), Definition of | | | Gas chromatography/flame ionization detector, Defin | | Lackawaxen River, at Hawley | | | General Edgar Jadwin Reservoir | | at mouth at Lackawaxen | | | Geomorphic chemical units, Definition of | | at Rowland | | | Gibralter, Allegheny Creek at | | near Honesdale
West Branch, at Prompton | | | Glendon, Lehigh River at | | near Aldenville | | | Glenmoore, Marsh Creek near | | | | | East Branch Brandywine Creek at | | Lackawaxen River Basin, Gaging stations in Lakes and reservoirs in | | | Green algae, Definition of | | Lake Wallenpaupak | | | Green Lane, | | Lakes and reservoirs: | | | Reservoir | 202 203 | Beltzville Lake | 156 157 | | Macoby Creek at | | Bradshaw Reservoir, Distributary From | | | Ground-water-level data | | Blue Marsh Lake | | | Ground-water-levels records, Explanation of | | Chambers Lake | | | Ground-water-quality records, Explanation of | | Francis E Walter Reservoir | | | Ground-water records, List of, by county | | General Edgar Jadwin Reservoir | | | Guthriesville, Beaver Creek at | | Green Lane Reservoir | | | Guintesvine, Beaver creek at | 430 433 | Lake Wallenpaupack | | | Habitat, Definition of | 27 | Marsh Creek Reservoir | | | Habitat quality index, Definition of | | Penn Forest Reservoir | | | Hale Eddy, NY, West Branch Delaware River at | | Prompton Reservoir | | | Hancock, West Branch Delaware River at | | Still Creek Reservoir | | | Hardness, Definition of | | Wild Creek Reservoir | | | Harleyville, East Branch Perkiomen Creek near | | Landenberg, East Branch White Clay Creek at | | | Hawley, Lackawaxen River at | | Landingville, Schuylkill River at | | | High tide, Definition of | | Land-surface datum (lsd), Definition of | | | Hillegass, West Branch Perkiomen Creek at | | Langhorne, Neshaminy Creek near | | | Hilsenhoff's Biotic Index (HBI), Definition of | | Latent heat flux, Definition of | | | Hokendauqua Creek near Northampton | | Latitude-longitude system, Explanation of | | | Honesdale, Dyberry Creek above Reservoir near | | Lebanon County, | 11 | | Dyberry Creek near | | Ground-water-level records in | 498 | | Lackawaxen River near | | Lehigh County, Ground-water-level records in | | | Honey Brook, West Branch Brandywine Creek near . | | Ground-water-quality records in | | | . , | | quanty records in | | | | Page | | Page | |---|---------------|--|---------| | Lehigh River, at Allentown | 401 | Milford, | J | | at Bethlehem | | Raymondskill Creek near | 402 | | at Easton | 151-155 | Sawkill Creek at | 402 | | at Glendon | 148-150 | Vandermark Creek at | 400 | | at Lehighton | 122-123 | Mill Creek, | | | at Stoddartsville | | at Mountainhome | | | at Treichlers | | at Rushland | | | at Walnutport | | Milligrams per liter (MG/L), Definition of | | | below Francis E. Walter Reservoir near White Have | | Minimum reporting level (MRL), Definition of | | | Lehigh River Basin, Gaging stations in | | Minisink Hills, Brodhead Creek at | | | Lakes and reservoirs in | | Miscellaneous site, Definition of | | | Lehighton, Lehigh River at | 122-123 | Discharge at | | | Lenhartsville, | 407 | Modena, West Branch Brandywine Creek at | 347-358 | | Maiden Creek near | | Monocacy Creek, | 144 145 | | Maiden Creek tributary at
Lewisville, Big Elk Creek near | | at BethlehemEast Branch, near Bath | | | Light attenuation coefficient, Definition of | | Monroe County, Ground-water-level records in | | | Linfield, Schuylkill River at Vincent Dam at | | Ground-water-quality records in | | | Lipid, Definition of | | Montague, NJ, Delaware River at | | | Little Bush Kill at Bushkill | | Montgomery County, | 65-66 | | Little Lehigh Creek, | 403 | Ground-water-level records in | 501-505 | | at Tenth Street Bridge, Allentown | 138-139 | Ground-water-quality records in | | | near Allentown | | Moselem Creek near Shoemakersville | | | Little Neshaminy Creek at Valley Road | 130 137 | Most probable number (MPN), Definition of | | | near Neshaminy | 198-202 | Mountainhome, Mill Creek at | | | Little Schuylkill River at Tamaqua | | Multiple-plate samplers, Definition of | | | Long Pond, Tunkhannock Creek near | | Transpie piace samplers, 2 eminor of the samplers, | 2> | | Long-term method detection level (LT-MDL), Definition | | Nanograms per liter (NG/L), Definition of | 29 | | Low-flow partial record sites | | National Atmospheric Deposition Program, Definition of | | | Low tide, Definition of | | National Geodetic Vertical Datum of 1929 (NGVD), | | | Ludwigs Corner, Unnamed tributary to Pickering Creek | near408 | Definition of | 29 | | Lumberville, Delaware River at | | National Stream Quality Accounting Network (NASQAN) | , | | Manahy Crook at Croon Land | 400 | Definition of National Trends Network, Definition of | | | Macoby Creek at Green Lane | | National Water-quality Assessment Program (NAWQA), | 10 | | Maiden Creek, | 20 | Definition of | 10 | | at Lenhartsville, tributary | 407 | Natural substrate, Definition of | | | near East Berkley | | Nekton, Definition of | | | near Lenhartsville | | Nephelometric turbidity unit (NTU), Definition of | | | Manatawny, Pine Creek near | | Neshaminy Creek, | | | Manatawny Creek, | | near Langhorne | 203-205 | | at Earlville | 407 | near Penns Park | | | near Pottstown | 246-247 | near Rushland | 196-197 | | near Spangsville | 244-245 | North Branch, at Chalfont | 194-195 | | Maple Grove, Big Elk Creek at | 436-453 | below Lake Galena near New Britain | 192-193 | | Marshallton, Broad Run at | 436-453 | Neshaminy Creek Basin, Gaging stations in | 192-205 | | Marsh Creek, near Downingtown | 362-363 | Neshaminy, Little Neshaminy Creek | | | near Glenmoore | 360-361 | at Valley Road near | 198-202 | | Marsh Creek Reservoir near Downingtown | 391 | New Britain, North Branch Neshaminy Creek below | | | Mean concentration of suspended sediment, Definition of | of28 | Lake Galena near | 192-193 | | Mean discharge (mean), Definition of | | Newtown Square, Crum Creek near | | | Mean high or low tide, Definition of | | Norristown, Schuylkill River at | | | Mean sea level, Definition of | | North American Vertical Datum of 1988, Definition of | | | Measuring point (MP), Definition of | | Northampton, Hokendauqua Creek near | | | Media, Ridley Creek at | | Northampton County, Ground-water-level records in | | | Membrane filter, Definition of | | Ground-water-quality records in | 516-520 | | Metamorphic stage, Definition of | | North Branch, | 104 105 | | Method detection level (MDL), Definition of | | Neshaminy Creek, at Chalfont | | | Methylene blue active substances (MBAS), Definition of | | below Lake Galena near New Britain | | | Micrograms per gram (μg/g), Definition of | | Northbrook, Broad Run at | | | Micrograms per kilogram (UG/KG), Definition of | | Numbering system for wells and miscellaneous sites | 11 | | Micrograms per liter (Ug/L, µg/L), Definition of | | Office addresses | | | Microsiemens per centimeter (μS/cm), Definition of | 29 | Office addresses | | | Middle Branch White Clay Creek,
near Avondale | 101 126 152 | On site measurements and sample collection | | | near Avonuare | . 404,430-433 | Open or screened interval, Definition of | 29 | | | Page | | Pag | |---|-------------|---|---------| | Organic carbon, Definition of | 29 | Pigeon Creek, | | | Organic mass, Definition of | | at Parker Ford | | | Organism count/area, Definition of | | near Slonaker | | | Organism count/volume, Definition of | | Pike County, Ground-water-level records in |
508-509 | | Organochlorine compounds, Definition of | | Pine Creek, | | | Other records available | | at Barnesville | | | Ottsville, Tinicum Creek near | 405,410-425 | near Manatawny | | | | 100 100 | Pipersville, Tohickon Creek near | | | Palmerton, Aquashicola Creek at | | Plankton, Definition of | | | Parameter code, Definition of | | Pocono Creek above Wigwam Run near Stroudsburg | | | Park Creek near Warrington
Parker Ford. | 406 | Pohopoco Creek, at Kresgevilleat Parryville | | | Pigeon Creek at | 407 | below Beltzville Lake near Parryville | | | Parryville, | 407 | Point Pleasant, Delaware River below Tohickon Creek a | | | Pohopoco Creek below Beltzville Lake near | 128-131 | Polychlorinated biphenyls (PCBs), Definition of | | | Pohopoco Creek at | | Polychlorinated naphthalenes (PCN's), Definition of | | | Partial-record station, Definition of | | Pond Eddy, NY, Delaware River at | | | Discharge at | | Pool, Definition of | | | Low-flow at | | Poquessing Creek at Grant Avenue, Philadelphia | | | Particle size, Definition of | | Poquessing Creek Basin, Gaging stations in | | | Particle-size classification, Definition of | | Port Carbon, Schuylkill River at | | | Peak flow (peak stage), Definition of | | Port Jervis, NY, Delaware River at | | | Penn Forest Reservoir | | Portland, Delaware River at | 101-102 | | Penns Park, Neshaminy Creek near | 401 | Pottstown, | | | Pennsylvania water-quality network | 410-425 | Schuylkill River at | 248-250 | | Pennypack Creek at Lower Rhawn St. Bridge, Philadel | phia208-209 | Manatawny Creek near | 246-247 | | Pennypack Creek Basin, Gaging stations in | 208-209 | Primary productivity, Definition of | | | Percent composition, Definition of | 30 | Prompton, West Branch Lackawaxen River at | 64-67 | | Percent shading, Definition of | 30 | Prompton Reservoir | 76-77 | | Periodic-record station, Definition of | 30 | | | | Periphyton, Definition of | 30 | Quakertown, | | | Perkiomen Creek, | | Beaver Run tributary at | | | at Graterford | | Tohickon Creek near | 406 | | at East Greenville | | | | | near Collegeville, at Arcola | 410-425 | Radioisotopes, Definition of | | | East Branch, | 22. | Raymondskill Creek near Milford | | | near Dublin | | Reach, Definition of | 31 | | near Harleyville | | Reading, | 242.24 | | near Schwenksville | | Schuylkill River at | | | West Branch, at Hillegass | | Tulpehocken Creek, at Blue Marsh Damsite near | | | | | Recoverable from bed (bottom) material, Definition of . | | | pH, Definition of
Philadelphia, | | Records, Explanation of | | | Byberry Creek at Chalfont Road, | 406 | Stage and water discharge, Explanation of | | | Delaware River at Benjamin Franklin Bridge at | | Surface-water quality, Explanation of | | | Delaware River at Fort Mifflin at | | Ground-water levels, Explanation of | | | Frankford Creek at Castor Avenue, | | Ground-water quality, Explanation of | | | Pennypack Creek, at Lower Rhawn Street Bridge, | | Recurrence interval, Definition of | | | Poquessing Creek at Grant Avenue, | | Red Clay Creek, East Branch, near Five Points | | | Rock Creek above Curtis Arboretum near | | near Kennett Square | | | Schuylkill River, at | | West Branch, near Kennett Square | | | at Falls Bridge at | | Reeceville, Beaver Creek at | | | Wissahickon Creek at Mouth | | Reedy Island Jetty, DE, Delaware River at | | | Philadelphia County, | | Remark codes, Explanation of | | | Ground-water-level records in | 507 | Replicate samples, Definition of | | | Ground-water-quality records in | 516-520 | Reservoirs: See lakes and reservoirs. | | | Phoenixville, | | Return period: See recurrence interval. | | | French Creek near | 254-261 | Richboro, Iron Works Creek near | | | Pickering Creek near | 403,436-453 | Ridley Creek, at Media | 304-305 | | Schuylkill River at | 401 | at PA Route 3 near Willistown | | | Phytoplankton, Definition of | 30 | Ridley Creek Basin, Gaging stations in | 304-305 | | Pickering Creek, | | Riegelsville, NJ, Delaware River at | | | near Phoenixville | 403,436-453 | Riffle, Definition of | | | unnamed tributary to, near Ludwigs Corner | | River mileage, Definition of | | | Picocurie, Definition of | 30 | Robesonia, Furnace Creek at | 232-233 | | | Page | | Page | |---|--------------|--|---------| | Rock Creek above Curtis Arboretum near Philadelphia | | Stoddartsville, Lehigh River at | 106-110 | | Romansville, Broad Run at | 436-453 | Streamflow, Definition of | 32 | | Rowland, Lackawaxen River at | 402 | Strickersville, White Clay Creek near | 315-317 | | Run, Definition of | 31 | Stroudsburg, Pocono Creek above Wigwam Run near | 96-97 | | Runoff, Definition of | 31-32 | Substrate, Definition of | 32 | | Runoff to Unnamed Tributary to West Branch Red Clay | Creek | Substrate embeddedness class, Definition of | 32 | | at Kennett Square | 318-322 | Sucker Run near Coatesville | 401 | | Rushland, | | Summary of hydrologic conditions | 3-9 | | Mill Creek at | 406 | Sumneytown, Unami Creek at | | | Neshaminy Creek near | 196-197 | Surface area of a lake, Definition of | 32 | | • | | Surface-water stations, List of | viii-x | | St. Peters, French Creek near | 408 | Surface-water-quality records, Explanation of | | | Sand Hill Creek at Bushkill | | Surficial bed material, Definition of | | | Sawkill Creek at Milford | 402 | Suspended, Definition of | 32 | | Schnecksville, Jordan Creek near | | Suspended, recoverable, Definition of | | | Schuylkill County, Ground-water-level records in | | Suspended sediment, Definition of | | | Schuylkill River, | | Suspended-sediment concentration, Definition of | | | at Berne | 224-226 | Suspended-sediment discharge (tons/day), Definition of | | | at Birdsboro | | Suspended-sediment load, Definition of | | | at Falls Bridge at Philadelphia | | Suspended solids, Definition of | | | at Landingville | | Suspended, total, Definition of | | | at Norristown | | Swiftwater Creek at Swiftwater | | | at Philadelphia | | Synoptic studies, Definition of | | | at Phoenixville | | Synoptic studies, Deminion of | | | at Port Carbon | | Tamaqua, Little Schuylkill River at | 222 223 | | at Pottstown | | Taxa, Definition of | | | at Pottstown | | Taxonomy, Definition of | | | at Vincent Dam at Linfield | | Techniques of Water-Resources Investigations | 33 | | Schuylkill River Basin, Gaging stations in | | of the U.S. Geological Survey | 26.40 | | | | · | | | Lakes and reservoirs in | | Temple, Willow Creek near | | | Schwenksville, East Branch Perkiomen Creek near | | Thalweg, Definition of | | | Sea level, Definition of | | The make of Chalca Coulomb and Chalca Chalca Coulomb and Chalca Chalca Coulomb and Chalca Chalca Coulomb and Chalca Chalc | | | Sediment, Definition of | | Thornhurst, Choke Creek near | | | Sensible heat flux, Definition of | | Time-weighted average, Definition of | | | 7-day 10-year low flow (Q7,10), Definition of | | Tinicum Creek near Ottsville | | | Shelves, Definition of | | Tobyhanna Creek near Blakeslee | | | Shoemakers, Bush Kill at | | Tohickon Creek Basin, Gaging stations in | 160-161 | | Shoemakersville, Moselem Creek near | | Tohickon Creek, | 160 161 | | Shohola Creek near Shohola | | near Pipersville | | | Skippack, Zacharias Creek near | | near Quakertown | | | Skippack Creek at Evansburg | | Toms Creek at Egypt Mills | | | Slonaker, Pigeon Creek near | | Tons per acre-foot, Definition of | 33 | | Sodium-adsorption-ratio (SAR), Definition of | | Tons per day (T/day), Definition of | | | Soil heat flux, Definition of | | Total, Definition of | | | Soil-water content, Definition of | | Total coliform bacteria, Definition of | | | Spangsville, Manatawny Creek near | | Total discharge, Definition of | | | Special networks and programs | | Total in bottom material, Definition of | | | Special notes, remark codes4 | 6-47,454-455 | Total length, Definition of | | | Special studies, | | Total load, Definition
of | 34 | | Chester County Water-Quality Monitoring Project | 512-515 | Total organism count, Definition of | 34 | | New Garden Township, Chester County, | | Total recoverable, Definition of | | | Spray Irrigation Project | 426-435 | Total sediment discharge, Definition of | | | Pennsylvania Water-Quality Network | 410-425 | Total sediment load, Definition of | 34 | | Statewide Assessment of methyl-tert-butyl-ether | | Transect, Definition of | 34 | | (MTBE) in ground water | 516-520 | Treichlers, Lehigh River at | | | Stream conditions of Chester County biological | | Trenton, Delaware River at | 171-191 | | monitoring network | | Trout Creek near Valley Forge | | | Specific electrical conductance, Definition of | | Tulpehocken Creek, at Bernville | | | Stable isotope ratio, Definition of | | near Bernville | | | Stage: See gage height. | | near Reading | | | Stage and water discharge records, Explanation of | 12-16 | near Reading, at Blue Marsh Damsite | | | Stage-discharge relation, Definition of | | Tunkhannock Creek near Long Pond | | | Station identification numbers, Explanation of | | Turbidity, Definition of | | | Stetlersville, Jordan Creek near | | • | | | Still Creek Reservoir | | Ultraviolet (UV) absorbance (absorption), Definition of | 34 | | | | continue (accordance (accorption), Demittion of | | | | Page | | Page | |--|--------------|---|-------------------| | Unami Creek at Sumneytown | 408 | WDR (Water Data Report), Definition of | 34 | | Unconfined aquifer, Definition of | 34 | Weighted average, Definition of | 34 | | Unnamed Pond above Unnamed Tributary to West Brand | ch | West Branch, | | | Red Clay Creek at Kennett Square | 323-324 | Brandywine Creek, at Coatesville | 342-346 | | Unnamed Tributary, | | at Modena | 347-358 | | to Pickering Creek near Ludwigs Corner | 408 | at Wagontown | | | to West Branch Red Clay Creek at Kennett Square | 325-328 | near Honey Brook | 332-336 | | USGS water data, Access to | 23 | West Branch, | | | | | Delaware River, | | | Valley Creek, | | at Hale Eddy, NY | 410-425 | | at Pennsylvania Turnpike Bridge | | at Hancock | 48-49 | | near Valley Forge | 272-276 | Lackawaxen River, at Prompton | 64-67 | | at Wilson Road near Valley Forge | | near Aldenville | 60-63 | | Valley Forge, | | Perkiomen Creek at Hillegass | 264-265 | | Valley Creek, | | Red Clay Creek near Kennett Square | | | at Pennsylvania Turnpike Bridge near | 272-276 | West Reading, Wyomissing Creek at | 407 | | at Wilson Road near | 410-425 | Westtown, East Branch Chester Creek at | 436-453 | | Trout Creek near | 408 | Wet mass, Definition of | 34 | | Vandermark Creek at Milford | 400 | Wet weight, Definition of | 34 | | Vertical datum: See datum. | | White Clay Creek, near Strickersville | 315-317 | | Vincent Dam, Schuylkill River at, at Linfield | 251-253 | East Branch, | | | Volatile organic compounds (VOCs), Definition of | 34 | at Avondale | 436-453 | | | | at Landenberg | 408 | | Wagontown, | | Middle Branch, near Avondale | 404,436-453 | | Birch Run near | 337-341 | White Haven, | | | Chambers Lake near | 391 | Lehigh River below Francis E Walter Reserv | oir near 118-121 | | West Branch Brandywine Creek at | 404 | Wild Creek above Penn Forest Reservoir near Kro | esgeville 410-425 | | Wallenpaupack Creek, at Wilsonville | 74-75 | Wild Creek Reservoir | 156-157 | | at East Sterling | .402,410-425 | Willistown, Ridley Creek at PA Route 3 near | 436-453 | | Walnutport, Lehigh River at | 134-135 | Willow Creek near Temple | 407 | | Warrington, Park Creek near | 406 | Wilsonville, | | | Washington Crossing, Jericho Creek at | | Wallenpaupack Creek at | 74-75 | | Water table, Definition of | 34 | Wissahickon Creek, at Fort Washington | 280-282 | | Water-table aquifer, Definition of | 34 | at Mouth, Philadelphia | 283-285 | | Water year, Definition of | | WSP (Water Supply Paper), Definition of | 35 | | Water-quality-control data, Explanation of | 20-21 | Wyomissing Creek at West Reading | | | Water-quality records, Explanation of | | | | | Water-quality stations, discontinued, List of | | Zacharias Creek near Skippack | 408 | | Wayne County, Ground-water-level records in | 511 | Zooplankton, Definition of | 35 |